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Abstract

The arithmetic of the Hitchin component

by

Michael Zshornack

This thesis presents a number of results surrounding the arithmetic properties of the

Hitchin component, a space of representations of the fundamental group of a closed

surface into split real forms of simple Lie groups such as SL(n,R). The first main result

is when the existence of a Hitchin representation defined over certain prescribed subrings

of R may be deformed to a Zariski-dense one defined over the same ring. The second,

produced in joint work with Jacques Audibert, provides a topological characterization

for the collection of Hitchin representations defined over Q. Central to establishing

these results is further developing the arithmetic nature of bending deformations on the

Hitchin component. This further develops a perspective first taken in work of Long

and Thistlethwaite who studied these deformations in an arithmetic context in order to

produce examples of thin surface subgroups of SL(2k + 1,Z).
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Chapter 1

Motivation

The results contained in this thesis concern the arithmetic properties of the Hitchin

component, a particular space of representations of surface groups that forms an example

of a higher-rank Teichmüller space. These results share themes with much work in the last

decades of low-dimensional geometry and topology, particularly in seeking to understand

how surface groups embed into other groups in interesting algebraic, arithmetic and

dynamical manners. We begin with some discussion of the surrounding motivation and

history of the subject, and a brief introduction to the main ideas used. Most details and

definitions have been deferred to Chapter 2.

Let G be a semisimple (real or complex) Lie group and Λ < G a lattice, that is, a

finitely generated discrete subgroup of finite covolume. By a surface subgroup of Λ, we

mean a subgroup isomorphic to the fundamental group of a closed, connected, orientable

surface of genus 2 or more. Much of this work is motivated by the following question.

Question 1. Does Λ contain a surface subgroup?

Lattices in Lie groups have been extensively studied throughout mathematics from

a number of different perspectives, but our collective understanding of which finitely

generated, infinite groups arise as their subgroups is relatively poor. The simplest possible
1



Motivation Chapter 1

class of such subgroups (e.g. in the sense of cohomological dimension) are free subgroups,

and the Tits alternative (see [Tit72]) provides an answer to the analog of the above

question for these. Armed with this knowledge for free subgroups, surface subgroups

are a natural next step, amidst the hierarchy of isomorphism types of finitely generated

groups to consider. When Λ is cocompact and G has real-rank one, this question is also a

special instance of one originally asked by Gromov in [Gro87], on whether every one-ended

word hyperbolic group contains a surface subgroup. Thus the above can also be thought

of as a natural generalization of Gromov’s question to the more general non-positively

curved setting.

While Question 1 remains unknown in full generality, its resolution in various special

cases constitutes a number of celebrated results in mathematics. For instance, when

G = SO(3, 1), the answer to Question 1 is “yes” for all lattices by work of Cooper–Long–

Reid [CLR97] and Kahn–Marković [KM12] establishing the result for non-cocompact

and cocompact lattices respectively. Notably, this latter work was instrumental in Agol’s

resolution to the virtual Haken conjecture of Waldhausen [Ago13] and illustrates how

even just understanding the surface subgroups of a lattice can provide deep information

about the overall geometry of the lattice itself. A positive answer to Question 1 is also

known to be true for many other classes of cocompact lattices, for instance, ones in other

rank one Lie groups not locally isomorphic to SO(2k, 1) by work of Hamenstädt [Ham15]

and ones in complex Lie groups by work of Kahn–Labourie–Mozes [KLM18].

Amidst the search for surface subgroups of lattices, it is also natural to further refine

our parameters and ask for such subgroups possessing particular qualities of interest to

other areas of mathematics. For instance, the following is a natural algebraic refinement

of Question 1.

Question 2. Does Λ contain a Zariski-dense surface subgroup?

2
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Such Zariski-dense subgroups often form examples of thin groups (see Definition 2.1.5)

and are of independent interest within number theory for the many properties they share

with lattices, despite having infinite covolume. For instance, thin groups satisfy forms of

the strong approximation theorem (see Theorem 2.1.3). Exhibiting surface subgroups of

lattices which are thin is also of note, as such examples are rare in an appropriate sense.

More generally, geometric techniques similar to the ones used in this work lie behind a

significant bulk of the known examples of non-free isomorphism types of thin subgroups

of lattices in higher-rank Lie groups (see Question 4 and the discussion following).

The following is another refinement of Question 1, now of a more dynamical flavor.

Question 3. Does Λ contain an Anosov surface subgroup?

Anosov subgroups (see Definition 2.3.4) are of interest in dynamics and geometry, due

to the rich properties seen by the actions of these groups on the symmetric spaces associ-

ated to G. In addition to mathematicians’ independent interest in them, understanding

the Anosov subgroups of Λ also presents a particularly promising means of understanding

the Zariski-dense ones, due to the deformation theory accompanying much of the study

of the former. In fact, this idea of using Anosov representations of surface groups and the

rich deformation theory thereof to answer forms of Question 2 originates with work of

(various combinations of) Long, Reid and Thistlethwaite first resolving this question for

various higher-rank lattices (e.g. see [LRT11,LT18,LT22] for ones of the form SL(n,Z)).

Continuing this line of thought, a major theme explored in this thesis is the utility in

understanding Question 3 as a means of understanding Question 2.

Remark. Though Question 3 focuses on one class of surface subgroups which are inter-

esting from a geometric perspective, it also is an interesting question to ask whether a

lattice possesses a surface subgroup which is not Anosov. For instance, it is a deep result

of Agol that cocompact lattices of SO(3, 1) also contain surface subgroups which virtually

3
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fiber [Ago13], and these are never Anosov. Though perhaps notably, this work crucially

relies on the results of [KM12], and so for other Lie groups, understanding the existence

of Anosov surface subgroups may also be a helpful step in understanding the existence

of non-Anosov ones.

It is of note that while many of the above mentioned results, particularly for rank

one Lie groups, do not discuss the further refinements of Questions 1 mentioned, the

examples produced in the works [KM12,Ham15,KLM18] are all Anosov and can easily

be made Zariski-dense with small modifications. Additionally, Cooper–Futer and Kahn–

Wright independently provided Zariski-dense and Anosov examples for non-cocompact

lattices in SO(3, 1) [CF19,KW21].

This thesis primarily focuses on when G is a higher-rank Lie group, where most of the

presented results are novel. This is also the context where the notion of a subgroup being

Anosov is really of use, whereas in rank one, this condition is equivalent to being convex

cocompact which is, in practice, easier to work with. Unlike in the rank one setting where

much of the previous work resolving Question 1 has simultaneously answered Questions 2

and 3, in higher-rank, the three questions appear to be much more distinct. For example,

at the time of writing, it is currently unknown whether the lattice SL(6,Z) < SL(6,R)

possesses a Zariski-dense surface subgroup, despite it possessing many Anosov ones (see

Example 3.3.1).

On the other hand, in the higher-rank context, the importance of arithmetic tools

takes a spotlight. This is exemplified by work of Margulis who roughly showed that

for higher-rank G, all irreducible lattices arise through “number-theoretic constructions”

(see Definition 2.1.4 and Theorem 2.1.2). This is in contrast with rank one where “most

lattices” can be non-arithmetic (see Theorem 2.2.3). Thus, where higher-rank poses new

difficulties not present in rank one, some of the pain is mitigated by the niceties provided

by its more arithmetic nature.
4
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The approach taken in this thesis towards understanding the above questions is repre-

sentation theoretic. That is, rather than seeking to understand how surface groups embed

into lattices of G directly, we consider Hom(π1(S), G), the space of all group homomor-

phisms from a surface group, π1(S), into the target Lie group G. From this perspective

the representations we would like to understand, i.e. faithful ones with image contained

in a lattice, now live inside a larger space possessing the natural structure of an alge-

braic variety. Margulis’s arithmeticity theorem suggests a loose connection between the

surface subgroups of lattices and the number-theoretic properties of Hom(π1(S), G), in

an arithmetic geometric sense. The main results of this thesis (Theorems 2.4.1, 2.4.2

and 2.4.3) illustrate how one may understand aspects of the arithmetic of representation

varieties by leveraging their underlying geometry, with a view towards understanding the

above questions. These results also provide a large class of examples of surface subgroups

which, while not necessarily contained in lattices of G, are contained in lattices of larger

groups containing G (see Example 2.1.4).

A means of understanding faithfulness of representations will be crucial in the passage

from surface group representations to surface subgroups as in the initial questions. Thus

much of the discussion of these results will primarily be focused on representations lying

on the Hitchin component (see Definition 2.3.2) where, like the holonomies associated to

hyperbolic structures on surfaces, all representations are discrete and faithful. In general,

the theory of higher-rank Teichmüller spaces and other spaces of Anosov representations

provide a particularly fruitful geometric means of understanding when representations of

surface groups and other word hyperbolic groups are discrete and faithful. The study of

these representations constitutes an incredibly deep amount of research today, spanning

various areas of mathematics such as geometry, dynamics and group theory (e.g. see

[Wie18]) and various aspects of this theory will be crucial in establishing our main re-

sults. Some indications on how our results may be generalized to other spaces of Anosov

5
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representations are discussed as well.

Finally, central to the proofs of the main results is a deformation of representations

that has appeared in many contexts throughout the years, known as bending (see §3.1).

In the context of surfaces, these deformations were first discussed by Thurston in the con-

text of quasi-Fuchsian subgroups of PSL(2,C) [Thu79, §8.7]. Similar deformations can be

performed on any representation of a surface group, and their geometric properties have

been extensively studied by many. The utility of applying these deformations towards

arithmetic questions first came to light when Long and Thistlethwaite used bending to

construct Zariski-dense surface subgroups of SL(2k + 1,Z) [LT22]. One of the major

novel contributions of this thesis is further developing and understanding the arithmetic

perspective behind these deformations first arising with their work. In particular, the

construction performed in [LT22] is extended to a more general context, outlining how

understanding the arithmetic of the whole Hitchin component can be reduced to un-

derstanding the arithmetic of a certain family of algebraic groups. In addition to these

methods featuring throughout this work, this is also a similar perspective taken by Au-

dibert in [Aud22,Aud23], highlighting how these specific deformations can be particularly

fruitful for arithmetic purposes.

1.1 Organization

The remainder of this thesis is organized into three chapters. Chapter 2 discusses

the necessary preliminary background on classical and higher-rank Teichmüller spaces

and on thin groups needed to state the main results. Most of the content here is due to

the work of previous authors and, when omitted, appropriate references to documented

proofs in the literature are given. This is also where the statement of this thesis’s main

results are contained (see §2.4). Chapter 3 focuses on the proofs of Theorems 2.4.1

6
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and 2.4.2, by investigating the underlying integral structure of the Hitchin component,

one particularly nice space of surface group representations. Constructions of Zariski-

dense surface subgroups defined over certain rings of integers are discussed, in addition

to the bending construction being first developed in detail. Most of the content of this

chapter appears in work of the author in [Zsh22]. Chapter 4 focuses on the rational

structure of the Hitchin component, proving Theorem 2.4.3 which provides a topological

characterization of Hitchin representations of surface groups which are defined over Q.

The interactions between bending and the underlying symplectic geometry of the Hitchin

component are further developed here as well. Much of the content of this chapter appears

in joint work of the author with Jacques Audibert in [AZ23] and has been reproduced

here with the latter’s permission.

7



Chapter 2

Preliminaries

The majority of the content contained in this chapter consists of the necessary background

needed in order to frame the discussion of this thesis’s main goals in §2.4. For most results

reviewed, citations are given to proofs in the literature.

2.1 Lie groups and their discrete subgroups

The standing assumptions for this section will be that G is a semisimple, real Lie

group with finitely many connected components and finite center. It would not hurt to

just take G = SL(n,R) in most of what follows, though the use of other Lie groups will

come to play at various points, and so we keep the discussion relatively general. We

first recount some key notions associated to G before focusing on its discrete subgroups,

mostly following [Mor15].

Definition 2.1.1. The symmetric space of G is the homogeneous space G/K where

K ⩽ G is a (unique up to conjugacy) maximal compact subgroup of G.

Let g be the Lie algebra of G and g = k ⊕ p an associated Cartan decomposition.

The restriction of the Killing form on g to p is positive-definite and p can be identified
8
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with the tangent space to the identity coset TK(G/K). Thus, the Killing form induces a

G-invariant Riemannian metric on G/K, the volume form on which agrees with the one

induced by the Haar measure on G.

Example 2.1.1 (The symmetric space of SL(n,R)). SO(n) < SL(n,R) is a maxi-

mal compact subgroup. The following is an explicit description of the symmetric space

SL(n,R)/ SO(n), given in more detail, for instance, in [Sch13]. Let Xn denote the set

of n × n real, symmetric, positive-definite matrices of determinant 1. Define an action

SL(n,R) ↷ Xn by

A ·M := AMAT .

Observe that this action is transitive since by elementary linear algebra, any M ∈ Xn is

of the form M = AAT for some A ∈ SL(n,R). The tangent space at the identity, TIn(Xn)

is the collection of traceless, symmetric matrices, on which the form ⟨X, Y ⟩ = Tr(XY )

is an inner product. Transitivity of the action allows one to extend this form to an

SL(n,R)-invariant Riemannian metric on Xn. The map

SL(n,R)/ SO(n) → Xn

A SO(n) 7→ AAT

is an SL(n,R)-equivariant Riemannian isometry, giving an identification of the symmetric

space SL(n,R)/ SO(n) with Xn.

Definition 2.1.2. The R-rank (or sometimes just rank) of G, rankR(G), is the maximal

dimension k for which there is a totally geodesic flat subspace of G/K homeomorphic to

Rk. A G of R-rank 2 or more will be called a higher-rank group.

Example 2.1.2 (The rank one simple Lie groups). The rank one simple Lie groups of

non-compact type are precisely the ones whose symmetric spaces are hyperbolic, that is,
9
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ones of (possibly variable) negative sectional curvature. Up to local isomorphism, they

are indexed by the three infinite families SO(n, 1), SU(n, 1) and Sp(n, 1) (the isometry

groups of the real, complex and quaternionic hyperbolic spaces respectively) and one

exceptional group F−20
4 (the isometry group of the Cayley plane). Note that there are local

isomorphisms PSL(2,R) ∼= SO(2, 1) ∼= SU(1, 1) and PSL(2,C) ∼= SO(3, 1) ∼= Sp(1, 1).

Example 2.1.3 (rankR(SL(n,R)) = n − 1). Let ∆ = {(t1, . . . , tn) ∈ Rn |
∑

i ti = 0}

and equip it with the metric induced by the standard one on Rn. Note that ∆ is

homeomorphic to Rn−1 and, identifying the symmetric space of SL(n,R) with Xn as in

Example 2.1.1, the map

∆ → Xn

(t1, . . . , tn) 7→ diag(et1 , . . . , etn)

is a geodesically embedded flat in Xn of maximal dimension.

2.1.1 Lattices

We next turn to discussing the discrete subgroups of Lie groups. The prototypical

examples of which are lattices, or, roughly, the subgroups of G which are neither too

small nor too big. In other words:

Definition 2.1.3. A lattice is a discrete subgroup Λ < G of finite covolume, that is

µ(Λ\G) < ∞ where µ denotes the Haar measure. A lattice is cocompact if Λ\G is, in

fact, compact.

The study of properties of lattices has a deep history in mathematics, involving much

mathematics spanning geometry, group theory, number theory, dynamics and more. Some

10
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of the simplest constructions of lattices arise via the following result of Borel and Harish-

Chandra.

Theorem 2.1.1 ([BHC62]). Let G be a linear, semisimple, algebraic group, defined over

Q. Then G(Z) is a lattice in G(R).

Thus, for example, subgroups such as SL(n,Z) < SL(n,R) are lattices. Via Weil’s

restriction of scalars map, one may construct more examples of lattices using the above

theorem such as in the following.

Example 2.1.4. Let σ : Q(
√
2) → R be the field embedding induced by sending

√
2 7→

−
√
2. Embed SL(n,Z[

√
2]) → SL(n,R)× SL(n,R) via the map

A 7→ (A,Aσ)

where Aσ denotes applying the field embedding σ entry-wise to A. Then the image

of SL(n,Z[
√
2]) is a lattice in SL(n,R) × SL(n,R). More specifically, we may think

of SL(n,R) × SL(n,R) as the R-points of a Q(
√
2)-algebraic group, G, whose group

of rational points, G(Q(
√
2)), is precisely the image of SL(n,Q(

√
2)) under the above

map. Restriction of scalars yields a new algebraic group, H = ResQ(
√
2)/Q G, so that

H(Q) = G(Q(
√
2)) and H(Z) is precisely the image of SL(n,Z[

√
2]), and thus, a lattice

in SL(n,R)× SL(n,R) by Theorem 2.1.1.

Being a lattice is also preserved under passage to quotient with compact kernel, pro-

viding even more sources of lattices. More generally, the following definition encompasses

all those that arise via these constructions.

