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Integrated Genomic Analyses of Ovarian Carcinoma

The Cancer Genome Atlas Research Network

Summary

The Cancer Genome Atlas (TCGA) project has analyzed mRNA expression, miRNA expression, 

promoter methylation, and DNA copy number in 489 high-grade serous ovarian adenocarcinomas 

(HGS-OvCa) and the DNA sequences of exons from coding genes in 316 of these tumors. These 

results show that HGS-OvCa is characterized by TP53 mutations in almost all tumors (96%); low 

prevalence but statistically recurrent somatic mutations in 9 additional genes including NF1, 

BRCA1, BRCA2, RB1, and CDK12; 113 significant focal DNA copy number aberrations; and 

promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer 

transcriptional subtypes, three miRNA subtypes, four promoter methylation subtypes, a 

transcriptional signature associated with survival duration and shed new light on the impact on 

survival of tumors with BRCA1/2 and CCNE1 aberrations. Pathway analyses suggested that 

homologous recombination is defective in about half of tumors, and that Notch and FOXM1 

signaling are involved in serous ovarian cancer pathophysiology.

Background

Ovarian cancer is the fifth leading cause of cancer death among women in the U.S., with 

21,880 new cases and 13,850 deaths predicted for 20101. Most deaths are of patients 

presenting with advanced stage, high grade serous ovarian cancer (HGS-OvCa)2,3 (~70%). 

The standard of care is aggressive surgery followed by platinum/taxane chemotherapy. After 

therapy, platinum resistant cancer recurs in approximately 25% of patients within 6 months4 

and overall 5-year survival is 31%5. Approximately 13% of HGS-OvCa is attributable to 

germline mutations in BRCA1 or BRCA26,7, while a smaller percentage can be accounted for 

by other germline mutations. However, most ovarian cancer can be attributed to a growing 

number of somatic aberrations8.

The lack of successful treatment strategies led TCGA to comprehensively measure genomic 

and epigenomic abnormalities on clinically annotated HGS-OvCa samples in order to 

identify molecular abnormalities that influence pathophysiology, affect outcome, and 

constitute therapeutic targets. Microarray analyses produced high resolution measurements 

of mRNA expression, microRNA expression, DNA copy number, and DNA promoter 

region methylation for 489 HGS-OvCa while massively parallel sequencing coupled with 

hybrid affinity capture9,10 provided whole exome DNA sequence information for 316 of 

these samples.
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Samples and clinical data

This report covers analysis of 489 clinically annotated stage II-IV HGS-OvCa and 
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corresponding normal DNA (Methods S1, Table S1.1). Patients reflected the age at 

diagnosis, stage, tumor grade, and surgical outcome of individuals diagnosed with HGS-

OvCa. Clinical data were current as of August 25, 2010. HGS-OvCa specimens were 

surgically resected before systemic treatment but all patients received a platinum agent and 

94% received a taxane. The median progression-free and overall survival of the cohort is 

similar to previously published trials11,12. Twenty five percent of the patients remained free 

of disease and 45% were alive at the time of last follow-up, while 31% progressed within 6 

months after completing platinum-based therapy. Median follow up was 30 months (range 0 

to 179). Samples for TCGA analysis were selected to have > 70% tumor cell nuclei and < 

20% necrosis.

Coordinated molecular analyses using multiple molecular assays at independent sites were 

carried out as listed in Table 1. Data are available at http://tcga.cancer.gov/dataportal in two 

tiers. Tier one datasets are openly available, while tier two datasets include clinical or 

genomic information that could identify an individual hence require qualification as 

described at http://tcga.cancer.gov/dataportal/data/access/closed/.

Mutation analysis

Exome capture and sequencing was performed on DNA isolated from 316 HGS-OvCa 

samples and matched normal samples for each individual (Methods S2). Capture reagents 

targeted ~180,000 exons from ~18,500 genes totaling ~33 megabases of non-redundant 

sequence. Massively parallel sequencing on the Illumina GAIIx platform (236 sample pairs) 

or ABI SOLiD 3 platform (80 sample pairs) yielded ~14 gigabases per sample (~9×109 

bases total). On average, 76% of coding bases were covered in sufficient depth in both the 

tumor and matched normal samples to allow confident mutation detection (Methods S2, 

Figure S2.1). 19,356 somatic mutations (~61 per tumor) were annotated and classified in 

Table S2.1. Mutations that may be important in HGS-OvCa pathophysiology were identified 

by (a) searching for non-synonymous or splice site mutations present at significantly 

increased frequencies relative to background, (b) comparing mutations in this study to those 

in COSMIC and OMIM and (c) predicting impact on protein function.

