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Summary

Background—Quantitative CT is becoming increasingly common for the characterisation of 

lung disease; however, its added potential as a clinical tool for predicting severe exacerbations 

remains understudied. We aimed to develop and validate quantitative CT-based models for 

predicting severe chronic obstructive pulmonary disease (COPD) exacerbations.

Methods—We analysed the Subpopulations and Intermediate Outcome Measures In COPD 

Study (SPIROMICS) cohort, a multicentre study done at 12 clinical sites across the USA, of 

individuals aged 40–80 years from four strata: individuals who never smoked, individuals who 

smoked but had normal spirometry, individuals who smoked and had mild to moderate COPD, and 

individuals who smoked and had severe COPD. We used 3-year follow-up data to develop logistic 

regression classifiers for predicting severe exacerbations. Predictors included age, sex, race, 

BMI, pulmonary function, exacerbation history, smoking status, respiratory quality of life, and 
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CT-based measures of density gradient texture and airway structure. We externally validated our 

models in a subset from the Genetic Epidemiology of COPD (COPDGene) cohort. Discriminative 

model performance was assessed using the area under the receiver operating characteristic curve 

(AUC), which was also compared with other predictors, including exacerbation history and the 

BMI, airflow obstruction, dyspnoea, and exercise capacity (BODE) index. We evaluated model 

calibration using calibration plots and Brier scores.

Findings—Participants in SPIROMICS were enrolled between Nov 12, 2010, and July 31, 2015. 

Participants in COPDGene were enrolled between Jan 10, 2008, and April 15, 2011. We included 

1956 participants from the SPIROMICS cohort who had complete 3-year follow-up data: the mean 

age of the cohort was 63·1 years (SD 9·2) and 1017 (52%) were men and 939 (48%) were women. 

Among the 1956 participants, 434 (22%) had a history of at least one severe exacerbation. For the 

CT-based models, the AUC was 0·854 (95% CI 0·852–0·855) for at least one severe exacerbation 

within 3 years and 0·931 (0·930–0·933) for consistent exacerbations (defined as ≥1 acute episode 

in each of the 3 years). Models were well calibrated with low Brier scores (0·121 for at least one 

severe exacerbation; 0·039 for consistent exacerbations). For the prediction of at least one severe 

event during 3-year follow-up, AUCs were significantly higher with CT biomarkers (0·854 [0·852–

0·855]) than exacerbation history (0·823 [0·822–0·825]) and BODE index 0·812 [0·811–0·814]). 

6965 participants were included in the external validation cohort, with a mean age of 60·5 years 

(SD 8·9). In this cohort, AUC for at least one severe exacerbation was 0·768 (0·767–0·769; Brier 

score 0·088).

Interpretation—CT-based prediction models can be used for identification of patients with 

COPD who are at high risk of severe exacerbations. The newly identified CT biomarkers could 

potentially enable investigation into underlying disease mechanisms responsible for exacerbations.

Funding—National Institutes of Health and the National Heart, Lung, and Blood Institute.

Introduction

Acute exacerbations of chronic obstructive pulmonary disease (COPD) result in a rapid 

decline in lung function and poor quality of life.1,2 An increased frequency of these events 

can lead to hospital admission, with an increased risk of mortality in the following year (as 

high as 21% in some cases).3,4 Treatment options for patients who exacerbate consistently 

or require admission to hospital are scarce and expensive. In 2010, the estimated financial 

burden of COPD in the USA was US$32 billion,5 70% of which could be attributed to 

COPD-related hospital admissions.6 Therefore, identification of individuals at risk of severe 

and persistent exacerbations is crucial for preserving quality of life, reducing overall disease 

burden, and identifying appropriate subpopulations for whom interventions can be assessed 

and applied.

A previous history of exacerbations is the most widely used predictor of future 

exacerbations.7,8 However, it has been shown to be highly inconsistent with changing patient 

exposures and inherent recall bias, and might not be applicable to individuals without a 

previous exacerbation history.7 Moreover, this predictor does not provide insights into the 

underlying mechanisms that could help understand an individual’s risk of experiencing an 

episode.
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Quantitative CT is becoming increasingly common for assessing various pulmonary 

abnormalities, including COPD,9–11 which has led to the development of several 

quantitative CT biomarkers for phenotyping COPD. Quantitative CT-based measures of 

parenchymal texture have been used to assess local changes in pulmonary ventilation 

and quantify regional patterns of emphysema and related textural abnormalities.12–14 

Similarly, quantitative CT-based measures of airway wall thickening have been associated 

with decline in lung function.15 Although there is increasing evidence that highlights the 

clinical potential of quantitative CT biomarkers, their role as predictors of severe COPD 

exacerbations remains largely unexplored. We hypothesised that quantitative CT-derived 

measures of parenchymal texture and airway wall thickness can predict severe and persistent 

exacerbations of COPD.

