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Abstract

A general formulation of an assumed strain method in the context of mixed finite elements is presented.
A mixed strain field is presented to which an enhancement is added resulting in a formulation which
produces coarse mesh accuracy in bending dominated problems and locking-free response in the near
incompressible limit. The structure of the mixed fields present permits a consistent variational stress
recovery. Also, the construction of the formulation is such that the mixed parameters may be obtained
explicitly and the resulting finite element arrays obtain full rank using standard order quadrature. In
this paper our attention is restricted to the area of geometrically linear problems in solid mechanics.
Specifically, we investigate the proposed formulation in the setting of nearly incompressible elasticity,
physically nonlinear plasticity and thin shell structures. Representative simulations show favorable
performance of the formulation.

1. Introduction

It is known that finite elements based upon low order isoparametric displacement formula-
tions exhibit poor performance in bending and locking in the nearly incompressible limit.
Recent formulations which exhibit improved accuracy with respect to these two deficiencies
fall into two categories namely assumed stress and assumed strain methods. The formu-
lation presented herein is addressed in the context of assumed strain methods which have
been preferred to their assumed stress counterparts, due to their natural compatibility
with the strain drive format typically found in the algorithmic development of nonlinear
materials.

One of the first. developments in the area of assumed strain methods was by WILSON ef al.,
[1973] who proposed the addition of internal incompatible displacement modes of quadratic
distribution to enhance bending performance of quadrilateral elements. Subsequently, it
was discovered that the element failed the patch test for an arbitrary quadrilateral. TAy-
LOR et al., [1976) proposed modifications to Wilson’s original formulation which allowed
for satisfaction of the patch test for arbitrary configurations. In later developments SIMO
& RiIral, [1990] present a systematic development of a class of assumed strain methods.
They provided the framework for the development of low order elements possessing im-
proved performance in bending dominate problems in the context of small strains. Issues
related to convergence and stability were also presented. Further extensions were made to
incorporate geometrically nonlinearities by Simo & ArRMERO, [1992], but was found to
lock in the incompressible limit for three dimensional hexagonal elements for both geomet-
rically linear and nonlinear problems. Improvements were made for the three dimensional
formulation by Simo et al., [1993] which incorporated modifications to the tri-linear shape
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functions, additional enhanced modes and an increased quadrature rule. The resulting el-
ement yielded a locking-free response in the incompressible limit and improved bending
characteristics for both geometrically linear and nonlinear problems. ANDELFINGER et
al.. [1992] developed two and three dimensional enhanced strain elements for linear kine-
matics which overcome locking in the incompressible limit and behaved well in bending
dominated regimes, but required a minimum of 21 element parameters for three dimen-
sions. WEISSMAN, [1996] also presented an enhanced formulation based on a three field
functional which vield good performance for a wide class of problems using 15 element pa-
rameters. More recently, KORELC & WRIGGERS, [1996], [1997] developed two and three
dimensional enhanced strain elements which vield favorable results, with only 9 element
parameters, therebyv improving the efficiency of the element.

The approach of the present work utilizes a mixed finite element technique to overcorme
the difficulties which arise in the near incompressible limit and simultaneously enhance
the resulting mixed strain field to improve coarse mesh accuracy in bending. Also, the
formulation maintains a strain drive format such that general constitutive equations can
be treated identically as in the Galerkin displacement finite element method. The approach
is set forth by a reparametrization of the strain field in terms of a mixed approximation,
from which a consistent formulation is derived. An additional enhancement is made to the
strain field to improve the bending characteristics and give a locking-free response. The
formulation is shown to have the appropriate convergence conditions as set forth in SiMoO &
Rira1, [1990], namely consistency and stability. The element is formulated such that only
standard order quadrature is needed for full rank, while maintaining a minirmum number
of element parameters, to achieve accurate results. The formulation also circumvents
difficulties which can arise in assumed strain methods, for variational stress recovery.

The formulation of the strain field which appears in SiMo & Riral and others differs from
the present work in the reparametrization of the strain field. As a consequence of their
formulations, orthogonality conditions arise explicitly hetween the stress and enhanced
strain field. This orthogonality condition makes full variational stress recovery difficult. if
not impossible. The same orthogonality constraint exists implicitly in the present formu-
lation, but due to the mixed construction of the stress field variational stress recovery is
permissible.

The paper is outlined as follows. In §2, basic notation is given as well as the variational
formulation for the model which is then cast into its weak form. Finite element interpola-
tions are introduced in §3 along with the transformation relations for the mixed fields. The
mixed-enhanced strain field and variationally consistent stress field recovery are developed
and presented. The residual equations are then obtained from which a numerical formu-
lation is presented. Representative numerical simulations for the case of plane strain and
three dimensional elasticity are presented in §4, for linear kinematics with either elastic
or elastic-plastic constitutive equations. Finally, in §5 conclusions are drawn and further
work outlined.

2. Mixed-Enhanced Strain Formulation
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This section examines the proposed formulation in the setting of linear elasticity. We
begin with an introduction of the basic notation used and then summarize a three-field
Hu-Washizu functional in which the Dirichlet condition v = @ on T, is explicitly enforced.
Pinally, we present the resulting field equations in the weak form which is used subsequently
for the finite element formulation.

2.1. Notation

The open set €2 C R"(n = 1.2 or 3) with smooth boundary 9€ represents a bounded
reference configuration B for the continuum body. We admit the decomposition of the
boundary into two parts: I', C 9 where the displacement is prescribed as w = @ and
[y © 0¢1 where the traction vector is prescribed as t = on subject to

oN=T,ul, and T,0T, =0 (2.1)

where o is the stress tensor and n is the outward normal to the boundary.

The governing equations for linear elastostatics are given by the balance of linear and
angular momentum
Divio|+ b =

the strain-displacement relationship
() — 1 T o«
e=V" u:a(i—u + Vu') (2.3)

and for elastic stress response the constitutive equations

de

Do

4)

In the above e denotes the infinitesimal strain tensor, o the stress tensor, Wi(X.e) is
a convex stored energy function, b is the body force per unit volume and Div -] is the
divergence operator.

