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Abstract
libEnsemble is a Python-based toolkit for running dynamic ensembles, developed as part of the DOE Exascale
Computing Project. The toolkit utilizes a unique generator–simulator–allocator paradigm, where generators produce
input for simulators, simulators evaluate those inputs, and allocators decide whether and when a simulator or generator
should be called. The generator steers the ensemble based on simulation results. Generators may, for example, apply
methods for numerical optimization, machine learning, or statistical calibration.
libEnsemble communicates between a manager and workers. Flexibility is provided through multiple manager–worker
communication substrates each of which has different benefits. These include Python’s multiprocessing, mpi4py, and
TCP. Multisite ensembles are supported using Balsam or Globus Compute.
We overview the unique characteristics of libEnsemble as well as current and potential interoperability with other
packages in the workflow ecosystem. We highlight libEnsemble’s dynamic resource features: libEnsemble can detect
system resources, such as available nodes, cores, and GPUs, and assign these in a portable way. These features allow
users to specify the number of processors and GPUs required for each simulation; and resources will be automatically
assigned on a wide range of systems, including Frontier, Aurora, and Perlmutter. Such ensembles can include multiple
simulation types, some using GPUs and others using only CPUs, sharing nodes for maximum efficiency. We also
describe the benefits of libEnsemble’s generator–simulator coupling, which easily exposes to the user the ability to
cancel, and portably kill, running simulations based on models that are updated with intermediate simulation output.
We demonstrate libEnsemble’s capabilities, scalability, and scientific impact via a Gaussian process surrogate training
problem for the longitudinal density profile at the exit of a plasma accelerator stage. The study uses gpCAM for the
surrogate model and employs either Wake-T or WarpX simulations, highlighting efficient use of resources that can
easily extend to exascale.
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Dynamic ensembles, Python toolkit, Exascale computing, Portable workflows

Introduction

Extreme-scale scientific computing experiments and appli-
cations enjoy much success from increasing resource and
scaling capabilities. However, the vast majority of practical
simulations have a limit to which they can scale at a rea-
sonable parallel efficiency. Running ensembles presents an
effective way to utilize these increasing resources towards a
unified goal.

libEnsemble (Hudson et al. 2022a, 2023, 2024, 2022b)
is a Python workflow toolkit that coordinates ensembles:
concurrent instances of calculations or applications at the
quantities and scales possible on modern supercomputers.
But running naive ensembles of computations from
predetermined input parameters (e.g., via a fancy for loop)
is often not the most efficient route toward a study’s goals.
Therefore, libEnsemble coordinates dynamic ensembles,
where ensemble members are produced and controlled on
the fly, without human interaction, based on the instructions
of some outer-loop, model, or decision processes.

libEnsemble is aware of the heterogeneous resources
(CPUs and GPUs) available on many target machines
(including laptops, clusters, and supercomputers), and
automatically detects, allocates, and reallocates such

compute resources. For a given ensemble, the decision,
allocation, and simulation components are selected or
supplied to libEnsemble in the form of user functions,
described below.

libEnsemble is one of several workflow packages
addressing the need to reliably and portably scale concurrent
computations across a landscape of heterogeneous hardware.
For example, the RADICAL-Cybertools Ensemble Toolkit
(Balasubramanian et al. 2016) enables the coordination of
ensembles of simulations that adhere to common patterns.
Many workflow packages, including Colmena (Ward et al.
2021) and Ray (Moritz et al. 2018), specifically target
artificial intelligence use cases. Covalent (Cunningham
2023) encourages extremely portable, cross-site workflows
targeting both clusters and cloud-computing providers.
libEnsemble is distinguished from each of these other
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examples (except Colmena) by only requiring a user
to select/supply at most three components (generators,
simulators, and allocators), not requiring a directed
acyclic graph of tasks, not requiring administrating
background processes or databases, and supporting dynamic
assignment/reassignment of compute resources. Colmena
offers a similar two-component paradigm (using the terms
“thinkers” and “doers”) but requires more infrastructure
configuration; libEnsemble’s users typically do not need
to specify data pipelines, queues, databases, or other
interoperative glue.

libEnsemble was born out of discussions with the
PETSc/TAO (Balay et al. 2023) team centering on the
need for modular workflow libraries to support dynamic
ensembles to help the U.S. Department of Energy (DOE)
to realize the potential of exascale computing capabilities.
It was determined that the library should have a mix and
match approach to generator and simulator functions, should
allow for a flexible and high resolution resource partitioning
(nodes and sub-nodes), and should allow efficient use
of resources by being able to direct the termination of
running simulations. While the TAO optimizers were a
focus of discussion, the library should support any kind
of mathematical function to guide simulations. Initiating
development under the DOE Exascale Computing Project,
today libEnsemble plays an active role within the DOE and
broader workflows community, featuring integrations with
prominent ExaWorks packages, including PSI/J (Hategan-
Marandiuc et al. 2023) and Globus Compute (Chard
et al. 2020). Its presence extends to the mathematical
software community as a member of the Extreme-scale
Scientific Software Development Kit (xSDK, Bartlett et al.
(2017)). Additionally, libEnsemble contributes to the quality
assurance of scientific software by participating in the test
suite of the Extreme-scale Scientific Software Stack (E4S).
These capabilities place libEnsemble at the forefront of
facilitating scalable, resource-aware scientific computing,
enabling intricate simulations and analyses across various
scientific domains.

Illustrative Use Cases
Research: Many uses of libEnsemble center on its ability to
empower domain scientists to utilize additional computation
when their simulation stops scaling. As discussed, if a
simulation’s run time does not decrease with additional
resources, libEnsemble exposes an additional opportunity for
parallelism by concurrently evaluating multiple simulations
under different input parameters. Countless examples of such
computational situations exist. A particular set of exemplars
is how libEnsemble has been beneficial to the particle
accelerator simulation community. For example, Neveu et al.
(Neveu et al. 2019, 2023) applied libEnsemble to optimize
photoinjectors, while Ferran Pousa et al. (Ferran Pousa et al.
2022) performed multifidelity optimization of laser-plasma
accelerators.

Generators: While researchers often create or customize
libEnsemble generators for particular workflows, some
generators or suites of generators may be developed and
shared by multiple researchers. Examples of community-
developed generators include the VTMOP (Chang et al.

