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ABSTRACT OF THE THESIS

Ponytail motion

by

Dingqian Ding

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2019

Professor Stefan G. Llewellyn Smith, Chair

It is common knowledge that runners’ ponytails will sway from side to side when running.

This thesis treats the swaying phenomenon as a stability problem and discusses solution methods

and results.

Geometrically nonlinear dynamical equations are derived for a flexible rod pointing

vertically down and clamped at its base that is harmonically excited. Floquet theory is used to

derive numerical methods to solve the problem. Results show the ponytail is always stable when

it is unforced. When it is forced, it has a complex region of instability if it is treated as a flexible

string, but that region becomes more limited if it is treated as a flexible rod. Adding different

different types of damping can help dissipate the energy of the ponytail motion and further reduce

viii



the instability region, so that for small enough forcing the motion is stable.
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Chapter 1

Introduction

Vertically oriented vibrations of beams (clamped at the top and often free at the bottom)

have many applications in industry such as stationary cranes and sub-sea flexible risers, and

also many related applications in daily life, like fishing line on the fishing rod, tree swings and

ponytail motion. Stability is one of the most important problems of vibration theory, and many

researchers have treated the vertical motion of beams as pendulum vibrations: Plaut [1] treated

a ponytail as a pendulum with one rigid bar or multiple rigid bars. However, these treatments

are approximate, and some researchers have also directly investigated upside-down flexible rod

(clamped at the bottom and free at the top). Champneys and Fraser [2] used Floquet theory and

asymptotic analysis to investigate the stability of the Indian rope trick. Our interest in the stability

of ponytail motion investigated by Keller [3] , which turns out to have important differences with

the Indian rope trick.

Keller treated a ponytail as a rigid rod and then as a flexible string (see Figure 1.1), and

took the acceleration of the head’s motion to be small. This led to Hill’s equation for the lateral

motion of the ponytail. However, Keller did not investigate the stability region in detail, and

he did not consider the cases when the acceleration of the head motion is large. Also, although

Keller suggested investigating a model of the ponytail as an inextensible flexible rod with small

1



Figure 1.1: Sketch of rigid rod and flexible string.

bending stiffness, he did not provide the corresponding analysis.

However, the idea of Keller is interesting and this thesis will be based on Keller’s paper.

The goal is to investigate the stability of the oscillating flexible vertical rod problem, and to

compare the results with the work of Champneys and Fraser[2]. Our goal is to discover the

stability of the lateral displacement of ponytail motion, and understand the effect by different

parameters. To do this we discuss the shape of ponytail and its normal modes, the frequency and

amplitude of the head motion, the numerical methods that we use, and the stability regions for

different situations.

The motion of a ponytail is one kind of parametrically excited system, and there are three

traditional ways to investigate stability: Lyapunov methods, perturbation theory and Floquet

theory. Lyapunov methods define a scalar function, the Lyapunov function, and uses derivative

of that function to study stability of systems. Perturbation theory requires a small parameter to

simplify the problem and obtain a manageable system. Floquet theory is a general approach for

systems with periodic coefficients. It is hence appropriate for the stability analysis that follows.

1.1 Floquet theory

Consider a system of n linear differential equations of the form

ẋ = A(t)x (1.1)
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where A(t) is a n× n periodic matrix function of time with period T . While solutions of the

equation (1.1) are not necessarily periodic, at least one non-trivial solution x(t) of equation (1.1)

satisfies the following condition:

x(t +T ) = Λx(t), (1.2)

where Λ is called the Floquet multiplier.

The general solution of the equation (1.1) can be written in the following form:

xi = eµit X̃i(t) (1.3)

where eµT = Λ, and µ is called the Floquet exponent, which can be a complex number. There are

two ways to use Floquet theory to obtain the stability regions. One way is the Floquet spectral

method using Floquet exponents, and the other is the Floquet monodromy matrix method using

Floquet multipliers.

For the Floquet spectral method, we need to solve for values of the Floquet exponents in

equation (1.3) and determine whether the real parts of Floquet exponents µ = [µ1 µ2 ... µ∞]

are smaller than 0 or not [4]. If one of the Floquet exponents has real part larger than 0, the

system is unstable.

For the Floquet monodromy matrix method, we use linear independent solutions of the

equation (1.1) to form a fundamental matrix X(t) = [x1(t),x2(t), . . . ,xn(t)]. This fundamental

matrix satisfies the equation

Ẋ = AX , (1.4)

X(T ) is the monodromy matrix[5]. The eigenvalues of the monodromy matrix are the Floquet

multipliers we need. Then we examine whether the absolute values of these Floquet multipliers

are less than 1 or not. If one of them is larger than 1, the system is unstable. The numerical

implementation of these two methods will be presented in Chapter 4.
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In this thesis, Chapter 2 presents the mathematical model for the ponytail, Chapter 3

examines the stability and eigenfrequency of the unforced flexible rod problem, Chapters 4 and 5

use Floquet theory to find the stability regions of flexible string and flexible rod cases successively,

and Chapter 6 considers the damped flexible rod problem. Finally Chapter 7 concludes.
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Chapter 2

Mathematical Model of Ponytail

2.1 Mathematical formulation

Consider a runner’s ponytail as an inextensible flexible rod with small bending stiffness

B, constant density ρ and length L. The ponytail is clamped at one end and free on the other.