Two different algorithms (Methods S2) identified 9 genes (Table 2) for which the number of 

non-synonymous or splice site mutations was significantly above that expected based on 

mutation distribution models. Consistent with published results13, TP53 was mutated in 303 

of 316 samples (283 by automated methods and 20 after manual review), BRCA1 and 

BRCA2 had germline mutations in 9% and 8% of cases, respectively, and both showed 

somatic mutations in an additional 3% of cases. Six other statistically recurrently mutated 

genes were identified; RB1, NF1, FAT3,CSMD3, GABRA6, and CDK12. CDK12 is involved 

in RNA splicing regulation14 and was previously implicated in lung and large intestine 

tumors15,16. Five of the nine CDK12 mutations were either nonsense or indel, suggesting 

potential loss of function, while the four missense mutations (R882L, Y901C, K975E, and 

L996F) were clustered in its protein kinase domain. GABRA6 and FAT3 both appeared as 

significantly mutated but did not appear to be expressed in HGS-OvCa (Supplemental 

Figure S2.1) or fallopian tube tissue so it is less likely that mutation of these genes plays a 

significant role in HGS-OvCa.
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Mutations from this study were compared to mutations in the COSMIC17 and OMIM18 

databases to identify additional HGS-OvCa genes that are less commonly mutated. This 

yielded 477 and 211 matches respectively (Table S2.4) including mutations in BRAF 

(N581S), PIK3CA (E545K and H1047R), KRAS (G12D), and NRAS (Q61R). These 

mutations have been shown to exhibit transforming activity so we believe that these 

mutations are rare but important drivers in HGS-OvCa.

We combined evolutionary information from sequence alignments of protein families and 

whole vertebrate genomes, predicted local protein structure and selected human SwissProt 

protein features (Methods S3) to identify putative driver mutations using CHASM19,20 after 

training on mutations in known oncogenes and tumor suppressors. CHASM identified 122 

mis-sense mutations predicted to be oncogenic (Table S3.1). Mutation-driven changes in 

protein function were deduced from evolutionary information for all confirmed somatic 

missense mutations by comparing protein family sequence alignments and residue 

placement in known or homology-based three-dimensional protein structures using Mutation 

Assessor (Methods S4). Twenty-seven percent of missense mutations were predicted to 

impact protein function (Table S2.1).

Copy number analysis

Somatic copy number alterations (SCNAs) present in the 489 HGS-OvCa genomes were 

identified and compared with glioblastome multiforme data in Figure 1a. SCNAs were 

divided into regional aberrations that affected extended chromosome regions and smaller 

focal aberrations (Methods S5). A statistical analysis of regional aberrations (Methods S5)21 

identified 8 recurrent gains and 22 losses, all of which have been reported previously22 

(Figure 1b and Table S5.1). Five of the gains and 18 of the losses occurred in more than 

50% of tumors.

GISTIC21,23 (Methods S5) was used to identify recurrent focal SCNAs. This yielded 63 

regions of focal amplification (Figure 1c, Methods S5, Table S5.2) including 26 that 

encoded 8 or fewer genes. The most common focal amplifications encoded CCNE1, MYC, 

and MECOM (Figure 1c, Methods S5, Table S5.2) each highly amplified in greater than 

20% of tumors. New tightly-localized amplification peaks in HGS-OvCa encoded the 

receptor for activated C-kinase, ZMYND8; the p53 target gene, IRF2BP2; the DNA-binding 

protein inhibitor, ID4; the embryonic development gene, PAX8; and the telomerase catalytic 

subunit, TERT. Three data sources: http://www.ingenuity.com/, http://clinicaltrials.gov and 

http://www.drugbank.ca were used to identify possible therapeutic inhibitors of amplified, 

over-expressed genes. This search identified 22 genes that are therapeutic targets including 

MECOM, MAPK1, CCNE1 and KRAS amplified in at least 10% of the cases (Table S5.3).