We aimed to develop and validate quantitative CT-based models for predicting COPD 

exacerbations and to use these models to compare the performance of CT biomarkers 

with the history of exacerbations and the BMI, airflow obstruction, dyspnoea, and exercise 

capacity (BODE) index.7,16 To further assess generalisability of the CT-based biomarkers, 

we aimed to validate our models using an external validation cohort.

Methods

Study design and data sources

We used the Transparent Reporting of a Multivariable Prediction Model for Individual 

Prognosis or Diagnosis statement guidelines for reporting the exacerbation prediction 

models in our study.17 We analysed longitudinal data from the Subpopulations and 

Intermediate Outcome Measures In COPD Study (SPIROMICS),18 an ongoing multicentre 

cohort study done at 12 clinical sites across the USA. SPIROMICS enrolled 2981 

participants aged 40–80 years from four strata: individuals who never smoked, individuals 

who smoked but had normal spirometry, individuals who smoked and had mild to moderate 

COPD, and individuals who smoked and had severe COPD. All participants were taught 

how to inspire to total lung capacity and then had high-resolution chest CT scans at total 

lung capacity.19 Participants also underwent annual follow-up visits and received quarterly 

telephone follow-up calls to monitor health status and exacerbations. We used 3-year follow-

up data to develop prediction models for severe exacerbations.18

We externally validated our models in a cohort from the Genetic Epidemiology of COPD 

(COPDGene) study,20 a multicentre observational study conducted at 21 different clinical 

sites across the USA. Written consent for both parent studies was provided by all 

participants, and study protocols were approved by the institutional review boards of each 

participating study centre.

Outcomes

In this study, we evaluated severe acute exacerbations of COPD over a follow-up duration 

of 3 years. Acute exacerbations were defined as episodes of sustained symptom worsening 

that might require specialised treatment, either by medication, hospital admission, or visit to 

an emergency department. Severe acute exacerbations were defined as respiratory flare-ups 
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that specifically required admission to hospital or an emergency department visit.21 Both 

the SPIROMICS and COPDGene studies used similar definitions for severe exacerbations 

that accounted for episodes treated either by hospital admission or emergency care.21 Since 

the COPDGene study followed up participants for a longer duration than SPIROMICS, we 

censored the data at 3 years to ensure consistency across the development and external 

validation cohorts. In addition to severe exacerbations, we investigated the consistent acute 

exacerbation phenotype, defined as at least one acute episode per year for each of the 

3 years.7 We investigated this phenotype, in addition to severe exacerbations, because 

consistent exacerbations are a major contributor to overall disease burden.7

Predictor variables

Predictors were age, sex, race, BMI, forced expiratory volume in 1 s (FEV1), history 

of all acute exacerbations within the year preceding enrolment, current smoking status, 

respiratory quality of life (quantified by the St George’s Respiratory Questionnaire [SGRQ] 

score22), CT density gradient (CTDG) textures, wall area percentage, and the square 

root of airway wall area of a hypothetical airway with an internal perimeter of 10 mm 

(Pi10). CTDG texture of the lung parenchyma was derived from CT at total lung capacity 

using the adaptive multiple feature method (AMFM).13,23 AMFM was trained using three 

dimensional image patches, annotated using in-house software by a series of highly trained, 

board-certified chest radiologists and pulmonologists from multiple institutions. A Bayesian 

classifier, trained using these annotations, was used to automatically quantify various lung 

tissue textures in the CT images, including ground glass-like opacities, honeycomb-like 

textures, and normal lung tissue (appendix pp 2–3).