Definition 2.1.4. A lattice Λ < G is arithmetic if there exists a semisimple Q-algebraic

group H and a surjective Lie group homomorphism with compact kernel ψ : H(R)◦ → G

so that ψ(H(Z) ∩H(R)◦) is commensurable to Λ.
11
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Not all lattices are arithmetic. For example, the above construction only ever pro-

duces, at most, countably many conjugacy classes of lattices in a fixed Lie group G.

On the other hand, PSL(2,R) possesses uncountably many such lattices (see Theorem

2.2.3), hence “most” must be non-arithmetic. Moreover, while Mostow–Prasad rigidity

also implies that the other rank one Lie groups SO(n, 1) for n ≥ 3 only possess count-

ably many conjugacy classes of lattices, non-arithmetic examples exist in these groups

for every n ≥ 3, for instance, ones due to Gromov–Piatetski-Shapiro [GPS88]. Thus,

with these examples in mind, the following result of Margulis [Mar91] may come as a

surprise, saying that essentially, such examples are constrained to rank one (see, e.g.,

[Mor15, Theorem 5.2.1] for a proof)

Theorem 2.1.2 (Margulis’s arithmeticity theorem). Suppose rankR(G) ≥ 2 and that

Λ < G is an irreducible lattice, i.e. Λ does not decompose as a non-trivial product of the

form Λ1 × Λ2. Then Λ is arithmetic.

Remark. The same conclusion as above also happens to be true for the rank one groups

Sp(n, 1) and F−20
4 by work of Corlette [Cor92], thus non-arithmeticity can be viewed as a

phenomenon constrained to SO(n, 1) and SU(n, 1). In fact, at the time of writing, among

the SU(n, 1) for n ≥ 2, all non-arithmetic examples known are covered by 22 commensu-

rability classes of examples in SU(2, 1) and 2 commensurability classes in SU(3, 1) (see

[Der20,DPP21]).

2.1.2 Thin groups

In what follows, we will further assume that our Lie group G arises as the R-points of

an algebraic group. Thus, in addition to the Euclidean topology coming from its manifold

structure, G also possesses a Zariski topology, coming from its structure as an algebraic

variety. Much of this thesis concerns objects (G and otherwise) equipped with both of
12
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a Euclidean and Zariski topology. We shall typically preface qualities which are true

in the latter topology with “Zariski-” and use no prefix when dealing with the former.

Therefore, a subset is Zariski-dense if it is dense in the Zariski-topology and it is just

dense if it is dense in the Euclidean one.

Thin groups are an interesting class of subgroups of G whose traits appear drastically

different as the topology they are viewed in changes: they are “very sparse” in one yet

dense in the other. Following [Sar14], we make the following definition.

Definition 2.1.5. Let Λ < G be a lattice. A subgroup Γ < Λ is thin if it is infinite-index

in Λ and Zariski-dense in G.

Remark. More generally, one may define thin groups without mention of an ambient

lattice, instead stating that Γ < G is thin if it is both Zariski-dense and infinite covolume.

We will only refer to groups as being thin if they satisfy the more narrow definition.

Much more recently than the previous section’s results on lattices, the study of thin

groups has attracted much attention in mathematics as properties of lattices have been

extended to this larger class of groups. In short, mathematicians began to note that

proofs of many properties of lattices did not need the full strength of the assumption

that these groups had finite covolume. Rather, for many proofs, the assumption that

the lattices were Zariski-dense (a result due to Borel in [Bor60]) was sufficient. Thus,

a number of results that were previously only known for lattices could be expanded to

much broader classes of groups.

One of the earlier results extending facts previously known about lattices to the class

of thin groups is the following “strong approximation” result of Matthews–Vaserstein–

Weisfeiler.

Theorem 2.1.3 ([MVW84]). If G is a connected, simply-connected, absolutely almost

simple Q-algebraic group and Γ < G(Q) a finitely generated, Zariski-dense subgroup,
13
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then for all but finitely many primes p, the reduction map

πp : Γ → G(Fp)

is surjective.

Even more recently, this theorem for thin groups has been strengthened even further

and studied from the point of view of spectral gap results and expansion properties

associated to the Cayley graphs of the groups πp(Γ). This has led to the theory of

“superstrong approximation” drawing much recent attention in combinatorics and number

theory (see [KLLR19] for a survey).

But despite the deep investigation into the rich properties of thin groups, construc-

tions of such examples are comparatively sparse. There is belief that “generically,” sub-

groups of lattices should be thin (c.f. [Fuc14]), suggesting that randomly selecting el-

ements in a lattice and taking the group generated by them should yield a thin group

with high probability. However, a significant flaw of such “random” considerations is that

these probabilistic constructions also almost surely produce groups which are isomorphic

to free groups (see [Aou11]), and thus producing non-free examples requires a more sub-

tle strategy. Even moreso, given generators which one may happen to know generate a

non-free subgroup of a lattice, determining thinness is much more difficult due to the

fact that computing the index of a subgroup given only generators is hard. This raises

the following (c.f. Question 2).

Question 4. Which isomorphism types of groups arise as thin subgroups of lattices?

There is recent interest, even just among low-dimensional topologists, in such a ques-

tion. For instance, there have been a number of large developments in recent years on

whether or not various finitely generated, residually finite groups are profinitely rigid. Us-

14
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ing geometric methods, Bridson, McReynolds, Reid and Spitler establish profinite rigidity

for various rank one lattices in [BMRS20,BMRS21]. In the former of these papers, they

highlight that a major obstacle in extending their methods to higher-rank lattices, like

SL(n,Z), is the considerable lack in our understanding of their thin subgroups.

Question 4 was also raised in [BL20] prior to the authors showing that fundamental

groups of many arithmetic hyperbolic manifolds can arise as thin subgroups in SL(n,R).

In addition to these examples and the examples of surface groups listed in Chapter 1,

see [Bal20] for examples isomorphic to Gromov–Piatetski-Shapiro lattices and [Dou22]

for examples constructed using reflection groups. Thus, with regards to producing thin

subgroups of known isomorphism type, geometric methods have proven particularly useful

in showing that what is predicted to be a rare phenomenon can in fact occur.

The following proposition illustrates how geometry can circumvent the difficulties

presented earlier.

Proposition 2.1.4. Let Λ be an irreducible lattice in a higher-rank G. If Λ contains a

word hyperbolic subgroup Γ ⩽ Λ, then [Λ : Γ] = ∞.

Proof. One may regard this as a manifestation of the idea that higher-rank lattices should

exhibit strictly non-positively curved phenomena. Indeed, if [Λ : Γ] < ∞, then Γ would

itself be an irreducible lattice in G. However, higher-rank lattices are known to contain

free abelian subgroups of rank equal to rankR(G) (c.f. [PR72, Corollary 2.9]), whereas

word hyperbolic groups can only contain free abelian subgroups of rank at most 1 (c.f.

[Löh17, Corollary 7.5.15]).

Remark. Our interest in this proof is that, in some sense, it is more elementary, yet

more general, than other proofs of this same fact that the author was aware of. For

example, a similar fact can be established for certain arithmetic hyperbolic n-manifolds

using Kazhdan’s property (T) or Margulis’s normal subgroups theorem, in tandem with
15
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facts about the virtual first Betti numbers of such manifolds (c.f. [BL20, Proposition

4.1]). On the other hand, the relevant facts of [PR72] can be established without use

of property (T) and predates much of Margulis’s work (and in some cases, can even be

proven via direct means c.f. [Pra94]), while the nonexistence of higher-rank free abelian

subgroups of hyperbolic groups is a standard fact.

Consequently, Zariski-dense hyperbolic subgroups of higher-rank lattices are auto-

matically thin, thus understanding how hyperbolic groups embed into lattices in general

presents as a natural goal. It is especially convenient then that parallel to the develop-

ment of such goals, the representation theory of hyperbolic groups has seen an explosion

in recent activity through the interest in Anosov representations (see §2.3.1). Paired with

the fact that Zariski-dense representations of any finitely generated group into G form

a Zariski-open (though possibly empty) set in the space of all representations, it should

then be of no surprise that a representation-theoretic approach can yield fruit.

We thus turn to discussing the representation theory for surface groups, a particularly

nice class of non-free hyperbolic groups where aspects of the theory are especially nice

and motivates much of the discussion around general Anosov representations.

2.2 Hyperbolic structures on surfaces

Much of the geometric properties of the Hitchin components that are central to this

work resemble analogous results established many years earlier for classical Teichmüller

spaces. We recall the relevant aspects of the theory of the latter topic here, mostly

following the development in [FM12].

Definition 2.2.1. A surface will always denote a closed (i.e. compact and without

boundary), connected, oriented, 2-dimensional manifold. A surface group will refer to

the fundamental group of such an object.
16
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Surfaces are classified up to homeomorphism by a single nonnegative integer invariant:

their genus. Sg will denote a surface of genus g so that, for example, S0 and S1 correspond

to the 2-dimensional sphere and torus respectively.

Classically, the complex analytic viewpoint on Teichmüller theory studies the defor-

mation space of marked Riemann surface structures on a closed surface. When the genus

is at least 2, uniformization allows one to replace any such Riemann surface structure

with an equivalent (isomorphic) structure locally modeled on the hyperbolic plane, a sim-

ply connected, 2-dimensional Riemannian manifold of constant sectional curvature −1,

leading to a more geometric point of view. Any two models of the hyperbolic plane are

isometric by the Cartan–Hadamard theorem, and so, to formally discuss the geometric

point of view, it will be convenient to fix one such model.

Definition 2.2.2. The upper half-space model for the hyperbolic plane is the subset of

the complex plane:

H2 = {x+ iy ∈ C |x, y ∈ R, y > 0},

equipped with the Riemannian metric

ds2 =
dx2 + dy2

y2
.

Given a matrix ( a bc d ) ∈ SL(2,R), the map z 7→ az+b
cz+d

is an orientation-preserving

isometry of H2. This induces a surjective group homomorphism SL(2,R) → Isom+(H2)

whose kernel is precisely {±I2}. Thus we may identify the group of orientation-preserving

isometries of H2, Isom+(H2), with PSL(2,R) = SL(2,R)/{±I2}. Similarly, the full

isometry group Isom(H2) can be identified with the group PGL(2,R).

Roughly speaking, to endow a surface with a hyperbolic structure is to topologically

realize the surface by gluing together pieces of H2 by isometries. More formally, we have

17
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the following.

Definition 2.2.3. A hyperbolic structure on a surface S is a manifold M , homeomorphic

to S, equipped with an atlas of charts {φα : Uα → H2} where the Uα are open sets

covering M such that every transition map

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

is the restriction of an orientation-preserving isometry of H2.

If M is a hyperbolic structure on a surface, the compatibility condition on transition

maps in the above definition ensures that the Riemannian metric on H2 descends to one

on M . In particular, a hyperbolic structure induces a metric structure.

For a group G acting transitively on a manifold X, there is a notion of a (G,X)-

structure on a manifold M that, as in the above, sees M covered by an X-valued atlas

of charts so that transition maps are given by (restrictions of) maps coming from the

action G↷ X. This point of view on geometries was first taken by Klein in his Erlangen

program (see [Kle93]), and from this framework a hyperbolic structure on a surface is

simply a (PSL(2,R),H2)-structure.

Example 2.2.1 (A hyperbolic structure on a genus two surface). A simple continuity

argument shows that there exists a regular geodesic octagon P in H2 with an interior

angle sum of 2π (see Figure 2.1 for one such polygon shown in the Poincaré disk model).

For each side of P , there is a unique orientation-preserving isometry of H2 taking that

side onto its matching one in accordance with the labels of Figure 2.1. If Γ < Isom+(H2)

is the group generated by these isometries, then the quotient Γ\H2 is homeomorphic to

a surface of genus 2. Local inverses of the quotient map provide natural charts equipping

Γ\H2 with a hyperbolic structure, where the condition that the internal angle sum is 2π
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Figure 2.1: A geodesic regular octagon in H2 with internal angle sum 2π

guarantees that there is a chart defined in a neighborhood of the image of the vertices.

In fact, a closed surface admits a hyperbolic structure if and only if its genus is 2 or

more. The forward implication being an immediate consequence of the Gauss–Bonnet

theorem since, for instance, χ(Sg) = 2−2g and this is negative precisely when g ≥ 2. For

the reverse implication, one may perform a similar construction as in the above example,

instead on a regular geodesic 4g-gon in H2.

There is enough flexibility in the above constructions to indicate that a single sur-

face Sg should admit “many” inequivalent hyperbolic structures. For instance, one need

not require that the above polygon be regular, only that pairs of identified sides have
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equal length and that the interior angle sum equal 2π. One can therefore in fact demon-

strate that there should be a continuum of hyperbolic structures since one may construct

geodesic 4g-gons in H2 where the lengths of a pair of identified sides continuously varies,

and make identifications according to the same pattern.

We will make this heuristic precise by defining an appropriate deformation space of

equivalence classes of hyperbolic structures, but first, for this deformation space to have a

nice topology (in particular, that of a smooth manifold), it will be necessary to introduce

the notion of a marking.

Definition 2.2.4. A marked hyperbolic structure on a surface S is a pair (M, f) where

M is a hyperbolic structure on S and f : S →M is an orientation-preserving homeomor-

phism. Two marked hyperbolic structures, (M, f) and (N, g), are said to be equivalent

if there exists an isometry ϕ :M → N so that ϕ ◦ f is isotopic to g.

The above definition of equivalence of marked hyperbolic structures is easily checked

to be an equivalence relation, and thus we may finally define:

Definition 2.2.5. The Teichmüller space of S, T (S), is the set of equivalence classes of

marked hyperbolic structures on S.

2.2.1 The character variety perspective

For the moment, this defines T (S) simply as a set. One manner of topologizing

T (S) is by interpreting it as a subset of a particular character variety. This will also be

particularly crucial in discussing the higher-rank generalizations of Teichmüller spaces.

Definition 2.2.6. The PSL(2,R)-character variety of π1(S) is the space

X(π1(S),PSL(2,R)) := Hom(π1(S),PSL(2,R))/PSL(2,R)
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of all conjugacy classes of group homomorphisms from π1(S) into PSL(2,R).

If S has genus g, fixing a set of 2g-generators for π1(S) gives a manner of identifying

Hom(π1(S),PSL(2,R)) with a subset of PSL(2,R)2g cut out by polynomial equations

determined by the relation of the group. Endowing PSL(2,R) with its Euclidean topology

therefore induces a topology on X(π1(S),PSL(2,R)).

Given a marked hyperbolic structure on S, (M, f), the hyperbolic structure on M

induces a deck action of π1(M) by isometries on its universal cover, M̃ . The developing

map associated to a hyperbolic structure induces an identification M̃ ∼= H2, and in

particular an identification of Isom+(M̃) with PSL(2,R). The other datum associated to

a marked hyperbolic structure, namely, the marking, similarly induces an isomorphism

at the level of fundamental groups, hence an identification π1(S) ∼= π1(M). All together,

the data of (M, f) yields a group homomorphism ρ(M,f) : π1(S) → PSL(2,R), known as

the holonomy representation. Equivalent marked hyperbolic structures induce conjugate

homomorphisms, and thus there is a well-defined holonomy map

hol : T (S) → X(π1(S),PSL(2,R))

associating to an equivalence class [(M, f)] the conjugacy class [ρ(M,f)]. The following

then is an immediate consequence of the above set up and some basics in covering space

theory (e.g. see [FM12, Theorem 10.2]).

Proposition 2.2.1. hol : T (S) → X(π1(S),PSL(2,R)) is injective.

Topologize T (S) by pulling back the topology on X(π1(S),PSL(2,R)) (that is, equip

T (S) with the coarsest topology so that hol is continuous). Moving forward, we will

identify T (S) with its image inside X(π1(S),PSL(2,R)), denoting specific points in T (S)

by [ρ] where ρ : π1(S) → PSL(2,R) is a representation and [ρ] its conjugacy class.
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One can in fact say more about the image of the map hol. Immediate from the fact

that all the holonomy representations are induced by deck actions is that the image is

contained entirely within the set

DF(π1(S),PSL(2,R))/PSL(2,R)

of conjugacy classes of discrete and faithful representations of π1(S) into PSL(2,R). A

result of Weil [Wei60] states that the set DF(π1(S),PSL(2,R))/PSL(2,R) is open in

X(π1(S),PSL(2,R)) and a result of Chuckrow [Chu68] shows that it is closed. Therefore

it is a union of connected components of X(π1(S),PSL(2,R)). In fact, it consists of

precisely two connected components: one corresponding to the image hol(T (S)) and the

other to hol(T (S)) where S denotes S equipped with the opposite orientation.

Example 2.2.2. Fix the presentation π1(S2) = ⟨α1, β1, α2, β2 | [α1, β1][α2, β2]⟩ of the

fundamental group of a genus 2 surface. The holonomy associated to the hyperbolic

structure on a genus 2 surface given in Example 2.2.1 (under some fixed marking) is

(approximately) given by

α1 7→ ±

(
−0.322996749069888 0.866210365932833

−2.54800319644026 3.73721031144298

)

β1 7→ ±

(
3.73721031144298 −2.54800319644026

0.866210365932835 −0.322996749069890

)

α2 7→ ±

(
3.73721031144298 2.54800319644026

−0.866210365932833 −0.322996749069888

)

β2 7→ ±

(
−0.322996749069889 −0.866210365932833

2.54800319644027 3.73721031144298

)
.