For subsequent development let If be the space of admissible displacements written as
U={u: Q- R"|Juec H(Q) and u =T on I“‘u} (2.5)
while the space of admissible stresses and strains are denoted by M

M={h:Q=R"<R" | h; € L*(Q)} . (2.6)
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2.2. Variational Formulation

An approximate solution of the boundary value problem is constructed from a variational
statement of the problem. The basic field equations may be included in a variational
statement for the elasticity problem using a Hu-Washizu functional, WasHIZU, [1982].
We use a special case of one such functional and examine its implications. Accordingly, we
have a functional in which the displacement field, u € U/, the stress tensor, & € M and the
strain tensor, £ € M are regarded as the independent variables. The proposed three-field
functional Il : U x M x M — R may be expressed as

u, 8. 0) = / (W(X,8)+6:(e—&) dV + Iepe(u) (2.7)
JO
where for conservative external loading

Emm%:m/budV~/iwuﬁ. (2.8)
. JI

We may state the solution of (2.7) as: Find the u, & and &, with u satisfying the Dirichlet
boundary condition w = @ on I'y, which make the Hu-Washizu functional 1l(u, €, o)
stationary for all admissible variations du € V, §&¢ € M and 66 € M. Where V is the
space of admissible variations in the displacement written as

V={ou: Q= R"[duc HY(Q) and bu=0o0onT,} . (2.9)
Since there are no explicit constraints on € and & we may take the variations 6¢ and 6
to be contained within M as defined in (2.6).

The stationary point of II is obtained by setting to zero the first variation of (2.7) with
respect to the three independent fields. Accordingly

/55'&(]\’%/5u-b(ﬂ’—/ du-tdS =0
J JO JIy

/ OE - (QH- - 5’) AV =10 in {2 (2.10)
Jo

s

/6&«s~é)m*:o.
JO

for all admissible variations du € V, 0€ € M and do € M.

3. Finite Element Approximations

In this section we outline the interpolates used for the field variables, from which the
mixed strain and stress fields are constructed in terms of nodal parameters as well as
internal element parameters. Using the mixed strain field we construct an approximation
to the three-field variational formulation. We then use the stationary condition to vield a
reduced set of nonlinear equations, which are then linearized. From these equations finite
element arrays are formulated. Finally, we outline a procedure for implementation of the
formulation.
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[y

3.1. Finite Element Interpolations for the Field Variables

We begin by a discretization of the given reference domain € into a collection of polygonal
shaped subdomains, €, such that Q ~ Qf = U{ Q. where €, is the closure of an individual
element. Note that the collection is an approximation of the actual domain Q. We admit
the decomposition of the approximation to the boundary as 9Q ~ 9Q" = I'h ATl and
Ihurh = 0.

For isoparametric finite elements we define the reference geometry X" € R” and displace-
ment field u” € UY" over a typical element €. in the form

X = Z Ny(€) X! and u = Z Ni(g)a' (3.1)
=1 f=1

where N;(€) are the standard isoparametric shape functions associated with node 7, nen is
the number of nodes on element €, h is a characteristic length of element Q, and 4. X" ¢
R™, see ZIENKIEWICZ & TAYLOR, [1989] or HUGHES, [1987] for further details.

For the approximate problem we introduce the space (" as a finite-dimensional approxi-
mation of i, accordingly the space of adnissible displacement fields maybe written as

U = {u"‘ | u e H'I(Qh) and u” = @" on TZ} ) (3.2)

Lastly, the space M" | which contains the approximations to the stress and strain fields, is
a finite-dimensional approximation of M given by

MU= A{R" | bl e L)} (3.3)

]

3.1.1. Mixed Quantities.
The key idea for the mixed stress and strain fields is to develop the interpolates in the
natural or isoparametric space and transform the results to the physical space. Based on

requirements of tensor calculus. SOKOLNIKOFF, [1964], we use the following transformation
relations for the stress and strain tensors

- e ‘““I __l . -~ ; - ) . ) N
Sapl&.8) = c15(Tra)” (Typ) and  E.5(8,.8) =€1;T71.Ty5 (3.4)
where S and £ are the stress and strain in the isoparametric space, respectively. The above
are defined so that §: £ =& : €.
Let UJ denote the parent domain in the isoparametric space €. Utilizing the mapping

X 0 — Q. the Jacobian is expressed as

ox’!

f]]a(g) - 05“
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For the present paper the Jacobian used in (3.4) is averaged over the element €2, and used
to define T'. This will permit direct inclusion of constant states. minimize the order of
quadrature needed to evaluate the residual and tangent arrays and also eliminate problems
associated with initially distorted elements. The average is denoted as

T / J(&) dv . (3.6)

e

Substituting (3.6) into (3.4) vields the transformation of the fields (S,&) in the isopara-

metric space to the fields (&.€) in the physical space

SEB)=T'¢T" and £, ~v)=T"eT. (3.7)

Remark 3.1.

1. Alternatively, the Jacobian can be evaluated at the centroid, as originally suggested
bv Pian & SUMIHARA, [1985] and TAYLOR ef al., [1976]. Note for two dimensions
the average and centroidal Jacobians are identical.

2. Since the above transformation relations for the stress and strain are typically a
measure of the isoparametric and physical space alternative transformations are
admissible. Numerical observation by GLASER & ARMERO, [1996] and WRIGGERS
& REESE, [1996] and confirmed during the developments of the present work show
that replacing J by J~7 result in transformation relations which are superior for
the class of problems examined.

We assume there exist linear maps &(€, ) and &,(&. ) for which the fields (&, &) in the
isoparametric space may be expressed as:

S(E.8) = Bo + &1(€,8)
E(E.v) =0+ i [E9(€.7) + E2(€. )]

where 3y, 3. 7o and v are parameters aud £;(€,v) and E(€. ) denote linear forms

T T

EE) =) Eal@w and  E(& a)=) Ealfay

k=1 k=

where n and m are the number of parameters for the mixed and enhanced fields, respec-
tively.

We construct the approximations £; and &, such that
/ () do= 0, / E()ydo=0 and / E(NEN() do= 0. (3.9)
Jr Jr J

The relations in (3.9) will be used subsequently to decouple and solve for the element
parameters of the mixed stress and strain.
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Remark 3.2.

1. The mapping & (€, o) with its associated element parameters. a were added to
(3.8)7 for two reasons: a) to improve performance in nearly incompressible regions.
b) and to improve coarse mesh accuracy in bending dominated regimes.

2. Note the strain field in (3.8) has more parameters than the stress, hence we adopt
the phrase mized-enhanced strain as an extension of the terminology introduced by
SIMO & RIFalL [1990].