In this study, the AMFM characterisation of honeycombing was largely limited to regions 

surrounding bronchovascular bundles or fissures, and mostly captured higher attenuation 

CTDG textures that were not observed in our population. Since this pattern was not typical 

of subpleural honeycombing that is identified by radiologists in patients with pulmonary 

fibrosis, we decided to address it differently from its traditional radiological context and 

use the term CTDG. Since AMFM was trained on pre-annotated image patches, it offers 

considerable flexibility for improving texture quantification in clinical use under minimal 

guidance by a radiologist. To capture changes in airway morphology, quantitative airway 

measures such as segmental airway wall area percentage and Pi10 were included in 

analysis.15 These airway measures were automatically calculated by Apollo 2.0 software.

Model development and validation

We did univariate and multivariable zero-inflated negative binomial regression analysis to 

assess potential associations of quantitative CT biomarkers with severe acute exacerbations. 

Negative binomial regression modelled the count for severe exacerbations over the 3-year 

follow-up period, while the zero-inflation component, which used a logistic model, was 

added to account for excessive zeros within the response variable. Incidence rate ratios 

and odds ratios were calculated using two-part, zero-inflated negative binomial regression 

analysis. The quantitative CT biomarkers were then used to train logistic regression 

classifiers for estimating an individual’s risk of a severe or consistent exacerbation. To 
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counter the model’s susceptibility to misclassification or overfitting, we used a regularised 

version of the logistic model.

For each experiment, we used bootstrapping (1000 repeats) to ensure robust model 

evaluation. Within each iteration, the data was randomly split into disjoint training (70%) 

and held-out testing (30%) sets. Model discrimination was evaluated using the receiver 

operating characteristic curve (ROC) and the corresponding area under the ROC (AUC). 

We used DeLong’s test to compare differences in ROC curves of two different models, 

and DeLong’s method was used to compute 95% CIs of the AUCs. A p value of less 

than 0·z05 was considered to indicate a statistically significant difference. Calibration 

plots or reliability diagrams were computed between the observed and model-predicted 

risk to visually assess likelihood calibration.24 Calibration was quantitatively evaluated 

using Brier scores (0–1; a score of 0 indicated perfect model calibration, a score of 1 

corresponded to poor model calibration). To improve model calibration on the external 

validation cohort, we used a held-out validation set from the development cohort to learn a 

post-hoc transformation that calibrated model predictions on the external cohort. We used 

an ensemble of two post-hoc transformations: Platt scaling, followed by its single parameter 

variant, temperature scaling.25 Model performance was compared using history of all acute 

exacerbations within the year preceding enrolment and the BODE index as predictors. The 

performance of CTDG texture and Pi10 alone was also compared with exacerbation history 

and BODE index. Prediction models over a shorter duration of 2-year follow-up were also 

developed and evaluated. To further ascertain the robustness of CT biomarkers, we also 

compared the biomarkers with two other classification methods: Gaussian Naive Bayes 

and random forest. To assess model performance for clinical use, we did an ROC curve 

analysis for jointly maximising model sensitivity and specificity corresponding to an optimal 

threshold. Analysis was done using Python (version 3.7.0) and R (version 3.6.2; appendix p 

3).

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report.

Results

We analysed data from 2981 individuals enrolled during the first phase of SPIROMICS 

between Nov 12, 2010, and July 31, 2015.18 Eight individuals withdrew consent, and 754 

individuals were excluded due to missing values (figure 1). At 3 years, 263 individuals 

were lost to follow-up; thus 1956 participants had complete 3-year follow-up data for acute 

COPD exacerbations (figure 1). Of the 1956 participants with complete 3-year follow-up 

data, 434 (22·2%) had a history of at least one severe exacerbation and 226 (11·6%) had a 

history of two or more severe exacerbations (table 1). The mean age of participants in the 

SPIROMICS cohort at follow-up was 63·1 years (SD 9·2), of whom 1017 (52%) of 1956 

participants were men, 939 (48%) were women, and 707 (36%) individuals smoked at the 

time of enrolment (table 1). The distribution of Global Initiative for Chronic Obstructive 

Lung Disease (GOLD) stages in participants who had severe exacerbations is reported in 
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the appendix (p 4). For external validation of the proposed biomarkers, we analysed the 

COPDGene cohort which comprised 10 305 participants, enrolled between Jan 10, 2008, 

and April 15, 2011. 980 of 10 305 participants had missing data (figure 1). The prediction 

models were developed using data from 1956 individuals from the SPIROMICS cohort 

who had data available at the 3-year follow-up (figure 2). After censoring, data from 6965 

participants with complete 3-year follow-up data were available for external validation (table 

1). The mean age of participants in the COPDGene cohort was 60·5 years (SD 8·9), of 

whom 3508 (50%) of 6965 participants were men, 3457 (50%) were women, and 3172 

(46%) smoked at enrolment (table 1). In the COPDGene cohort, 1389 (20%) of 6965 

participants had a history of at least one severe acute exacerbation and 552 (8%) had a 

history of at least two severe acute exacerbations.