Assume the runner runs along the z axis with constant speed U , and the ponytail moves up and

down with his head in the y axis with displacement a(t) (see Figure 2.1).

Figure 2.1: Sketch of flexible rod.

Let x = (x(s, t),y(s, t)) be the displacement of the ponytail at time t. It can be shown that
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it satisfies the equation

ρxtt = (T xs)s +ρg−Bxssss, 0 < s < L (2.1)

where T (s, t) is the tension of the rod that is obtained as part of the solution.

Following Keller, consider the ponytail in equilibrium

x0(s, t) = [0,a(t)− s]. (2.2)

The corresponding tension T 0(s, t) can be integrated with respect to s, and satisfies free condition

at s = L, namely T (L, t) = 0. We find

T 0(s, t) = ρ(g+att)(L− s). (2.3)

After linearizing the problem around this solution, the equation for the x- displacement x(t)

becomes

ρxtt = ρ(g+att)[(L− s)xs]s−Bxssss, 0 < s < L. (2.4)

Since the ponytail is clamped at the top and free at the bottom, we obtain the following boundary

conditions

x(0, t) = 0, xs(0, t) = 0, xss(L, t) = 0, xsss(L, t) = 0. (2.5)

This means that both deflection and slope are zero at the top, and the bending moment and the

shear force are zero at the bottom.
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2.2 Dimensionless model

In order to simplify the equation we define, define dimensionless variables as follows:

s∗ =
s
L
, x∗ =

x
L
, t∗ = ωt, a(t)∗ = a(t)/A, (2.6)

where A is the amplitude of the excitation and ω is the typical angular frequency of the excitation.

When (2.6) is substituted into (2.4), the result is

x∗t∗t∗ =
(

g
Lω2 +

Aa∗t∗t
L

[(1− s∗)x∗s ]s∗
)
− Bxs∗s∗s∗s∗

ρL4ω2 (2.7)

Drop ∗ from now on, and define using the following dimensionless variables

δ =
g

Lω2 , ε =
A
L
, B∗ =

B
ρgL3 . (2.8)

Then the governing equation finally becomes

xtt = (δ+ εatt)[(1− s)xs]s−δBxssss. (2.9)

We have taken the time-dependent forcing in (2.9) to be purely harmonic so that att = cos t, and

we will use this forcing throughout the thesis. As the boundary conditions are homogeneous, they

are unchanged and take the form

x(0, t) = 0, xs(0, t) = 0, xss(1, t) = 0, xsss(1, t) = 0. (2.10)
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Chapter 3

The unforced problem

In this chapter, we consider the ponytail as flexible rod without external forces, as we

want to study the stability and natural frequencies of this unforced problem when ε = 0 in the

equation (2.9). The governing equation becomes

xtt = δ[(1− s)xs]s−δBxssss. (3.1)

We use separation of variables to find normal modes (this method will also be used in chapter 4),

and the corresponding eigenvalues provide the natural frequencies of the rod.

3.1 Normal-mode calculation

Equation (3.1) can be solved by the method of separation of variables. The solution takes

the form

x(s, t) =
∞

∑
n=1

φn(s)(An cosωnt +Bn sinωnt), (3.2)

with

Aφn(s)−λnφn(s)≡ Bφ
′′′′
n (s)− [(1− s)φn(s)

′
]
′
−λnφn(s) = 0, (3.3)
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where φn(s) are the eigenfunctions satisfying the boundary conditions (2.10) with φn(1) nor-

malized to equal one, λn are the eigenvalues, and ωn are the natural angular frequencies, with

λn = ω2
n/δ. The eigenfunctions satisfy the orthogonality condition, which can been proved as

follows.

We take any two eigenfunctions satisfying

Bφn(s)
′′′′
− [(1− s)φn(s)

′
]
′
−λnφn(s) = 0, (3.4)

Bφm(s)
′′′′
− [(1− s)φm(s)

′
]
′
−λmφm(s) = 0, (3.5)

multiply equation (3.4) by φm and multiply equation (3.5) by φn to get

Bφn(s)
′′′′

φm(s)− [(1− s)φn(s)
′
]
′
φm(s)−λnφn(s)φm(s) = 0, (3.6)

Bφm(s)
′′′′

φn(s)− [(1− s)φm(s)
′
]
′
φn(s)−λmφm(s)φn(s) = 0. (3.7)

Then subtract equation (3.6) from equation (3.7) to get

B(φm(s)
′′′′

φn(s)−φn(s)
′′′′

φm(s))︸ ︷︷ ︸
First term

−([(1− s)φm(s)
′
]
′
φn(s)− [(1− s)φn(s)

′
]
′
φm(s))︸ ︷︷ ︸

Second term

−φm(s)φn(s)(λm−λn)︸ ︷︷ ︸
Third term

= 0.

(3.8)

Integrate the above equation from 0 to 1 and use integration by parts. The remaining term will be

∫ 1

0
φm(s)φn(s)(λm−λn) = (λm−λn)

∫ 1

0
φm(s)φn(s) = 0. (3.9)

Therefore we get ∫ 1

0
φn(s)φm(s)ds = Nnδnm, (3.10)

where Nn =
∫ 1

0 φ2
n(s)ds and δnm is the Kronecker delta. Now we need to solve (3.3). As our

boundary conditions are non-periodic, we use a Chebyshev spectral method to discretize in space.