For two and three dimensional problems employing 4-node quadrilateral and 8-node hex-
ahedral elements the maps £;(€, ) and &£5(€,-) are given in Tables 3.1 and 3.2 below.
respectively. Noting symmetry the independent components are ordered in standard Voigt
notation as:

Table 3.1 Two Dimensional Interpolations

B (1 S O T [ C =Y
11 §271 §1ay

2 2 £172 §a0xo

1 2 0 0

Table 3.2 Three Dimensional Interpolations

“ [E1(E. )]sy [E2(8, )]y
Ll &+ &+ &8y Lo+ §800 4 Ei6305
2002 St & 886 Loy + E&sas + Esag
30003 Gr+&vs+ &6y Ear + Ebas + §€500
1 2 £3710 0

23 §1711 0

1 3 Eav12 0

In both cases the minimum number of parameters needed to obtain proper rank of the
mixed formulation are used to define & (€, -).

The interpolates for & and £ in the physical space are obtained by equating ( 3.7) and (3.8)
resulting in

&= B0+ TE(EBTT
(3.10)

1 .
-1 [e -1

€=+ ;T [E1(&.7) + E2(8, )] T

where the reparameterization of the constant terms is given by

Bo = TZ%TT and vy = T‘T’fyofl"1 . (3.11)
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Remark 3.3.

1. Note the enhanced parameters added i Table 3.2 for the normal strain components
are chosen such that the resulting strain components are complete polynomials.

This is done to provide the necessary equations to enforce the incompressibility
constraint without loss of rank for the resulting finite element arrays. see SIMO ef
al., [1993].

3.2. Mixed-Enhanced Strain Field

By isolating (2.10)3 we may express the element parameters appearing in the mixed-
enhanced strain, £ in terms of the nodal displacement parameters u'. Recall (2.10)5

/ tr [667 (e —&)] dV =0 (3.12)
J0

Substituting (3.10) into (3.12) and noting (3.9) we arrive at

/ tr [085 (e = )] dV =10
Jo (3.13)

/ tr {ff(ﬁﬁ) (T] (e — vo)T — %61(7))} dV = 0.

Since 63y and 63 are independent of the arguments within the integrand and the limits of
mtegration we obtain vy as

1 f ‘
Vo = e / e dV =g (3.14)
Vo
and cast (3.13), as

g 1 ~ |
/Ef (E;;u— —,E17> AV =0 (3.15)
JO J

In (3.15) we have defined the following operators which enable a mapping between tensors
and matrices

Evly) = By . §(B) = E.B. THe-eq)T — Esu . (3.16)
For two dimensions
£2 0 B &2 0
E,i=10 & and Ey =10 & | . (3.17)
0 0 0 0
Grouping terms in (3.15) and solving for the element parameter -y gives
v =G 'gu = bu (3.18)
where ‘ .
g = L E B, dV and G = /lez:"?E1 do . (3.19)

Using (3.14) and (3.18) we may rewrite (3.10), in matrix notation as

E=DB,(6)u+ Bsl€)a . (3.20)
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Remark 3.4.

1.

Using the interpolations in Table 3.1 and 3.2 results in a diagonal form for G. This
simplifies the solution of the element parameters v to a set of scalar decoupled
equations.

Note orthogonality of &) and &, is assumed by (3.9)5. In Appendix A we present an
alternative formulation for constructing £; and &, which satisfy the orthogonality
condition. However, (3.9); , may not hold in general.

The distinction between E, and E; arises since the array, £ assoclated with the
strain will have two’s which multiply the shear coefficients (for the three dimensional
case).
From the condition (3.9), the resulting enhanced strain displacement matrix B,
will inherit the same properties provided any operators multiplying it are constant.
/Q B, A, dV = 0 with Ay = constant. Thus the consistency condition or patch
test set forth in Stvo & Rirar, [1990] is satisfied.

The stability condition set forth in SiMo & RiFatr, [1990] requires that the con-
forming and enhanced spaces be independent. This is satisfied by the choice of
interpolations found in Tables 3.1 and 3.2, i.e. the mappings are disjoint.

3.3. Variational Stress Recovery

By isol
(2.10)

where

ating (2.10), we may solve for the element parameters of the mixed stress, 6. Recall

/ VE (o —a) dV = (3.21)
J
L (3.22)
JE

Substituting (3.10) into (3.21) and noting (3.9) we arrive at

/ tr [0y (o = Bo)] dV =0
” (3.23)

/f tr [;5;/‘(57) (T o —B)T " ~&(B))| dV =0 .

Regarding 07, and o as independent of the arguments within the integrand and the limits
of integration we may obtain (3, as

Po= / o dV = oy (3.24)
BEVAY
and cast (3.23), as
1 —

Ja
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where we have defined the following operators which enable a mapping between tensors
and matrices

1 N 9 o

T ' (o—0oy)T ' — FE5. (3.26)

Grouping terms in (3.25) and solving for the element parameter 3 gives

U |
,B == Gwlh where h = ‘“TE]] B A (»))27)
Jod
The variationally recoverable stress becomes
& =P+ TENEPTT . (3.28)

Remark 3.5.

1. The variational stresses developed above are used for postprocessing onlv and are
not needed for the construction of the residual or tangent.

3.4. Residual and Tangent

By construction, the substitution of (3.20) into (2.7) renders the second term of (2.7) zero,

hence we may express a modified functional IT as
Mu. &)= / Wie)dv + 1. (u) (3.29)
J

The stationary condition of Il vields a reduced set of nonlinear equations. which mayv be
expressed as

= 17 S e B! , . o
oll = —— 0 dV = {du ot} o dV o+ 0 =0 (3.30)
Jao 0f€ JQ Bi, k

where o is defined in (3.22).

To solve the mixed boundary value problem the above nonlinear equations are linearized
and solved by a Newton’s method as a sequence of linearized problems. Hence, linearizing
(3.30) we obtain

5 a2 - Y
d(8TT) = / dE - d; D08 AV = {du” (50:T}/ Hﬁ ﬁ;} d\{gg} (3.31)
JO - JO ou ey g

where

_ pTy Y )
Ku'u """" B, D Bu : Kum - B“ D Bm v 6211'

and Do e
JEJE

I{(‘zu - KT > K(n'x - B;[) D B(}
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Noting that the variations du and da in (3.30) are arbitrary we obtain the finite element
residual vectors

nelm
el

if'i?ﬁ(u{ww at) - ff’.]?f,(\u(”)} - 0

e=1 (3.32)
fenn(Ue, o) =0, (e =1,2,... , nelm) .
where ‘ )
fint{ue, ) = / B({O' AV, fenn(ue, o) = / Blo dv (3.33)
Ja, J.
fere 18 the standard external force vector
Feriltie) = / poNTH dV + / Nt dS (3.34)
Ja, JT.

and A is the standard finite element assembly operator. With the aid of (3.31), linecarizing