In univariate zero-inflated negative binomial regression analysis, Pi10 and CTDG textures 

were associated with severe exacerbation episodes in the next 3 years (both p<0·0001; 

appendix p 5). CTDG texture was associated with severe exacerbations (p=0·026), as 

indicated by the inflation component of the model (table 2). Wall area percentage was 

not associated with severe exacerbations in any of the univariate or multivariable regression 

analyses and was hence excluded from the set of variables used to develop prediction 

models.

The CT-based models that included age, sex, race, BMI, FEV1, exacerbation history, 

smoking status, SGRQ, CTDG texture, and Pi10 had an AUC of 0·854 (95% CI 0·852–

0·855) for at least one severe exacerbation event in 3 years (figure 2A), an AUC of 0·869 

(0·867–0·871) for at least two severe episodes in 3 years (figure 2B), and an AUC of 

0·892 (0·890–0·894) for at least three severe acute episodes in 3 years (figure 2C). The 

AUC for predicting consistent acute exacerbations was 0·931 (95% CI 0·930–0·933; figure 

2D). Performance of the model was compared with history of exacerbations, which was 

adjusted for age, sex, race, and FEV1 (figure 2). Model performance was also compared with 

the BODE index, and adjusted for age, sex, race, and history of exacerbations (figure 2). 

AUCs were significantly higher for quantitative CT biomarkers than history of exacerbations 

and BODE index (with adjustment; DeLong’s test p<0·0001 for both). CT-based models 

performed consistently better than history of exacerbations and BODE index (figure 2). 

Discriminative ability of CTDG texture and Pi10 has also been evaluated independently in 

comparison with exacerbation history and BODE index (appendix pp 6–9). A likelihood 

ratio test identified a significant difference between nested models with and without CTDG 

texture (p=0·02), suggesting that the inclusion of CTDG in the model improved predictive 

ability (appendix p 13).

Calibration plots corresponding to four CT-based models indicated that predicted rates were 

in agreement with observed rates of severe exacerbations (figure 3). Models were well 

calibrated with a Brier score of 0·121 for at least one severe episode (figure 3A), 0·077 for 

at least two severe episodes (figure 3B), 0·045 for at least three severe episodes (figure 3C), 

and 0·039 for consistent acute episodes (figure 3D). We also evaluated model calibration 

for CTDG texture and Pi10 alone (appendix pp 6–9). Model performance was similar when 

quantitative CT biomarkers were used to predict severe episodes for a shorter follow-up 
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duration of 2 years, performing consistently better than history of exacerbations and BODE 

index (appendix p 10).

When the prediction models developed on the SPIROMICS cohort were evaluated in the 

COPDGene cohort, the quantitative CT biomarkers performed well with an AUC of 0·768 

(95% CI 0·767–0·769) for at least one severe episode (figure 4A), and an AUC of 0·810 

(0·809–0·811) for at least two severe episodes during 3-year follow-up (figure 4C). The 

AUCs for at least one and two severe episodes during 3-year follow-up were higher than 

for history of exacerbations (DeLong’s test p<0·0001 for both). Ensemble model calibration 

yielded a Brier score of 0·088 for at least one severe episode (figure 4B) and 0·044 for 

at least two severe episodes, which showed good agreement between the predicted and 

observed proportions in the validation cohort (figure 4D). A similar trend was observed 

when classification performance was compared across different classifiers (appendix p 12).

For predicting at least one severe exacerbation, CT biomarkers had higher sensitivity 

(78·44% [95% CI 78·32–78·56]) than exacerbation history (75·00% [74·88–75·13]). For the 

same task, CT biomarkers had higher specificity (78·39% [78·28–78·51]) than exacerbation 

history (75·00% [74·87–75·12]). Model performance was similar in the COPDGene cohort, 

whereby CT biomarkers had a higher sensitivity (71·05% [71.03–71·07]) than exacerbation 

history (68·56% [68·53–68·59]). A detailed analysis for both SPIROMICS and COPDGene 

cohorts is included in the appendix (pp 11–12). The CTDG texture pattern identified in a 

patient with severe exacerbations was absent in a participant with no exacerbations during 

3-year follow-up (figure 5).