Figure 1. Interoperability among libEnsemble’s allocator,
generators, and simulators user functions

2020) generator for multiobjective optimization, the Surmise
(Plumlee et al. 2023; Chan 2023) generator for uncertainty
quantification via Gaussian processes, and the ytopt
(Wu et al. 2024) generator for machine-learning-based
autotuning.

Further examples can be found in the libEnsemble
community examples repository on GitHub (libEnsemble
Community 2023).

Software: Optimas (Ferran Pousa et al. 2023) is a package
for highly scalable parallel optimization by Ferran Pousa et
al. It is built on top of libEnsemble and offers a higher-level
API that is designed for accelerator modeling but applicable
more broadly. Optimas development is closely aligned with
libEnsemble’s development.

ParMOO (Chang and Wild 2023b,a) provides a library
of multiobjective optimization solvers that is designed to
integrate with libEnsemble for running evaluations across
parallel resources. The libEnsemble developers continue
to work with optimization library teams to provide a
standardized, modular environment for dynamic workflows
on a wide range of parallel platforms.

rsopt (RadiaSoft 2024) is another Python framework built
around libEnsemble. It is used for testing and running black-
box optimization problems. Developed by RadiaSoft, rsopt
is in turn a key element in Sirepo, a proprietary interface for
accessing and running jobs on high-performance computing
systems via a web browser interface.

Manager, Workers, and User Functions
libEnsemble’s workflows are driven by the interoperability
between three components referred to as user functions,
coordinated by a manager and multiple workers. Generator
user functions produce candidate inputs/parameters for
simulations or experiments. Simulator functions perform
and monitor those simulations or experiments. Allocator
functions coordinate data transfer between the generators
and simulators and can additionally assign compute
resources to user functions or perform additional tasks such
as cancelling active simulations based on a request from the
generator. libEnsemble’s workers typically launch generator
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Portable, heterogeneous ensemble workflows at scale using libEnsemble 3

and simulator functions, while the manager handles the
allocator function, as depicted in Figure 1. Thousands
of concurrent simulator and generator instances can be
asynchronously coordinated and tightly coupled together in
a namesake ensemble.

User functions are simply Python functions that conform
to libEnsemble’s API; that is, they must process their first
input parameter as a NumPy (Harris et al. 2020) structured
array and then return/communicate another array containing
results. Between these two steps, any level of computation
and complexity is possible. Additional Python libraries
can be imported, multinode compiled applications launched
and monitored via libEnsemble’s built-in executors, models
trained, or any other routine performed. With few exceptions,
any kind of computation is possible in libEnsemble’s user
functions.

User functions commonly have a state that they wish to
maintain and update as results are observed. Such functions
can be launched in libEnsemble in a persistent mode, as
opposed to a fire-and-forget mode that is commonly used in
other workflow packages. This persistent mode is facilitated
by user-facing persistent support routines that allow user
functions to continuously send and receive intermediate
results or additional input parameters while maintaining
state. For example, APOSMM (Larson and Wild 2018),
a parallel optimization generator function distributed with
libEnsemble, persistently maintains and advances multiple
local-optimization subprocesses as simulation results are
returned to APOSMM in real time.

libEnsemble distributes dozens of example functions and
complete workflows as part of its package and online
community examples (libEnsemble Community 2023).
Users are welcome to browse these examples, distribute or
modify them to serve their purposes, and even contribute new
examples.

History Array
libEnsemble’s manager maintains a NumPy structured array
referred to as the history array, which contains a record of all
generated and evaluated values and corresponding metadata.
Results from each user function are slotted into this array,
and inputs into user functions are selected from it. Upon
completing a workflow, incrementally, or encountering an
error, libEnsemble dumps the history array to file.

Generator functions can preempt, prioritize, or otherwise
manipulate the run order of simulations by assigning
sim ids and priority rankings to corresponding output
parameters in the history array. Restarts are supported by
supplying a history array from a previous ensemble in the
H0 argument when the ensemble is executed.

Generator Functions
Generator functions in libEnsemble play a pivotal role in
defining the exploration strategy within the parameter space
for simulations or experiments.

Since the possible objectives driving explorations are
countless, corresponding generators range from simple
designs, such as those requesting batches of randomly
sampled points, to substantially more complex methods.
For instance, APOSMM coordinates multiple instances of

structure-exploiting numerical optimizers. Each optimizer
instance may begin its search from a distinct point in
the parameter space, leveraging the parallel computing
capabilities of libEnsemble to efficiently explore large and
complex parameter spaces for simulations that are likely
already using (considerable) parallel resources.

The flexibility of generators allows users to tailor
their search strategy according to the problem at hand,
whether it involves scanning a broad area to identify
regions of interest or focusing on refining solutions within
one. Moreover, generator functions can dynamically adjust
their requests based on real-time output from ongoing
simulations. This includes the capability to request the
cancellation of currently running simulations if, for example,
those simulations are deemed unlikely to give useful
output. Cancellation could also be useful if robustness
to perturbations in input parameters is desired but there
are running simulations using input parameters that are
very close to those that have been discovered to crash
the simulation. Such cancellation functionality is critical
when managing expensive-to-evaluate simulations and
computational resources are limited. libEnsemble has been
used in this way to limit the number of expensive energy
density functional evaluations performed, which has led
to additional generator methodology research on how to
address such missing output; see, for example, Chan et al.
(2024).

Figure 2 illustrates a simple persistent generator that
updates a model with simulation outputs and decides new
inputs for future simulations.

import numpy as np
from simple_models import Model
from libensemble.message_numbers import *

from libensemble.tools.persistent_support import (
PersistentSupport,

)

def persis_gen(H_in, persis_info, gen_specs, libE_info):
us = gen_specs["user"]
b, lb, ub = us["gen_batch_size"], us["lb"], us["ub"]
n = len(lb)

x = persis_info["rand_stream"].uniform(lb, ub, (b, n))
H_o = np.zeros(b, dtype=gen_specs["out"])
H_o["x"] = x

model = Model(H_in["x"], H_in["f"], bounds=(lb, ub))
ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
tag, Work, calc_in = ps.send_recv(H_o)

while tag not in [STOP_TAG, PERSIS_STOP]:
model.update(x, calc_in["f"])
npoints = len(calc_in)
x = model.ask(npoints)

H_o = np.zeros(npoints, dtype=gen_specs["out"])
H_o["x"] = x
tag, Work, calc_in = ps.send_recv(H_o)

return None, persis_info, FINISHED_PERSISTENT_GEN_TAG

Figure 2. Persistent generator function using a model to decide
new simulation inputs.
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import numpy as np

def sim_f(H, persis_info, sim_specs):
x = H['x']
H_o = np.zeros(1, dtype=sim_specs['out'])
H_o['f'] = np.linalg.norm(x)
return H_o

Figure 3. Simple simulator function

The generator first unpacks fixed parameters given by
the manager. It then starts by producing b points in the n-
dimensional box defined by the vectors lb and ub using the
given seeded random stream. The model, which could be any
external package, is initialized with H in if previous results
are being used (for example this may be a restart), otherwise
this is an empty array. The main loop updates the model with
simulation results and generates new points for evaluation.
The PersistentSupport class provides communication
functions to send new points to the manager and receive
results of simulations, where the ps.send recv function
blocks on the receive.