PR . . k) (k)y -
(3.32) about an intermediate state (uf . afv})) vields

L[f?ﬂf} - fl(,i,) -+ KI(IIZ) (hL(‘ -+ Kl(li‘}) da{(,

| (3.35)
Liforn) = £ + K% du, + K dov, .

enh o Crcy

From (3.32), we observe that (3.35); may be solved at the element level, therefore con-
densing out dex,

dov, = ~ [K”‘)Jvl ( "+ K du() . (3.36)

o enh o

Substituting (3.36) into (3.35); we arrive at an equivalent displacement model involving
only the nodal displacement vector at the global level

K® du = R® (3.37)
where
nelm ) (k)
KU‘) ot A iK(L’ll - K'uﬂ (K(M}‘)Al KO‘“} \;
nelm (k)
R(k) _ A] {f«;;ztz’ - f’i'rzi + Kuu (Kcya‘)—"l f{f,n,h}

The system (3.37) is solved and then the unknown fields are updated by

ul" Y = wlt) + du, (3.38)
agk+l) — agk,) +da, . (3.38

The process is repeated within a particular time step ¢, until convergence of the (k + 1)'"
iterate is obtained, the solution is then advanced to the next time step ,,, .
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Remark 3.6.

1. For linear elasticity convergence will be obtained in one iteration and the solution
is then advanced to the next time increment.

2. To obtain da in (3.36) one can either recompute the array for each element for each
global iterate E or store the arrays associated with the k global iterate. This storage
1s in addition to any other history needed for the element such as for inelasticity.
For three dimensional problems with fine meshes the demand on memory becomes
significant.

3. An alternative algorithm, introduced by S1MO et al.. [1993], for obtaining the ele-
ment parameters o is outlined in Appendix B which circumvents the large demand
on memory and requires storage of only the element parameters, o from the previous
global iterate for non-linear elasticity.

4. Numerical Simulations

In this section we investigate the performance of the proposed formulation described above.
Specifically, we show the locking free response in the incompressible limit and improved
performance in bending dominated problems. To assess the performance of our formula-
tion several representative simulations are presented below in the setting of plane strain
and three dimensional linear elasticity. In addition, modifications to include .J5 plasticity
and viscoplasticity outlined in Appendix C illustrate the ease of implementation and per-
formance of the present formulation for physically nonlinear materials. Comparisons are
made with different element formulations.

The element formulations considered are:

H1 This hexahedral element is a standard eight-node displacement formulation using
tri-linear interpolation functions and a standard 8-pt quadrature rule, its two
dimensional counterpart is denoted as Q1.

H1/E9 This hexahedral element is an enhanced formulation with 9 enhanced modes and
utilizes tri-linear interpolation functions and a standard 8-pt quadrature rule,
see SIMO & ARMERO, [1992] for further details, its two dimensional counterpart
is denoted as Q1/EA4.

H1/E12 This hexahedral element is an enhanced formulation with 12 enhanced modes
and utilizes modified tri-linear interpolation functions and a special 9-pt quadra-
ture rule, see SIMO et al., [1993] for further details.

H1/E21 This hexahedral element is an enhanced formulation with 21 enhanced modes
and utilizes tri-linear interpolation functions and a standard 8-pt quadrature
rule, see ANDELFINGER, [1992] for further details.

Shell This 4-node quadrilateral shell has 6 degree-of-freedom per node and utilizes
standard order quadrature, see TAYLOR, [1987] for further details.
H1/ME9 The new mixed-enhanced formulation with 9 enhanced modes, standard tri-
linear interpolation functions, and standard 8-pt quadrature rule, its two di-
mensional counterpart is denoted as Q1/ME2.
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4.1. Eigenvalue Analysis

To appraise the behavior of the elements above in the nearly incompressible limit an elgen-
value analysis for a single finite element is performed. The two configurations considered
are depicted in Figure 4.1.1. For both, the assumed mechanical properties are F = 1
and v = 0.499999. Table 4.1.1 and 4.1.2 include only the 18 non-zero eigenvalues, i.e.
the 6 rigid body modes are excluded. Values four orders of magnitude greater than the
tabulated values are denoted by the oo symbol. For a locking-free element only one mode,
corresponding to the dilatational mode, should tend toward infinity as v — 1 /2. If any
additional modes tend toward infinity the element will exhibit volumetric locking.

Figure 4.1.1

Undistorted and Distorted Configurations of a Hexahedran

Table 4.1.1 Eigenvalues for a Nearly Incompressible 8-Node Regular Hex-
ahedral E lonmn‘f

Mode HI H1/E9 H1/E12 H1/E21 H1/ME9
1 5.5556E-02 5.5556E-02 5.5556E-02 5.5556E-02 5.5556E-02
2 5.5556E-02 5.5556E-02 5.5556E-02 5.5556E-02 5.5H561-02
3 1.6667E-01 1.1111E-01 1.1111E-01 5.5556E-02 5.5556E-02
4 1.6667E-01 1.1111E-01 1.1111E-01 5.5556E-02 5.5556F-02
5 1.6667E-01 1.1111E-01 1.1111E-01 5.5556E-02 5.5556E-02
6 2.2222F-01 2.2222F-01 1.1111E-01 1.1111E-01 1.1111E-01
7 3.3333F-01 3.3333E-01 1.1111E-01 1.1111E-01 1.1111E-01
8 3.3333E-01 3.3333E-01 1.1111E-01 1.1111E-01 1.1111E-01
9 3.3333E-01 3.3333E-01 2.2222F-01 2.2222FE-01 2.2222FE-01
10 3.3333E-01 3.3333E-01 3.3333E-01 3.3333E-01 3.3333E-01
11 3.3333E-01 3.3333E-01 3.3333E-01 3.3333E-01 3.3333E-01
12 o0 3.3333E-01 3.3333E-01 3.3333E-01 3.3333E-01
13 o0 3.3333E-01 3.3333E-01 3.3333E-01 3.3333E-01
14 o0 3.3333E-01 3.3333E-01 3.3333E-01 3.3333E-01
15 e o 3.3333E-01 3.3333E-01 3.3333E-01
16 o0 o0 3.3333E-01 3.3333E-01 3.3333E-01
17 00 00 3.3333E-01 3.3333E-01 3.3333E-01
18 00 00 o0 o0 oC
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Table 4.1.2 Eigenvalues for Nearly Incompressible &-Node
Distorted Hexahedral Element