Discussion

We aimed to investigate the utility of quantitative CT biomarkers as potential clinical 

tools for predicting severe COPD exacerbations. We analysed CT biomarkers of lung 

tissue texture and airway structure in comparison with well known predictors, including 

exacerbation history and BODE index. We found Pi10 and CTDG texture were predictive 

of severe and consistent exacerbations. These biomarkers performed significantly better 

than exacerbation history and BODE index. For the prediction of at least one severe 

event during 3-year follow-up, AUCs were significantly higher with CT biomarkers than 

exacerbation history (3% difference; 0·854 for CT biomarkers vs 0·823 for exacerbation 

history; p<0·0001) and BODE index (4% difference; 0·854 for CT biomarkers vs 0·812 

for BODE index; p<0·0001). A similar difference was observed between the AUCs of 

quantitative CT biomarkers and history of exacerbations in the external validation cohort. 

ROC curve analysis in both cohorts showed CT biomarker models had higher sensitivity 

and specificity than exacerbation history and the BODE index. Quantitative CT biomarkers 

might also overcome some inherent clinical limitations of exacerbation history and the 

BODE index. A previous history of exacerbations, which is currently used to identify 

patients at a higher risk of experiencing an acute episode,7,8 is susceptible to recall bias and 

might not be applicable to individuals at risk without a previous history of exacerbations. 

Additionally, individuals with a similar exacerbation history have been shown to have a 

highly inconsistent trajectory of future episodes, since this predictor was unable to account 

for extrinsic patient exposures.7 BODE index, which was also used to predict future 
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exacerbations, performed less reliably than exacerbation history and depended on potentially 

variable exercise capacity indices.26,27 In addition to providing more reliable estimates of 

future exacerbations, the quantitative CT biomarkers can be automatically extracted from a 

single total lung capacity CT scan, which is routinely acquired in clinical settings. The CT 

biomarkers can be used for individuals without previous history of exacerbations. External 

validation of these markers further indicated the general applicability of these measures to 

other cohorts with different image acquisition protocols.

A CT-derived pulmonary artery to aorta diameter ratio greater than one has also 

been associated with severe COPD exacerbations.28 Parametric response mapping (PRM)-

based emphysema and small airways disease have been associated with frequency 

of exacerbations.29 However, the pulmonary artery to aorta diameter ratio requires 

measurement of the vessels on a CT scan, which might require human oversight, and PRM 

requires CT scans at two different inflation levels, which increases cost, radiation dose, 

and scan time. Two previous studies investigated potential associations of these measures 

with exacerbations, but did not develop or validate prediction models for clinical use. The 

proposed quantitative CT biomarkers can be automatically computed from a single total lung 

capacity CT scan. We also present a comprehensive assessment of model discrimination 

and calibration, which strengthens our recommendation that these models can be readily 

deployed for clinical decision making.

Guerra and colleagues30 evaluated 27 prediction models for COPD exacerbations, most of 

which had poor clinical applicability or availability of predictors, or were not externally 

validated. The highest performance among the 27 models was an AUC of 0·81, while 

the AUCs in most studies were between 0·60 and 0·75.30 The relatively lower predictive 

performance of these models compared with other predictive tasks, such as predicting COPD 

status and the presence of tumours (AUCs of around 0·90), highlighted the underlying 

complexity of predicting future exacerbations. Adibi and colleagues31 attempted to address 

these limitations by proposing use of the ACCEPT exacerbation prediction tool, which 

was externally validated in the Evaluation of COPD Longitudinally to Identify Predictive 

Surrogate Endpoints (ECLIPSE) cohort.31 Most of the predictors used in the study were 

simple measures of disease severity or accounted for current medication use, which might 

not be indicative of structural changes in the lungs that could indicate underlying disease 

mechanisms.32 Another limitation of the study was the prediction of event risk over a 

shorter duration (1 year), which limited applicability to detect long-term, persistent patterns 

of acute exacerbations. By contrast, in the present study quantitative CT biomarkers were 

shown to predict future exacerbations reliably over a longer duration of 3 years and a 

relatively shorter duration of 2 years. Our analysis using 3-year follow-up data demonstrated 

that the quantitative CT biomarkers were able to identify individuals at risk of consistent 

exacerbations.