One readily checks that these matrices satisfy the required relation and this does indeed
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define a discrete and faithful representation ρ : π1(S2) → PSL(2,R).

For notational reasons, it will often be convenient to work with SL(2,R) representa-

tions, rather than PSL(2,R) ones. This is always possible, in light of the following.

Proposition 2.2.2. Let ρ : π1(S) → PSL(2,R) be a discrete and faithful representation.

Then ρ admits a lift ρ̃ : π1(S) → SL(2,R).

Proof. Suppose S has genus g and we work with the following presentation of π1(S):

π1(S) = ⟨α1, β1, . . . , αg, βg | [α1, β1] . . . [αg, βg]⟩

where [−,−] is the commutator. Begin by fixing lifts ρ̃(αi), ρ̃(βi) ∈ SL(2,R) of each

ρ(αi) and ρ(βi). Whether or not these choices of lifts define a representation depends on

the value of the element

[ρ̃(α1), ρ̃(β1)] . . . [ρ̃(αg), ρ̃(βg)] ∈ {±I2}.

Note that this element does not depend on the choice of lifts, due to the relation on

π1(S) being a product of commutators and ±I2 being central in SL(2,R). Thus, the

obstruction to lifting ρ ∈ Hom(π1(S),PSL(2,R)) to ρ̃ ∈ Hom(π1(S), SL(2,R)) can be

expressed a map

o : Hom(π1(S),PSL(2,R)) → {±1}.

One can show, e.g. following [Gol88], that this obstruction map is given by

o(ρ) = (−1)e(ρ)

where e(ρ) is the Euler number of the S1-bundle over S given by the representation
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ρ : π1(S) → PSL(2,R). Moreover, e.g. by [Gol88, Corollary C], as ρ is discrete and

faithful, e(ρ) = ±χ(S). In particular, e(ρ) is even, so o(ρ) = +1 and hence ρ lifts.

In light of this result, we will often identify T (S) with a connected component of

DF(π1(S), SL(2,R))/ SL(2,R). There is some ambiguity in how one makes such an

identification: there are two choices for how each generator of the group lifts so in total,

there are 22g connected components of this space corresponding to lifts of T (S) (and

another 22g connected components coming from lifts of T (S)). This ambiguity will not

matter in this work, so we just select one such lift.

2.2.2 The geometry and topology of Teichmüller space

Until this point, much about the specific topology of T (S) has yet to be discussed,

but many of the results in the later chapters in fact rely on the deep results regarding

the smooth geometry of (higher) Teichmüller spaces. In general, arbitrary character

varieties of finitely generated groups can be highly singular algebraic varieties. In fact,

as defined in the previous section by means of taking a topological quotient, the character

varieties we work with are in general often not even Hausdorff. Thus the following result,

attributed to Fricke and first appearing in [FK65], may come as a surprise.

Theorem 2.2.3 ([FM12, Theorem 10.6]). Let S be a surface of genus g ≥ 2. Then T (S)

is a smooth manifold diffeomorphic to R6g−6.

Thus while the topology of character varieties can often be quite complicated, the

topology of T (S) is quite nice: it is a smooth, contractible, open manifold. Moreover,

while it is simple, from a topological point of view, it carries a rich amount of geometric

structure, too much to state all such features here, but a few key aspects of which are

particularly relevant in higher-rank as they pertain to the results of this thesis. We state

these relevant parts next.
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One system of coordinates on T (S) of geometric significance are the Fenchel–Nielsen

coordinates: start by fixing a pants decomposition of S, that is, a collection of disjoint

simple closed curves {c1, . . . , c3g−3} so that every component of S − {c1, . . . , c3g−3} is

topologically a sphere with three boundary components. There are associated functions

ℓi : T (S) → R+ and θi : T (S) → R for i = 1, . . . , 3g − 3 so that the map

[ρ] 7→ (ℓ1([ρ]), . . . , ℓ3g−3([ρ]), θ1([ρ]), . . . , θ3g−3([ρ]))

is a diffeomorphism from T (S) to (R+)
3g−3 × R3g−3 (this is the perspective taken by

Farb–Margalit in their proof of Theorem 2.2.3). The length functions ℓi([ρ]) record the

length, in the hyperbolic structure determined by [ρ], of the (unique) geodesic in the

free homotopy class of ci while the twist functions θi([ρ]), roughly, record the amount of

“twisting” on either side of each seam ci.

Note that if a curve c occurs in two topologically distinct pants decompositions P and

P ′ of S, then the twist coordinate associated to c in the former pants decomposition may

differ from the twist coordinate associated to c in the latter. The same is not true of the

length functions, as the length of a geodesic in the homotopy class of c only depends on

the hyperbolic structure c is viewed in. Thus more generally, one may make the following

definition.

Definition 2.2.7. Let γ ∈ π1(S). The length function associated to γ is the function

ℓγ : T (S) → R+ where ℓγ([ρ]) is the length of a geodesic freely homotopic to γ in the

hyperbolic structure determined by [ρ].

Remark. To hopefully avoid confusion in notation, we will typically use Greek letters,

e.g. α, β, γ, to denote based homotopy classes of loops, i.e. elements of the fundamental

group π1(S). We will use corresponding Roman letters, e.g. a, b, c, to denote their free

homotopy classes.
25



Preliminaries Chapter 2

As the length functions don’t depend on choices of pants decompositions, it may be

desirable to seek a system of coordinates on T (S) using only length functions associated

to simple closed curves. This turns out to not be possible, there are no global coordinates

on T (S) expressed solely in terms of lengths of simple closed curves. A partial result

towards this parameterization is the following result, known colloquially as “the 9g − 9

theorem” (see, for instance, [FM12, Theorem 10.7] for a proof).

Theorem 2.2.4 (The 9g−9 theorem). There exists a collection {γ1, . . . , γ9g−9} ⊂ π1(S),

representable by simple closed curves, so that the map T (S) → R9g−9
+

[ρ] 7→ (ℓγ1([ρ]), . . . , ℓγ9g−9([ρ]))

is injective.

In short, though there are no 6g−6 length functions which provide a homeomorphism

from T (S) onto R6g−6, there are finitely many length functions which embed T (S) into

some RN .

In addition to the various natural coordinates on T (S) corresponding to information

on the hyperbolic geometry of S, T (S) also carries a wealth of metric structures under-

lying much of its rich geometry. Three of note include the Teichmüller metric, defined

using dilations of quasi-conformal maps, the Weil–Petersson metric, defined using Bel-

trami differentials and the Thurston (asymmetric) metric, defined using Lipschitz maps.

The second of these metrics is, in fact, Riemannian and a result of Ahlfors showed that

it is actually Kähler [Ahl61]. In particular, there is an induced closed non-degenerate

2-form, ωWP , making T (S) into a symplectic manifold.

The use of Beltrami differentials in the definition of ωWP makes its original definition

too complicated to state for these purposes, but work of Wolpert on the symplectic

geometry of T (S) resulted in the following simpler expression (see [Wol10] for a reference).
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Theorem 2.2.5 (“Wolpert’s magic formula”). Fixing a pants decomposition of S, ωWP

is given, in Fenchel–Nielsen coordinates, by the formula

ωWP =
1

2

3g−3∑
i=1

dℓi ∧ dθi.

In particular, the right-hand side is independent of the choice of pants decomposition.

The above formula expresses a duality between the length and twist functions, higher-

rank analogs of which are leveraged to establish the results of Chapter 4.

Example 2.2.3 (The Fenchel–Nielsen twist flow on T (S)). Let γ ∈ π1(S) be a (based)

homotopy class of loops that is freely isotopic to a non-separating simple closed curve on

S. Start by defining a flow Φt
γ on DF(π1(S), SL(2,R)) as follows. Let γ′ ∈ π1(S) denote

a curve that intersects γ precisely once in the positive orientation (i.e. if i(γ′, γ) = +1

where i is the algebraic intersection). For any ρ ∈ DF(π1(S), SL(2,R)) and t ∈ R, define

Φt
γ(ρ)(α) :=


ρ(α) if α ∈ π1(S\γ)

Pρ(γ) diag(e
t, e−t)P−1

ρ(γ)ρ(α) if α = γ′,

(2.1)

where Pρ(γ) ∈ SL(2,R) is so that P−1
ρ(γ)ρ(γ)Pρ(γ) =

(
λ 0
0 λ−1

)
for some λ > 1 (where

diagonalizability of ρ(γ) is ensured by the discrete and faithfulness of ρ). Because γ can be

represented by a non-separating simple closed curve, π1(S) can be expressed as an HNN

extension of the group π1(S\γ) and Equation 2.1 gives a well defined homomorphism

Φt
γ(ρ) : π1(S) → SL(2,R) (c.f. §3.1). Continuity in t of the above formula and continuity

of the map ρ 7→ Pρ(γ) yields a resulting continuous flow on DF(π1(S), SL(2,R)). Setting

φtγ([ρ]) := [Φt
γ(ρ)] and restricting yields a resulting flow on T (S).

Up to rescaling in time, the resulting flow φtγ on T (S) is known as the Fenchel–Nielsen

twist flow about γ (see Figure 2.2). That is, geometrically, the above deformations corre-
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Figure 2.2: The evolution of the Fenchel–Nielsen twist flow on the hyperbolic surface
of Example 2.2.1.

spond to cutting a hyperbolic structure on S about a simple closed geodesic representative

of γ, twisting along the geodesic by some amount determined by t, then regluing along

the boundary pieces to get a new hyperbolic structure. Theorem 2.2.5 expresses a du-

ality between the length and twist coordinates which in turn implies that these flows

are Hamiltonian with respect to the length function ℓγ. In particular, the local behavior

of the flow φtγ is controlled by the length functions ℓγ while its global behavior can be

understood via Equation 2.1.

2.2.3 Hyperbolic structures on 2-orbifolds

Finally, for practical reasons, it will be useful to extend much of the above discus-

sion for closed surfaces to the context of hyperbolic orbifolds. This can be done with

relatively few modifications via the character variety perspective, despite the (G,X)-

structure perspective being more subtle to state, as the underlying spaces are no longer

manifolds.

Definition 2.2.8. A closed orientable hyperbolic 2-orbifold X is a quotient of the form

X = H2/Γ where Γ < PSL(2,R) is a cocompact lattice. The group Γ is the orbifold

fundamental group of X, which we may also denote as π1(X).
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Every point on X as above is contained in a neighborhood locally modelled either

by an open subset of H2 or by the quotient of an open subset of H2 by a finite group

of isometries. Any finite subgroup of PSL(2,R) is cyclic and so neighborhoods of the

singular points on X are always modeled by open subsets of H2 modulo the action of a

cyclic group acting by rotations. Consequently, by compactness, the collection of singular

points on X is a finite set and its fundamental group Γ is determined, up to isomorphism,

by its signature (g;n1, . . . , nℓ) where g is the genus of the underlying (punctured) surface

of X and n1 ≤ . . . ≤ nℓ are the orders of the cyclic groups corresponding to the ℓ distinct

singular, or cone, points on X.

More generally, one may make the same definition as above for cocompact lattices in

PGL(2,R), allowing for possibly non-orientable closed hyperbolic 2-orbifolds. There is a

similar classification of these, though slightly more complex to state as now, in addition

to a finite set of cone points, the singular set of X may contain mirrors (where nontrivial

point-stabilizers correspond to a Z/2 acting by reflection about an axis) and corner

reflectors (where point-stabilizers correspond to dihedral groups acting by isometries on

an embedded regular geodesic polygon).

Definition 2.2.9. Let X = H2/Γ be a closed orientable hyperbolic 2-orbifold. The

Teichmüller space of X, T (X), is the connected component of the space of conjugacy

classes of all discrete and faithful representations of Γ into PSL(2,R):

T (X) ⊆ DF(Γ,PSL(2,R))/PSL(2,R)

containing the homomorphism induced by the inclusion Γ ↪→ PSL(2,R).

Many of the results of the previous section are no longer true for Teichmüller spaces

of orbifolds. For instance, some of these spaces will have odd dimension, and thus cer-

tainly cannot carry a symplectic structure. Nonetheless, working with orbifolds can be
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particularly beneficial for various practical reasons. For instance, the spaces one works

with are often of much smaller dimension, hence making computation much easier to

perform. Moreover, by Selberg’s lemma, such orbifolds contain finite-index surface sub-

groups, inducing embeddings T (X) ↪→ T (S) coming from restriction. This allows one to

recover much about closed surfaces from working with orbifolds, so little is lost.

The practicality, for purposes of computation, of working with orbifolds is perhaps

best illustrated via the following rigid example.

Proposition 2.2.6. Let p, q, r ≥ 2 be integers such that 1
p
+ 1

q
+ 1

r
< 1. Let X be the

closed orientable hyperbolic 2-orbifold with signature (0; p, q, r). Then T (X) is a single

point.

Proof. The existence of such an orbifold is a simple exercise in hyperbolic geometry: the

condition that 1
p
+ 1

q
+ 1

r
< 1 ensures that one can construct an embedded geodesic triangle

in H2 whose interior angle sum is π
p
+ π

q
+ π

r
. If Γ0 < PGL(2,R) is the group generated

by reflections about the sides of this triangle, then taking Γ < Γ0 the index 2 subgroup

consisting of orientation-preserving isometries yields the desired orbifold. [Note: For the

rest of this work, we shall refer to a group Γ constructed in the above manner as the

(p, q, r)-triangle group, even though it is perhaps more common, e.g. for those working

with Coxeter groups, to refer to Γ0 as the (p, q, r)-triangle group.]

To show rigidity, we note that the group Γ admits a presentation of the form Γ ∼=

⟨α, β |αp = βq = (αβ)r⟩. Given a discrete and faithful representation ρ : Γ → PSL(2,R),

if ∆ is the geodesic triangle with vertices the fixed points of the (finite-order) isometries

ρ(α), ρ(β) and ρ(αβ) and ∆ is the reflection of ∆ across the edge opposite the fixed point

of ρ(α), then ∆ ∪∆ is a fundamental domain for the action of ρ(Γ) on H2. If ρ′ : Γ →

PSL(2,R) is another discrete and faithful representation, there is another fundamental

domain ∆′ ∪ ∆′ constructed in the same manner. The triangles ∆ and ∆′ both have
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interior angles π
p
, π
q

and π
r

which, by basic hyperbolic trigonometry, implies that the

triangles ∆ and ∆′ differ by an isometry of H2 (possibly reversing orientation depending

on the cyclic ordering of the vertices). Such an isometry will take the fundamental domain

∆∪∆ to ∆′∪∆′ and conjugate ρ to ρ′. Hence there is a single PGL(2,R)-conjugacy class

of discrete and faithful representations of Γ into PSL(2,R) and two isolated PSL(2,R)-

conjugacy classes, corresponding to the Teichmüller spaces on each orientation of X.

The following two examples will be particularly relevant starting points for the dis-

cussion in Chapters 3 and 4.

Example 2.2.4. Let X be the orbifold of signature (0; 3, 4, 4). Its fundamental group

is the triangle group ∆(3, 4, 4) = ⟨α, β |α3 = β4 = (αβ)4⟩ and the unique point in T (X)

may be represented by the homomorphism:

ρ(α) =

0 −1

1 1

 , ρ(β) =

 0 −1−
√
2

−1 +
√
2

√
2

 .

Notice that ρ(∆(3, 4, 4)) < PSL(2,Z[
√
2]).

Example 2.2.5. Let X be the orbifold of signature (1; 2). Its deformation space, T (X),

is 2-dimensional and was computed explicitly in [Mag73] and shown to be parameterized

by rational functions. Using the presentation π1(X) = ⟨α, β | [α, β]2⟩, one point in T (X)

is represented by the homomorphism:

ρ(α) =

3 2
3

0 1
3

 , ρ(β) =

0 −2

1
2

83
8

 .

This representation has come to be known as the Long–Reid representation and first

drew attention due to computational evidence suggesting that an action of a surface
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group on a product of p-adic trees associated to the above representation may be free (cf.

[BFMvL23] and the discussion in Example 2.4.2). Its inclusion here is due to the simple

observation that ρ(π1(X)) < PSL(2,Q) and that π1(X) contains finite-index surface

subgroups of every genus, which is much less interesting than what first drew attention

to this example in the first place.

2.3 The Hitchin component

The theory of the Hitchin component, and more generally of higher Teichmüller the-

ory, generalizes much of the content of the previous section to other character varieties.

We begin with a discussion of the main spaces of focus.

Definition 2.3.1. Let G be a reductive real Lie group. The G-character variety of S is

X(π1(S), G) := Hom(π1(S), G)/G

where G acts on Hom(π1(S), G) by conjugation.

Remark. Similar to comments made earlier, as written, the above definition is slightly

inaccurate. For instance, the orbits of the G-action on Hom(π1(S), G) are, in general,

not closed and so the resulting “naive” quotient possesses undesirable topological qual-

ities. One can fix these issues by taking a quotient in the sense of invariant theory or

instead restricting to the completely reducible representations: Homred(π1(S), G), where

the topological quotient by G arises as the Hausdorffification of the above space. We will

not worry about either of these remedies here as instead, our attention will be restricted

to a subset of X(π1(S), G) with none of these “bad” features.