Mode Hi H1/E9 H1/E12 H1/ME9
1 3.6273E-02 3.0720E-02 3.3857E-02 3.3108E-02
2 7.5142E-02 5.5337E-02 5.6785k-02 3.9517E-02
3 1.3489E-01 1.0233E-01 &.0446E-02 6.6768E-02
4 1.6698E-01 1.3401E-01 1.0274E-01 7.4400E-02
5 1.9041E-01 1.4662E-01 1.0760E-01 8.2449E-02
6 2.1365E-01 1.9201E-01 1.2176E-01 8.9910E-02
7 2.5897E-01 2.1791E-01 1.3636E-01 1.0429E-01
8 3.2395E-01 2.5554E-01 1.4528E-01 1.5998E-01
9 3.8442E-01 2.9852F-01 1.8486E-01 1.7127E-01
10 4.0333E-01 3.1738E-01 2.3426E-01 2.2994FE-01
11 21370401 3.8075E-01 2.6414E-01 2.6744E-01
12 o0 4,3302E-01 2.9215E-01 3.0429E-01
13 o0 4.8680E-01 3.4335E-01 3.1834E-01
14 00 3.8748E+401 3.7548E-01 3.4756FE-01
15 00 o0 3.8995E-01 4.2667E-01
16 o s 4.6811E-01 4.45345-01
17 o0 o0 5.2791E-01 5.0957E-01
18 0 o o0 o0

4.2. Cook’s Membrane Problem

To demonstrate the performance of the proposed element in a bending dominated response,
we consider a tapered panel clamped on one end and subjected to an in-plane shearing
load on the free end, see Figure 4.2.1. In the context of linear elasticity, this simulation
is commonly referred to as Cook’s membrane problem. The material properties are taken
to be F = 250 and v = 0.4999 such that a nearly incompressible response is effectively
obtained.
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Figure 4.2.1  Cook’s Membrane Problem.
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In Figure 4.2.2 the top corner vertical displacement is plotted versus number of elements

per side. Both the proposed Q1/ME2 element and the Q1/E4 element converge rapidly
and show excellent performance, while the standard Q1 element exhibits locking behavior,

D600

(Modifieg T) o= 250, v = 0.4899

’3"\)5\) LK A B O Y A R T ST T T T T T Y T T T T T T T YT
0 10 20 30 40 50 60 70
Number of elements per side

Figure 4.2.2  Convergence of the finite element solutions for Cook’s problem.

The dashed line denoted by Q1/ME2 (Modified T) corresponds to modifications made to
the average Jacobian T presented in Section 3.1.1. The modifications consist of altering
the original reference coordinate system used to compute T' by simply rotating the physical
element to align equally with the isoparametric coordinate system, while maintaining the
aspect ratio. The new coordinate frame is then used to form the average Jacobian. The
basic concept is depicted in Figure 4.2.3. This modified Jacobian has two features: a)
the proposed Jacobian removes any element distortion, b) and the resulting Jacobian is
diagonal yielding additional efficiency for the computation of arrays.

X

Figure 4.2.3  Rotated reference frame for computation of the average Jacobian.
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The solution time reported for both the Q1/ME2 and Q1/E4 methods were approximately
the same. Also the convergence of the Q1/ME2 with respect to the energy norm was
similar to the Q1/E4.

4.3. Thick Wall Cylinder Problem

To assess the performance of our formulation for a confined nearly incompressible state
we consider a thick-walled cylindrical tube. The model consists of a 5° segment of the
cvlinder as depicted in Figure 4.3.1, with an inner radius 7; = 7 and outer radius r, = 10

25(0). while various values for Poisson’s ratio are listed in Table 4.3.1. Further we assume
plane strain in the axial direction. Normalized radial displacements with respect to the
exact solution are found in Table 4.3.1. Both the Q1/ME2 and Q1/E4 show excellent
performance, while the Q1 element locks. The same pattern with respect to solution
time and convergence was observed for the present simulation as in the Cook’s problem.

L

OO0 6000 OO 0O
Figure 4.3.1  Thick Wall Cylinder Problemn

Table 4.3.1 Normalized Radial Displacement at 7 = 10

v Q1 Q1/E4  Q1/ME2
0.49000 1.008 1.014 1.014
0.49900  0.948 1.002 1.002
0.49990  0.638 1.001 1.001
0.49999  0.150 1.001 1.001

4.4. Thick Wall Sphere Problem

To demonstrate the performance of our 3D formulation for a nearly incompressible state in
a three-dimensional stress state we consider a thick-walled sphere depicted in Figure 4.4.1
with an inner radius r; = 7.5 and outer radius r, = 10 subjected to an internal pressure
p = 1. The elastic modulus was taken as £ = 250, while various values for Poisson’s
ratio are listed in Table 4.4.1. Normalized radial displacements with respect to the exact
solution are found in Table 4.4.1. The H1/ME9 element shows excellent performance.
while the H1 element performance is poor and locks. Again the same pattern with respect
to solution time and convergence as reported in the previous problems was observed for
the present simulation.
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BANEY

jREE

Figure 4.4.1  Thick Wall Sphere Problem

Table 4.4.1 Normalized Radial Displacement at r = 10

7 H1 H1/E9  H1/ME9
0.49000  0.992 1.018 1.019
0.49900  0.772 0.998 1.001
0.49990  0.250 0.985 0.999
0.49999  0.033 0.936 0.999

4.5. Two Dimensional Limit Analysis

To appraise the behavior of the elements above in a highly constrained elastoplastic
problem, we introduce the double notched specimen after NAGTEGAAL et al.. [1974].
This simulation produces a limit load in terms of the net stress given analvtically by
Tlim = (24 m)oy/ \/(3) ~ 2.97. The material parameters used for the elastic-perfectly
plastic plane strain simulation are: E' = 70, v = 0.3 and g, = 1.0, while the geometric
properties are: H = 30, W = 10 and b = 1. Due to symmetry only one-quarter of the
geometry was analyzed with the resultant mesh being 15 x 5. The loading was simulated
via displacement control at the end opposite the ligament. Thirty displacement increments
were chosen for the simulation. Results in Figure 4.5.1 show that the standard displace-
ment formulation does not obtain the limit load, but instead increases monotonically with
increased load, whereas the proposed mixed-enhanced formulation asymptotes to near the
analyvtical solution.
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Figure 4.5.1  Notched Tensile Specimen: Limit Analysis

4.6. Three Dimensional Limit Analysis

To appraise the three dimensional behavior of the elements above in a highly constrained
elastoplastic problem, we introduce the three dimensional rectangular block after AN-
DELFINGER ef al., [1992]. The material parameters used for the elastic-plastic simulation
are: 2 = 210,000, v = 0.3, H;, = 210, Hyy, = 0 and o, = 250, while the geometric
properties are: H = 50, W = 100 and L = 100. Due to symmetry only one-quarter of the
geometry was analyzed with the resultant mesh being 5 x 5 x 5. The loading was simu-
lated via displacement control at the central patch on the mesh, as depicted in Figure 4.6.1
Thirty displacement increments were chosen for the simulation. Results in Figure 4.6.2
show that the standard displacement formulation does not obtain the limit load, but in-
stead increases monotonically with increased load, whereas the proposed mixed-enhanced
formulation asvmptotes to the slope of the hardening parameter. H;,,.