CTDG texture was predictive of severe and consistent exacerbation events. This texture 

was derived from areas of lung tissue labelled as honeycombing by trained radiologists 

in the previous supervised training of the AMFM texture analysis framework. A visual 

inspection by three trained radiologists, each with at least a decade of experience, confirmed 

that these textures were regions of variable CT densities around the bronchovascular 
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bundles and fissures, which were absent in individuals who did not have any exacerbations. 

We hypothesise that these density gradients could be driven by a combination of 

peribronchovascular emphysema and underlying inflammation that were identified as high 

attenuation areas on a CT. In future, we intend to investigate the under lying association 

between CTDG texture, inflammation, and future exacerbations.

The proposed measures yielded superior performance when compared with BODE or 

history of exacerbations; however, our study had some limitations and was based on some 

underlying assumptions. The study provides predictive estimates of various exacerbation 

groups, but did not address causality. A key assumption of our models was the availability of 

chest CT for predicting exacerbations. The accuracy of CTDG texture and airway measures 

could be potentially sensitive to CT acquisition protocols, which were largely restricted to 

a set of well defined parameters and standardised lung volume in this study.18 We observed 

that the model performance was lower in the COPDGene cohort than SPIROMICS. This 

highlighted model susceptibility to different image acquisition protocols, since COPDGene 

acquired CT scans at a lower dose with different acquisition parameters.20 Although reliable 

external validation on a cohort that used a completely different acquisition protocol provided 

broader clinical applicability of quantitative CT biomarkers, it did not entirely mitigate their 

variability to acquisition protocols.

We developed prediction models specifically for severe and consistent acute exacerbations 

because they constitute most of the overall disease burden and drive health-care costs. Our 

analyses demonstrated that the proposed CT biomarkers can be directly used to identify 

individuals at risk of hospital admission or requirement for emergency care. Quantitative CT 

is increasingly being used to evaluate individuals with respiratory symptoms. These scans 

can be used within clinical practice to identify individuals who are likely to have a severe 

exacerbation, even without a previous history of exacerbations. The CT biomarkers could 

be complemented in future by other pneumological techniques such as multi-breath washout 

and impulse oscillometry. In summary, CTDG texture and Pi10 are effective predictors 

of severe exacerbations that could be integrated into clinical decision making for early 

identification of patients at risk of severe exacerbations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

A systematic analysis of 1382 prediction models for chronic obstructive pulmonary 

disease (COPD) exacerbations was published in 2017. Rigorous criteria were used 

to identify 27 models that were considered suitable for comparison. The analysis 

highlighted several limitations of these models, including poor clinical applicability, 

difficulty in obtaining data on predictor variables, and scarcity of high-quality statistical 

approaches. Only two of the 27 models were validated using an external cohort, and only 

three used appropriate statistical methods to assess their approach. None of the studies 

reviewed had analysed imaging biomarkers for the prediction of exacerbations. We 

searched PubMed for studies published between Jan 1, 2017, and Feb 20, 2022, which 

were related to the development and validation of prediction models for exacerbation. We 

used the keywords “COPD”, “exacerbation”, “prediction”, and “validation”. Although 

the search terms yielded 159 results, only one study reported external validation and 

attempted to address the concerns highlighted by the systematic review. We were unable 

to find a rigorous study investigating and validating imaging markers for predicting 

COPD exacerbations. One study noted that a CT-based pulmonary artery diameter to 

aorta diameter ratio greater than 1 was associated with severe COPD exacerbations, but 

the study did not develop or assess a predictive model for clinical use.

Added value of this study

To our knowledge, this is the first study to investigate and validate CT biomarkers for 

predicting severe exacerbations of COPD. We also showed that these biomarkers can 

be used to identify individuals who exacerbate persistently over time. Our analysis of 

data from a large multicentre study cohort found airway wall thickening and a novel 

CT density gradient texture to be highly predictive of future severe episodes. To assess 

generalisability, we externally validated these biomarkers in another well characterised 

multicentre study cohort. Our study also shows that CT biomarkers perform significantly 

better than exacerbation history and the BMI, airflow obstruction, dyspnoea, exercise 

capacity index. In addition to their high discriminative ability, these biomarkers can be 

automatically extracted from chest CT scans that are routinely being acquired in clinical 

settings.