Basic considerations in Lie theory show that for every n ≥ 2, there is a unique up to

conjugacy, irreducible, representation ιn : SL(2,R) → SL(n,R). For instance, ιn arises
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as the n-th symmetric power of the standard representation ι2 : SL(2,R) → SL(2,R)

or, equivalently, as the action on homogeneous polynomials of degree n− 1. Identifying

T (S) with a subset of DF(π1(S), SL(2,R))/ SL(2,R), post-composition with ιn gives an

embedding:

T (S) → X(π1(S), SL(n,R))

[ρ] 7→ [ιn ◦ ρ].

As T (S) is connected by Theorem 2.2.3, its image is contained entirely within a single

component of X(π1(S), SL(n,R)).

Definition 2.3.2. The Hitchin component of X(π1(S), SL(n,R)) is the connected com-

ponent, Hn(S), containing the image of T (S). Representations whose conjugacy classes

are in the image of T (S) are called n-Fuchsian representations. In general, representa-

tions whose conjugacy class are in Hn(S) are called Hitchin representations.

Remark. Note that ι2 = id and so H2(S) = T (S).

If G is a split real form of a complex simple Lie group, then G contains principally

embedded subgroups isomorphic to SL(2,R) (c.f. [Kos59]), and one may define a Hitchin

component, HG(S), as the connected component of X(π1(S), G) containing the embedded

copy of T (S) induced by the principal subgroup. Some results in this thesis will only

deal with the SL(n,R)-Hitchin component Hn(S) but will admit natural generalizations

to the Hitchin components associated to the split groups SO(k+1, k), Sp(2k,R) and G2,

which are all contained in Hn(S) (for appropriate choices of n). These generalizations

will be indicated as they arise.

In addition to changing the target group, one may also replace S with a closed hyper-

bolic 2-orbifold X and get a notion of a Hitchin component for X, Hn(X) (c.f. §2.2.3).
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Many of the results following will be stated for closed surfaces, but can be generalized to

orbifolds as well (see [ALS23]).

Hitchin components were first detected by Hitchin (as the name may have indicated)

in [Hit92]. Using Higgs bundles techniques, he showed the following result about these

topological components of the highly-singular character varieties:

Theorem 2.3.1 ([Hit92, Theorem A]). Hn(S) is homeomorphic to an open ball of di-

mension (2g − 2)(n2 − 1). In particular, Hn(S) is smooth.

The above result was the first indication of other connected components of character

varieties with similar properties to T (S), but at the time this result first arose, this was

the extent of the resemblance. Shortly after, Goldman and Choi established that every

representation in H3(S), like in T (S), was discrete and faithful and parameterized exactly

the convex RP2-structures on S [CG93], illustrating that the resemblance extended fur-

ther. Nearly a decade later, Labourie (and independently, Fock and Goncharov) extended

discrete and faithfulness to all n.

Theorem 2.3.2 ([Lab06,FG06]). Every representation in Hn(S) is discrete and faithful.

Moreover, for any Hitchin representation ρ and every γ ∈ π1(S), the matrix ρ(γ) is purely

loxodromic, i.e. diagonalizable with distinct real eigenvalues.

Remark. When working with Hitchin representations into SL(n,R), which are all lifts of

ones into PSL(n,R), one can in fact show that one may always choose a lift so that the

element ρ(γ) has distinct, positive, real eigenvalues (c.f. Theorem 2.2.2).

Labourie’s result starkly contrasts what can happen for other character varieties

of surface groups containing embedded copies of T (S). For instance, the SL(2,C)-

character variety X(π1(S), SL(2,C)) contains one such copy induced by the inclusion

SL(2,R) ↪→ SL(2,C), and here, small deformations of Fuchsian representations remain
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discrete and faithful, the so-called quasi-Fuchsian representations. However, it is possi-

ble to continuously deform a quasi-Fuchsian representation “too much” and eventually

lose discrete and faithfulness (e.g. see [Thu79, §8]). In particular, the above theorem is

certainly false for the component of X(π1(S), SL(2,C)) containing T (S).

Labourie established Theorem 2.3.2 by showing representations in Hn(S) were Anosov

(see §2.3.1), and extensive amounts of research have since been dedicated in the years

since to further exploring the analogies between representations in Hn(S), representations

in T (S) and Anosov representations of hyperbolic groups.

The foremost importance of Labourie’s result, as to the work of this thesis, is that if

one begins with an n-Fuchsian representation, ρ0, and deforms it in a continuous manner

to some representation ρ1, then ρ1 will still be Hitchin, and hence discrete and faithful.

The main results of this thesis are, in brief, achieved by starting with particular choices of

ρ0 and continuously deforming in a manner that “tracks” the arithmetic of the resulting

representations. Labourie’s theorem ensures that the results of these deformations still

yield surface subgroups.

There are a number of other key resemblances between the Hitchin component and

T (S) which are used throughout this work. For one, Hitchin representations also satisfy a

simple marked length rigidity, analogous to Theorem 2.2.4. First, we make the following

definitions.

Definition 2.3.3. For any γ ∈ π1(S), define Trγ : Hn(S) → R as

Trγ([ρ]) := Tr(ρ(γ)).

This is well-defined by conjugation-invariance of the trace.

One may regard Trγ as a notion of a “length” associated to the curve γ in higher-rank.
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Indeed, for H2(S) = T (S),

ℓγ([ρ]) = 2 cosh−1

(
Trγ([ρ])

2

)
,

and so, Trγ on T (S) records “essentially” the same information as the length of the

geodesic representative of γ. This is a notion of length only in analogy, however, as

representations in Hn(S) do not necessarily correspond to geometric structures on the

surface S. Nonetheless, the following result is due to Bridgeman–Canary–Labourie, serv-

ing as an analog of Theorem 2.2.4.

Theorem 2.3.3 ([BCL20, Theorem 1.2]). Fix an n ≥ 2 and a surface S of genus 3 or

more. There is a finite subset S ⊂ π1(S) of curves representable by non-separating simple

closed curves so that the map Hn(S) → RS

[ρ] 7→ (Trγ([ρ]))γ∈S

is injective.

In short, two Hitchin representations are conjugate if and only if their simple marked

trace spectra coincide, just as is true for Fuchsian representations.

Finally, the Hitchin component also possesses an underlying symplectic structure.

Predating much of the above work on Hn(S), Goldman showed that other smooth com-

ponents of X(π1(S), G) can be equipped with a symplectic form that exactly agrees with

the Weil–Petersson symplectic structure when G = PSL(2,R) [Gol84]. We shall refer to

this form as the Goldman symplectic form, and its nature is key to the results in Chapter

4, but for the moment, the reader need only know of its existence.
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2.3.1 Anosov representations

The more general notion of an Anosov representation was developed by Guichard and

Wienhard in [GW12] and allows much of the above discussion to be widened to other

word hyperbolic groups. We shortly discuss this more general theory here as we indicate

some connections to other spaces of Anosov representations in our work.

Guichard and Wienhard’s original definition resembles Labourie’s original dynamical

one for surface groups in [Lab06], but the one we give is a simplification due to a number

of authors [GGKW17,KLP18,BPS19]. To first set some notation, given a matrix A ∈

SL(n,R) let σ1(A) ≥ . . . ≥ σn(A) denote its singular values, i.e., the square roots of the

eigenvalues of AAT .

Definition 2.3.4. Let ρ : Γ → SL(n,R) be a representation and fix some word metric

∥−∥ on Γ (with respect to a fixed finite generating set). ρ is k-Anosov for 1 ≤ k ≤ n− 1

if there exist constants C,K > 0 such that

log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ C∥γ∥ −K.

ρ is just Anosov if it is k-Anosov for some k.

While the definitions make no mention of hyperbolicity, it turns out that if a group Γ

admits an Anosov representation into some SL(n,R), then Γ is word hyperbolic. Some

of the utility of Anosov representations is encapsulated in the following result.

Theorem 2.3.4 ([GW12, Theorems 5.3 and 5.13]). The collection of Anosov represen-

tations is open in Hom(Γ, SL(n,R)) and consists only of discrete representations with

finite kernel. In particular, if Γ is torsion-free, all Anosov representations are discrete

and faithful.
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This theorem provides geometric tools for understanding discrete embeddings of hy-

perbolic groups and thus presents a promising connection to the discussion at the end

of §2.1.2. In particular, the above states that being Anosov is stable under small defor-

mations, and so some discussions on how our proofs can make use of this fact for other

groups are discussed as well.

2.4 The main results

After now developing the relevant objects, we may begin to state our main results

and discuss the context surrounding them.

Definition 2.4.1. For a subring R ⊆ R, set

Hn(S)R := Hn(S) ∩ Hom(π1(S), SL(n,R))/ SL(n,R).

That is, Hn(S)R consists of the representations which are conjugate into subgroups of

SL(n,R).

The above sets are “almost” the R-points of Hn(S), but this is not quite true for a

number of reasons. For one, Hn(S) itself is not an algebraic variety, it is instead semi-

algebraic in that it is defined by polynomial equalities and inequalities. Moreover, while

the invariant theory quotient description of X(π1(S), SL(n,R)) is an algebraic variety,

Hn(S)R is not quite the intersection of the R-points of X(π1(S), SL(n,R)) with Hn(S)

either. These instead would be the representations with R-valued trace which is a strictly

weaker condition, but contains the subsets of representations we consider here. These

sets being the R-points is not far from the truth though. Indeed, one may identify a

component H̃n(S) ⊂ Hom(π1(S), SL(n,R)) for which the quotient map H̃n(S) → Hn(S)

is a principal SL(n,R)-bundle, and Hn(S)R is the image under this fibration, of the R-
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points of the affine algebraic variety Hom(π1(S), SL(n,R)) contained in H̃n(S). Thus, we

will think of these sets Hn(S)R as encoding the “arithmetic” of the Hitchin component.

Two questions one must seek to understand, motivated by the discussion of Chapter

1, are the following.

Question 5. For a given ring R ⊆ R, can one decide if Hn(S)R ̸= ∅?

Question 6. If Hn(S)R ̸= ∅, can one qualitatively describe “how many” such represen-

tations there are? For instance, are there only finitely many, modulo the action of the

mapping class group?

Answering forms of these questions is essentially how the previous work of Long,

Reid and Thistlethwaite in [LRT11, LT18, LT22] established the existence of thin sur-

face subgroups in SL(n,Z) whenever n is odd or 4. Briefly, they show, through direct

computation, Hn(S)Z ̸= ∅ for these values of n and various S, using examples coming

from triangle groups, giving an answer to Question 5, and give a meaningful sense in

which for some S, there are “many enough” representations in Hn(S)Z to guarantee that

a Zariski-dense one exists, answering Question 6. Establishing some notion of abundancy

for surface subgroups contained in fixed lattices often is relevant to establishing Zariski-

density. For instance, the works [KM12,CF19,KW21] are also able to yield thin surface

subgroups in SO(3, 1) because they show such examples are appropriately “ubiquitous.”

In light of these questions, the main results of this thesis describe how the theory of

Anosov representations can provide answers to Question 6 for various rings R. They are

as follows.

Theorem 2.4.1 ([Zsh22, Corollary 1.1.1]). If Hn(S)Z ̸= ∅, then there is a finite-sheeted

cover S ′ → S for which Hn(S
′)Z contains Zariski-dense representations. In particular,

the existence of an integral Hitchin surface subgroup of SL(n,Z) implies the existence of

a thin one.
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Theorem 2.4.2 ([Zsh22, Theorem 1.1]). Let K ̸= Q be a number field. Suppose that

K is not totally imaginary and has class number one. Let OK be its ring of integers. If

Hn(S)OK
̸= ∅, then it contains Zariski-dense representations.

Theorem 2.4.3 ([AZ23, Theorem 1.1]). For any S of genus at least 3, the set Hn(S)Q

is dense in Hn(S).

In addition to the above questions, following arithmeticity (Theorem 2.1.2), one can

also regard these results as coarse steps towards understanding how Question 3 can

provide answers to Question 2. Finally, while the connection to lattices in Theorem 2.4.1

is clear, we close this chapter with two examples illustrating how the latter two results

are still directly related to questions surrounding lattices in products.

Example 2.4.1 (R = Z[
√
2]). First, consider in rank one, a [ρ] ∈ H2(S)Z[

√
2]. Applying

an appropriate conjugation, we may assume such an example comes from a Fuchsian

ρ : π1(S) → SL(2,Z[
√
2]). As in Example 2.1.4, the latter group is a lattice in SL(2,R)×

SL(2,R). Consequently, there is an immersed surface

ρ(π1(S))\H2 → SL(2,Z[
√
2])\(H2 ×H2).

The right-hand side of the above is an example of a Hilbert modular variety, and the ge-

ometry associated to such immersed surfaces has been investigated by a number of others.

For example, McMullen constructs ones which are geodesic with respect to the Kobayashi

metric using representations of this form coming from triangle groups [McM23].

The same is true replacing Z[
√
2] with other rings of integers of number fields. Instead,

one performs a construction similar to the above but with a factor in the product for

each place of the number field, using H3 instead of H2 if the place is complex. This

also remains true in higher-rank where the representations in Hn(S)OK
yield immersed
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surfaces in locally symmetric spaces which are quotients of products of symmetric spaces

and can be thought of as natural generalizations of Hilbert modular varieties to higher-

rank.

Example 2.4.2 (R = Q). Given a Hitchin ρ(π1(S)) < SL(n,Q), there is, in fact, an

N (depending on ρ) so that ρ(π1(S)) < SL(n,Z[ 1
N
]). This latter group is not a lattice

in SL(n,R), but it is a lattice in a broader sense. One may embed SL(n,Z[ 1
N
]) into the

product of real and p-adic Lie groups:

SL(n,R)×
∏
p|N

SL(n,Qp)

and under this embedding, SL(n,Z[ 1
N
]) is now a lattice (a so-called S-arithmetic lattice).

Based on these observations, the surface subgroup ρ(π1(S)) will act discretely on an

analog of a symmetric space associated to the above product of groups (defined by taking

a product of symmetric spaces and buildings associated to each non-archimedean factor).

The dynamics of the real part of this action are comparatively well understood, by virtue

of the surface group coming from a Hitchin representation, and so a natural question is

to investigate the associated non-archimedean dynamics. That is, what properties can

be gleaned about ρ(π1(S)) if we view it instead as a subgroup of
∏

p|N SL(n,Qp)? Much

about such actions is not known at the time of this writing (c.f. [FLSS18,BFMvL23]),

but unlike in the previous example, the embedding of SL(n,Z[ 1
N
]) is symmetric: there

is no Galois conjugation used, and so it lives inside the copy of SL(n,R) “in the same

manner” as it does in each SL(n,Qp). Thus it seems plausible that the symmetry of

the embeddings and the dynamics of Hitchin representations (some of which is unique

to higher-rank) can inform some aspects around these questions that were previously

difficult to understand in rank one.
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Integrality

The following chapter investigates various integral structures associated to representa-

tions on the Hitchin component to prove Theorems 2.4.1 and 2.4.2. Much of the content

here is a reproduction of the results of the author’s appearing in the paper Integral

Zariski dense surface groups in SL(n,R) [Zsh22]. The work of this paper originates with

the following result of Long and Thistlethwaite’s.

Theorem 3.0.1 ([LT22, Theorem 1.1]). SL(2k + 1,Z) contains thin surface subgroups

for every k ≥ 1.

The starting point of their work was the observation that the composition of the dis-

crete and faithful representation of the (3, 4, 4)-triangle group into SL(2,R) (see Example

2.2.4) with the irreducible representation ιn : SL(2,R) → SL(n,R) could be conjugated

into SL(n,Z) precisely when n was odd [LT22, Theorem 2.1]. Thus, if X denotes the

orbifold of signature (0; 3, 4, 4), H2k+1(X)Z ̸= ∅. A priori, it was not initially evident

whether Zariski-dense representations in H2k+1(X)Z existed as this computation only

produces a single such representation, and its image lies within a principally embed-

ded SL(2,R) inside SL(2k + 1,R). However, Long and Thistlethwaite use an argument

suited to the topology of X to show that after passing to a finite-sheeted cover Y → X,
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the restricted representation of π1(Y ) was sufficiently flexible in that it admitted many

continuous deformations whose images still remained in SL(2k + 1,Z). Moreover, using

recent classifications of Zariski closures of Hitchin representations (see Theorem 3.0.2)

and tools in the theory of algebraic groups, they could guarantee that among the many

representations in Hn(Y )Z, some were Zariski-dense. Passing to a finite-index surface

subgroup yielded their result (recall that the image would automatically have infinite-

index by Proposition 2.1.4) which provided the first examples of freely indecomposable

isomorphism types of thin subgroups of SL(n,Z) for infinitely many n.

