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ABSTRACT OF THE DISSERTATION

The Picard Group of the Moduli Space of Genus Zero Stable
Quotients to Flag Varieties

by

Perry Robert Strahl
Doctor of Philosophy in Mathematics

University of California San Diego, 2017

Professor Dragos Oprea, Chair

We compute the Picard group of the moduli stack of genus zero stable quasimaps
to projective space, Grassmannians, and any flag variety in the case of more than 2
markings. Furthermore, in the case of exactly 2 markings, we calculate the Picard
group of the moduli stack of genus zero stable quasimaps to projective space, Grass-
mannians, and to partial flag varieties where the ranks of the subspaces differ by
more than 1. The first two moduli stacks mentioned are the moduli stacks of stable
quotients, constructed by Alina Marian, Dragos Oprea, and Rahul Pandharipande.
The latter is a generalization of this theory, due to lonut-Ciocan Fontanine, Bumsig
Kim, and Davesh Maulik. Projectivity of the coarse moduli space is proved first.
The Picard rank is obtained using a torus action on the moduli stack to perform
tangent space calculations. When the number of markings is > 3, generators are
determined by a geometric analysis of the interior of the moduli stack. When the
number of markings is 2, generators and relations are found by intersecting with

curves.



0 Introduction

All schemes and stacks in the paper will be over C.

Fix a smooth projective genus g curve C, a smooth projective variety X, and a
class § € A;(X). In enumerative geometry, one considers the space Homg(C, X)
of morphisms from C' to X whose image lies in the rational equivalency class .
Unfortunately, this space is not compact, so intersection theory on the space is not
well behaved. However, there are several different compactifications of this space

available.

0.1 The Quot scheme

One such compactification of the morphism space, in the case that the target is
the Grassmannian, Gr(r,n), is a special instance of Grothendieck’s Quot scheme,
Quot(Gr(r,n), d). Closed points of the Quot scheme parameterize short exact
sequences of sheaves

0-8-C"90 - Q-0
over (' such that the quotient Q@ has rank n —r and degree d. Two such exact
sequences represent the same point of the Quot scheme if there is a diagram
0—S——C"®0—Q——0

| X

0—8 —C"e0—=Q ——=0
with ¢ an isomorphism.

In analogy with the Grassmannian, over C' x Quot.(Gr(r, n), d) there exists
a universal exact sequence of sheaves
08> C"®Opguor = Q0
with Q flat over Quot(Gr(r, n), d).



Morphisms to the Grassmannian Gr(r, n) yield points in the Quot scheme
by pulling back the universal sequence of vector bundles over the Grassmannian.
Since the condition that the universal quotient be locally free is open, we see that
there is an open subscheme of the Quot scheme which is isomorphic to the Hom
space introduced above.

In [Str87], where the curve C' = P!, it was proven that the Quot scheme is
a smooth and irreducible variety. [Str87] gave a description of the Chow ring of
the Quot scheme and showed that rational equivalence and numerical equivalence
coincide.

In [BDWO6], the Quot scheme was used to calculate Gromov invariants. Later,
in [MOO07], the virtual fundamental class of the Quot scheme was constructed,
and certain virtual intersection numbers were computed by means of equivariant
localization.

[Venll] returned to the study of the Quot scheme above with C' = P!, calcu-
lating the cones of ample and effective divisors, the Mori chambers in the effective

cone, and the base locus of the effective divisors.

0.2 The HyperQuot scheme

The HyperQuot scheme is a generalization of the Quot scheme in the same way

that flag varieties are a generalization of the Grassmannian. Define
7i=(ry,...,r0) € Nyg, d:= (dy,...,dy) € Ny,
where r; <71;01 V1 <4< /{, with 7,1 = n. The case that we will be interested in is
the HyperQuot scheme (due to [Lau88])
HQuotp (FI(F, C™), d),
whose closed points parameterize flags
0o>Si=...o5-C"00->Q1—> ... 9,—~0

where each S; is a vector bundle on P! of rank r; and degree —d;. The inclusions
S; = §;,1 are injective only as morphisms of sheaves, not as morphisms of wvector
bundles. Just as with the Grassmannian and the Quot scheme, there is an open
subscheme of the HyperQuot scheme isomorphic to Homz(P!, FI(7, C")).