Implications of all the available evidence

Chest CT is routinely used to characterise various pulmonary abnormalities including 

COPD, lung cancer, and pulmonary fibrosis. Although this practice has led to increased 

generation and curation of CT data, its potential utility for estimating an individual’s 

risk of exacerbations remains under-investigated. Our study highlights the clinical utility 

and effectiveness of CT biomarkers for predicting severe and persistent exacerbations 

of COPD. Care providers can use the CT-based prediction models presented in this 

study to identify individuals at a higher risk of hospital admission or visits to the 

emergency department. Furthermore, these models can provide risk estimates of recurrent 

exacerbations that are another major source of burden associated with COPD. Unlike the 
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highly variable previous exacerbation history, CT-based models can identify individuals 

who are at risk of a severe episode without necessarily having a history of exacerbations.
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Figure 1: CONSORT diagram
AMFM=adaptive multiple feature method. *People with consistent exacerbations constituted 

a subgroup of individuals with high susceptibility to severe exacerbations, as defined by Han 

and colleagues.7
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Figure 2: Discriminative performance of quantitative CT biomarkers for predicting future severe 
acute exacerbations in the SPIROMICS cohort
ROC for predicting ≥1 severe episode in 3 years (A), ≥2 severe episodes in 3 years (B), 

≥3 severe acute episodes in 3 years (C), and consistent exacerbations (≥1 acute episode in 

each year for 3 consecutive years; D). DeLong’s test was used to compare ROC curves 

of quantitative CT-based predictors (CTDG and Pi10 with adjustment) with exacerbation 

history (with adjustment) and BODE index (with adjustment). AUCs were higher for 

quantitative CT biomarkers than exacerbation history and BODE index (DeLong’s test 

p<0·0001 for both). SPIROMICS=Subpopulations and Intermediate Outcome Measures In 

COPD Study. ROC=receiver operating characteristic curve. CTDG=CT density gradients. 

Pi10=square root of airway wall area of a hypothetical airway with an internal perimeter of 

10 mm. BODE=BMI, obstruction, dyspnoea, and exercise capacity index. AUC=area under 

the ROC.
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Figure 3: Calibration plots for predicting severe exacerbations in SPIROMICS during 3-year 
follow-up using quantitative CT biomarkers
Comparison between deciles of observed rates of exacerbations and predicted likelihoods 

from logistic regression classifiers trained to predict ≥1 severe episode in 3 years (A), 

≥2 severe episodes in 3 years (B), ≥3 severe episodes in 3 years (C), and consistent 

exacerbations with ≥1 acute episode in each year for 3 consecutive years (D). Brier 

scores were used to quantify calibration performance, with a score of 0 indicating 

a perfectly calibrated model, and a score of 1 indicating a poorly calibrated model. 

SPIROMICS=Subpopulations and Intermediate Outcome Measures In COPD Study.
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Figure 4: External validation of quantitative CT biomarkers using the COPDGene cohort
ROC and calibration plot between deciles of observed exacerbations and predicted rates 

for ≥1 severe episode (A, B) and ≥2 severe episodes in 3 years (C, D). The quantitative 

CT biomarkers included CTDG and Pi10 (with adjustment variables). Correlated ROCs 

were compared using DeLong’s test, which indicated significantly higher AUCs for 

quantitative CT biomarkers than exacerbation history and BODE index (p<0·0001). Low 

Brier scores indicated near optimal model calibration. Severe exacerbations in COPDGene 

and SPIROMICS were defined to be similar with each episode requiring hospital 

admission or a visit to an emergency department. COPDGene=Genetic Epidemiology 

of COPD. ROC=receiver operating characteristic curve. CTDG=computed tomography 

density gradients. Pi10=the square root of airway wall area of a hypothetical airway with 

an internal perimeter of 10 mm. AUC=area under the receiver operating characteristic 

curve. BODE=body mass index, obstruction, dyspnoea, and exercise capacity index. 