Theorems 2.4.1 and 2.4.2 develop the methods behind Long and Thistlethwaite’s

proof into a more general framework, without resting on facts specific to any particular

orbifold’s topology, in addition to discussing the case when n is even. As a result, we

reduce the problem of finding integral (with respect to a number field), thin Hitchin

representations to just merely finding integral ones.

Definition 3.0.1. Let K/Q be a number field. Call a representation ρ : π1(S) →

SL(n,R) K-integral if ρ(π1(S)) ⩽ SL(n,OK) where OK is the ring of integers of K.

For the remainder of this chapter we make the standing assumptions that K ⊂ R

(possibly with K = Q) is a number field of class number one and OK its ring of integers

(so that OK = Z if K = Q). Given a Hitchin, K-integral ρ : π1(S) → SL(n,OK), we

will perform a series of deformations which alter ρ so that after the process (and possibly

passing to a finite-sheeted cover if K = Q), the resulting deformed representation is

Zariski-dense. Guaranteeing Zariski-density will come from the following classification

originally proven by Guichard, with a full proof appearing in later work by Sambarino.

Theorem 3.0.2 ([Sam20]). Let ρ : π1(S) → SL(n,R) be Hitchin and let G denote the

Zariski closure of ρ(π1(S)). Then G is conjugate to one of the following groups:

(i) ιn(SL(2,R)).
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(ii) Sp(2k,R) if n = 2k for some k ∈ Z.

(iii) SO(k + 1, k) if n = 2k + 1 for some k ∈ Z.

(iv) The image of the fundamental representation of the short root of G2 in SL(7,R) if

n = 7.

(v) SL(n,R).

Remark. Note that for all k ≥ 1, there are inclusions

ι2k(SL(2,R)) < Sp(2k,R) < SL(2k,R)

ι2k+1(SL(2,R)) < SO(k + 1, k) < SL(2k + 1,R) for k ̸= 3

ι7(SL(2,R)) < G2 < SO(4, 3) < SL(7,R)

so in a sense, this classification provides a totally ordered hierarchy of possibilities for

what the Zariski closures of Hitchin representations might be.

In the proof proceeding, we will further assume n ̸= 7 for simplicity in order to rule

out possibility (iv) above. This does not come at much of a loss as [LT22] includes a

computation explicitly producing Zariski-dense surface groups in SL(7,Z), handling the

main case of interest when n = 7. As a result of this classification, if ρ : π1(S) →

SL(n,OK) is not Zariski-dense, then its Zariski closure must be conjugate to one of the

groups listed in options (i)–(iii). We proceed by then showing that for each of these

cases, there is a continuous deformation of ρ that remains K-integral but with strictly

larger Zariski closure. By performing this deformation at most twice, the groups listed

in (i)–(iii) will be ruled out, and thus at the final stage, the Zariski closure will be all of

SL(n,R), hence Zariski-dense.
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3.1 Bending on the Hitchin component

The continuous deformation process described in the previous section is known as

bending, a construction that has appeared in numerous contexts throughout geometry and

topology, but used here towards a more arithmetically oriented goal. We also note that as

the work in [Zsh22] was finalized, Audibert independently developed similar techniques in

[Aud22,Aud23] using these same deformations to produce thin surface groups in various

other lattices of SL(n,R). His work further highlights that the arithmetic side of these

deformations should be further explored.

Let ρ : π1(S) → SL(n,R) be a representation of a surface group and let γ ∈ π1(S)

be representable by a non-separating simple closed curve. Let S\γ denote the compact

surface with boundary one gets by cutting S along a simple representative of γ. Let γ1

and γ2 denote the two boundary components of S\γ so that, up to some homeomorphism

of S, our setup is of the form shown in Figure 3.1.

. . . γ. . .

γ1

γ2

SS\γ

Figure 3.1: S and the resulting cut subsurface.

In S, the curves γ, γ1 and γ2 will all be freely homotopic. Thus, by a minor abuse of

notation, we will also write γ1 and γ2 to denote elements of π1(S\γ) and identify γ with

γ1 in π1(S\γ). Under this setup, π1(S) arises as an HNN extension of π1(S\γ). That is,

it admits the presentation

π1(S) = π1(S\γ)∗γ′ := ⟨π1(S\γ), γ′ | γ′γ2γ′−1 = γ1⟩. (3.1)
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The stable letter, γ′, is an element of π1(S) which, geometrically, corresponds to a simple

closed curve on S with i(γ′, γ) = +1. Next, let Zρ(γ)(R) denote the SL(n,R)-centralizer

of the matrix ρ(γ)

Zρ(γ)(R) = {A ∈ SL(n,R) |Aρ(γ) = ρ(γ)A}.

The deformation we will use in our construction is the following.

Definition 3.1.1. Under the setup as above, let ρ : π1(S) → SL(n,R) be Hitchin and

let A ∈ Zρ(γ)(R). The bend of ρ about γ by A is the new representation ρA : π1(S) →

SL(n,R) defined by setting:

ρA|π1(S\γ) := ρ|π1(S) and ρA(γ′) := Aρ(γ′).

Note that by the presentation given in 3.1 and the fact that A centralizes ρ(γ), ρA does

indeed define a group homomorphism.

Remark. There is an analogous description using free products with amalgamation when

γ separates S into two components. We will not treat this version here as it is unnecessary

for our applications.

We have already seen deformations of this form: the Fenchel–Nielsen twist deforma-

tion Φt
γ(ρ) of Example 2.2.3 is a bend of ρ about γ by the matrix Pρ(γ) diag(et, e−t)P−1

ρ(γ)

(see Figure 3.2a). Similar deformations have appeared in a number of other low-dimensional

contexts as well. The name bending comes from the geometry associated to these deforma-

tions when the target group is SL(2,C). In this case, bends of Fuchsian representations

“in the universal cover” correspond to a geodesic copy of H2 inside of H3 being bent

by fixed angles equivariantly along lifts of a geodesic. For small choices of angles, the

resulting piecewise-isometrically embedded plane is quasi-isometrically embedded and
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the result is a quasi-Fuchsian representation (see Figure 3.2b for an approximation of

the resulting limit set). Goldman studied analogous deformations for convex projective

structures (or equivalently the Hitchin component H3(S)) and referred to these as bulging

[Gol13] (see Figure 3.2c). Despite the markedly different geometry associated to these de-

formations in their varying contexts, we will not make the distinction between the names

twisting, bending or bulging as, at their core, all these deformations are of the form of

Definition 3.1.1. We also note that a similar construction can be done replacing S with

a higher-dimensional hyperbolic n-manifold and γ with a totally geodesic submanifold of

codimension 1 [JM87].

As for the proofs of the main theorems, the following observations illustrate how

bending can be used to preserve desired features of the original representation. First,

if the centralizing matrix, A, is instead chosen to be in the identity component of the

centralizer, Z◦
ρ(γ)(R), then the bent representation ρA lies on the same path component

as ρ. This is immediate from the observation that A lies on the same path component

as the identity In and ρIn = ρ. In particular, since the conjugacy class [ρ] is on the

Hitchin component, so is [ρA], hence the bent representation remains discrete and faithful.

Secondly, if the initial representation ρ were K-integral and the centralizing matrix A

were in the OK-points of the centralizer, Zρ(γ)(OK), then the bent representation ρA will

be K-integral as well. This is immediate from the formula defining the bend. In tandem,

if ρ is a K-integral Hitchin representation, then for any A ∈ Z◦
ρ(γ)(OK), ρA is K-integral

and Hitchin.

Thus the bending construction can be done so as to preserve the original dynamical

and arithmetic properties of the representation. Its utility in producing representations

which are Zariski-dense comes from the work of the following sections which show that,

for appropriate choices of A ∈ Z◦
ρ(γ)(OK), the bent representations ρA will have “larger”

Zariski-closure.
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(a) Twisting as a hyperbolic metric. (b) Bending as a quasi-Fuchsian representation.

(c) Bulging as a convex projective structure.

Figure 3.2: The various guises of “bending” deformations applied to Example 2.2.1.

3.2 Constructing the bending matrices

Suppose now that ρ : π1(S) → SL(n,OK) is Hitchin but not Zariski-dense. Then

by Theorem 3.0.2, its Zariski closure is conjugate to one of three possibilities (assuming

n ̸= 7). To achieve the proof of Theorems 2.4.1 and 2.4.2, we outline how one may

construct appropriate choices of non-separating simple γ ∈ π1(S) (after possibly passing

to a finite-sheeted cover) and matrices A ∈ Z◦
ρ(γ)(OK) so that the resulting bend ρA

is closer to being Zariski dense than ρ. These constructions slightly differ depending on

which of the three possibilities give the Zariski-closure of ρ(π1(S)), but we observe that the
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principally embedded ιn(SL(2,R)) has image contained in either Sp(2k,R) or SO(k+1, k)

depending on the parity of n. Thus, in all of the non-Zariski-dense possibilities, there is

always a non-degenerate bilinear form that is preserved by the image of ρ. We denote

such a form by J . Moreover, if n = 2k, J is alternating and equivalent over R to the

standard symplectic form on R2k and if n = 2k + 1, then J is symmetric and equivalent

over R to the standard symmetric form of signature (k + 1, k). Before discussing the

constructions in each case individually, we will need the following lemmas throughout.

Lemma 3.2.1. If A ∈ SL(n,K) has characteristic polynomial in OK [t], there is some

j > 0 so that Aj ∈ SL(n,OK).

Proof. Using the rational canonical form of A, there is a P ∈ GL(n,K) so that A =

PRP−1 for some R ∈ SL(n,OK). Note that this already uses the hypothesis that K

has class number one. That is, if f ∈ OK [t] is the characteristic polynomial of A, then

a factorization of f into irreducibles over OK will be a factorization into irreducibles

over K by Gauss’s lemma as OK is a unique factorization domain (recall that each OK

is a Dedekind domain, for which being a UFD is equivalent to being a PID). Thus,

the invariant factors of f can be guaranteed to all be in OK [t] and hence, the rational

canonical form of f will have entries in OK .

For any N ∈ OK , we consider the reduction map SL(n,OK) → SL(n,OK/(N)). The

latter is a finite group, hence there is some j such that Rj ≡ In (mod (N)). In other

words, we may write Rj = I + NX for some n × n matrix X ∈ Mn(OK). In this case,

we have that

Aj = P (I +NX)P−1 = I +NPXP−1.

In the above expression, the only term depending on N (other than N itself) is X, which

already has entries in OK . Thus, if we pick a N ∈ OK so that it clears all denominators

of entries in P and P−1, we get that Aj has entries in OK and hence Aj ∈ SL(n,OK).
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Lemma 3.2.2. Suppose γ ∈ π1(S) is so that ρ(γ) ∈ SL(n,OK) has characteristic poly-

nomial in OK [t] which is irreducible over OK. Then there is some A ∈ Z◦
ρ(γ)(OK) which

does not preserve the form J .

Proof. Let f ∈ OK [t] be the characteristic polynomial of ρ(γ). By assumption, it is

irreducible over the UFD OK , hence irreducible over K. Let α ∈ K denote some root of

f in an algebraic closure and consider the extension K(α)/K. Note that [K(α) : K] = n

as f must be the minimal polynomial of α due to irreducible. All the roots of f must be

distinct and real as ρ is on the Hitchin component (c.f. Theorem 2.3.2) and so K(α) has

at least n real embeddings as we may always extend the real embedding of K (from the

assumption that K ⊂ R) to one of K(α) by sending α to any of the other real roots of

f . As a consequence, by Dirichlet’s unit theorem (see, e.g., [Neu99, Theorem 7.4]) the

unit group O×
K(α) has rank ≥ n− 1.

By comparison, by diagonalizing ρ(γ) over R and using the fact that this matrix

has distinct real eigenvalues, one sees that the centralizer of ρ(γ) in SO(J ;R) has rank

n
2

(where SO(J ;R) is the group of matrices in SL(n,R) preserving the alternating or

symmetric form J). Notice then that as long as n > 2, n− 1 > n
2
.

Note now that there is a K-algebra isomorphism K(α) ∼= K[ρ(γ)] induced by the

map α 7→ ρ(γ), as both of these K-algebras are isomorphic to K[t]/(f). Consider now,

the image of O×
K(α) ⊂ K(α) under this map. By the above rank considerations, there is

an infinite order u ∈ O×
K(α) whose image in K[ρ(γ)], A′, satisfies the property that no

power of A′ preserves the form J . We may further assume that u > 0 by replacing u

with −u if necessary. Now, as A′ ∈ K[ρ(γ)], it is a polynomial in powers of ρ(γ) hence

will centralize ρ(γ).

At the moment, this matrix A′ still has some possibly undesirable properties, but

note that its characteristic polynomial is in OK [t]. Indeed, its characteristic polynomial
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factors as
∏n

i=1(t−uσi) where each σi : K(α) → C are the distinctK-embeddings ofK(α).

The determinant of A′ at the moment is given by the unit v = NormK(α)/K(u) ∈ O×
K ,

but we may pass to a higher power of A′ and rescale by some power of v−1 so that the

resulting matrix has determinant 1. That is, there is some i1, i2 so that A′′ := v−i1(A′)i2 ∈

SL(n,K). A′′ will still have characteristic polynomial in OK [t], hence by Lemma 3.2.1,

some further power A = (A′′)i3 has that A ∈ SL(n,OK).

Notice that A does not preserve the bilinear form J by the assumptions on the unit

u. A still centralizes ρ(γ) as A′ did (it was a polynomial in ρ(γ)), and so A ∈ Zρ(γ)(OK).

What remains is to show why A is on the same connected component as the identity

matrix. For this, notice that we chose u > 0. Hence by this fact, and the fact that ρ(γ)

is the exponential of some matrix in sl(n,R) (as its eigenvalues can be assumed to be

distinct, positive and real), then A will also be the exponential of some matrix in sl(n,R).

Thus A ∈ Z◦
ρ(γ)(OK) and A /∈ SO(J ;R) as desired.

Remark. If n is odd, the characteristic polynomials of ρ(γ), when ρ is not Zariski dense,

are never irreducible over OK as they always have an eigenvalue 1. Nonetheless, the

same conclusions of this lemma can be adopted in an identical manner, to the situation

where f in the above proof is replaced with the polynomial g so that (t − 1)g(t) is the

characteristic polynomial of ρ(γ) and g ∈ OK [t] is irreducible over OK . That is, in

this case, we instead conjugate ρ(γ) over OK so that it is block-diagonal with a single

(n− 1)× (n− 1) block along the diagonal, and apply the above argument to this block,

yielding the same result.

Lemma 3.2.2 provides sufficient conditions that allow one to construct a Zariski-dense

K-integral representation, as follows.

Lemma 3.2.3. Suppose γ ∈ π1(S) is a non-separating simple closed curve and A ∈

Z◦
ρ(γ)(OK) does not preserve the bilinear form J . Then the bent representation ρA has
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Zariski-dense image.

Proof. If ρA did not have Zariski-dense image, then again by the classification of Zariski

closures in Theorem 3.0.2, the image of ρA must preserve some (alternating or symmetric)

bilinear form J ′.

But from the definition of the bend (Definition 3.1.1), ρ and ρA agree on the subgroup

π1(S\γ), on which the representations are irreducible (by generalizations of Labourie’s

work to the case of surfaces with boundary, e.g., in [ALS23]). This implies that for any

element β ∈ π1(S\γ),

J−1J ′ρ(β) = ρ(β)J−1J ′. (3.2)

But ρ(γ) by Theorem 2.3.2, after applying some appropriate change of basis, the above

implies that some conjugate PJ−1J ′P−1 centralizes a diagonal matrix with distinct, real

eigenvalues and hence PJ−1J ′P−1 is diagonal itself.

We claim then that PJ−1J ′P−1 must be a homothety. If not, there is some λ so

that Eλ, the λ-eigenspace of J−1J ′, is a proper non-trivial subspace of Rn which, by

Equation 3.2 is invariant under the action of π1(S\γ). But this contradicts irreducibility

of ρ|π1(S\γ), so PJ−1J ′P−1 must be a homothety. Thus J ′ = λJ and these forms define

the same symplectic or orthogonal groups, which in turn implies that ρA preserves the

form J . But this contradicts our assumption on A, so this cannot in fact occur.

Thus the image of ρA cannot preserve any non-degenerate bilinear forms hence, by

Theorem 3.0.2, is a Zariski-dense representation in Hn(S)OK
.

3.2.1 Bending when K ̸= Q

The philosophically simplest case is when the extension K/Q has degree larger than

one, i.e. the case of Theorem 2.4.2. In this case, we show that any choice of simple closed

curve suffices.
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Proof of Theorem 2.4.2. Recall our assumptions that ρ : π1(S) → SL(n,OK) is Hitchin

and not Zariski-dense and J denotes whichever bilinear form is preserved by the image

of ρ. Fix any nontrivial, non-separating, simple γ ∈ π1(S) and let f ∈ OK [t] be the

characteristic polynomial of ρ(γ). If f is already irreducible over OK , then we can take A

to be the matrix guaranteed by Lemma 3.2.2 which, by Lemma 3.2.3, gives the Zariski-

dense, Hitchin and K-integral representation ρA needed for the desired result.