Simulator Functions
The outputs from the generator functions are usually

the inputs for the simulator functions. The generator-
produced inputs could be meshes used for a computational
fluid dynamics simulation, magnet strengths and locations
for a synchrotron particle accelerator, or hyperparameters
for a convolutional neural network. Simulations can use
purely CPU or CPU and GPU resources to perform their
computations. Simulator functions can be extremely simple,
such as the one in Figure 3, or arbitrarily complex and depend
on external executables or non-Python libraries. To make it
as easy as possible to interface with such simulators, the
libEnsemble executor can be used to launch applications and
monitor results.

Calling libEnsemble
libEnsemble’s configuration can use the original dictionary
and function interface or the more recent object based
interface. An example configuration and execution of an
ensemble using the object interface is illustrated in Figure 4
(imports are excluded for brevity). This script specifies
the configuration for the generator, simulator, and allocator
functions, defines the exit condition (after 500 simulations),
provides random streams to each worker, and runs the
ensemble. The inputs supplied are automatically validated
using Pydantic (Colvin 2017–2024).

Application Launchers – Executors
libEnsemble features executors for portably launching and
monitoring user applications. libEnsemble’s MPIExecutor
builds MPI run lines based on compute-resource counts,
MPI distribution information, scheduler information, and
user inputs. This executor is coupled to libEnsemble’s
comprehensive resource detection and allocation. For
example, an Executor.submit() instruction to launch
an application across thirty-two GPUs will not need any
adjustment whether libEnsemble is running on Intel, AMD,

libE_specs = LibeSpecs(nworkers=4)

sim_specs = SimSpecs(
sim_f=sim_f,
inputs=["x"],
outputs=[("f", float)],

)

gen_specs = GenSpecs(
gen_f=persis_gen,
inputs=["x", "f"],
persis_in=["f"],
outputs=[("x", float, 2)],
user={

"gen_batch_size": 50,
"lb": np.array([-3, -2]),
"ub": np.array([3, 2]),

},
)

alloc_specs = AllocSpecs(alloc_f=only_persistent_gens)
exit_criteria = ExitCriteria(sim_max=500)

ensemble = Ensemble(
libE_specs=libE_specs,
sim_specs=sim_specs,
gen_specs=gen_specs,
alloc_specs=alloc_specs,
exit_criteria=exit_criteria,

)

ensemble.add_random_streams()
H, persis_info, flag = ensemble.run()

Figure 4. Configuring and running an ensemble.

or Nvidia resources, with any common scheduler or MPI
distribution, and irrespective of the number of GPUs per
node. An example is given in Figure 5 where all GPUs
assigned to the worker will be used. While Figure 6 shows
code from a generator functions that sets the number of
GPUs based on the size of the problem to be evaluated.

libEnsemble’s executors also feature poll, kill,
wait, and other functions for monitoring the status of
applications. The manager poll function, in particular,
checks for signals relayed by the manager from a generator,
enabling generator functions to request the cancellation and
termination of already-running applications.

The MPIExecutor interacts with the detected system
scheduler (SLURM, PBS, Cobalt, LSF) to distribute
application runs over available nodes. The built-in scheduler
will attempt to minimise the number of nodes used for a
given resource requirement when only num procs and/or
num gpus are specified in the generator, but will find
available slots across multiple nodes as necessary.

The MPIExecutor submit() function allows the user
to directly specify portable options such as num procs,
num nodes, num gpus, and procs per node, while
also allowing any customized string of MPI runner options to
be added as extra args. In some cases, user scripts read
extra args from an environment variable in the batch
script to maintain portability of scripts. An env script
argument will instead construct a bash script that can set
enviornment variables, load modules, and runs in the sub-
process without affecting the worker’s own environment.

The MPIExecutor can be swapped out with the Bal-
samExecutor so simulation functions can submit application
instances onto separate resources, as depicted in Figure 7,
enabling cross-site heterogeneous resource ensembles. This
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process additionally involves wrapping the application com-
mand in Balsam’s ApplicationDefinition class, then
running a BalsamExecutor.submit allocation
request to reserve compute resources on the remote sys-
tem. This system is not tightly coupled to libEnsemble’s
local resource management, but the BalsamExecutor can
still request variable amounts of compute resources from
remote systems, ensuring that dynamically sized application
launches are possible.

As user functions are written in Python and run in a
worker-specific process, it is easy for a user to express
a multi-component workflow. For example, one or more
application runs may be used via the executor, and analysis
performed using Python tools.

Allocator Functions
The allocation function orchestrates the ensemble, deciding
whether simulation or generation work should be performed
as the ensemble progresses, possibly considering the outputs
from intermediate calculations. The simplest (and default)
libEnsemble allocation function calls the generator function
when no simulation work exists and otherwise sequentially
gives out previously generated simulation work that has
not started to be simulated. While sophisticated generators
can observe previous simulation results and adjust their
future requests, not all approaches are so advanced. In such
cases, the allocation function can have logic to perform
such capabilities. The worker array and the history array are

from libensemble.executors import MPIExecutor

# Initialize MPI Executor
exctr = MPIExecutor()
sim_app = os.path.join(os.getcwd(), "../forces.x")
exctr.register_app(full_path=sim_app, app_name="forces")

ens = Ensemble(executor=exctr...

def run_forces(H, persis_info, sim_specs, libE_info):
"""Launches the forces MPI app.