SPIROMICS=Subpopulations and Intermediate Outcome Measures In COPD Study.
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Figure 5: CTDG texture characterisation by AMFM in participants with and without severe 
exacerbations
Each panel shows a pair of mid-coronal CT slices with and without the highlighted CTDG 

texture (shown in yellow). (A, C) CTDG texture surrounding the bronchovascular bundles 

and fissures for two different individuals with at least one severe exacerbation in 3 years. (B, 

D) Density gradients texture for two individuals who did not experience any exacerbation 

in 3 years. CTDG texture, which can be clearly identified in individuals with ≥1 severe 

exacerbation, was negligible in individuals who did not exacerbate. It should be noted 

that the AMFM uses a three dimensional block of the image for texture assignment. 

Thus, the assignment of a texture feature, as observed in two dimensions in this figure, 

includes textures that are both above and below the displayed slices (appendix pp 2–3). 

CTDG=computed tomography density gradients. AMFM=adaptive multiple feature method.
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Table 1:

Characteristics of study participants from the SPIROMICS and COPDGene cohorts

SPIROMICS COPDGene

Baseline (n=2219) Follow-up (n=1956) Follow-up (n=6965)

Age, years 63·0 (9·2) 63·1 (9·2) 60·5 (8·9)

Sex

 Male 1167 (52·6%) 1017 (52·0%) 3508 (50·4%)

 Female 1052 (47·4%) 939 (48·0%) 3457 (49·6%)

Ethnicity

 White 1706 (76·9%) 1518 (77·6%) 5115 (73·4%)

 Black 417 (18·8%) 358 (18·3%) 1850 (26·6%)

 Asian 24 (1·1%) 21 (1·1%) 0

 American Indian or Alaska Native 8 (0·4%) 7 (0·4%) 0

 Mixed 50 (2·3%) 40 (2·0%) 0

 Not reported 14 (0·6%) 12 (0·6%) 0

BMI, kg/m2 28·0 (5·2) 28·9 (5·2) 29·0 (6·1)

Current smokers 828 (37·3%) 707 (36·1%) 3172 (45·5%)

Smoking pack years* 45·7 (28·1) 45·5 (27·4) 43·1 (24·7)

Postbronchodilator FEV1, % predicted 75·5 (26·2) 76·2 (25·9) 78·2 (24·3)

FEV1/FVC ratio 80·4 (21·2) 80·9 (21·0) 67·4 (15·3)

BODE index 1·5 (2·0) 1·4 (1·9) 1·6 (2·1)

Total SGRQ score† 30·9 (20·6) 30·2 (20·5) 24·3 (21·6)

GOLD stage

 0 702 (31·6%) 617 (31·5%) 3041 (43·7%)

 1 304 (13·7%) 276 (14·1%) 588 (8·4%)

 2 605 (27·3%) 535 (27·4%) 1376 (19·8%)

 3 332 (15·0%) 289 (14·8%) 775 (11·1%)

 4 121 (5·5%) 94 (4·8%) 280 (4·0%)

Never smokers 155 (7·0%) 145 (7·4%) 100 (1·4%)

PRISm NA NA 805 (11·6%)

CT density gradients 4·1 (3·1) 4·0 (3·1) 2·4 (2·3)

Wall area percentage, % 40·1 (3·3) 40·1 (3·3) 61·2 (3·1)

Pi10 3·7 (0·1) 3·7 (0·2) 3·7 (0·1)

History of one or more severe exacerbations‡ 238 (10·7%) 434 (22·2%) 1389 (19·9%)

History of two or more severe exacerbations‡ 75 (3·4%) 226 (11·6%) 552 (7·9%)

Consistent exacerbations NA 67 (3·4%) NA

Data are mean (SD) or n (%). SPIROMICS=Subpopulations and Intermediate Outcome Measures In COPD Study. COPDGene=Genetic 
Epidemiology of COPD. FEV1=forced expiratory volume in 1 s. FVC=forced vital capacity BODE=BMI, airflow obstruction, dyspnoea, 

and exercise capacity index. SGRQ=St George’s Respiratory Questionnaire. GOLD=Global Initiative for Chronic Obstructive Lung Disease. 
PRISm=preserved ratio impaired spirometry. Pi10=square root of airway wall area of a hypothetical airway with an internal perimeter of 10 mm. 
NA=not available.

*
Pack years defined as the number of packs of cigarettes smoked in a day multiplied by the number of years an individual has smoked.
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†
Total score ranged between 0 and 100, with a higher score indicating increased symptom burden.

‡
History of exacerbations included all severe episodes requiring hospital admission or a visit to an emergency department within the year preceding 

enrolment.
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