9



3.2 Chebyshev spectral method

The Chebyshev spectral method is one kind of spectral collocation methods that can

be used to solve non-periodic boundary value problems. It introduces Chebyshev points (x j =

cos( jπN), j = 0,1, . . . ,N) and uses the Lagrange Interpolating Polynomial to construct Cheby-

shev differentiation matrices (see below). One can then use these matrices to construct linear

algebra analogs of the ordinary differential equations.

The Lagrange Interpolating Polynomial is the polynomial P(x) of degree ≤ N that passes

through the n points (x1,v1), ..., (xn,vn). It takes the form

P(x) =
n

∑
j=1

P(x j), (3.11)

where

P(x j) = v j

N

∏
k=1
k 6= j

x− xk

x j− xk
. (3.12)

If one writes w j = P′(x j), as this operation is linear, w = DNv, where DN is (N +1)× (N +1)

matrix, which takes the form [6]:

(DN)00 =
2N2 +1

6
, (DN)NN =−2N2 +1

6
, (3.13)

(DN) j j =
−x j

2(1− x2
j)
, j = 1, . . . ,N−1, (3.14)

(DN)i j =
ci

c j

(−1)i+ j

xi− x j
, i 6= j, i, j = 1, . . . ,N−1, (3.15)

where

ci =


2 i = 0, N

1 otherwise
(3.16)

Here we use the MATLAB function cheb from Trefethen’s book [6]. This function returns

10



Chebyshev grids and Chebyshev differentiation matrix.

After obtaining the Chebyshev differentiation matrix, we need to apply the boundary

conditions to this matrix. This discussion is not standard. The basic idea is, as these four boundary

conditions are all homogeneous, we can write them as a matrix, C with

Cx = 0 (3.17)

where

C =



zeros(1,N) 1

DN(N +1, :)

D2
N(1, :)

D3
N(1, :)


,

to satisfy the boundary conditions (2.10). The null-space matrix

U = null(C), (3.18)

provides an orthonormal basis for the null space of C, and if limit x to its range, we will construct

solutions that satisfy (2.10).

As the eigenvalue problem (3.3) can be written after discretization as a linear eigenvalue

problem

Ax = λx, (3.19)

we take x∗ =UT x, A∗ =UT AU to project x and A onto the null space. Then

A∗x∗ = λx∗, (3.20)

After this transformation, we can use the MATLAB function eig to obtain the eigenvalues and

discretized eigenfunctions.

11



3.3 Eigenfrequencies and stability

This section discuss the natural frequencies and stability of the unforced problem. Before

solving the eigenproblem with the Chebyshev spectral method, we need to compare the accuracy

of different numbers of Chebyshev points, and choose a large enough number of gridpoints to

obtain adequate accuracy.

3.3.1 Accuracy of Chebyshev spectral method

When B= 0, (3.3) has an exact solution, which is expressed in terms of the Bessel function

J0:

φn(s) = J0[2λ
1/2
n (1− s)1/2], λn = j2

n/4, (3.21)

where jn,n = 1,2, ... is the infinite increasing sequence of positive roots of the Bessel function J0,

and the boundary conditions satisfied are

φn(0) = 0, φn(1) = finite. (3.22)

After getting the exact solution, we use the Chebyshev spectral method to solve eigenvalue

problem (3.3) with B = 0. Figure 3.1 shows the error when comparing the value of first, fifth and

twentieth eigenvalues. We can see that the numbers of Chebyshev points needed increases with

the eigenvalue. Therefore, as we keep 5 eigenvalues for this chapter’s calculation, we choose 50

Chebyshev points for accuracy.

3.3.2 Discussion

Figure 3.2(a) and (b) show the shapes of the eigenfunctions for the first five eigenvalues

λn = ω2
n/δ, when B = 0.001 and B = 1. Figure 3.2 (c) and (d) show the locus of the eigenfre-

quencies and eigenvalues as functions of B, again for the first five eigenfunctions.
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Figure 3.1: The error of the first three eigenvalues calculated by the Chebyshev Spectral method
applied to (3.1) when B = 0 computed for different numbers of collocation points.

The first step is to investigate the eigenfrequency of this unforced problem. Figure

3.2(a)(b) show the eigenfunctions for different values of B. The frequencies are small when B is

small. Figure 3.2(a) and (b) are similar to Figure 2(a) of Champneys and Fraser[2], but there is a

critical difference in the stability properties, as we now discuss.

The next step is to examine the stability of this unforced problem. Figure 3.2 (d) show

that all of eigenvalues are positive, Hence x(s, t) is bounded value, so small displacement from the

vertical position will result in bounded lateral oscillations of the ponytail. This is not surprising

since the ponytail hangs down. This result is quite different from the paper of Champneys and

Fraser[2], as in their problem, the Indian rope trick has unstable regions when it is unforced.

Physically, the Indian rope trick consists of an upside-down column: if it does not have high

enough bending stiffness or is not very short length, it is easily be buckled. For our problem, the

ponytail can be unstable only when it is forced.
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(b) Eigenfunctions for B = 1.
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Figure 3.2: Relations among eigenfunction, bending stiffness, eigenvalues and natural frequen-
cies.
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Chapter 4

The string problem

In this chapter, we investigate the forced string problem. This study is based on Keller’s

paper and lays the foundation for the flexible rod problem in the next chapter.

4.1 Solution by separation of variables

When we consider the string problem, the equation (2.9) becomes the second-order

differential equation

xtt = (δ+ εatt)Mx, M = [(1− s)s]s, 0 < s < 1, (4.1)

where att = cos t. As this is a second-order differential equation, it needs two boundary condition.