Assigns one MPI rank to each GPU assigned to worker.
"""

# Parse out num particles and set args
particles = str(int(H["x"][0][0]))
args = particles + " " + str(10)

# Retrieve our MPI Executor
exctr = libE_info["executor"]

# Submit our forces app for execution.
task = exctr.submit(

app_name="forces",
app_args=args,
auto_assign_gpus=True,
match_procs_to_gpus=True,

)

task.wait()

data = np.loadtxt("forces.stat")
final_energy = data[-1]

Figure 5. Use of MPI Executor in calling script (above) and
simulation function (below). These scripts will work on various
systems including Perlmutter, Frontier, and Aurora.

while tag not in [STOP_TAG, PERSIS_STOP]:
x = rng.uniform(lb, ub, (b, n))
bucket_size = (ub[0] - lb[0]) / max_gpus

ngpus = [
int((num - lb[0]) / bucket_size) + 1
for num in x[:, 0]

]
H_o = np.zeros(b, dtype=gen_specs["out"])
H_o["x"] = x
H_o["num_gpus"] = ngpus

Figure 6. Generator code that sets the number of GPUs for a
given evaluation based on particle count, at the same time as
setting evaluation inputs.

central to the allocation functions’ decisions. The worker
array gives a snapshot of the currently running activities
and the available resources. The history—containing
all pending and completed computations performed by
workers, including their outputs and run times—enables
the allocation function to know the state of the ensemble
and to dynamically make decisions about future work.
This dynamic decision-making process ensures that the
computational resources are used efficiently, prioritizing
tasks that are most likely to advance the ensemble’s
objectives. It allows for real-time adaptation as the
knowledge of the simulation’s landscape improves.

Simulation Cancellation
The tightly coupled nature of user functions within
libEnsemble allows generators to dynamically cancel
simulations. This capability is especially valuable when
computations are expensive since computational resources
may then be used on more critical evaluations as determined
by a generator. For example, a recently updated surrogate
model may predict that a previously issued evaluation will
not be informative based on results that have returned in the
meantime; in this case, the previously issued evaluation can
be cancelled, with freed resources made available for other
evaluations.

Cancelled simulations that have not yet been
issued to a worker will not be issued. Also, if the
kill canceled sims feature is enabled, kill signals are
sent to workers with currently running simulations. These
are caught by workers that can then terminate simulations
and perform any necessary cleanup. libEnsemble includes

Figure 7. Using Balsam in libEnsemble to run applications
across machines
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helper routines such as Exectutor.polling loop()
to simplify this process. When run in a simulator function,
the routine polls for kill signals from the manager and uses a
portable termination method to end the running simulation.

Assigned computational resources are then recovered and
reallocated to more valuable computations.

Running on Multiple Compute Sites
libEnsemble features three approaches for running cross-
machine ensembles of computations.

Balsam: Via Balsam (Salim et al. 2019), libEnsemble’s user
function instances can schedule and launch applications on
separate machines, as depicted in Figure 7. This approach
separates workflow and application compute resources. User
functions can also request and relinquish compute resources
on the separate machine for those applications.

Globus Compute: Via Globus Compute (formerly funcX
(Chard et al. 2020)), libEnsemble’s worker processes can
submit their user functions to separate machines. This allows
fire-and-forget variants of user functions (usually simulators)
to themselves use parallel resources such as MPI or be
co-located with their launched applications on the separate
machine.

Reverse SSH: Via a lower-level reverse-SSH interface,
libEnsemble can launch its worker processes onto separate
machines, effectively splitting the workflow software itself
across a network. Persistent user functions launched by
remote workers can communicate with libEnsemble’s
manager across the network, unlike with Globus Compute;
but fewer concurrent worker processes are formally
supported.

Resource Detection and Management
When a job scheduler is present, libEnsemble typically
runs in a single batch submission. libEnsemble queries
the scheduler for available nodes, and by default, equally
divides available compute resources among workers. Hence,
if users are running fixed-sized simulations, they do not
need to consider dynamic resources. However, libEnsemble
has built-in support for dynamic resource allocation. Here,
dynamic refers to the ability of the user to assign different
compute resources (including CPU cores and GPUs) to each
evaluation.

To support portability, libEnsemble incorporates consid-
erable detection of system information, including sched-
uler details, MPI runners (mpirun, srun, jsrun, aprun),
nodes, core counts, and GPU counts, and uses these to
produce run lines and GPU settings for these systems,
without the user having to modify scripts. For example,
libEnsemble can detect NVIDIA, AMD, and Intel GPUs
and uses the detected system information, along with MPI
runner/scheduler information, to assign work in an appro-
priate way for the system, be it command line settings or
environment variables such as ROCR VISIBLE DEVICES
or CUDA VISIBLE DEVICES. This means that when simu-
lation input parameters are created, in the generator function,
the number of processes and GPUs for each simulation can
also be set, and libEnsemble will assign resources correctly
for the system.

Internally, libEnsemble uses a concept of resource sets,
where each resource set consists of CPU resources divided
by the number of workers. GPU resource sets are also
separately maintained, ensuring that CPU-only applications
do not prevent GPU usage by other workers. Note that
each resource set may range from a sub-node partition to
a block of multiple nodes. When users specify the number
of processors and/or GPUs required for an evaluation, this is
internally converted to resource sets, which are then assigned
to each worker. This means users do not need to modify
scripts to account for the number of processors or GPUs per
node—this is all managed by the internal resource scheduler.

These capabilities constitute an update since the publica-
tion of Hudson et al. (2022a). Previously, users had to assign
the number of resource sets directly, and also had to explic-
itly set the appropriate GPU settings for the system they were
using (e.g., CUDA VISIBLE DEVICES or SLURM’s srun
command line options such as --task-per-node). This
automation has significantly simplified the user experience.