Thus, we need only consider the case where f is reducible over OK . For this, it suffices

to assume that f = f1f2 for fi ∈ OK [t] of degree n1, n2 ≥ 1 respectively. Replacing f1

and f2 with uf1 and u−1f2 for some u ∈ O×
K if necessary, we may further assume that

f1 and f2 are monic and have constant terms (−1)n1 and (−1)n2 respectively. From

the factorization of our characteristic polynomial and the rational canonical form (again,

using that K has class number one), there is some P ∈ GL(n,K) so that

Pρ(γ)P−1 =

C1

C2


in block-diagonal form where, for i = 1, 2, Ci ∈ SL(ni,OK) and has characteristic poly-

nomial fi.

Now as K ̸= Q, [K : Q] > 1. Since we assume K is not totally imaginary, K has at

least one real embedding which forces O×
K to have rank ≥ 1 by Dirichlet’s unit theorem.

We may thus fix an infinite order unit u ∈ O×
K and, replacing u with −u if necessary,

assume that u > 0. In this case, let A′ be the matrix, in block-diagonal form, given by

A′ := P−1

un2In1

u−n1C2

P.

A′ ∈ SL(n,K) has characteristic polynomial still in OK [t] and centralizes ρ(γ) as PA′P−1
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has the same block-diagonal structure as Pρ(γ)P−1. As u > 0, C2 is diagonalizable and

hence A′ = exp(X) for some diagonalizable X ∈ sl(n,R) as well. Moreover, note that A′

(nor any power of it) preserves the form J as its eigenvalues are un2 (with multiplicity

n1) and u−n1λ as λ varies among any of the (distinct, real) eigenvalues of C2, and these

eigenvalues do not satisfy the symmetry needed in order to preserve a (alternating or

symmetric) bilinear form J .

Passing to a higher power of A′ as in Lemma 3.2.1 yields a matrix A ∈ SL(n,OK)

still centralizing ρ(γ), in the image of the exponential map and not preserving the form

J (as u was an infinite order unit). Thus, by Lemma 3.2.3, the bend ρA has Zariski-dense

image.

The simplicity of the proof when K ̸= Q is reflected in the construction above in

the case of reducible characteristic polynomial. The presence of infinite order units in

the ring of integers OK provides enough flexibility that one may essentially manually

construct matrices that produce Zariski-dense representations after a single bend. The

lack of such units when K = Q requires a more subtle strategy in the remaining case.

3.2.2 Bending when K = Q

The construction in the K = Q case is the result of Theorem 2.4.1. As the previous

section handled the case where K ̸= Q, our standing assumptions from here on are

that ρ : π1(S) → SL(n,Z) is Hitchin, but not Zariski-dense. In this case, the same

construction as in the previous section’s proof for Theorem 2.4.2 does not immediately

generalize as Z does not possess any infinite order units. This lack of apparent flexibility

in the centralizers of elements in ρ(π1(S)) mean we must construct the bending matrices

with a more nuanced approach.

Assuming the Zariski-closure of ρ(π1(S)) is “as small as possible,” we will first estab-
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lish that a relatively direct argument shows a single bend can guarantee a Zariski-closure

larger than a principal SL(2,R). Thus leaving the cases of SO(k + 1, k) and Sp(2k,R)

to rule out. We will also rule these cases out with a second bend, requiring more sophis-

ticated tools.

Bending out of a principal SL(2,R)

The simplest step is the first one, where ρ : π1(S) → SL(n,Z) has Zariski-closure a

principal SL(2,R) inside of SL(n,R). In this case, we will see that one can still perform

a bend in a fairly direct manner.

Lemma 3.2.4. Let ρ : π1(S) → SL(n,Z) be as above and fix any non-separating simple

γ ∈ π1(S). Then there is an A ∈ Z◦
ρ(γ)(Z) so that the Zariski-closure of ρA is not a

principal SL(2,R).

Proof. In this case, if n is even, let f ∈ Z[t] denote the characteristic polynomial of

ρ(γ). In the case that n is odd, as in the remark following the proof of Lemma 3.2.2, we

instead let f ∈ Z[t] be so that (t − 1)f(t) is the characteristic polynomial of ρ(γ). If f

is irreducible over Z in either of these cases, we again apply Lemma 3.2.2 to construct

the bending matrix A. In particular, this matrix does not preserve the form preserved

by the image of ρ hence, by Lemma 3.2.3 is automatically Zariski-dense and the claim is

shown.

What remains is the case where f is reducible over Z, thus we assume f(t) admits a

factorization of the form

f1(t)f2(t) or (t− 1)f1(t)f2(t)

(depending on the parity of n) where f1, f2 ∈ Z[t] are polynomials of degree n1 ≥ n2 ≥ 1

respectively. If n is even, assume further without loss of generality that n1 > 1. From
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this factorization of the characteristic polynomials, there are matrices P ∈ GL(n,Q) so

that Pρ(γ)P−1 is of the form


1

C1

C2

 or

C1

C2

 ,

for Ci ∈ SL(ni,Z) with characteristic polynomial fi (again, depending on the parity of

n). We then take A′ ∈ SL(n,Z) to be the matrix:

A′ =



P−1

In1+1

C2

P if n is odd

P−1

In1

C2

P if n is even.

In both cases, det(A′) = det(C2) = 1 and A′ is in the Q-centralizer of ρ(γ). By Lemma

3.2.1, there is some j > 0 so that A = (A′)j has entries in Z. By construction A ∈

SL(n,Z) centralizes ρ(γ). Moreover, A is not contained in any principal SL(2,R). This

is because the irreducible representation ιn sends the diagonal matrix with eigenvalues

λ, λ−1 to a diagonal matrix whose eigenvalues are of the form λn−2i−1 as i ranges from 0

to n− 1. In particular, any diagonalizable matrix in any principally embedded SL(2,R)

has eigenvalues of this form. But the constructed matrix A′ clearly does not since it has

an eigenvalue 1 with multiplicity n1 + 1 when n is odd and n1 when n is even, and both

of these are greater than 1 by our choice of factorization of f . As A is a power of A′,

this same eigenvalue argument applies to see that A does not lie in a principal SL(2,R)

either.
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What remains is why A lies in the same connected component as the identity matrix

in the centralizer. For this, it again suffices to show that A′ lies in the image of the

exponential map, as A is a power of A′. We note that since ρ(γ) has distinct positive real

eigenvalues, then the block matrix C2 will have distinct, positive real eigenvalues, hence

will lie in the image of the exponential map. Namely, A′ will be conjugate to the matrix

exp(diag(0, . . . , 0, log λ1, . . . , log λn2)) where λ1, . . . , λn2 are the positive eigenvalues of C2.

Thus A′ and A lie in the image of the exponential map.

The proof of this lemma in fact establishes the partial result towards Theorem 2.4.1

that if Hn(S)Z ̸= ∅, then Hn(S)Z contains representations whose Zariski-closures are

conjugate to either SO(k + 1, k) or Sp(2k,R). Moreover, such representations can be

constructed by bending elements in Hn(S)Z about any γ ∈ π1(S) represented by a non-

separating simple closed curve.

Bending out of a symplectic or orthogonal group

What remains is the case that ρ : π1(S) → SL(n,Z) has Zariski-closure conjugate to

either SO(k + 1, k) or Sp(2k,R). This is also the most complicated case in establishing

Theorem 2.4.1 and in [LT22]. The starting point is in establishing the following.

Lemma 3.2.5. Let ρ : π1(S) → SL(n,Z) have Zariski-closure conjugate to Sp(2k,R) if

n = 2k or SO(k + 1, k) if n = 2k + 1. Then there is a γ ∈ π1(S) (which may not be

simple) so that either n is even and ρ(γ) has Z-irreducible characteristic polynomial or n

is odd and ρ(γ) has characteristic polynomial (t− 1)f(t) where f ∈ Z[t] is Z-irreducible.

Proof. We let G denote the Zariski-closure of ρ(π1(S)). First, we handle the case n = 2k,

in which case G ∼= Sp(2k,R). In this case, we may apply Theorem 2.1.3 for G and fix a

prime p so that the reduction map πp(ρ(π1(S)) is all of Sp(2k,Fp). If Rp(2k) denotes the

set of 2k× 2k matrices in Sp(2k,Fp) whose characteristic polynomials are reducible over
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Fp, then a bound, attributed to Borel and proven in [Cha97, Corollary 3.6], establishes

that

|Rp(2k)| ≤
(
1− 1

3k

)
| Sp(2k,Fp)|.

In particular, Sp(2k,Fp) contains matrices with Fp-irreducible characteristic polynomi-

als. In particular, there exists some γ ∈ π1(S) so that the characteristic polynomial of

πp(ρ(γ)) is irreducible modulo p. Consequently, ρ(γ) must have irreducible characteristic

polynomial over Z (as otherwise, any factorization would induce a factorization over Fp).

Now, assume n = 2k + 1, in which case G = SO(J ;R) where J is a symmetric

bilinear form of signature (k + 1, k). In this case, we cannot simply apply the strong

approximation theorem as stated in Theorem 2.1.3 simply because the algebraic group

SO(k + 1, k) is not simply connected. But for a prime p, we still consider the reduction

maps πp : SO(J ;Z) → SO(J ;Fp). Here, it is a classical result that there is a unique

equivalence class of symmetric bilinear forms over odd-dimensional vector spaces over

finite fields (c.f. [Suz82, Theorem 5.8]), thus we will denote the reduction map by πp :

SO(J ;Z) → SO(n;Fp). In this case, while strong approximation does not directly apply,

a corollary of it following from work of Weisfeiler in [Wei84] establishes that for all

but finitely many primes, πp(ρ(π1(S))) contains Ω(n;Fp), the commutator subgroup of

SO(n;Fp) (which has index 4 in SO(n;Fp)). Fix one such prime p. There exist matrices

in SO(n;Fp) of the form (t− 1)f(t) where f is irreducible over Fp (e.g. there is a direct

construction of such a matrix in [LT22, Proposition 3.8]), and thus a γ ∈ π1(S) so that

πp(ρ(γ)) has characteristic polynomial (t− 1)f(t) where f is irreducible over Fp. Thus,

as in the even n case, ρ(γ) will have characteristic polynomial (t−1)f(t) for f irreducible

over Z.

The previous lemma produces γ ∈ π1(S) whose characteristic polynomial is irre-

ducible over Z, but in order to bend, we need a curve γ which is simple. Long and
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Thistlethwaite reached this same point, after which, they constructed a tower of finite-

sheeted covers over their orbifold in which their curve would lift simply. We do the same,

but as we work over closed surface groups in general, we may apply the following re-

sult of Scott who showed that subgroups of surface groups are always geometric in some

finite-sheeted cover.

Theorem 3.2.6 ([Sco78]). For any γ ∈ π1(S), there is a finite-sheeted cover S ′ → S in

which γ lifts to a simple closed curve.

Using Scott’s theorem to replace the tower of covers, we may now prove our result.

Proof of Theorem 2.4.1. Suppose ρ : π1(S) → SL(n,Z) is not Zariski-dense. By Lemma

3.2.4, after possibly performing one bend, we may assume the Zariski-closure of ρ(π1(S)),

G, is conjugate to either Sp(2k,R) or SO(k+1, k). By Lemma 3.2.5, there is a γ ∈ π1(S)

whose characteristic polynomial is of the form indicated in the statement of the Lemma

and by Scott’s theorem, there is some finite-sheeted cover S ′ → S in which γ lifts simply.

Since every separating curve lifts to a non-separating one in a finite-sheeted cover as well,

we may further assume that γ lifts to a non-separating simple closed curve.

LetH denote the Zariski-closure of the restriction ρ|π1(S′) (after identifying π1(S ′) with

its image in π1(S) under the covering map). First, we claim that H = G. To see this,

note that ρ|π1(S′) lies on the Hitchin component of S ′, hence Theorem 3.0.2 also implies

that either H = G or H is a principal SL(2,R). As π1(S ′) has finite-index in π1(S),

H has finite-index in G and so, if g1, . . . , gj were finitely many coset representatives for

G/H, then g1H ∪ . . .∪ gjH is a Zariski-closed subset containing G. If H were a principal

SL(2,R), this would either make Sp(2k,R) or SO(k + 1, k) a finite union of principal

SL(2,R)’s and simply for dimension reasons, this is not the case. Thus, in fact, H = G.

Thus, the restriction ρ|π1(S′) : π1(S
′) → SL(n,Z) lies on the Hitchin component for S ′,

has Zariski-closure conjugate to either Sp(2k,R) or SO(k + 1, k) and possesses a simple
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non-separating γ ∈ π1(S
′) whose characteristic polynomial is either f(t) or (t − 1)f(t)

for Z-irreducible f . Under this setup, we may then apply Lemmas 3.2.2 and 3.2.3, to

conclude the existence of a matrix A ∈ Z◦
ρ(γ)(Z) so that the bend ρA has Zariski-dense

image. Thus Hn(S
′)Z contains Zariski-dense representations.

3.3 Further applications

There are a number of further avenues left to explore following the methods developed

in proving Theorems 2.4.1 and 2.4.2.

The first begins with the observation that there is quite a lot of flexibility in the

construction of §3.2.1 used in the proof of Theorem 2.4.2. Namely, these same methods

indicate that in fact, when Hn(S)OK
is nonempty, it possesses infinitely many represen-

tations which are all distinct, even modulo the action of the mapping class group. This

is because in the proof given, one is able to choose any non-separating simple γ ∈ π1(S)

to bend about and pass to further powers of the bending matrix used, different choices

of which all result in distinct representations. In particular, there is an even more mean-

ingful means in which one may say that there are “many” representations in Hn(S)OK
.

The covering space argument used in the proof of Theorem 2.4.1 precludes us from

saying the same about Hn(S)Z, and so further tools are required to better quantify the

amount of such representations. In fact, doing as much through developing integral point

counting tools is listed as “Task 25” in [Wie18]. Even moreso, at the time of writing, the

sets Hn(S)Z are only known to be nonempty when n is odd or n = 4 by [LT18, LT22],

and so even developing further tools (computational and not) to determine obstructions

to integral points even existing at all merits further exploration.

On the other hand, there are other n for which SL(n,Z) does contain Anosov surface

subgroups which are not necessarily Hitchin, and bending deformations can be defined
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for these as well, there is just a considerable lack in our understanding of what these de-

formations correspond to geometrically. For instance, when using bending to construct

quasi-Fuchsian subgroups of SL(2,C), there is a descriptive geometric picture (c.f. Fig-

ure 3.2b) which is compatible with the algebraic description of the theory. One can in

fact use this geometric perspective to understand when “too much bending” can result

in representations which are not discrete nor faithful. Developing an analogous under-

standing for other Anosov, but possibly non-Hitchin, representations of surface groups

presents one path towards finding thin surface subgroups of SL(2k,Z) whenever k ≥ 3.

We record one such example where such an application would be of note here.

Example 3.3.1. Take a Zariski-dense Hitchin representation ρ : π1(S) → SL(2k −

1,Z) and let τ : SL(2k − 1,R) ↪→ SL(2k,R) be the inclusion induced by embedding

SL(2k − 1,R) in the upper-left corner of a 2k × 2k matrix. The representation τ ◦ ρ :

π1(S) → SL(2k,Z) is Anosov (c.f. [Can20, Corollary 32.5] and [Bar10]) and therefore,

yields a surface subgroup of SL(2k,Z) whose Zariski closure has codimension 2n − 1.

Small deformations of τ ◦ ρ remain discrete and faithful by Theorem 2.3.4, but in many

cases, one can practically compute “large” integral bends of τ ◦ ρ which result in Zariski-

dense representations of surface groups into SL(2k,Z). However, because preserving the

integrality property often imposes less choice in size of centralizing matrices, it is currently

unknown whether any of these remain faithful. Nonetheless, developing an understanding

for how the Anosov property interacts with bending deformations specifically presents

one possible path forward.

Even more generally, any word hyperbolic group Γ which decomposes either as a

nontrivial free product with amalgamation or an HNN extension admits suitable defor-

mations on representations of Γ which one may also refer to as a “bending.” Johnson

and Millson study aspects related to the geometry of such deformations when Γ is the
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fundamental group of a hyperbolic n-manifold [JM87], and how these specific deforma-

tions interact with the geometry of general Anosov representations of Γ may present

a means towards further understanding aspects around Question 4. To this end, Dey

and Kapovich very recently provided some criteria towards understanding when bends

of Anosov representations remain Anosov [DK23a,DK23b] and even more recently, Mal-

oni et al. studied bending deformations for quasi-Hitchin representations into SL(n,C)

[MMMZ23]. In future work, we plan to investigate how these works interact with the

arithmetic perspective presented here.
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Rationality

The following chapter investigates the rational structure of representations on the Hitchin

component. The content of this chapter up to and including §4.3 appears in the paper

Rational approximation for Hitchin representations [AZ23], produced by the author in

joint work with Jacques Audibert and reproduced here with the latter’s permission. The

main result presented is the proof of Theorem 2.4.3.

This result provides a topological characterization for Hitchin representations which

are conjugate into SL(n,Q). Such subgroups have a number of interesting properties.