The string is clamped at the top and free at the bottom, so the boundary conditions are

x(0, t) = 0, x(1, t) = finite, 0 < s < 1. (4.2)

(Note the difference with the rod problem which has four boundary conditions.)

This problem can still solved by the method of separation of variables. The solution and
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corresponding eigenfunctions take the form

x(s, t) =
∞

∑
n=1

φn(s)un(t), (4.3)

and

−Mφn−λnφn ≡−[(1− s)φ
′
n]
′
−λnφn = 0. (4.4)

Plugging equation (4.3) and (4.4) into equation (4.1), we obtain

∞

∑
n=1

(u′′n(t)+(λnδ+λnεcos t)un(t))φn(s) = 0. (4.5)

The eigenfunctions φn can be expressed in terms of the Bessel function J0 as explained in equation

(3.21), and therefore the eigenfunctions are orthogonal. The equation (4.5) becomes

u′′n(t)+(λnδ+λnεcos t)un(t) = 0, (4.6)

which represents an infinite number of Mathieu equations. In equation (4.6), the parameters ε and

δ are multiplied by λn. Both increase as n increases, but the ratio ε/δ remains constant (as these

two nondimensional numbers are δ = g/Lω2 and ε = A/L). As we want to derive stability regions

in terms of these two non-dimensional numbers, we treat all the points (λnδ,λnε) move along the

lines with the slope of ε/δ. Then λnδ and λnε in equation (4.6) can be rescaled as δ∗ = λnδ and

ε∗ = λnε, and we obtain the simple Mathieu equation

u′′n(t)+(δ∗+ ε
∗ cos t)un(t) = 0. (4.7)

Figure 4.1 shows the stability region of the Mathieu equation solved by the Floquet

monodromy matrix method (the method is discussed in the next section). The lines show the five

lowest points λn(δ,ε) corresponding to the parameters in the infinite number of Mathieu equations
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Figure 4.1: Stability regions for equation (4.7) with scaled axes.

when people is walking and running (the details of this example are discussed in section 4.3).

The core idea of this rescaling is to turn the question of stability of the string into the question of

whether any of the infinite number of points λn(δ,ε) lie in a region of instability.

4.2 Numerical Method

The equation (4.7) can be solved by the Floquet methods outlined in the Introduction.

This section presents the two approaches.

4.2.1 Floquet monodromy matrix method

For the Floquet monodromy matrix method, we need to rewrite the equation (4.7) in the

form Ẋ = AX , which here becomes

u̇0

u̇1

=

 0 1

−(δ∗+ ε∗ cos t) 0


u0

u1

 , (4.8)

where u0 = u and u1 = u̇. Using u(0) = I as initial condition, where I is the 2×2 identity matrix,

we find the monodromy matrix u(T ) with T = 2π.
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We use the Matlab ODE solver to solve the systems of ODEs. As this problem is not stiff,

here we use ode45 and ode 113 to solve and compare the accuracy and efficiency of these two

ODE Solver. The algorithm of ode45 is an explicit Runge-Kutta (4,5) formula, which has medium

accuracy, while ode113 is a variable-step, variable-order (VSVO) Adams-Bashforth-Moulton

PECE solver of orders 1 to 13, which is more efficient than ode45 at problems with stringent error

tolerances [7]. For this problem, we keep the relative tolerance at 10−8 and absolute tolerance

at 10−10 in both ODE solvers. The computation domain is 45× 15 with 600 grid points in δ

direction and 200 grid points in ε direction. The results are shown in Figure 4.2. They have been

converted from Floquet multipliers to Floquet exponents using the relation eµT = Λ to compare

the result of two Floquet methods. The results agree with the known stability boundaries for the

Mathieu equation. Both ode45 and ode 113 reproduce the stability boundary defined by a value

of 10−8 (see Figure 4.2. The routine ode113 solves over 1000 seconds faster than ode 45, but

we see examine Figure 4.2(b), we find that the result of ode 113 has lots of black regions. These

regions are at the level of 10−10, and show that ode 113 does not solve very accurately. Therefore,

although ode113 solves faster than ode45, in order to keep accuracy, we need to choose ode45 in

the rest of thesis.

4.2.2 Floquet Spectral method

As discussed in the Introduction, the general solution for u can be written as

u = eµTŨ(t), (4.9)

where ˜U(t) can be expanded as a Fourier series with period T = 2π:

Ũ(t) =
∞

∑
n=−∞

Uneint . (4.10)
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(a) Solving with MATLAB ode45. (b) Solving with MATLAB ode113.
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(c) Comparison of the boundary of these
two ODE Solver.

Figure 4.2: Comparison of the results of ODE Solver in Floquet monodromy matrix method:
ode45 and ode113.

Therefore, the equation 4.7 can be transformed into

∞

∑
n=−∞

−n2Un +(δ∗+ ε
∗ cos t)

∞

∑
n=−∞

Un +µ(
∞

∑
n=−∞

2inUn)+µ2
∞

∑
n=−∞

Un = 0. (4.11)

As it is impossible to use infinity numbers of terms in the Fourier series, the sum ∑
∞
−∞Un needs

to be truncated with enough terms in ∑
N
−N Un to ensure accuracy. Then equation (4.11) can be
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written as

(D+µE +µ2F)



U−N

U−N+1

...