In some circumstances, users may wish to override
detected settings. For example, there may be ambiguities,
such as the presence of multiple MPI runners, or user
preferences, such as alternative ways of assigning devices, or
whether to treat GPU tiles as separate devices. Consequently,
users have the option to specify platform settings with
a number of documented fields. The approach taken by
libEnsemble is to honor explicitly provided settings while
automatically detecting any that are not specified. A list of
known platforms, including DOE leadership-class machines,
is maintained within libEnsemble; and these can also be
specified in user scripts or via an environment variable.
However, most of these known systems are also detected
automatically. As an example, the default settings for Aurora
and Frontier at time of writing are shown below.

class Aurora(Platform):
mpi_runner: str = "mpich"
runner_name: str = "mpiexec"
cores_per_node: int = 104
logical_cores_per_node: int = 208
gpus_per_node: int = 6
tiles_per_gpu: int = 2
gpu_setting_type: str = "env"
gpu_setting_name: str = "ZE_AFFINITY_MASK"
scheduler_match_slots: bool = True

class Frontier(Platform):
mpi_runner: str = "srun"
cores_per_node: int = 64
logical_cores_per_node: int = 128
gpus_per_node: int = 8
gpu_setting_type: str = "runner_default"
gpu_env_fallback: str = "ROCR_VISIBLE_DEVICES"
scheduler_match_slots: bool = False

This determines that Aurora will use the environment
variable ZE AFFINITY MASK to set GPUs. Frontier will
use the srun defaults when using an MPI runner, but
use ROCR VISIBLE DEVICES otherwise. The user can
override any of these settings.

Resource Scheduling
The resource management component of libEnsemble
includes a scheduler class that is used to examine available
resources sets (with corresponding nodes/CPU/GPUs) and
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assign these to workers to meet user requirements. The
scheduler attempts to fit simulations onto a node, but uses
an even split across nodes if necessary. It can also support
options split2fit which allows resource sets to be split
across more nodes if space is not currently available on
the minimum node count required (this is the default), and
match slots, which ensures matching slot IDs (partitions
within nodes), which is necessary when setting GPUs via an
environment variable, which also defaults to True. Users also
have the option of providing an alternative scheduler, and in
the future, if more refined resource management is needed, a
resource scheduler based on Flux (Moody et al. 2019) may
be incorporated for greater benefits.

Multiapplication Ensembles
The dynamic resource approach allows ensembles that have
multiple applications, each using different resources. The
multifidelity studies (Ferran Pousa et al. 2023; Ferran Pousa
et al. 2022) use many fast Wake-T simulations, running on a
single CPU core, alongside fewer, highly targeted particle-in-
cell (PIC) simulations (e.g., using FBPIC or WarpX), which
may use one or more GPUs. This approach has demonstrated
a factor of 10 speedup in parameter optimization over the
single-fidelity approach. Nodes combine runs of Wake-T
and FBPIC, allowing highly efficient resource utilization on
each node. While GPU applications often leave many CPU
cores idle, the additional CPU cores in this case are used
to run Wake-T simulations. Thus a double win is achieved:
efficiency is gained by minimizing expensive simulations,
and resource efficiency is gained by exploiting the excess
CPU cores.

Parallelization Methods
libEnsemble supports four methods for initializing par-
allelization and manager/worker communications. Each
method offers various scaling/speed/local-data benefits and
trade-offs, and libEnsemble workflows are portable across
each method.

MPI
Running with MPI-based processes typically scales the best,
is the most flexible with process placement on multinode
systems, and is often the most familiar to scientific users.
Launching libEnsemble with MPI is as simple as

mpirun -n 65 python my libensemble workflow.py,
which will start one manager process on rank 0 with the
remaining being reserved for workers. Other related MPI
runners on clusters, such as aprun or srun, can also be
used. Internally libEnsemble coerces runtime information
and communicates via mpi4py (Dalcin and Fang 2021)
methods.

Multiprocessing
Referred to as local communications, the multiprocessing
mode uses Python’s standard library multiprocessing
module to start separate Python interpreters/processes for
workers, then communicate via queues from the same
module. Each process is initialized on the same node,
either a launch node or a single compute node. The

remaining nodes allocated within a job are accessible via
libEnsemble’s executors for launching applications (workers
and applications are not co-located).

Threading
The threading mode starts separate threads for each worker
from Python’s standard library threading module. This
communication mode has the same locality limitations as
multiprocessing. Other major limitations are that the resource
allocation process is not thread safe and workers cannot
maintain separate working directories.

The benefits are that workers can both access shared
data structures and communicate via reference; this mode is
significantly faster and ensures that models or other objects
supplied to workers are updated in place (not copied). For
example, a generator’s state is updated in place and is
immediately accessible to the manager.

We note that Python-level code is not technically parallel
because of Python’s global interpreter lock (GIL). However,
libraries such as NumPy, used throughout libEnsemble,
offload computational heavy lifting to compiled code that
bypasses the GIL.

Because of the limitations, this communications mode
is not generally recommended, but it has proven useful to
some users and has been used in live experiments, where
libEnsemble is run through a Jupyter notebook.

Manager-Run Generator
A recent addition to libEnsemble is the gen on manager
option that runs a generator as a thread on the manager.
Previously, generator functions were always the responsibil-
ity of the worker processes to launch and handle. However,
for common use cases involving only a single generator
instance, placing that generator on a worker process intro-
duces inherent communication and process overheads that
could be sidestepped by keeping that generator local to the
manager process. While both inline and threaded methods
have been evaluated, using a thread enables users to keep
existing persistent generator functions and allows the main
loop to keep running.

Furthermore, user input data is available for the generator
to read/write by reference, exposing partial benefits of
libEnsemble’s threading parallelism to the MPI and
multiprocessing methods. Since only one thread is run, the
thread-safety issues between workers is not encountered, and
many users find it more intuitive to set the number of workers
to the number of parallel simulations.

TCP
TCP mode starts separate interpreters on SSH-accessible
target systems for each worker via a reverse-SSH interface.
Workers communicate back to libEnsemble’s manager via
a multiprocessing.Manager. This mode is a lower-
level cross-system ensemble approach compared with other
solutions such as Globus Compute; similarly, adaptive
resource management is not applicable. However, unlike
other current cross-site solutions, persistent user functions
can be used remotely.
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Case Study: Online Learning of a Plasma
Accelerator
We now use libEnsemble to construct a surrogate model of
a laser-plasma interaction using domain-specific simulation
codes (WarpX and Wake-T), specifically focusing on
the shape of a density down-ramp profile of a plasma
accelerator stage over a five-dimensional parameter space.
This approach capitalizes on the scalable capabilities of
libEnsemble due to the arbitrary concurrency available when
exploring a parameter space. The plasma accelerator use case
being modeled features a Gaussian density bump as a plasma
lens to focus the beam (Thaury et al. 2015). The objective
function is a measure of beam divergence.