Figure 4.6.1 Elasto-plastic rectangular block
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Figure 4.6.2  Load-deflection curves for an elasto-plastic rectangular block

4.7. Viscoplasticity

We consider a perforated strip shown in Figure 4.7.1 illustrating the behavior of the for-
mulation when subject to a viscoplastic response as outlined in Appendix C. The material
parameters used for the elastic viscoplastic plane strain simulations are: F = 70, v = 0.3.
oy, = 0.243, H;y, = 0.135 and Hy;y,, = 0.015 while the geometric properties are: H = 36.
W =10 and R = 5 after an example in ZIENKIEWICZ & TAYLOR, [1991]. Due to sym-
metry only one-quarter of the geometry was analyzed. The loading was simulated via
displacement control at the end opposite the ligament. Fifteen displacement increments
were chosen for the simulation. Results in Figure 4.7.1 shows the results for various values
of viscosity as well as the elasticity and rate independent plasticity solution.

AL YR W Y A A A 4

177

Figure 4.7.1  Perforated Strip at various viscosities
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4.8. Pinched Cylindrical Shell with End Diaphragm

To demonstrate the performance of our 3D formulation for singly curved thin shell struc-
tures we examine a pinched cylindrical shell with end diaphragm proposed by MACNEAL
& HARDER,[1985]. We consider the configuration of the cylindrical shell as depicted in
Figure 4.8.1 with an inner radius r; = 300, wall thickness t = 3.0 and length L = 600. The
elastic modulus was taken as £ = 3.0 x 10 and a Poisson’s ratio of v = 0.3. One eighth of
the shell 1s modeled by an N x N mesh defined in cylindrical coordinates. Results reported
in Table 4.8.1. for the vertical displacement under the load are normalized with respect to
the reference value 1.82488 x 10°. The H1/ME9 element shows excellent performance for
the thin shell limit.

Figure 4.8.1  Pinched Cylindrical Shell Problem

Table 4.8.1 Normalized Displacement under the Load

Mesh H1 Shell ~ H1/E9  H1/ME9
4 x4x1 0.035 0.636 0.081 0.107
8x8x1 0.069  0.951 0.405 0.496
16 x 16 x 1 0.148 1.016 0.838 0.914
16 x 16 x 2 0.149 - 0.835 0.908
16 x 16 x 3 0.149 - 0.834 0.907
32 x 32 x 1 0.315 0.976 0.992

4.9. Pinched Spherical Hemisphere

To demonstrate the performance of our 3D formulation for doubly curved thin shell struc-
tures we examine a pinched hemisphere with an open top, modeled as an 18° spherical
cap as proposed by MACNEAL & HARDER,[1985]. We consider the configuration of the
spherical shell as depicted in Figure 4.9.1 with an inner radius r; = 10 and wall thickness
t = 0.04. The elastic modulus was taken as F = 6.825x 107 and a Poisson’s ratio of v = 0.3.
One quarter of the shell is modeled by an N x N mesh defined in spherical coordinates.
Results reported in Table 4.9.1. for the displacement under the Joad are normalized with
respect to the reference value 0.094. The H1/ME9 element shows excellent performance
for the thin shell limit.
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Figure 4.9.1  Pinched Spherical Hemisphere

Table 4.9.1 Normalized Displacement under the Load

Mesh H1 Shell  HI/E9  Hi/MEY
4 x4 x1 0.001 0.897 0.010 0.039
8x 8 x1 0.003 0.999 0.163 0.732
16 x 16 < 1 0.010 0.995 0.780 (.989
16 x 16 x 2 (0.010 - 0.782 0.988
16 x 16 x 3 0.010 - 0.749 0.988
32 x32x1 0.039 0.994 0.974 0.998

5. Closure

We have presented a preliminary investigation for a new class of assumed strain methods
employing low order finite elements in the setting of physically nonlinear elasticity. The
present. methodology circumvents difficulties in stress recovery in additional to improved
coarse mesh accuracy and locking free response in quasi-incompressible regimes. The
formulation exhibits favorable performance in comparison to the Q1/E4 element, which is
currently a widely used element.

From the numerical simulations presented, several noteworthy characteristics have been
found:

(1) In bending dominated response coarse mesh accuracy is favorable. Improvements to
bending dominate regimes may result if: a) introduce alternative enhanced modes,
b) introduce alternative procedures (as briefly discussed in Section 4.2) for trans-
forming the isoparametric stress and strain interpolates to the reference configura-
tion. Both classes of improvements need to be pursued in future work.

The orthogonality condition which arises between the stress and enhanced strain
field in many assumed strain formulations, does not explicitly appear in the present
work, hence variationally consistent stress is permissible.

o~
[
p—a
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(3) Since the mixed parameters, v may be computed explicitly the resulting element is
efficient and retains standard quadrature order to exactly integrate arrays, unlike
most enhanced strain formulations.

(4) The element exhibits excellent behavior for configurations where element aspect

ratios are large, such as thin shell like structure.

Since the element uses strain driven constitutive relations in the formulation exten-

sion to nonlinear constitutive relations is easily obtainable as demonstrated with

the implementation of rate dependent and independent plasticity.

—
[t
~—

The preliminary performaunce exhibited by the Q1/ME2 and Q1/ME9 in bending and
quasi-incompressible regions offers an attractive methodology for a systematic development
of mixved-enhanced finite elements. Further extension to finite deformation is currently
underway and preliminary results show favorable performance.

References

ANDELFINGER. U., RamMm, E. & Roresr, D. [1992], “2D- and 3D-
Enhanced Assumed Strain Elements and Their Application in Plastic-
ity”, Computational Plasticity, Proceedings of the 4th International Con-
ference,. ed. D. Owen, E. Onate and E. Hinton, 1997-2007, Pineridge
Press, Swansea, UK.

KoreLc, J & WRIGGERS, P. [1996], “An Efficient 3D Enhanced Strain
Element with Taylor Expansion of the Shape Functions™, Computational
Mechanics. 19, 30-40.