GISTIC also identified 50 focal deletions (Figure 1d). The known tumor suppressor genes 

PTEN, RB1, and NF1 were in regions of homozygous deletions in at least 2% of tumors. 

Importantly, RB1 and NF1 also were among the significantly mutated genes. One deletion 

contained only three genes, including the essential cell cycle control gene, CREBBP, which 

has 5 non-synonymous and 2 frameshift mutations.
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mRNA and miRNA expression and DNA methylation analysis

Expression measurements for 11,864 genes from three different platforms (Agilent, 

Affymetrix HuEx, Affymetrix U133A) were combined for subtype identification and 

outcome prediction. Individual platform measurements suffered from limited, but 

statistically significant batch effects, whereas the combined data set did not (Methods S11, 

Figure S11.1). Analysis of the combined dataset identified ~1,500 intrinsically variable 

genes24 (Methods S6) that were used for NMF consensus clustering. This analysis yielded 

four clusters (Methods S6, Figure 2a). Thesame analysis approach applied to a publicly 

available dataset from Tothill et al. 25, also yielded four clusters. Comparison of the Tothill 

and TCGA clusters showed a clear correlation (Methods S6, Figure S6.3). We therefore 

conclude that at least four robust expression subtypes exist in HGS-OvCa.

We termed the four HGS-OvCa subtypes Immunoreactive, Differentiated, Proliferative and 

Mesenchymal based on gene content in the clusters (Methods S6) and on previous 

observations25. T-cell chemokine ligands, CXCL11 and CXCL10, and the receptor, CXCR3, 

characterized the Immunoreactive subtype. High expression of transcription factors such as 

HMGA2 and SOX11, low expression of ovarian tumor markers (MUC1, MUC16) and high 

expression of proliferation markers such as MCM2 and PCNA defined the Proliferative 

subtype. The Differentiated subtype was associated with high expression of MUC16 and 

MUC1 and with expression of the secretory fallopian tube maker SLPI, suggesting a more 

mature stage of development. High expression of HOX genes and markers suggestive of 

increased stromal components such as for myofibroblasts (FAP) and microvascular pericytes 

(ANGPTL2, ANGPTL1) characterized the Mesenchymal subtype.

Elevated DNA methylation and reduced tumor expression implicated 168 genes as 

epigenetically silenced in HGS-OvCa compared to fallopian tube controls26. DNA 

methylation was correlated with reduced gene expression across all samples (Methods S7). 

AMT, CCL21 and SPARCL1 were noteworthy because they showed promoter 

hypermethylation in the vast majority of the tumors. Curiously, RAB25, previously reported 

to be amplified and over-expressed in ovarian cancer27, also appeared to be epigenetically 

silenced in a subset of tumors. The BRCA1 promoter was hypermethylated and silenced in 

56 of 489 (11.5%) tumors as previously reported (Figure S7.1) 28. Consensus clustering of 

variable DNA methylation across tumors identified four subtypes (Methods S7, Figure S7.2) 

that were significantly associated with differences in age, BRCA inactivation events, and 

survival (Methods S7). However, the clusters demonstrated only modest stability.

Survival duration did not differ significantly for transcriptional subtypes in the TCGA 

dataset. The Proliferative group showed a decrease in the rate of MYC amplification and 

RB1 deletion, whereas the Immunoreactive subtype showed an increased frequency of 

3q26.2 (MECOM) amplification (Table S6.2, Figure S6.4). A moderate, but significant 

overlap between the DNA methylation clusters and gene expression subtypes was noted 

(p<2.2*10−16, Chi-square test, Adjusted Rand Index = 0.07, Methods S7, Table S7.6).