For the generator we use gpCAM (Noack et al. 2023a),
which implements function approximation and optimization
using a Gaussian process, which is a type of statistical
surrogate model (Gramacy 2020). gpCAM is a highly
customizable package for autonomous experimentation
(Noack and Ushizima 2023) that supports methods for
parallel training, especially for exact (i.e., interpolating)
Gaussian processes (Noack et al. 2023b).

For this study we use two simulation codes: WarpX and
Wake-T. WarpX is a PIC simulation code that is used to
model the problem in 3D (the domain here is decomposed
in the z-dimension along the beam). It uses MPI parallelism,
where each MPI task uses a CPU core for control logic and
serial operations, and a GPU for intensive computational
work. The problem is configured to run using 48 GPUs, and
it runs for approximately 15–20 minutes on Perlmutter. The
objective function of interest for WarpX is the product of
the beam divergence in the horizontal (x) and vertical (y)
dimensions orthogonal to the beam; the Wake-T simulation
is axisymmetric, and the beam divergence is taken in the x
direction only.

Wake-T (the Wakefield particle Tracker) (Ferran Pousa
et al. 2019) is used as a simplified serial code that uses
a Runge–Kutta solver to track the evolution of the beam
electrons. Wake-T is used here to help configure the training
algorithm used in the gpCAM generator and to measure the
overheads of libEnsemble using many workers.

Motivation for Surrogate Model
Building a surrogate for a plasma-based accelerator stage can
help facilitate numerous research and optimization tasks for
future designs of high-energy physics colliders that are based
on the succession of hundreds to thousands of such stages.
Various simulation codes that are used for the modeling of
stages, from fast (e.g., the reduced dimensionality with the
code Wake-T) to more detailed and more computationally
demanding (e.g., fully three-dimensional modeling with
WarpX), can be used to build such surrogates. A high-
quality global surrogate model of Wake-T and/or WarpX
output (over some portion of parameter space) that can
sufficiently approximate a specific simulation scenario will
enable researchers to conduct extensive collider design
experimentation and analysis at a fraction of the time
and computational cost. This is particularly advantageous
for collider designs where a wide array of scenarios and
objectives is to be considered. Such studies enable insights
that might not have been initially considered, including

designs under various regimes of uncertainty. Such surrogate
models will likely be useful for innovation and robustness in
particle accelerator applications.

Online Gaussian Process Training with gpCAM
The aim is to sample the parameter space in an online
fashion to construct a Gaussian process surrogate model.
A Gaussian process is a distribution over functions whose
posterior (i.e., post-data) distribution is updated as new
data (in the form of input simulation parameters and
their associated evaluation) are obtained. One strategy for
the online sampling uses the current posterior uncertainty
and samples input parameters in areas of the parameter
space where this uncertainty is largest. Gaussian processes
depend on internal hyperparameters, which are not studied
here, such as a length-scale hyperparameter whose value
tends to determine how “bumpy” the resulting surrogate
distribution is. Relative to offline/fixed-sample training, this
kind of online learning, wherein the input parameters are
sequentially selected based on a growing set of training
data, can significantly reduce the number of simulation runs
required to achieve a desired level of predictive accuracy of
the surrogate.

The gpCAM generator is initially run with random points
drawn uniformly from the parameter space. The simulation
output from this initial set is used to train the Gaussian
process surrogate model. Following this initial phase, the 5D
parameter space is divided into a mesh of candidate points.
The mesh used in the following case was 10 points in each
dimension (hence 105 points). The input x and the objective
function f are used to sample the posterior covariance from
gpcAM at each of these candidate points. Noise is initialized
to approximately 1% of the mean f value.

With points ranked by their uncertainty (i.e., highest
covariance), we select the top-ranked candidate point for
sampling. To ensure sampling is spaced out across the
parameter space, we proceed by identifying subsequent
points that are at least a distance r> 0 away from previously
selected points. This iterative selection is refined by initially
setting a substantial value for r and gradually reducing it,
allowing us to assemble a batch of simulation points that
maintain a minimum separation of r. This strategy ensures
both targeted exploration of high-uncertainty regions and
spatial diversity within the batch. Once a desired batch
size has been reached, simulation outputs are obtained for
the entire batch, and the Gaussian process surrogate model
is retrained by using the now larger set of training data.
This iterative process then repeats, with inputs and their
corresponding outputs being obtained in an online manner.
libEnsemble has been used in a similar fashion for online
Bayesian calibration (Sürer et al. 2024).

To assess whether the surrogate is improving, we monitor
the Gaussian process variance (both the mean and maximum)
on the set of candidate points and the mean squared
error (MSE) on a test set (i.e., a separate set of sampled
points). We do not necessarily expect to see monotonic
improvement in any of the three metrics since the model
may change significantly at a test or candidate point if
unexpected behavior of the objective is encountered nearby.
Nonetheless, our expectation is that, with ongoing sampling
and refinement of the model, both the variance indicators
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Figure 8. Behavior of Wake-T mean squared error as more training data is obtained (simulation input parameters chosen from a
uniform random sample (left) and gpCAM (right) of parameter space).

and the MSE will demonstrate a general downward trend,
indicating enhanced model accuracy and reliability as more
model training data is obtained.

Training Details
The platforms used were Perlmutter (NERSC) and Frontier
(OLCF). Both platforms have demonstrated the scalability
of WarpX and have been used extensively with libEnsemble
(Fedeli et al. 2022). Perlmutter also has a CPU partition that
is suitable for use with the Wake-T version.

To prepare the workflow and configure gpCAM, we first
use a Wake-T axisymmetric model in place of the 3D WarpX.
Since this runs on a single CPU core, it can be run either via
libEnsemble’s executor or directly in Python via a function
call. For our purposes, a direct function call is sufficient and
minimizes overhead. libEnsemble is run with the mpi4py
communications option to spread workers across nodes. The
use of 32 workers per node was found to scale well up to
2,048 workers (64 nodes). This workflow is used to configure
the gpCAM generator and to measure and optimize model
training, which can later be adapted to the WarpX workflow.

The full training of the Gaussian process takes nontrivial
time, and this time increases as the number of evaluated
points given to the model increases. Since we are working
with batches, this means that worker resources will be
delayed waiting for the Gaussian process to be retrained. A
few approaches can be used to improve this situation.

1. Only perform the necessary training at each step. One
can assess the quality of the model and perform a full
global training (120 iterations), a reduced global training
(20 iterations), or a local training, depending on the model
quality.