UN−1

UN


= 0 (4.12)

where

D =



−(−N)2 +δ∗ ε∗

2 0 . . . . . .

ε∗

2 −(−N +1)2 +δ∗ ε∗

2 . . . . . .

0 . . . . . . . . .
... ε∗

2 −(N−1)2 +δ∗ ε∗

2

0 . . . . . . ε∗

2 −(N)2 +δ∗



E =



2i(−N) 0 . . .

0 2i(−N +1) . . .

... . . .

0 . . . 2i(N)



F =



1 0 . . .

0 1 . . .

... . . .

0 . . . 1


Equation (4.12) is a polynomial eigenvalue problem, and we use the Matlab polyeig

function to find the Floquet exponents, and see whether the real parts of these Floquet exponents

are smaller than zero or not. However, as Turhan pointed out in [4], it is necessary to introduce
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constraints on the imaginary parts of the Floquet exponents to remove the indefiniteness and

produce unique Floquet exponents. For our case, we require 0 ≤ |Im(µ)| ≤ 1. Then from

Figure 4.2(a) we find the result using five Fourier terms is close enough to that with ten terms.

Hence five Fourier modes is enough for this case. In addition the result with five Fourier terms

has same stability region as the result of solving with the Floquet monodromy matrix method

(see Figure 4.2(b)). As a result both of these two methods could be used in the following sections.

We note that the Floquet Spectral method is more efficient than the Floquet monodromy matrix

method when solving equation 4.7 on a 5× 5 computational domain with 200 grid points in

the δ-direction and 200 grid points in the ε-directions. The Floquet Spectral method takes 15

seconds to solve this problem, however, the Floquet monodromy matrix method takes 360 seconds.

Therefore, the Floquet Spectral method will be the first choice for the following computation.
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(a) Solving equation 4.7 with Flo-
quet spectral method, and com-
paring results of different Fourier
modes.
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(b) Comparison of results of Floquet
monodromy matrix method with Flo-
quet Spectral method with same com-
putational domain.

Figure 4.3: Comparison of the results of the two Floquet methods.
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4.3 Stability Regions

In this section we will examine the stability regions for the flexible string using the two

Floquet methods and discuss the stabilities of the ponytail with different stride rates.

Solving equation 4.7 again and setting 600 grid points in the δ-direction and 200 grid

points in the ε-direction within 45× 15 computational domain. For the Floquet monodromy

matrix method, we take the relative error to be less than 10−8 and absolute error less than 10−10.

For the Floquet Spectral method, we choose N = 8 modes in Fourier series. We have transformed

the result of the Floquet monodromy matrix method to the form of Floquet exponents. As seen in

the Figure 4.4, the stability regions are the same.

Following the idea of section 4.1, the way we find whether the ponytail of people is

stable or unstable is by using the infinite number of points λn(δ,ε) to see if these points lie in

a region of instability. The two lines in figure 4.4 show two kinds of conditions: the blue line

corresponding to people walking, and the red line corresponding to people running. The first

five λn(δ,ε) points are shown. The information is given by the paper of Takahashi et al. [8].

They carried out experiments and found that the frequency of head movement in the vertical

direction for normal walking and running were 2 and 3 Hz (= 2 and 3 cycles/s = 4π and 6π rad/s).

In order to match the frequency of head motion to stride rates, we assume a cycle is equal to

a step with one leg, so 2 and 3 cycles/s correspond to 120 and 180 cycles/minute, i.e. 120 and

180 steps/minute. However, when we calculate the values of δ and ε, we need to use the unit of

radians/sec . That paper also shows that vertical head displacement are 0.8±0.3 cm when people

are walking and 5.5±1.3 cm when people are running, so we choose A = 0.8 and A = 5.5 for

walking and running respectively.

The two dimensionless numbers δ = g/Lω2 and ε = A/L are related to the vertical head

displacement (A), length of ponytail (L), and pace (ω). We set the length of ponytail to be 25 cm,

and set the other valuables from [8]. The way to calculate λn has been described in section 4.1. It
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seems that the first points λ1(δ,ε) are clustered in the first and second instability regions, which

means if these points are really in the first and second regions of instability, we do not need to

check any further. Therefore, we set the enough numbers of points λn(δ,ε), and check points by

points until they are in unstable regions or the calculation is over. After comparing these two

lines, we can conclude that if the slope of ε/δ is larger, the ponytail will be more likely to be

in unstable regions. That is why we often see the ponytail sways side to side when people are

running and seldom see this phenomenon when people are walking. (The small black points in

Figure 4.4(a) is the error of Floquet Spectral method, which is at the level of 10−16, and can be

ignored.)

(a) Stability of ponytail when people are
walking (red line) or running (blue line)
(using the Floquet spectral approach).

(b) Stability of ponytail when people are
walking (red line) or running (blue line)
(using the Floquet monodromy matrix).

Figure 4.4: Comparison of the results of these two methods.

4.4 Discussion

For the flexible string problem, using the method of separation of variables is one way

to ease the problem (see the equation 4.7). However, for the flexible rope problem in the next

chapter, we can no longer use the method of separation of variables to solve the equation. Hence
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we present here another way to solve the flexible string problem, using the Chebyshev Spectral

method to discretize the space and using either Floquet approach. We then compare the results of

these two methods to ensure both are accurate.