The HyperQuot scheme was studied in [Kim| and in [CF95] to calculate the

Gromov Witten invariants of flag manifolds and the quantum cohomology ring of



flag varieties, respectively. [Lau88], [Kim], and [CF95] proved that the HyperQuot
scheme is smooth, irreducible, and projective.

[Che01] determined a generating function for the Poincaré polynomial of the
HyperQuot scheme.

In [Venll1], the birational geometry of the HyperQuot scheme was studied. In
particular, [Venll] computed the ample cone of the HyperQuot scheme and the

effective cone in certain cases.

0.3 The moduli stack of stable maps

By varying the curve in moduli, one is led to study Kontsevich’s moduli stack
of stable maps, M, (X, 3).
Fix (X, Ox(1)) a smooth projective variety. Closed points of the moduli space

of stable maps consist of the following data:

e a projective, connected, reduced, at worst nodal curve C' of arithmetic genus

9

e m distinct points {p;}/"; on C contained in the smooth locus
e a morphism f: C — X such that f,[C] = 3,

subject to the stability condition that the line bundle
Wc(ipi) ® [*Ox(3)
is ample on C'.

There is a forgetful map F : M,,,(X, 8) - MLy, from the moduli stack of
stable maps to the Artin stack of pre-stable curves of arithmetic genus g with m
markings. A pre-stable arithmetic genus g curve with m markings is a projective,
connected, reduced, at worst nodal curve of arithmetic genus g with the m distinct
markings contained in the smooth locus of the curve; see [BM90] Definition 2.1.

The moduli stack of stable maps is often not irreducible and contains many
components of different dimensions.

However, in the case that the genus is 0, and the target is convex [FP97]

( h'(y*TX) = 0, for all maps v : P! - X), the moduli stack is smooth. [KPO01]



proved that, in all genera, the coarse moduli space is connected when the target is
a homogeneous space.

In a slightly different direction, [Pan99] calculated the Picard group of the
moduli space of genus zero stable maps to P* (n > 2), proved that rational and
numerical equivalence coincide, and gave an algorithm for computing the top di-
mensional intersection products of various combinations of the generators of the
Picard group. [Pan99] found that the Picard group is generated by the irreducible
components of the boundary (the locus of stable maps whose underlying curve is
reducible), the evaluation classes ev’c;(Opn(1)) obtained by pulling back the hy-
perplane classes under the ¢*" evaluation map from the moduli stack to P", and the
Cartier divisor H corresponding to curves whose image meets a fixed codimension
2 subspace of P".

[Opr05], [Opr06b] continued this work by considering X an SL flag variety.
[Opr05], [Opr06b] proved that the rational cohomology of the moduli stack of
genus zero stable maps to flag varieties is tautological, and calculated the Picard
group using the torus action and a generalization of a Bialynicki-Birula theorem.
To describe the work of [Opr05], [Opr06b], we must describe the moduli stack in
a bit more detail.

Fix 7 := (rq,...,7r0) € N, d:=(dy,...,d;)e N¢,, where r; <1y V1<i<{, with
Toy1 = 1.

The universal curve over the moduli stack M, (FI(7,C™), d) is isomorphic to

Mome1 (FI(F, C), d)

\
Mo (FI(T, C), d)

with universal sections o;. There is an evaluation map ev from the universal curve
over the moduli stack to the flag variety. The i** evaluation map we mentioned
above is the composition ev; = ev o ;. Over the flag variety, there is a universal
flag of subbundles and quotients
0oSio...o5-C"00->Q1—> ... 9,—>0

where the §; are vector bundles of ranks r;, and the Q; are vector bundles of ranks
n-r;.

We can consider the classes m.ev*c?(Q;) for each 1 < i < ¢. Then, we can

consider the kernels



0K = Q;— Qi1 »0

and the classes m.ev*cy(K;), for rank K; > 2.