A 193 gene transcriptional signature predictive of overall survival was defined using the 

integrated expression data set from 215 samples. After univariate Cox regression analysis, 
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108 genes were correlated with poor survival, and 85 were correlated with good survival (p-

value cutoff of 0.01, Methods S6, Table S6.4). The predictive power was validated on an 

independent set of 255 TCGA samples as well as three independent expression data 

sets25,29,30. Each of the validation samples was assigned a prognostic gene score, reflecting 

the similarity between its expression profile and the prognostic gene signature31 (Methods 

S6, Figure 2c). Kaplan-Meier survival analysis of this signature showed statistically 

significant association with survival in all validation data sets (Methods S6, Figure 2d).

NMF consensus clustering of miRNA expression data identified three subtypes (Figure 

S6.5). Interestingly, miRNA subtype 1 overlapped the mRNA Proliferative subtype and 

miRNA subtype 2 overlaped the mRNAMesenchymal subtype (Figure 2d). Survival duration 

differed significantly between iRNA subtypes with patients in miRNA subtype 1 tumors 

surviving significantly longer (Figure 2e).

Pathways influencing disease

Several analyses integrated data from the 316 fully analyzed cases to identify biology that 

contributes to HGS-OvCa. Analysis of the frequency with which known cancer-associated 

pathways harbored one or more mutations, copy number changes, or changes in gene 

expression showed that the RB1 and PI3K/RAS pathways were deregulated in 67% and 45% 

of cases, respectively (Figure 3A, Methods S8). A search for altered subnetworks in a large 

protein-protein interaction network32 using HotNet33 identified several known pathways 

(Methods S9) including the Notch signaling pathway, which was altered in 23% of HGS-
OvCa samples (Figure 3B)34.

Published studies have shown that cells with mutated or methylated BRCA1 or mutated 

BRCA2 have defective homologous recombination (HR) and are highly responsive to PARP 

inhibitors35-37. Figure 3C shows that 20% of HGS-OvCa have germline or somatic 

mutations in BRCA1/2, that 11% have lost BRCA1 expression through DNA 

hypermethylation and that epigenetic silencing of BRCA1 is mutually exclusive of BRCA1/2 

mutations (P = 4.4×10−4, Fisher’s exact test). Univariate survival analysis of BRCA status 

(Figure 3C) showed better overall survival (OS) for BRCA mutated cases than BRCA wild-

type cases. Interestingly, epigenetically silenced BRCA1 cases exhibited survival similar to 

BRCA1/2 WT HGS-OvCa (median OS 41.5 v. 41.9 months, P = 0.69, log-rank test, 

Methods S8, Figure S8.13B). This suggests that BRCA1 is inactivated by mutually exclusive 

genomic and epigenomic mechanisms and that patient survival depends on the mechanism 

of inactivation. Genomic alterations in other HR genes that might render cells sensitive to 

PARP inhibitors38 (Methods S8, Figure S8.12) discovered in this study include 

amplification or mutation of EMSY (8%), focal deletion or mutation of PTEN (7%); 

hypermethylation of RAD51C (3%), mutation of ATM/ATR (2%), and mutation of Fanconi 

Anemia genes (5%). Overall, HR defects may be present in approximately half of HGS-

OvCa, providing a rationale for clinical trials of PARP inhibitors targeting tumors these HR-

related aberrations.

Comparison of the complete set of BRCA inactivation events to all recurrently altered copy 

number peaks revealed an unexpectedly low frequency of CCNE1 amplification in cases 
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with BRCA inactivation (8% of BRCA altered cases had CCNE1 amplification v. 26% of 

BRCA wild type cases, FDR adjusted P = 0.0048). As previously reported39, overall 

survival tended to be shorter for patients with CCNE1 amplification compared to all other 

cases (P = 0.072, log-rank test, Methods, S8 Figure S8.14A). However, no survival 

disadvantage for CCNE1-amplified cases (P = 0.24, log-rank test, Methods S8, Figure 

S8.14B) was apparent when looking only at BRCA wild-type cases, suggesting that the 

previously reported CCNE1 survival difference can be explained by the better survival of 

BRCA-mutated cases.

Finally, a probabilistic graphical model (PARADIGM40) searched for altered pathways in 

the NCI Pathway Interaction Database41 identifying the FOXM1 transcription factor 

network (Figure 3d) as significantly altered in 87% of cases, Methods S10, Figures S10.1-3). 