For instance, these are all forms of subgroups for which the strong approximation the-

orem applies (Theorem 2.1.3). Moreover, they are contained in lattices of products of

Lie groups and p-adic Lie groups, and as such, admit natural actions on products of

symmetric spaces and Bruhat–Tits buildings, where much about the properties of these

actions are unknown (c.f. Example 2.4.2).

Before we discuss the proof, we recall a previously known case of this result in rank

one. For closed hyperbolic 2-orbifolds, X, there is one obvious obstruction on the signa-

ture that must be satisfied in order for π1(X) to admit a discrete and faithful represen-

tation into SL(2,Q). Namely, finite order elements of PSL(2,Q) can only have order 2

63



Rationality Chapter 4

and 3 and hence the orders of cone points of X can only be 2 or 3. In [Tak71], Takeuchi

shows that if the signature of X satisfies this obvious condition, then H2(X)Q is dense

in H2(X) (recall that H2(X) = T (X)). Thus the torsion-free and genus 3 or more case

of Takeuchi’s result is the n = 2 case of Theorem 2.4.3 (our proof in fact does work

when g = 2 and n = 2, but we do not include this case in the statement since this was

previously known anyways). His proof, however, is essentially by a direct argument, and

we can illustrate the idea for closed surface groups here. Suppose S has genus g and fix

the following presentation of its fundamental group

π1(S) = ⟨α1, β1, . . . , αg, βg | [α1, β1] . . . [αg, βg]⟩.

Using the above presentation, the space of all homomorphisms of π1(S) into SL(2,R)

can be viewed as a subset of SL(2,R)2g cut out by the polynomial equations determined

by the requirement that [ρ(α1), ρ(β1)] . . . [ρ(αg), ρ(βg)] = I2. In total there are four such

polynomials, one for each entry of the matrix. But when restricting to only representa-

tions in H2(X), one can show that it suffices to instead consider the simpler equation

Tr([ρ(α1), ρ(β1)] . . . [ρ(αg), ρ(βg)]) = 2 by ruling out other parabolics using discrete and

faithfulness. This reduction, from four polynomial equations to a single one, and a (then

relatively recent) rigidity result of Weil [Wei60] allowed Takeuchi to conclude his density

result.

We take care to note Takeuchi’s proof because the method also makes apparent why

a similar line of thinking has little hope of generalizing to higher-rank. For one, some of

the tools used simply do not apply in the slightly new setting. Weil’s rigidity result, for

example, relies on the fact that the discrete and faithful representations into SL(2,R) had

cocompact image, whereas for n > 2, the images of representations in Hn(S) are always of

infinite covolume. More subtly, in considering representations on the Hitchin component,
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the required relation the matrices must satisfy imposes n2 polynomial equations. The

behavior of parabolics in higher-rank is much more complicated as well and so no similar

“tricks” allow one to reduce the question of density to the study of rational points on

a single polynomial equation. Heuristically, the difficulty of extending the methods of

[Tak71] grows about quadratically in n.

Reflecting these difficulties, it should come of little surprise that our proof of Theorem

2.4.3 is of a completely different nature and is much more geometric. Moreover, while

Theorem 2.4.3 concerns conjugacy classes of representations, the same result will hold at

the level of individual representations. Namely, if we let

H̃n(S) ⊂ Hom(π1(S), SL(n,R))

denote the connected component of representations for which the quotient map H̃n(S) →

Hn(S) is a principal SL(n,R)-bundle, and let H̃n(S)Q denote the set of representations

with image in SL(n,Q), then Theorem 2.4.3 along with the well-known fact that SL(n,Q)

is dense in SL(n,R) gives rise to the following immediate corollary.

Corollary 4.0.0.1. H̃n(S)Q is dense in H̃n(S).

Remark. We also note that prior to this work, other rationality properties for SL(n,R)-

character varieties of surface groups have also been studied in [RBKC96].

At this point, before moving on to the proof, we make the standing assumption that

S is a closed surface of genus at least 3. We still believe the result is likely true in genus 2,

but there is one key point where the current methods fail for this remaining case, which

we will note when it arises.
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4.1 The symplectic nature of bending

The proof of Theorem 2.4.3 utilizes bending deformations, as in the previous Chapter,

but reinterpreted into a more flow-theoretic perspective. Thus, while they are of the same

form as those in Definition 3.1.1, the flow-theoretic perspective will more resemble the

Fenchel–Nielsen twist flows of Example 2.2.3. In line with the themes of much of this

thesis’s work, the core of the proof we present rests on key interactions between the

analytic, geometric and arithmetic perspectives behind these deformations.

Recall from Definition 2.3.3 that Trγ : Hn(S) → R is the function Trγ([ρ]) :=

Tr(ρ(γ)). Let F : SL(n,R) → sl(n,R) be the projection

F (A) := A− Tr(A)

n
In.

We first begin by defining a flow on Hom(π1(S), SL(n,R)) as follows. For any nontrivial

γ ∈ π1(S) which is freely homotopic to a non-separating simple closed curve, recall that

π1(S) arises as an HNN-extension of π1(S\γ) (c.f. Equation 3.1). Therefore, fixing one

such γ′ ∈ π1(S) such that i(γ′, γ) = +1, the map

Ξtγ(ρ)(α) =


ρ(α) if α ∈ π1(S\γ)

exp(tF (ρ(γ)))ρ(α) if α = γ′
(4.1)

defines a continuous flow on Hom(π1(S), SL(n,R)) (c.f. Equation 2.1). Note that indeed,

this is a representation of π1(S) as exp(tF (ρ(γ))) ∈ Z◦
ρ(γ)(R) and that Ξtγ(ρ) is a bend of

the representation ρ about γ, by the notation of Definition 3.1.1.

Definition 4.1.1. The flow Ξtγ on Hom(π1(S), SL(n,R)) defined by Equation 4.1 is called

a generalized twist flow about γ.
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The main result of this section, and a key step in proving Theorem 2.4.3, is the

following lemma which states that two Hitchin representations may be connected via a

path which is a piecewise concatenation of orbits of twist flows of this form.

Lemma 4.1.1. Let ρ1 and ρ2 be Hitchin representations. Then there exist non-separating

simple closed curves γ1, . . . , γk and real numbers t1, . . . , tk so that the representation

ρ′2 := Ξtkγk(. . . (Ξ
t1
γ1
(ρ1)) . . .)

is conjugate to ρ2. In other words, [ρ′2] = [ρ2] on Hn(S).

Remark. Analogs of this lemma in the context of other Lie groups have been known

before (e.g. [GX11, Lemma 3.2] proves this for SU(2)-character varieties), but to our

knowledge, a proof in the context of the SL(n,R)-Hitchin component has never been

recorded before and may be of independent interest in itself.

To establish this result, we first exploit a connection between these flows and the

underlying geometry of the Hitchin component that was studied when they were first

defined by Goldman. Recall that in [Gol84], Goldman defines a symplectic form on

smooth components of character varieties of surface groups which gives Hn(S) the struc-

ture of a connected symplectic manifold. Recall that in general, a smooth function

f :M → R on a symplectic manifold (M,ω) induces a vector field, Xf , the Hamiltonian

vector field associated to f , characterized by the property that for any smooth vector

field Y , ω(Xf , Y ) = df(Y ). In particular, the Goldman symplectic form associates to the

function Trγ : Hn(S) → R its Hamiltonian vector field which, in turn, generates a flow

on Hn(S) which we denote by ξtγ. The similarity in notation between the flows Ξtγ and

ξtγ is not coincidence as these two are related via the following result of Goldman’s.
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Theorem 4.1.2 ([Gol86, Theorem 4.7]). The flow Ξtγ restricted to H̃n(S) covers the flow

ξtγ on Hn(S). In other words, ξtγ([ρ]) = [Ξtγ(ρ)] for all ρ ∈ H̃n(S).

If one regards Trγ as a higher-rank analog of the “length” associated to γ (as in the

discussion following Definition 2.3.3), then this result is exactly an analog of the dual-

ity between twist flows and length functions seen in Wolpert’s magic formula (Theorem

2.2.5). This observation allows us to establish the Lemma 4.1.1 by reducing the tran-

sitivity in the statement to a purely local condition. We do so via an application of

the following infinitesimal version of Theorem 2.3.3, proven in Bridgeman, Canary and

Labourie’s same paper.

Theorem 4.1.3 ([BCL20, Proposition 10.1]). For any [ρ] ∈ Hn(S), the collection of

differentials

{(dTrγ)[ρ] : γ is a non-separating simple closed curve}

spans the cotangent space to Hn(S) at [ρ].

The use of this theorem in proving Lemma 4.1.1 is the only step in our proof of The-

orem 2.4.3 where we require that the genus of S is at least 3. The authors in [BCL20] de-

duce this claim by showing that certain infinitesimal deformations which locally preserve

simple traces are trivial along certain 3-generator subgroups of π1(S). These subgroups

are defined via an arrangement of curves which can only exist when the genus of S is

at least 3. If one can remove this assumption in their work, the conclusions of Theorem

2.4.3 hold for genus 2 as well.

Proof of Lemma 4.1.1. Let G denote the group generated by the flows ξtγ for all non-

separating simple closed curves γ and all t. We first wish to establish that G acts

transitively on Hn(S) (c.f. the strategy in [GX11, Lemma 3.2]). First, by Theorem 4.1.3,

the differentials dTrγ associated to all non-separating, simple γ span the cotangent spaces
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T ∗
[ρ](Hn(S)) at every [ρ] ∈ Hn(S). The non-degeneracy of the Goldman symplectic form

induces an isomorphism between cotangent and tangent spaces of the Hitchin component.

This isomorphism sends dTrγ to the derivative of ξtγ at t = 0 as the latter are the Hamil-

tonian flows associated to the former. In particular, the dTrγ spanning all cotangent

spaces implies that the derivatives of the ξtγ span the tangent spaces at every point on

the Hitchin component. By the inverse function theorem, this implies that the G-orbit

of any point is an open subset of Hn(S). The orbits also partition Hn(S), yet Hn(S)

is connected, hence cannot be partitioned into proper disjoint open subsets. Therefore,

the action of G has only one orbit and it acts transitively on Hn(S). In other words, for

Hitchin ρ1 and ρ2, there exist simple closed curves γ1, . . . , γk and t1, . . . , tk ∈ R so that

[ρ2] = ξtkγk(. . . (ξ
t1
γ1
([ρ1])) . . .).

The claim then follows from this equality, viewed at the level of representations and

Theorem 4.1.2.

Independent to its use in establishing results about the arithmetic of Hn(S), Lemma

4.1.1 seems of independent interest worth further investigation for Hitchin representa-

tions. This result establishes that any two Hitchin representations may be connected by

a finite sequence of bends about non-separating simple closed curves, but is there, in fact,

a uniform bound on the number of bends one must perform to deform any one Hitchin

representation into another? Perhaps simpler, is there a uniform bound on the number

of bends one must perform to deform an n-Fuchsian representation into an arbitrary

Hitchin representation? It seems possible, though maybe not plausible, that 2 may even

be such an upper bound and that one can get from one Hitchin representation to another

by bending about two curves (which generically fill S).
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4.2 Density

To establish density of Hn(S)Q, we use the results of the previous section to first

build approximations to Hitchin representations via generalized twist flows. From Equa-

tion 4.1, one observes that the flow lines of Ξtγ are essentially controlled by the matrix

exp(tF (ρ(γ))) ∈ Zρ(γ)(R). In turn, one can then build a rational approximation to an

arbitrary Hitchin representation by combining this observation with enough control over

the rational points of the algebraic groups Zρ(γ). This control comes via the following

“weak approximation” property for these groups.

Theorem 4.2.1 ([PR94, Theorem 7.7]). Let G be a connected algebraic group defined

over Q. Then G(Q) is dense in G(R) in the Euclidean topology.

Observe then that G = Zρ(γ) is a connected algebraic group. In fact, it is an algebraic

torus as Theorem 2.3.2 implies that Zρ(γ)(C) ∼= (C×)n−1. Moreover, if ρ ∈ H̃n(S)Q, then

this group is in fact defined over Q. Thus, as a consequence of weak approximation, we

arrive at the following.

Corollary 4.2.1.1. If ρ ∈ H̃n(S)Q, Zρ(γ)(Q) is dense in Zρ(γ)(R).

This corollary is of use for building rational approximations to representations because

of the observation that whenever ρ ∈ H̃n(S)Q and ρ′ is a bend of ρ about any non-

separating γ ∈ π1(S) by a rational A ∈ Z◦
ρ(γ)(Q), then ρ′ ∈ H̃n(S)Q (this is immediate

from the formula of a bend in Definition 3.1.1). As the Ξtγ are themselves a form of a

bend (c.f. Equation 4.1), these flows may be “perturbed” using appropriate choice of

rational centralizing matrices. Combining all the work of this chapter, we then arrive at

the proof of our main result.

Proof of Theorem 2.4.3. First observe that H̃n(S)Q is nonempty. To see this, notice

that the irreducible representation ιn : SL(2,R) → SL(n,R) can be defined over Z,
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hence takes SL(2,Q) to SL(n,Q). Thus, as there exist representations in H̃2(S)Q (e.g.

by Takeuchi’s result or by Example 2.2.5), the composition of one such representation

with ιn produces a representation in H̃n(S)Q.

To prove Theorem 2.4.3, first fix an arbitrary Hitchin representation ρ0 : π1(S) →

SL(n,Q). For each k ≥ 1, introduce the set

Hk
n(S, [ρ0]) =

[ρ] ∈ Hn(S) :
there exist simple, non-separating γ1, . . . , γk ∈ π1(S)

and t1, . . . , tk ∈ R so that [ρ] = ξtkγk(. . . (ξ
t1
γ1
([ρ0])) . . .)

 .

In other words, Hk
n(S, [ρ0]) consists of the points on the Hitchin component which can be

reached by performing at most k generalized twists about non-separating simple closed

curves beginning with [ρ0]. Lemma 4.1.1 implies that

Hn(S) =
∞⋃
k=1

Hk
n(S, [ρ0]),

so to establish density, we show that the closure of Hn(S)Q in Hn(S) contains Hk
n(S, [ρ0])

for all k.

First, for any [ρ] ∈ H1
n(S, [ρ0]), ρ is conjugate to Ξt1γ1(ρ0) for some non-separating

γ1 ∈ π1(S) and t1 ∈ R. By Corollary 4.2.1.1, there is a sequence {Aj}j of elements

in Zρ0(γ1)(Q) converging to exp(t1F (ρ0(γ1))). Let ρj be the bend of ρ0 about γj by Aj

(c.f. Definition 3.1.1). Notice that ρj ∈ H̃n(S)Q as ρ0 ∈ H̃n(S)Q and Aj ∈ SL(n,Q).

Moreover, ρj converges pointwise to Ξt1γ1(ρ0), hence [ρj] → [ρ] and the closure of Hn(S)Q

contains all of H1
n(S, [ρ0]).

Inductively, suppose that the closure of Hn(S)Q contains Hk−1
n (S, [ρ0]) for some k ≥ 2

and let [ρ] ∈ Hk
n(S, [ρ0]). Then there exist non-separating simple γk ∈ π1(S), tk ∈ R and

[σ] ∈ Hk−1
n (S, [ρ0]) so that ρ is conjugate to Ξtkγk(σ). As [σ] ∈ Hk−1

n (S, [ρ0]), by induction,
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there exists a sequence {σi : π1(S) → SL(n,Q)}i in H̃n(S)Q such that [σi] → [σ].

Conjugating by appropriate elements of SL(n,Q) if necessary, we may further assume

that σi → σ pointwise.

For each i, let {Ai,j}j denote a sequence in Zσi(γk)(Q) converging to exp(tkF (σi(γk)))

in Zσi(γk)(R), as given by Corollary 4.2.1.1. Fix some distance d on SL(n,R) inducing

its usual topology and for each m ≥ 1, let ϕ(m) denote the smallest i such that

d(exp(tkF (σi(γk))), exp(tkF (σ(γk)))) <
1

m
.

Similarly, let ψ(m) denote the smallest j such that

d(Aϕ(m),j, exp(tkF (σϕ(m)(γk)))) <
1

m
.

By construction of ϕ and ψ, the sequence Aϕ(m),ψ(m) converges to exp(tkF (σ(γk))) as

m→ ∞. Then let ρm be the bend of σϕ(m) about γk by Aϕ(m),ψ(m). Again, ρm ∈ H̃n(S)Q

as σϕ(m) ∈ H̃n(S)Q and Aϕ(m),ψ(m) ∈ SL(n,Q) and ρm converges pointwise to Ξtkγk(σ).

Therefore [ρm] → [ρ] and the closure of Hn(S)Q contains all of Hk
n(S, [ρ0]), establishing

the result.

4.3 Density beyond Hn(S)

The methods used in this proof also admit generalizations beyond the specific example

of Hn(S). The most immediate one is the analog of this result for Hitchin components

associated to other split real forms. If G = Sp(2k,R), SO(k + 1, k) or G2, and HG(S)Q

denotes the intersection of HG(S) with Hn(S)Q (identifying the G-Hitchin component

with its image in the SL(n,R)-Hitchin component for n = 2k, 2k + 1 or 7, depending on

G), then an immediate consequence of the above proof is the same result for the Hitchin
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components associated to these groups.