4.4.1 Compiling results from the method of separation of variables

In section 4.3, we use an infinite number of points λi(δ,ε) to examine if these points lie in

unstable regions of Mathieu’s equation. Here, in order to compare with the next method of fully

discretization of equation (4.1), we assemble results using a large number of eigenvalues (λi from

i = 5 to 50) and obtain the largest Floquet exponents from these results to ensure that every grid

point in computational domain has been accurately computed. (As the Floquet Spectral method is

more efficient than the Floquet monodromy matrix method, we use the Floquet Spectral method

in this section).

In Figure 4.5(e), we set 200 points in both the δ and ε directions within 1×1 computational

domain (as both δ and ε is smaller than 1 in real case), and it shows the stability regions with 5

to 50 eigenvalues, and the stability boundary does not change when we choose 35 eigenvalues.

However, we are concerned about whether the grid numbers are enough to capture all resonance

tongues. Therefore, we add more grid points and just see what happens for region of stability

within the small-δ region with more eigenvalues. Figures 4.5(a)–(d) use 500 points in both the δ

and ε directions, and we find that when we increase the number of eigenvalues, more resonance

regions appear. Then, we compare the result of Figures 4.5c) and (d): though the number of

resonance tongues seems not to change, the values of the Floquet exponents continually grows

when δ is small. This means that although Figure 4.5(c) and (d) look quite similar, we believe if

we add more grid points we can see more tiny resonance tongues. This appears to be why the

values of Floquet exponents become large as we add more eigenvalues. Physically the flexible

string could have an infinite number of unstable resonant regions as it does not have bending

stiffness.
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(a) 5 eigenvalues. (b) 20 eigenvalues.

(c) 35 eigenvalues. (d) 50 eigenvalues.
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(e) 5, 15, 20, 35 and 50 eigenvalues.

Figure 4.5: Compiling results from the method of separation method with different eigenvalues.
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4.4.2 Spatial problem

After obtaining results using the method of separation of variables, the next thing is to

turn the problem into a spatial problem and use Chebyshev Spectral method to discretize in space

equation (4.1). It then becomes

xtt = (δ+ εatt)Mx, M = [(1− s)DK]DK, 0 < s < 1, (4.13)

where DK is the Chebyshev differentiation matrix with K Chebyshev modes. After discretizing

the equation, we need to investigate convergence first and then verify accuracy.

In Figure 4.6, we still set 200 points in both the δ and ε directions within 1×1 compu-

tational domain and directly discretize equation (4.1). First, we fix the number of Chebyshev

points to 10, and vary the Fourier modes. We see in Figure 4.6 that the stability regions are

unchanged when the number of Fourier modes is 15. Then, we take 15 Fourier modes and vary

the Chebyshev points. We see Figure 4.6(b) that the stability regions will not change when the

Chebyshev points is equal to 10 or more, although we believe if we add more grid points in space,

we can find more resonance tongues.

After obtaining these convergence results, we compare the stability properties using

15 Fourier modes and 15 Chebyshev points to those obtained using separation of method (50

eigenvalues). Figure 4.6(c) shows that these two methods compute the same stability regions.

We mentioned in section 4.3 that if the slope of ε/δ is large, the ponytail is more likely to

be unstable. Figure 4.6(c) also shows two lines corresponding to walking and running. When

people are walking, the slope of ε/δ = (0.8× (4π)2)/980 = 0.13 and when people are running,

the slope of ε/δ = (5.5× (6π)2)/980 = 1.99 (these values are same as in section 4.3). It is clear

that the blue line lies fully in the unstable region, while the red line does not. However, as we

mentioned, the flexible string may have an infinite number of tiny resonance tongues, which

means when we treat ponytail as the flexible string, it is very unlikely to have stable regions for
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the ponytail motion for different stride rates. Therefore, the ponytail will be unstable in lateral

direction when people are running and is unlikely to be stable when people are walking. In

conclusion, if we treat the ponytail as a flexible string, it has a high probability of being unstable.
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(a) 1, 10, 15 , 20 Fourier modes.
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(b) 1, 10, 15 Chebyshev points.
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(c) The boundaries of the two methods

Figure 4.6: Figure (a) and (b) show the numbers of Chebyshev points and Fourier modes needed
for accuracy, and Figrue (c) compare the boundary of the two methods.
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Chapter 5

The rod problem

In this chapter, we consider the case of a flexible rod. As mentioned in Chapter 4, the

method of separation of variables is not applicable in the flexible rod case. Hence this problem

cannot be treated as an eigenvalue problem and can only be treated as a partial differential

equation so as to discretize the equation (2.9) and find the stability regions.

5.1 Stability of the flexible rod

As mentioned in chapter 4, the Floquet Spectral method is much faster than the Floquet

Monodromy matrix method and has the same accuracy, so we use the Floquet Spectral method to

solve this problem in this chapter.

As for the flexible string problem, we use Fourier series to transform equation (2.9) to

−∑
∞
n=−∞ n2− (δ+ εcos t)([(1− s)∑

∞
n=−∞ X

′
n(s)e

int ]s−δB∑
∞
n=−∞ X

′′′′
n (s)eint)+µ((2in+ν)∑

∞
n=−∞ Xn(s))+µ2

∑
∞
n=−∞ Xn(s) = 0

(5.1)

Then we use the Chebyshev Spectral method to discretize in space.

We need to examine convergence before analyzing the stability region of flexible rod. We

use B = 0.01 as an example to find the number of Chebyshev points and Fourier modes the we
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need. The computational domain is 1×1, and 200 points in both δ and ε directions.