Korerc, J & WRIGGERS, P. [1997], “Improved Enhanced Strain Four-Node
Element with Taylor Expansion of the Shape Functions”, International
Journal of Numerical Methods in Engineering, 40, 407-421.

Mac NeaL, R.H. & Harper. R.L. [1985], “A Proposed Standard Set of
Problems to Test Finite Element Accuracy”, Journal of Finite Elements
in Analysis and Design, 1, 3-20.

NaaTecaLL, J.C., Parks, D.M. & Ricg, J.R. [1974], “On Numerical Ac-
curate Finite Element Solutions in the Fully Plastic Range”, Computer
Methods in Applied Mechanics and Engineering, 4, 153-177.

Perzyna, P. [1966], “Fundamental Problems in Viscoplasticity”, Advances
i Applied Mechanies. 9, 243-377.

Sivo, J.C. & Rirar, M.S. [1990], “A Class of Mixed Assumed Strain Meth-
ods and The Method of Incompatible Modes”, International Journal of
Numerical Methods in Engineering, 29. 1595-1638.



A Muized-Enhanced Strain Method: Linear Problems 23

Sivo, J.C. & ARMERO, F. [1992], “Geometrically Non-linear Enhanced
Strain Mixed Methods and the Method of Incompatible Modes™, Inter-
national Journal of Numerical Methods in Engineering, 33, 1413-1449.

Sivo, J.C. ARMERO, F. & TAvLor. R.L. [1993], “Improved Versions of
Assumed Enhanced Strain Tri-linear Elements for 3D Finite Deforma-
tion Problems”, Computer Methods in Applied Mechanics and Engineer-
g, 110, 359-386.

SOKOLNIKOFF, 1.5. [1964], Tensor Analysis Theory and Applications to Ge-
ometry and Mechanics of Continua, John Wiley & Sons, Inc., New York.

TavLor, R.L., BEREsrorD, P.J. & WiLson, E.L. [1976], “A Non-
Conforming Element for Stress Analysis”. International Journal of Nu-
merical Methods in Engineering, 10, 1211-1219.

Tayror, R.L. [1987], “Finite Element Analysis of Linear Shell Problems”,
The Mathematics of Finute Flements and Applications VI, MAFELAP
1987, ed. J.R. Whiteman, Academic Press Limited. London

Wasnizu, K. [1982], Variational Methods in Flasticity and Plasticity. 3rd
ed.. Pergamon Press.

WEIssMAN, S.L. [1996]. “High-Accuracy Low-Order Three-Dimensional
Brick Elements”. International Journal of Numerical Methods in En-
gineering, 39, 2337-2361.

WiLson, E.L.. TaYLor, R.L., Dongrty, W.P. & GHABOUSSI, J. [1973],
“Incompatible Displacement Models”, Numerical and Computer Meth-

ods in Structural Mechanics, 453,

Z1IENKIEWICZ, O.C. & TAYLOR, R.L. [1991], “The Finite BElement Method,
Vol 2.7, 4th ed.., McGraw-Hill.

Appendix A
To allow for general mappings &1 and & which retain the orthogonality property

we introduce the following transformation

oA

() = Ela) = E(v)HT ' H, (A2)

2
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where ’
= /67;1'((5[3’)51(")/) dV' and H, = / Eir(éﬁ)éfg(a) dV . (A3)
J JO
Note that the above transformation does not guarantee

/ Ei()do=0 and /{,Cg() do=0 (Ad)
Jo Jr

which allows the element parameters to be easily decoupled. To ensure the resulting arrays
are not singular the choice of & and &5 is such that their columns are linearly independent
(ie. H' exists).

Appendix B

In this appendix we discuss two procedures for the static condensation of the enhanced pa-
rameters. Recall (3.32), affords a solution of the element parameters o at the element level,
thereby obtaining an equivalent displacement model at the global level. This methodology
is efficient since additional global equations are not introduced and array sizes remain the
samne as the Galerkin finite element formulation, which lends itself to simple modification
of existing elements.

The first method for obtalning the element parameters, . is the one outlined in Section
3.4 and is outlined in detail below. Accordingly, for a particular time step, #,,, we have the
state at the global Newton iterate (k), hence we may construct the following arrays:

K..= B({’ D(u(k) Ol(k)) B(} dV
1.

JE

i

Ko = / B p(u'™, a™) B, dV (B5)
J 82,

fenn = B(];cr(u(k), a®)y dv .
Jo.
These arravs are then used to form the modified tangent and residual
A g
(k)
“ ) (B6)
s ! i )
{f{\l:i “ .finl‘ T Kucy (K(ya) .fml z}
€

K<A) - [K’uu - Kuu (K(lr,,x)MI K(;yujl

R

The modified element arrays are then assembled into global arrays

nelm nelm
é K0 gy (1) = é R (BT)

which may be solved for the incremental nodal displacement vector, du and then used to
update the nodal displacement vector

w D) = (B 4 gy (R (B8)
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The incremental displacements may be substituted into the expression for the increment
of the element parameters

(k+1) _ <k>r (k) (k) o, (k1) (
dex [K (£ + K du ) (BY)

[a 709 en h 537}
which then may be used to update the element parameters
a" 1 = o) da k) (B10)

Note (BY) and (B10) can not be performed until the global system is assembled and
the state du'**1) found. This necessitates saving the arrays (B5) for subsequent use in
updating the element parameters, in additional to any existing arravs (i.e. plastic strains,
etc.), to reduce unnecessary recomputation of the arrays for each iterate. This storage
places significant demands on memory or disk especially for 3D problems which can be
substantial for fine meshes. An alternative procedure set forth in SimMo et al. [1993]
reduces the required storage to only the current values of the element parameters and is
discussed next,

The alternative algorithm proposed in SIMO et al., [1993] is obtained by linearizing the
enhanced residual (3.32), with respect to a only. Accordingly, we obtain

L[.fr:nh} - .ff?’ﬂ,h + I(Qm do = do = — {me]W] fmzh . (Bl])

The algorithm is outlined as follows for a particular time step, 1,,, global Newton iterate
(k) and local Newton iterate (7)
Initialize index and element parameters for each element
=0
alih) = k=D

2. Form enhanced strain displacement matrix
B,
3. Form enhanced tang(‘nt matrix
KD = [, BI D™ o) B, dV

4. Compute enhanced residual
fFlE = [, Bio(u® oMy av

enh
5. Locally solve for the (‘Ilhdn( ed increments for each element
(i+1.k) (k)] 70 plick)
dox ) K., J fm}
6. Local update f(n‘ the element parameters

a(um) — k) + de(t+1.E)