FOXM1 and its proliferation-related target genes; AURB, CCNB1, BIRC5, CDC25, and 

PLK1, were consistently over-expressed but not altered by DNA copy number changes, 

indicative of transcriptional regulation. TP53 represses FOXM1 following DNA damage42, 

suggesting that the high rate of TP53 mutation in HGS-OvCa contributes to FOXM1 

overexpression. In other datasets, the FOXM1 pathway is significantly activated in tumors 

relative to adjacent epithelial tissue43-45 (Methods S10, Figure S10.4) and is associated with 

HGS-OvCa (Methods S10, Figure S10.5)22.

Discussion

This TCGA study provides the first large scale integrative view of the aberrations in HGS-

OvCa. Overall, the mutational spectrum was surprisingly simple. Mutations in TP53 

predominated, occurring in at least 96% of HGS-OvCa while BRCA1/2 were mutated in 

22% of tumors due to a combination of germline and somatic mutations. Seven other 

significantly mutated genes were identified, but only in 2-6% of HGS-OvCa. In contrast, 

HGS-OvCa demonstrates a remarkable degree of genomic disarray. The frequent SCNAs 

are in striking contrast to previous TCGA findings with glioblastoma46 where there were 

more recurrently mutated genes with far fewer chromosome arm-level or focal SCNAs 

(Figure 1A). A high prevalence of mutations and promoter methylation in putative DNA 

repair genes including HR components may explain the high prevalence of SCNAs. The 

mutation spectrum marks HGS-OvCa as completely distinct from other OvCa histological 

subtypes. For example, clear-cell OvCa have few TP53 mutations but have recurrent 

ARID1A and PIK3CA47-49 mutations; endometrioid OvCa have frequent CTTNB1, ARID1A, 

and PIK3CA mutations and a lower rate of TP5348,49 while mucinous OvCa have prevalent 

KRAS mutations50. These differences between ovarian cancer subtypes likely reflect a 

combination of etiologic and lineage effects, and represent an opportunity to improve 

ovarian cancer outcomes through subtype-stratified care.

Identification of new therapeutic approaches is a central goal of the TCGA. The ~50% of 

HGS-OvCa with HR defects may benefit from PARP inhibitors. Beyond this, the commonly 

deregulated pathways, RB, RAS/PI3K, FOXM1, and NOTCH, provide opportunities for 

therapeutic attack. Finally, inhibitors already exist for 22 genes in regions of recurrent 

amplification (Methods S5, Table S5.3), warranting assessment in HGS-OvCa where the 

target genes are amplified. Overall, these discoveries set the stage for approaches to 
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treatment of HGS-OvCa in which aberrant genes or networks are detected and targeted with 

therapies selected to be effective against these specific aberrations.

Methods Summary

All patient specimens were obtained under appropriate IRB consent. DNA and RNA were 

collected from samples using the Allprep kit (Qiagen). We used commercial technology for 

capture and sequencing of exomes from whole genome amplified tumor and normal DNAs. 

DNA sequences were aligned to Human NCBI build 36; duplicate reads were excluded from 

mutation calling. Validation of mutations occurred on a separate whole genome 

amplification of DNA from the same tumor. Data is submitted to dbGaP under accession 

number PHS000178. Significantly mutated genes were identified by comparing to 

expectation models based on the exact measured rates of specific sequence lesions. 

CHASM 20 and MutationAssessor (Methods S4) were used to identify functional mutations. 

GISTIC analysis of the CBS segmented Agilent 1M feature copy number data was used to 

identify recurrent peaks comparing to the results from the other platforms to identify likely 

platform specific artifacts. Consensus clustering approaches were used to analyze mRNA, 

miRNA, and methylation subtypes as well as predictors of outcome using previous 

approaches46. HotNet 33 was used to identify portions of the protein-protein interaction 

network that have more events than expected by chance. Networks that had a significant 

probability of being valid were evaluated for increased fraction of known annotations. 