2. Employ different training methods. Markov chain
Monte Carlo samples from a probability distribution based
on constructing a Markov chain may lead to more robust and
reliable modeling in some scenarios.

3. Overlap training with evaluations. libEnsemble supports
asynchronous return of evaluations to the generator. This
enables overlap of training based on returned evaluations,
while concurrently continuing with further evaluations.

4. Use more resources for training. The gp2Scale
feature of gpCAM supports parallel training via Dask
(Rocklin 2015). This would need to be incorporated into
the libEnsemble framework or use existing libEnsemble
capabilities (this may entail using the libEnsemble executor
within the generator to assign more resources for training).

The first strategy enhances the efficiency of model training
by making more judicious decisions on training the model.
By default, gpCAM conducts a global training consisting
of 120 iterations. We refer to this as full training. Once
a robust model is established, reducing the number of
iterations for global training becomes feasible. Additionally,
transitioning to even faster local training (considering only
the local Gaussian process hyperparameter region) becomes
an option, offering a more targeted approach to refine the
model.

The quality of the model can be assessed by comparing
evaluation results predicted by the model with the actual
results returned in the last batch. This is similar to the use
of test points to measure model quality. In this case we use
the gpCAM function rmse (root mean squared error), and
we assess the quality of the model to assign training by
comparing rmse against the standard deviation of f via the
logic shown below.

rmse = gp.rmse(x_new, y_new)
gp.tell(all_x, all_y)
if rmse > 10.*np.std(all_y):

gp.train(method='global', max_iter=120)
elif rmse > 2.*np.std(all_y):

gp.train(method='global', max_iter=20)
else:

gp.train(method='local')

The above training thresholds, for this use case, provide
sufficient training to ensure the model quality remains good
enough to keep the variance (and error at test data) trending
downward. The time spent training is reduced but would still
become a bottleneck as larger numbers of evaluations are
returned.

Results for gpCAM with Wake-T
Figure 8 shows the mean squared error at the test points at
each iteration of the generator. The graphs also show the
mean and maximum variance (posterior covariance) over the
grid, as determined by gpCAM. These runs used batches of
128 concurrent evaluations (using 128 workers for running
simulations and one worker for the persistent generator
function).

Figure 8(left) shows a run where uniformly random points
were selected for evaluation and gpCAM was used only to
evaluate the posterior mean (for mean squared error) at the
test points and posterior variance over the grid of candidate
points. This illustrates that while the mean variance of the
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model stays relatively stable, the maximum variance shows
that areas of high uncertainty remain, indicating the existence
of potentially underexplored regions. The mean squared
error at the test points, with the exception of one spike,
also remains roughly constant over this range of number of
simulations performed.

Figure 8(right) shows results when the candidate points
are selected using information from gpCAM via the online
method described above. The results show that both the
mean squared error at the test points and the maximum/mean
variance over the grid of candidate points all trend downward
over time. The results confirm the expectation that gpCAM
is enabling efficient training of the surrogate model.

Performance Considerations and Scaling

Since the time taken to train the Gaussian process model
and query the posterior covariance across the grid of points
increases with the number of evaluations, ongoing work will
explore the capabilities in gpCAM for more efficient training
strategies and for parallelization of training using gp2scale.

During this study we consider using CRPS (Continuous
Rank Probability Score) in place of the RMSE as a metric
for evaluating model performance and, therefore, training
requirements. While RMSE looks only at prediction error,
which may be a limited measure in sparse scenarios, CRPS
takes the model’s uncertainty estimates into account and
therefore may give a better indication of model confidence.
Applying the same comparisons using CRPS in place
of RMSE resulted in considerably more local retraining,
which is significantly faster. However, there were also more
frequent spikes in the variance suggesting this training
may have been insufficient. We expect that refining the
thresholds for different training options (relative to the
standard deviation of the objective) will likely make CRPS
a more efficient training strategy. This is left for future work.
A comparison of Gaussian process hyperparameters used in
gpCAM may also be used to make more informed training
decisions.

Wake-T run times recorded inside the simulator, from
3,072 runs, average 137.1 seconds with a maximum of
144.7 seconds on the Perlmutter CPU partition using 32
workers per node. To assess the scaling of libEnsemble’s
infrastructure, timing is placed around the send/receive
call inside the persistent generator function. This timing
includes all overhead (including communication between the
generator and manager and between manager and simulation
workers in addition to time spent in simulations).

Figure 9 shows the timing obtained from the generator
from one node (32 simulation workers) doubling up to 4,096
simulation workers. The data shows negligible overhead and
nearly perfect speedup to 1,024 workers (98.2% parallel
efficiency relative to 32 workers), small overhead at 2,048
workers (92.5% parallel efficiency), and significant overhead
at 4,096 workers (78.2%). This demonstrates the high-
quality scalability of the mpi4py communications method.

Note that the ability to run the generator on the manager
has recently been added to libEnsemble and would likely
reduce the communication overhead further.

Figure 9. Wake-T weak scaling: Time for one batch of
simulations measured by the generator. Note that the number of
simulations is equal to the number of workers, hence showing
weak scaling.

WarpX Study

The WarpX version of the downramp simulation has been
configured to run on 48 MPI tasks, each using one GPU. This
setup is considered the minimum configuration that yields
results with an acceptable physical accuracy.

This means that on Perlmutter, each simulation, and hence
each worker, uses 12 nodes (in contrast to 32 workers per
node for Wake-T). If the number of parallel simulations
was scaled to the same extent as the Wake-T study, 27
Perlmutters would be required. In fact, a full Perlmutter
run for WarpX would use only 149 workers. On Frontier,
there are eight GPUs per node, and hence each simulation
requires only six nodes. On both systems, the WarpX run
time is similar—approximately 800 seconds. On Perlmutter,
however, about one run in 40 ran slowly and took up to 2,000
seconds. The reason for this is not clear, but the decision
was taken to kill simulations that took longer than 1,000
seconds in order not to waste resources in a batched scenario.
This is achieved through libEnsemble’s executor interface,
which has a portable kill function. The killed simulations
return NaNs, which are excluded in the generator. Frontier,
however, did not experience these slow runs. For these
reasons, Frontier was favored for a large ensemble using
WarpX. Figure 10 shows the results of running 32 iterations
with a batch size of 40 on Frontier (a total of 240 nodes and
1920 GPUs).