-1

Check for convergence
IF (converged) THEN
aF) — qli+1k)
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EXIT
ELSE
P41+ 1
GOTO 3 for physical material nonlinearities
GOTOD 4 for linear elasticity
END IF

Appendix C

A General Formulation for Rate Dependent Plasticity
We shall consider a linearized theory of rate-dependent plasticity after PERZYNA, [1966].
in which all relevant quantities needed within the theory are infinitesimal to the first
order and the loading criteria is relative to stress space. In addition to the infinitesimal
strain measure £;;, we assume the existence of a symmetric plastic strain measure 5?7
and a measure of work hardening specified by the scalar function «. From the former we
additively define an elastic strain tensor as
€ e P kR
We also admit the existence of a scalar valued function F'( mj,s?j) called the static yield
function, which is continuously differentiable with respect to its arguments. convex and
satisfies the equality
. ey .':'”",A',_ . g e
F ((TU.-U) = 1 (C13)
where f(o,;.20) is termed the dynamical yield function. Note for /= 0 and fixed values
of 5]0 and r, (C13) describes a orientable hypersurface of dimension five in six dimensional
stress space from which an elastic domain is defined for £ < 0 and a plastic domain for
F>0.

For the materials under consideration, attention is restricted to initially homogeneous and
isotropic materials where the elastic region is independent of any viscous effects. Following
(C12) the strain rate may also be additively decomposed into elastic and plastic parts

gy =& + b, (C14)

where é?j includes both viscous and plastic effects and the superposed dot stands for the
material time derivative with respect to 1 holding X fixed. The elastic-plastic response of
the material mayv be characterized by a suitable choice of constitution for each of the inde-
pendent variables. The stress response for o,; is characterized by the following constitutive

relation for generalized Hooke's law
Tij = s (glj + Tij (C]v))

where
— 0 o = _. QL€
Ti; = 2pe; and § = 3key,
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represent the deviatoric and spherical components of the stress tensor ai; and g and k
are the shear and bulk modulus, respectfully. The plastic strain rate is given by the
constitutive form

0 for <0
ij ﬁ,d)(F,)z;";giL for F' >0 ( |

where ~ denotes a viscosity constant of the material and ®(F) is commonly taken as

P(F) = F" where m is some positive integer. While the work hardening is proportional
to the total plastic work

e’
K= F / oy def; . (C17)
Jo
Substituting (C15) and (C16) into (C'14) we obtain an expression for the strain rate during

) 1. 1. of )
fi = 4 — 56y 4 A D(F) 2 18
YA TR ( )(‘)(77;;,- (C18)

loading

Taking the inner product of both sides of (C16) with itself we obtain a measure of the
magnitude of the plastic strain rate as

ol

7 = (@)t = 00h) (G151 ) (C19)

’ d(fr,;j ()(T,‘j
Substituting (C19) into (C'13) we obtain an expression for the dynamical vield function
- 7L

floi.e) =r 1+ = ( o B >m§ o

Y (‘9(71;‘,’ f)()’ij

for ©(F) = [ which shows the dependency of the vield function on the strain rate.
\ I Y ,

Numerical Formulation

We shall now consider the special form ®(F) = F for the numerical implementation of
the plastic/viscoplastic model. From (C16) we see that the plastic strain rate now has the
form

P 07‘ SN
g = v - 2
v =g y (C21)

upon loading. Recall for classical rate independent theory the plastic strain rate is given
by

Py 0 ,

ef = - ! (C22)
- ()O’z‘j '

where A is called the plastic consistency parameter. Equating (C21) and (C22) we obtain

the yield criteria as '
YE-A=0. (C23)



28 E.P. Kasper € R.L. Taylor

In the current work the scalar valued function F will take a von Mises type form given by

F = \/(sz]‘ - (r}z'j)(?_ij - (‘(U,jj) - ((‘24)

where 715 the deviatoric stress, « is a deviatoric back stress allowing for translations of the
vield surface and x a scalar valued work hardening function allowing for expansion of the
vield surface. The quantities o and x are commonly referred to as kinematic and isotropic
hardening parameters. Using the assumed Mises form we may rewrite the yield criteria as
1

\/(777 — )Ty — o) — K — “A=0. (C25)
‘ 3T S

The constitutive equation for the back stress following ZIENKIEWICZ, et al., [1991], will
be given in terms of the back stress rate a;; which 1s taken proportional to the plastic
strain rate as 5
: .~ Y Ty
X5 = E;Hk-mcij (€26)
where Hj,.,, is a measure of the translation of the yield surface. While the work hardening
parameter is given as a measure of the magnitude of the plastic strain rate and the initial
vield
k= 0y + Higo” (C27)
where H,,, is a measure of the expansion of the vield surface and & is the accumulated

plastic strain given by

(C28)

Element Formulation

The following modifications will be made to the above mixed-enhanced strain formula-
tion. To include isotropic Jo plasticity /viscoplasticity with linear isotropic and kinematic
hardening to the former formulation the following modifications are made.

1. Compute trial deviatoric stress, "7, note the " [-] denote trial values to be updated
later within the algorithm.

tr )
Togr = 24 (Engr — €1)
ef is the plastic strain.

2. Compute back stress adjusted value, 2/
tr tr
Zn-{—l = Tp41 — Oy
3. Compute the radius of the yield function, R

(‘Uyr) + []zs()F% )

Rn+] -



A Mized-Enhanced Strain Method: Linear Problems 29

4. Compute the norm of the back stress adjusted value, || X |l

tr N Py
H 272~H H: \/M Zn-}-l : ”ZnJrl
5. Compute consistency parameter, A

)\’u—‘rl =A (“ f7‘2”+! fl ""]{'11+l) /2/1

1 1
where A= i 7 and n= -
1+ 3 ('H?,so + Hkm) + IRy i
where At is the current time increment.
6. Compute plastic solution state
i f | R o N Y the
if (1| 21l —Rpqr > l—;)\/,,“) then

, 2
P — P -
(’7z+l - ('n + 5 )"n.+l

2

f’i"Z

n+1

n ,"1 i *7.,..._‘._,__
Rl

17" Iy
Ty41 —  Tpagt1 — 2///\n+]n72+1

2
Qg = oy + ',;}]k?’i'n,/\'n+lnn—H

¥z

n41 551) + )\11,+11172+1

€
, 1 oo o
Cp=klol+2u(l - B) {I — 31 ) 1} +2u(B—-Anon

2 '/\77
where B = _B——il—
” 2n+l H

7. Assemble global tangent and solve, GOTO 1