In Figure 5.1 (a), when we set Chebyshev points equal to 15, and we vary the Fourier

modes from 5 to 15, we can find that 10 Fourier modes is accurate enough. Also, in figure 5.1

(b)when we set Fourier modes equal to 10, and vary the Chebyshev points from 10 to 20, we can

find that when Chebyshev points equal to 15 is accurate enough to represent the boundary.
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(a) Comparsion of the results in different
Fourier modes when Chebyshev points
=15.
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(b) Comparison of the results in different
Chebyshev points when Fourier modes
=10.

Figure 5.1: Getting the converged solution of flexible rod when B = 0.01.

However, the flexible rod problem is no longer a fourth-order problem when δ = 0 and

the bending stiffness term vanishes, so we need to use the boundary conditions for the string in

that ase.

After we get the converged solution, we need to discuss the impact of B for stability

regions. We see from Figure 5.2 clear differences as B changes. As B becomes smaller, there are

more unstable regions. The physical meaning is reasonable that when the bending stiffness is

smaller, the ponytail will be more likely to become unstable and swing in the lateral direction.

We then compare the result for the flexible string with those for the flexible rod when

B=0.01 and B=10−6 (see Figure 5.2). When B=10−6, we take 15 Chebyshev points and Fourier

modes, as the flexible string case in chapter 4. This is because as B becomes much smaller, the
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(b) Comparsion of Flexible string and
Flexible rod when B=10−2 and B=10−6.

Figure 5.2: Comparsion of stability regions of Flexible rod with different bending stiffness.

physical system becomes closer to the flexible string, which has an infinite number of resonance

tongues and can not get the exact Chebyshev or Fourier modes to get converged result.

It can be seen from the Figure that when B becomes small, the stability regions of flexible

rod look very similar to flexible string. The number and location of the resonance tongues become

more and more similar to the string case as B decreases. Hence for very small B, the ponytail is

unlikely to be stable.

5.2 Comparison to the Indian rope trick

We next fix the value of δ, and compare our results to those of Champneys and Fraser

(their Figure 7)[2].

We recalculate their case and using the Floquet Spectral methods, and set δ = 0.1 and a

computational domain of 0.25×0.13 with 200 points in both δ and ε directions. Figure 5.3(a)

shows the result of the Indian rope trick. The results are different from those of Champneys

and Fraser. They restrict themselves to the Floquet multipliers equal to +1 or −1 (synchronous

and subharmonic disturbances respectively) to find stability regions, which appears to be true.
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However, they do not show the stability regions between stability boundaries we have in the lower

right corner in Figure 5.3(a).

Figure 5.3(b) shows the result for ponytail motion. It confirms that that Indian rope

trick is unstable when it is unforced and B is smaller than 0.13, while the ponytail is always

stable. Another difference is that when the Indian rope trick is forced, unstable regions gradually

become stable, but the stable regions of the ponytail become unstable after being forced. The

only common thing for these two case is that when B is smaller and they are forced, there are

more unstable regions.
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(a) Stability regions of Indian rope trick.
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Figure 5.3: Comparsion of stability regions when δ = 0.1 in two cases
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Chapter 6

The damped problem

6.1 The flexible rod with damping

In practical situations, the energy of flexible rod vibration will gradually be converted

to heat or sound. This is damping. There are two types of damping: viscous damping and

structural damping. Structural damping includes material damping and Coulomb or Dry-Friction

Damping[9]. For our case, we consider viscous damping and material damping.

For viscous damping, when the ponytail vibrates in the air, the resistance offered by the

air to the ponytail causes energy to be dissipated. For small oscillations (Reynolds number really),

the viscous damping force is proportional to the velocity of the vibrating body, which is νxt , and

equation (2.9) can be rewritten as

xtt +νxt = (δ+ εatt)[(1− s)xs]s−δBssss, (6.1)

where ν = ν∗/(ρω) is the dimensionless damping coefficient. This is the generic form for linear

damping. In order to differentiate with the material viscous term (which will be discussed below),

here we rename this type of damping linear damping in the following contents.

As the Floquet Spectral method is more efficient, this chapter we still use this method to
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solve the problem, and look the values of Floquet exponents to find the stability regions.
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Figure 6.1: Comparsion of stability regions with undamped case when damping coefficient=0.1
and 0.01.

In Figure 6.1, we still use B = 0.01 as an example value, and when we choose the linear

damping coefficient top be ν = 0.01, 0.1 and 1. The results show that the linear damping is

effective in transforming the resonance tongues from unstable to stable. When the value of linear

damping coefficient becomes larger, this effect will grow larger. However, regions which are not

close to the resonance points do not have much changes in the stability regions. Again, we use the

line with ε/δ to help to find the stability of ponytail when people are walking and running. As ε/δ

is small when people is walking, and this orange line is very close to the resonance points, this

viscous damping can be really helpful to reduce the ponytail sway in lateral direction. However,

when people is running, as the green line is not as close as the orange line to these resonance

points, linear damping does not help to reduce the ponytail sway when people is running.

In order to help to reduce ponytail sway in lateral direction in the latter case, we need

to consider other sorts of damping. The next step is to consider linear damping and material

damping together, and the results are quite different.