Figure 10. Behavior of WarpX mean squared error as more
training data is obtained (simulation input parameters chosen by
gpCAM process).
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Figure 11. WarpX objective function value distribution by batch.

WarpX Results

The mean squared error at the test points shows a downward
trend with a steep improvement between batches seven and
nine. The model appears to start with fairly low uncertainty
estimates; on processing, however, the eighth batch shows an
increase in uncertainty but a reduction in error, suggesting an
improvement of the surrogate. This corresponds with hitting
some much larger objective values (shown in Figure 11).

A spike occurs in the mean squared error and variance
after 29 batches. This spike does not correspond to
encountering obviously wayward values for the objective
or to the RMSE for the last batch of points. However,
examining the Gaussian process hyperparameters used in
gpCAM shows that the length scale hyperparameter for
the bump width is less than one-tenth of the range in this
dimension, which may make the model oversensitive.

The RMSE-directed training resulted in 10 full global
training iterations, 20 smaller global training iterations, and
one local training.

The occurrence of the spike in variance (and mean squared
error) was observed to be in close proximity to the single
instance of local training. Thus a second run was conducted
on Frontier where the local training option was removed,
thereby ensuring that either full or reduced global training
was carried out by gpCAM. This second run, shown in
Figure 12, does not result in the aforementioned spike.
Future efforts will be directed toward developing strategies
to more effectively handle anomalies in the Gaussian process
hyperparameter values.

Figure 12. Behavior of WarpX mean squared error when
gpCAM always performs global training (simulation input
parameters chosen by gpCAM process).

The overall time taken in this second run as measured from
the generator function in training the model, selecting points
(including measuring posterior covariance, sorting, and
determining best points), and running simulations (including
communication) is shown in Figure 13. The overhead from
manager-worker communications was negligible.

Summary of Surrogate Case Study
In summary, we were able to show progression toward a
predictive surrogate model with both Wake-T and WarpX
for the given use case. The lower-fidelity code (Wake-T)
might not capture all of the physics, but it gives an initial
understanding of the system response over the parameter
space. WarpX captures more of the physics and while
a sensitivity to training choices was observed, the mean
squared error at the validation points trends downward, and
several avenues for further configuration of the training
protocol are available.

We demonstrated near-perfect weak scaling of libEnsem-
ble’s mpi4py communications to over a thousand workers
on Perlmutter (a relative parallel efficiency of 98.2% for
1,024 workers to 32 workers).

As long as the processing time spent in the generator
remains minimal or is overlapped with simulations, extensive
computational resources can be utilized for building such
surrogate models. A full system run of the WarpX use case
on Frontier would use 1,568 workers (9,408 nodes with
six nodes per worker), which is within the scaling range
demonstrated by the Wake-T use case, with a global parallel
efficiency close to that of each individual simulation.

libEnsemble has also been tested and shown to scale well
on the Aurora supercomputer at the Argonne Leadership
Computing Facility. Once WarpX has been successfully
ported to Aurora, this is also expected to be a good system
for further studies.

Future Work

libEnsemble is in active development and has a growing
community of users. Its generalized interface makes it well
suited for cutting-edge research across a large variety of
disciplines and experimental use cases. We consider the
following to be especially worthy of further investigation.

Figure 13. Time spent in training the model, deciding new
points, and running WarpX simulations on Frontier ensemble
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Using libEnsemble for Simulation Dispatch
libEnsemble’s in-the-loop generator facilitates close cou-
pling of generators and simulators, especially in asyn-
chronous scenarios. However, some users may wish to
exploit libEnsemble’s capabilities with an external generator.
While doing so is already possible, a concurrent.futures
interface that allows libEnsemble to be used as a dispatch
engine for simulations may better suit the needs of some
users. This interface would also allow for easy integration
with other tools. For example, as a Parsl (Babuji et al. 2019)
executor.

Worker-Side Resource Management
Another characteristic of the current resource implementa-
tion is that the manager controls resources and assigns these
to workers. An alternative scheme is to manage resources
on the worker side. Under this model, workers could use an
alternative executor to dispatch tasks to a dedicated process
that would assign resources and submit application runs.
This method could leverage much of the existing resource
management and submission infrastructure. Additionally, it
would be better suited for integration with external resource
management tools such as Flux, as the detection and assign-
ment of resources would happen in the same place. Finally,
the method could work better with multisite workflows,
where the manager is not directly able to detect the remote
resources available to workers.

Improved Domain Support
While libEnsemble’s generalized interface is an advantage in
adapting it to a wide variety of use cases, some users (e.g., the
developers of Optimas) have developed higher-level libraries
that wrap libEnsemble for specific disciplines. As the amount
of artificial intelligence and machine-learning applications
increases, libEnsemble can likewise serve that domain by
exposing high-level Model.train test, ask, tell, or
other general functions.

Additionally, AI/ML may be further supported by
improving multisite capabilities; the libEnsemble team is
highly interested in coordinating ensembles simultaneously
across supercomputers and AI testbeds with special-purpose
accelerators.

Data Streaming
libEnsemble’s traditional data communications have been
restricted to points, often single NumPy arrays that must
be communicated between the workers via the manager; in
practice for large amounts of data, this approach is relatively
slow and inefficient. This could be improved by sending
a proxy or stream handle via the manager (e.g., using
ProxyStore (Pauloski et al. 2023)), to transparently stream
data directly between workers.

Portable Generator Interface
libEnsemble’s user functions are currently constructed to
be launched and processed by libEnsemble only. This has
advantages such as ensuring that useful libEnsemble data
structures are available within such functions, guaranteeing
they are portable across every libEnsemble version, and not

forcing users to adhere to any specific design patterns except
input/output types. However, as the ecosystem of generator-
algorithm studies and upstream software that depends on
libEnsemble grows, so does the request for libEnsemble
to also launch and process third-party generators. This is
currently supported via writing wrapper user functions,
although this wrapper code often fits design patterns that
libEnsemble could handle on the user’s behalf.

Initial efforts indicate that many third-party generative
interfaces consist of .ask() and .tell() (or .read()
and .update()) functions, as part of a class based gen-
erator. libEnsemble’s workers could potentially interleave
calling such functions with sending/receiving corresponding
data from libEnsemble’s manager. Furthermore, if libEnsem-
ble’s traditional generators were also reconstructed with that
two-function paradigm, they would be available for use in
other workflow packages.
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