PARADIGM40 was used to estimate integrated pathway activity to identify portions of the 

network models differentially active in HGS-OvCa.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome copy number abnormalities
(a) Copy-number profiles of 489 HGS-OvCa, compared to profiles of 197 glioblastoma 

multiforme (GBM) tumors46. Copy number increases (red) and decreases (blue) are plotted 

as a function of distance along the normal genome. (b) Significant, focally amplified (red) 

and deleted (blue) regions are plotted along the gnome. Annotations include the 20 most 

significant amplified and deleted regions, well-localized regions with 8 or fewer genes, and 

regions with known cancer genes or genes identified by genome-wide loss-of-function 

screens. The number of genes included in each region is given in brackets. (c) Significantly 

amplified (red) and deleted (blue) chromosome arms.
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Figure 2. Gene and miRNA expression patterns of molecular subtype and outcome prediction in 
HGS-OvCa
(a) Tumors from TCGA and Tothill et al. separated into four clusters, based on gene 

expression. (b) Using a training dataset, a prognostic gene signature was defined and applied 

to a test dataset. (c) Kaplan-Meier analysis of four independent expression profile datasets, 

comparing survival for predicted higher risk versus lower risk patients. Univariate Cox p-

value for risk index included. (d) Tumors separated into three clusters, based on miRNA 

expression, overlapping with gene-based clusters as indicated. (e) Differences in patient 

survival among the three miRNA-based clusters.
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Figure 3. Altered Pathways in HGS-OvCa
(a) The RB and PI3K/RAS pathways, identified by curated analysis and (b) NOTCH 

pathway, identified by HotNet analysis, are commonly altered. Alterations are defined by 

somatic mutations, DNA copy-number changes, or in some cases by significant up- or 

down-regulation compared to expression in diploid tumors. Alteration frequencies are in 

percentage of all cases; activated genes are red, inactivated genes are blue. (c) Genes in the 

HR pathway are altered in up to 49% of cases. Survival analysis of BRCA status shows 

divergent outcome for BRCA mutated cases (exhibiting better overall survival) than BRCA 

wild-type, and BRCA1 epigenetically silenced cases exhibiting worse survival. (d) The 

FOXM1 transcription factor network is activated in 87% of cases. Each gene is depicted as a 

multi-ring circle in which its copy number (outer ring) and gene expression (inner ring) are 

plotted such that each “spoke” in the ring represents a single patient sample, with samples 

sorted in increasing order of FOXM1 expression. Excitatory (red arrows) and inhibitory 

interactions (blue lines) were taken from the NCI Pathway Interaction Database. Dashed 

lines indicate transcriptional regulation.
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Table 1
Characterization platforms used and data produced

Data Type Platforms Cases Data
Availability

DNA Sequence of exome Illumina
GAIIxa,b

ABI SOLiDc

236
80

Protected
Protected

Mutations present in exome 316 Open

DNA copy
number/genotype

Agilent
244Kd,e

Agilent 415Kd

Agilent 1Me

Illumina
1MDUOf

Affymetrix
SNP6a

97
304
539
535
514

Open
Open
Open
Protected
Protected

mRNA expression profiling Affymetrix
U133Aa

Affymetrix
Exong

Agilent 244Kh

516
517
540

Open
Protected
Open

Integrated mRNA
expression

489 Open

miRNA expression
profiling

Agilenth 541 Open

CpG DNA methylation Illumina 27K1 519 Open

Integrative analysis 489 Open

Integrative analysis w/
mutations

309 Open

Production Centers: Broad Institute, Washington University School of Medicine, Baylor College of Medicine, Harvard Medical School, Memorial 
Sloan-Kettering Cancer Center, HudsonAlpha Institute for Biotechnology, Lawrence Berkeley National Laboratory, University of North Carolina, 
University of Southern California.

Additional data are available for many of these data types at the TCGA DCC.
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Table 2
Significantly mutated genes in HGS-OvCa

Gene
Number of
Mutations Validated Unvalidated

TP53 302 294 8

BRCA1 11 10 1

CSMD3 19 19 0

NF1 13 13 0

CDK12 9 9 0

FAT3 19 18 1

GABRA6 6 6 0

BRCA2 10 10 0

RB1 6 6 0

Validated mutations are those that have been confirmed with an independent assay. Most of them are validated using a second independent WGA 
sample from the same tumor. Unvalidated mutations have not been independently confirmed but have a high likelihood to be true mutations. An 
additional 25 mutations in TP53 were observed by hand curation.
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