Here we assume the material is a Kelvin–Voigt material, and we assume a stress relation
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of the following form:

τ = σ(xs)+ηxst (6.2)

where σ(xs) is the stress caused by a purely elastic spring with σ(xs) = Exs, and E is the elastic

modulus of material. Here ηxst is the stress caused by a purely viscous damper, η is the viscosity

coefficient of material, and this term could reflect the past history of the strain xs[10]. It can also

be treated as a lateral force acting on the beam which is negatively proportional to the bending

rate[11].

Therefore, we add these terms to the equation of (2.10) as follows:

xtt +νxt = (δ+ εatt)[(1− s)xs]s−δBssss +Exss +ηxsts, (6.3)

where E = E∗/(ρL2ω2) and η = η∗/(ρL2ω) are the dimensionless damping coefficients.
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Figure 6.2: Comparsion of stability regions when linear damping coefficient is 0.1, material
elastic modulus coefficient is 0, and material viscous damping coefficient is from 10−4 to 10−1.

Firstly, we want to see the effects of material viscous damping term, so we set material

elastic damping term equals to zero, set linear damping coefficient equals to 0.1 (as it has largest

damping effect in figure 5.1), and vary the material viscous damping coefficient from 10−4 to
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Figure 6.3: Comparsion of stability regions when linear damping coefficient is 0.1, material
viscous damping coefficient is 10−2, and material elastic modulus coefficient is from 10−4 to
10−1.

10−1. Figure 6.3 shows the result. We see that this material viscous damping does not reduce

instability near near δ = 0.2 and δ = 0.6, and in fact makes some stable regions unstable. It only

seems effective when the resonance tongue is relative tiny. Hence we investigate the effects of the

material elastic damping term, as coefficient of material viscous damping term = 10−2 relatively

has a better effect, we set this term as this value, and linear damping coefficient still equals to 0.1.

Figure 6.4 shows the result of varying the material elastic damping coefficient from 10−4 to 10−1.

After adding this type of damping, the stability region moves parallel from left to right. Hence

this type of damping can affect the stability regions.

Therefore, this material damping is useful for tiny resonance tongues and can help move

unstable regions. However, it still cannot help ponytail stability much e when people is running.

6.2 Comparison to the Indian rope trick

We use figure 5.3 as the basis of this damping study (fix δ = 0.1), and figure 6.4 shows

the result after adding viscous damping and material damping.
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(a) Indian rope trick with linear damping.
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(b) ponytail with linear damping.
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(c) Adding material viscous damping term
to figure 6.4(a).
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(d) Adding material viscous damping term
to figure 6.4(b).
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(e) Adding material elastic damping term
to figure 6.4(c)..
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(f) Adding material elastic damping term
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Figure 6.4: Comparsion of stability regions of Indian rope trick with ponytail when adding
different types of damping.
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For the Indian rope trick, we see from Figures 6.4(a), (c) and (e), that no matter what

types of damping are added, the stable regions will become unstable, and this effect will grow

larger when the damping coefficient is larger. This is reasonable as the Indian rope trick can only

be stable when it is forced, and if this energy is dissipated by damping effects, the stable regions

will become unstable.

For our ponytail case, the results look more interesting. Linear damping can help some

regions with big resonance tongues to become stable (figure 6.4(b)), and adding material viscous

damping term let stable regions become unstable again(figure 6.4(d)). Linear viscous damping

and material viscous damping show the same effect as we discussed in section 6.1, but the result

of adding material elastic damping (figure 6.4(f)) is not clear.

Therefore, for our ponytail case, linear damping is very good for regions which have large

resonance damping, and material viscous damping does bad for these regions. And material

elastic damping is good to move stability regions, and this damping term seems to be useful in

industry if some types of machine do not want some fragile place to have large resonance regions,

this type of damping is helpful.
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Chapter 7

Conclusion

This thesis has used Floquet theory to find the stability regions of ponytail motion. A

Chebyshev Spectral method has been used to discretize the equations in space and Fourier series

or Runge-Kutta method has been used to discretize in time, corresponding to the Floquet spectral

method and the monodromy method respectively.

We separately analyze unforced flexible rod problem, forced flexible string problem,

forced flexible rod problem and damped problem of forced flexible rod. The main result as

follows. The unforced flexible rod and forced flexible string problems can use the method of

separation of variables. However, the forced flexible rod problem requires the Chebyshev Spectral

method to discretize in space. For the unforced problem, the method of separation of variables

turns the problem into an eigenvalue problem, showing that there is no unstable regions, which

means ponytail will not sway in lateral direction without external forcing. For the forced flexible

string problem, we have described the Floquet Spectral method and Floquet monodromy matrix

method used to solve the problem. Sections 4.1 and 4.3 show how to solve using the method

of separation of variables, and use the points λn(δ,ε) to find whether the ponytail is stable in

lateral direction as a function of stride rate. To verify its accuracy this method has been compared

with equation (4.1) discretized both in time and space. For the forced flexible rod problem, we
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have discussed the bending stiffness effect to the stability regions. Sections 5.1 and 5.2 show the

results compared with the flexible string problem for different value of bending stiffness, and the

result compared with Champneys’. For the damping problem, linear damping and Kelvin–Voigt

damping have been used to decay energy of ponytail motion to turn the instability regions to

be stable, and the effects of linear damping is more reasonable and useful than Kelvin–Voigt

damping.

This thesis is co-authored with Dingqian Ding, Stefan G. Llewellyn Smith and Todd

Christopher. The thesis author is the primary investigator and author of this material.
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