Corollary 4.3.0.1. HG(S)Q is dense in HG(S).

This follows from the fact that the restrictions of the trace functions Trγ to the

submanifold HG(S) of Hn(S) (induced by the appropriate inclusions G ↪→ SL(n,R)) will

still span the cotangent spaces of HG(S) and allow one to conclude the obvious analog

of Lemma 4.1.1 for these Hitchin components. Again, the weak approximation result

still applies to G-centralizers of matrices in these groups and the examples of n-Fuchsian

rational Hitchin representations in Hn(S)Q also establish that all of these HG(S)Q are

nonempty.

One key difference, however, is that in this setting, one must be more careful in stating

the analog of Corollary 4.0.0.1, at the level of representations rather than conjugacy

classes. For each of these groups, lifts of the Hitchin component to Hom(π1(S), G) all

preserve an ambient non-degenerate alternating or symmetric bilinear form, depending on

the parity of n, and which specific form it preserves depends on how one lifts. While each

of these forms are equivalent over R, some have no solutions over Q and the corresponding

lifts of the Hitchin component will have no rational representations whatsoever. See,

for instance, [Aud22] for some additional examples of quadratic forms whose associated

indefinite orthogonal groups contain rational Hitchin representations.

These methods also indicate possible ways one may establish similar results for other

components of the character variety. That is, let G be a reductive Q-algebraic group

and G = G(R) the corresponding real Lie group. Again, the G-character variety of S is

possibly a highly-singular space, but there is a Zariski-open subset Ω ⊂ Hom(π1(S), G)

so that the quotient by conjugation Ω/G is a (possibly disconnected) smooth manifold.

Goldman’s symplectic form in [Gol84] may still be defined on any component of Ω/G,

thus allowing much of our discussion to take place in this setting.
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That is, let X ⊂ Ω/G be one connected component and denote by XQ the set of

representations in X which are conjugate into a subgroup of G(Q). In order to establish

an analog of Theorem 2.4.3 for this component X, one needs an infinitesimal condition to

hold establishing a similar result as 4.1.3. In fact, one can get away with a much weaker

statement than what we use for the Hitchin component. To any conjugation invariant

function f : G → R and γ ∈ π1(S), there is an induced fγ : X → R given by setting

fγ([ρ]) := f(ρ(γ)) (for instance, Trγ). If S ⊂ π1(S) denotes the collection of elements

which are freely homotopic to simple closed curves (separating or not), then one needs

to ask the following question of X.

Question 7. Is there a collection of conjugation invariant functions F = {f : G → R}

so that the differentials

{dfγ : f ∈ F , γ ∈ S}

span the cotangent space T ∗
[ρ]X at every [ρ] ∈ X?

One may regard this question as asking whether general representations of surface

groups satisfy any sort of infinitesimal rigidity associated to simple closed curves. If so,

then one may understand analogs of Theorem 2.4.3 in general as our same methods show

the following.

Theorem 4.3.1. If X ⊂ Ω/G as above has a positive answer to Question 7, then the

presence of a single representation in XQ implies its own density in X.

For instance, Theorem 4.1.3 shows that when X = Hn(S) and the genus of S is 3

or more, then F = {Tr} yields a positive answer to Question 7, but in reality, one may

get away with a much larger (and even possibly infinite) class of conjugation invariant

functions. If such a collection can be found, the Hamiltonian flows associated to them will

still act transitively on X. These flows still admit descriptions in the form of generalized
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twist flows by Goldman’s work [Gol86], allowing one to build rational approximations in

an identical manner as in the proof of Theorem 2.4.3 and establishing Theorem 4.3.1 for

X.

4.4 Point counting and some experiments

Theorem 2.4.3 provides a qualitative understanding of the distribution of Hn(S)Q

within Hn(S), but it is natural to seek a more quantitative picture. Pursuing such a goal

may, in turn, help lead to integral point counting results for representations in Hn(S)Z

(c.f. [Wie18, Task 25]). We lightly discuss how one may tackle such questions in the

presence of more computational work done previously and present candidate objects to

study towards such goals.

We begin with the following result of Long–Reid–Thistlethwaite which explicitly iden-

tifies the Hitchin component of a particular triangle group in SL(3,R) using the com-

putational methods outlined in [CLT06]. First, we let X3,3,4 the orbifold of signature

(0; 3, 3, 4) and ∆(3, 3, 4) = ⟨α, β |α3 = β3 = (αβ)4⟩ its fundamental group, i.e. the

(3, 3, 4)-triangle group.

Theorem 4.4.1 ([LRT11, §2]). Let Y ⊂ R3 denote the triples of points (u, v,D) which

are solutions to the polynomial equation

D2 = −4u2(5 + u) + 4u(8 + u)v + (−20 + u(4 + u))v2 − 4v3. (4.2)
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Let ρu,v,D : ∆(3, 3, 4) → SL(3,R) be the representation defined by mapping

α 7→


1 1

u(−u3v + 4uv2 − 2v3 + u2(−6v +D))

2(u2 + v2)(u2 − uv + v2)

0 − v

u
1

0
−u2 + uv − v2

u2
−1 +

v

u



β 7→


−1 +

v

u
0

u(2u3 + 2v3 − u2v(2 + v) + uv(−2v +D))

2(u2 + v2)(u2 − uv + v2)
−2v2 + u2(2 + v) + u(4v +D)

2u2
1 −1

−2u3 − 2v3 + u2v(2 + v) + uv(2v +D)

2u3
0 − v

u

.

The birational map Y 99K X(∆(3, 3, 4), SL(3,R)) defined by (u, v,D) 7→ [ρu,v,D] takes the

points in Y such that u > 0 and v > 0 bijectively onto H3(X3,3,4).

Let

D(u, v) :=
√

−4u2(5 + u) + 4u(8 + u)v + (−20 + u(4 + u))v2 − 4v3

(c.f. the right-hand side of Equation 4.2). Since a pair (u, v) ∈ R2
+ uniquely determines

two possible values of D so that (u, v,D) ∈ Y (namely, ±D(u, v)), the above computa-

tion shows that H3(X3,3,4) is 2-dimensional (which agrees with what had been previously

known in [CG05]). The above map not only parameterizes this Hitchin component ex-

plicitly, but it does so in a particularly nice way with regards to the arithmetic of the

spaces involved. Namely, the map of the above theorem precisely identifies the rational

representations in H3(X3,3,4).

Proposition 4.4.2. The map of Theorem 4.4.1 restricts to a bijection between the ele-

ments of Y (Q) with u, v > 0 and the representations in H3(X3,3,4)Q.

Proof. Firstly, it’s clear why if (u, v,D) ∈ Y (Q) satisfies u, v > 0, then [ρu,v,D] ∈

H3(X3,3,4)Q since the entries in the map of Theorem 4.4.1 are rational functions de-
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fined over Q. It is not, however, immediately clear why if [ρu,v,D] ∈ H3(X3,3,4)Q, then

u, v,D ∈ Q. To see this, one can first check that the matrix ρu,v,D(αβ−1) has character-

istic polynomial given by

t3 − (2 + v)t2 + (2 + u)t− 1. (4.3)

Therefore, if [ρu,v,D] ∈ H3(X3,3,4)Q, the characteristic polynomial of this matrix must

have Q-coefficients and so u, v ∈ Q. Similarly, one can also check that the matrix

ρu,v,D(α
−1β−1αβ) has characteristic polynomial

t3 −
(
2 + 2u+ 2v + uv −D

2

)
t2 +

(
2 + 2u+ 2v + uv +D

2

)
t− 1 (4.4)

hence D ∈ Q as well.

Consequently, one can seek to understand the distributions of rational Hitchin rep-

resentations in H3(X3,3,4) by instead studying the algebraic surface defined by Equation

4.2 through number-theoretic means.

For instance, one may then study distributions of rational points by enumerating

rational values of u and v of bounded height and studying the asymptotics of this func-

tion. Recall that if x = p
q
∈ Q for p, q ∈ Z coprime with q ̸= 0, the height of x is the

value ht(x) = max{|p|, |q|}. Thus, for example, one may calculate (by hand or through

computer check) that there are 38047 positive rational numbers of height bounded above

by 250. This gives 380472 possible choices of (u, v) which may yield a representation in

H3(X3,3,4). Among these (u, v) ∈ Q2
+ satisfying D(u, v) ≥ 0, only 1565 satisfy the addi-

tional condition that D(u, v) ∈ Q. The plot in Figure 4.1 shows a portion of H3(X3,3,4)Q

where a point (u, v) corresponds to the representation [ρu,v,D(u,v)]. The curve plotted is

where D(u, v) = 0 and points in either shade of blue are one of these 1565 rational points

produced in this example computation. The points in dark blue are the representations
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which are, in fact, integral.

Figure 4.1: Some rational points on H3(X3,3,4) of height ≤ 250.

Figure 4.1 already seemingly illustrates that there may be interesting rational struc-

ture worth exploring. The point at the cusp of the D(u, v) = 0 curve is where (u, v) =

(2
√
2, 2

√
2) and is the (unique) discrete and faithful representation of ∆(3, 3, 4) into

SO(2, 1). Figure 4.1 and further computations such as these seemingly suggest that

points of small height are distributed much closer to the Fuchsian representation.

One can further refine these techniques to search for representations in H3(X3,3,4)Z.

This requires a slightly more subtle approach though, as the parameterization of Theorem

4.4.1 is one by rational functions and hence points in Y (Z) do not necessarily correspond

to representations in H3(X3,3,4)Z. Nonetheless, work of Bass in [Bas80] and a similar
78



Rationality Chapter 4

argument as in Proposition 4.4.2 show that if (u, v,D) ∈ Z3
+ satisfies Equation 4.2 and

makes the polynomials of Equations 4.3 and 4.4 defined over Z, then ρu,v,D(∆(3, 3, 4))

conjugates into SL(3,Z) (c.f. [LRT11, Proposition 2.1]). Figure 4.2 contains a plot of all

such points with 0 < u, v ≤ 10000 and D(u, v) ≥ 0. Upon closer inspection of Figure 4.2,

there appear to be four infinite “rays” emanating from the origin. Each “ray” is in fact, a

half of one of two conics, 6+u2+v2−u−v−2uv = 0 or u2−2uv+v2−4u−4v+36 = 0,

each of which contain infinitely many representations in H3(X3,3,4)Z. These two families

were first constructed in [LRT11] and provided the first examples of infinitely many

non-conjugate, Zariski-dense surface subgroups of SL(3,Z).

Figure 4.2: Representations in H3(X3,3,4)Z.

Again, comparing Figures 4.1 and 4.2, clustering behavior near the Fuchsian repre-

sentation seems apparent. This is somewhat artificial in the former of these figures as
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Figure 4.3: Distributions of representations in H3(X3,3,4)Z.

rational numbers of bounded height will tend to be distributed around the smaller val-

ues, but is, more curious in the latter figure. One can in fact, more precisely quantify

this phenomenon, counting the number of representations in H3(X3,3,4)Z with integral

trace and bounded distance to the Fuchsian representation (in uv-coordinates). Asymp-

totically, as the distance to the Fuchsian representation, d, grows, the number of such

integral representations grows approximately at a rate of ∼
√
d (see Figure 4.3).

Of course, the discussion here is highly extrinsic. These computations massively rely

on the parameterization of H3(X3,3,4) given by Theorem 4.4.1 and it is not known, for

instance, whether the coordinates u and v correspond to anything geometrically mean-

ingful. An immediate goal would be to perform computations such as the ones presented

above instead utilizing more intrinsic geometric features of Hn(S).

For example, there are a number of natural metrics one might place on the Hitchin

component, many of which generalize rank one counterparts for Teichmüller space (see,
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e.g., [BCLS15]). Inspired by various heights in number theory and much of the above

computations, we define one possible candidate height function on the rational Hitchin

representations.

Definition 4.4.1. The denominator of a rational Hitchin representation is the function

den : Hn(S)Q → R by:

den([ρ]) := min{N : Tr(ρ(γ)) ∈ Z[ 1
N
] for all γ ∈ π1(S)}.

Similar to the discussion above, work of Bass allows one to show that in fact, den−1(1) =

Hn(S)Z [Bas80], thus understanding the behavior of this “height function” on Hn(S)Q

may possibly lead to resolving the remaining cases left open by Theorem 3.0.1. In this

vein, we ask the following natural question.

Question 8. Can one characterize the collection of representations in Hn(S)Q of bounded

denominator and bounded distance to the n-Fuchsian locus ιn(T (S)) (under any suitable

notion of distance on the Hitchin component)?

An answer to such a question would provide a more intrinsic picture than the extrinsic

one provided by the computations in this section.

4.5 Other approximation-type questions

Theorem 2.4.3 provides a meaningful sense in which one can approximate an arbitrary

Hitchin representation by one with “nicer” arithmetic properties, namely, being rational.

Naturally, one may prefer other arithmetic properties to being rational, prompting a slew

of other questions regarding the extent arithmetic approximations in Hn(S) can be made.

The purpose of this section is mostly to record such questions.
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Like much in higher-rank, much of this discussion is motivated by analogous results

in rank one and asking to what extent the obvious generalization holds or fails.

Definition 4.5.1. Let Γ < PSL(2,C) be a Kleinian group. Say that Γ admits a cofinite

extension if there exists a lattice Γ′ with Γ < Γ′. A cofinite extension is cocompact if the

lattice is cocompact, otherwise, it is strictly cofinite.

In [Bro86], Brooks used the theory of circle packings on the sphere to establish the

following characterization of cofinite extensions in a rank one example.

Theorem 4.5.1 ([Bro86, Theorems 1 and 2]). Suppose Γ < PSL(2,C) is a geometrically

finite Kleinian group. Then there exist arbitrarily small quasi-conformal deformations,

Γε, of Γ, such that Γε admits a cofinite extension. Moreover, if Γ has no cusps, one can

take Γε admitting a cocompact extension.

We will interpret the above theorem in the case where Γ = π1(S) is a surface group for

simplicity. Let QF(S) denote the collection of quasi-Fuchsian representations of π1(S) →

PSL(2,C). In this case, the above result interpreted in the language of character varieties

gives that the collection of representations in QF(S) with image contained in a hyperbolic

3-manifold group is dense in QF(S). In fact, using Brock–Canary–Minsky’s resolution

to the Ending Lamination Conjecture [BCM12], representations in QF(S) with image

contained in hyperbolic 3-manifold groups are dense in the space AH(S) of all Kleinian

surface groups isomorphic to π1(S).

In rank one, all quasi-Fuchsian representations are Anosov, and so asking the same

question for other spaces of Anosov representations is a natural next step.

Definition 4.5.2. A Hitchin representation ρ admits a cofinite extension if there exists

a lattice Λ < SL(n,R) such that ρ(π1(S)) < Λ. We denote the collection of conjugacy

classes of such representations by Hn(S)cf.
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In light of Brooks’s result, we ask the following.

Question 9. Is Hn(S)cf dense in Hn(S)?

For instance, the representations pictured in Figure 4.2 are all in Hn(S)cf as these

all conjugate into SL(3,Z). Arithmeticity (Theorem 2.1.2), however, suggests that the

answer to this Question 9 should be “no,” as heuristically, there are much fewer lattices

in higher-rank than there are in rank one. Nonetheless, one way to get around this is

possibly by allowing passage to finite-index subgroups.

Definition 4.5.3. A Hitchin representation ρ admits a virtual cofinite extension if there

exists a lattice Λ < SL(n,R) and a finite-index subgroup Γ ⩽ ρ(π1(S)) so that Γ < Λ.

We denote the collection of conjugacy classes of such representations by Hn(S)vcf.

This notion allows for more representations to be considered, hence perhaps makes it

more reasonable that the following may have a positive answer.

Question 10. Is Hn(S)vcf dense in Hn(S)?

For n ≥ 3, the Zariski-dense representations in Hn(S)vcf are precisely the ones which

are subarithmetic, in the sense of [GPS88, §0.4]. There, subarithmeticity is only discussed

for subgroups of rank one groups, where the authors raise the question of which lattices

contain (or in fact, are generated by) subarithmetic subgroups. This same question is

trivial in higher-rank, by virtue of Theorem 2.1.2, but the related question of which

subgroups are subarithmetic remains nontrivial, and Question 10 concerns this.

Using a similar parameterization as in Theorem 4.4.1, Long and Reid show that

there is an embedding R ↪→ H3(X3,4,4) so that every totally real Pisot number maps to a

representation in H3(X3,4,4)vcf (see [LR16, §4.1]). Nonetheless, this is far from establishing

density and in fact, does not even establish whether this set contains a limit point. Even

if both Questions 9 and 10 possess a negative answer, providing any characterization of
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the closures of Hn(S)cf or Hn(S)vcf would be of interest. For instance, at the time of

writing, it is unknown (at least to the author) whether or not either of these sets are

even discrete.
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