Theorem 0.3.1. ([Opr05]) The Picard group of the moduli stack of genus zero

stable maps is generated by
o the irreducible components of the boundary
o meev*c2(Q;) for1<i<t
o m.ev*ca(K;) for 0<j <l whererjy —1;>2
o if m =1, 2 then we include exactly one of the classes ev;ci(Qp).

Furthermore, there is a relation
> meeviea(K;) + Z(% - Dmeevc?(Q;) = 0
J (]

modulo the boundary. All other relations are pulled back from Mo,m-

0.4 The moduli stack of stable quotients

On the sheaf theory side, the natural analog of the moduli stack of stable maps
is the moduli stack of stable quotients introduced in [MOP11]. Specifically, a closed
point of Q,,,(Gr(r,n), d) consists of the following data:

e a projective, connected, reduced, at worst nodal curve C' of arithmetic genus

g together with m distinct points p; € C'smeoth

e a short exact sequence of sheaves on C
0-5-C"00—-Q -0
such that () is a rank n —r, degree d coherent sheaf which is locally free at

the markings and nodes.

Stability is the requirement that
m
wc(gpi) ® det(S*)¢
is ample for every € € Q5.

An isomorphism of two stable quotients

¢:(Cap17"'7pm7q:(cn®(9_>Q)%(Clvp,la---ap,maq,:(cn(go_)Ql)



consists of an isomorphism ¢ : C' - C' mapping p; to p’; for each 1 <7 < m, such
that we have a commutative diagram

CreO o+ Q' 0

|

Cre0O Q 0.

Returning to the stability condition, we see that the genus zero components

must have at least 2 markings or nodes; and if there are exactly 2 markings or
nodes, then the degree of the quotient must be strictly positive on this component.
From this we derive that the automorphism groups of stable quotients are finite.

Stable quotients have found a number of applications. For instance, in all
genera, the stable quotient geometry has been used to prove the Faber-Zagier
relations over M, see [PP|. In a different direction, stable quotient invariants
are also connected to the B-side of mirror symmetry; see [CFK], [CZ14] for the
relevant calculations.

[Coo15] studied the geometry of the moduli stack of stable quotients in genus
1 to Gr(1,n) without markings. [Cool5] calculated the Picard group (which was
determined to have rank 2), the ample and effective cones, and the canonical class
in terms of the generators when n is arbitrary. In addition, when n = 1, [Cool5]
calculated the Poincaré polynomial. [Cool5] also proved that the coarse moduli
space is projective and rationally connected.

We will be considering the genus zero case, but with an arbitrary number of
markings. This complicates the calculation of the Picard group, as it is well known
that the moduli space of genus zero m-pointed stable curves has a large Picard
rank (on the order of 2m-1  see [Kee92]). As in the stable maps case, there is a

forgetful morphism

Qo,m( GT(T, n)? d)

|r

pre
0,m-*

Since h'(S* ® Q) = 0, the moduli stack of genus zero stable quotients is smooth.
When m > 3, there is also a stabilization map
st: Qom(Gr(r,n), d) - Mom
which forgets the quotient sequence and stabilizes the underlying curve.

In this paper we obtain results similar to those already mentioned above by



[Pan99] and [Opr05] for genus zero stable quotients to Gr(r,n).

To start, we prove
Theorem 0.4.1. The coarse moduli space @Q,m(Gr(r,n), d) is projective.

We need this in order to apply the generalization of the work of Bialynicki-
Birula from [Opr06b] to calculate the second Betti number of the moduli stack for
g=0.

To explain our results on the Picard group, we introduce some notation. Let

Co.m(Gr(r,n), d)

lﬂ
Qo.m(Gr(r,n), d)

be the universal curve over the moduli stack. There exists a universal sequence
of sheaves 0 > S - C*"® O - Q — 0 over the universal curve, such that Q is flat
over the moduli stack and is locally free at the marked points and nodes when
restricted to fibers of .

This yields a universal rational map ev : Co ., (Gr(r,n), d) -> Gr(r,n).

Notice that the universal curve is not isomorphic to Qg .1 (Gr(r,n), d) ; there
is not a forgetful morphism Qg .1 (Gr(r,n), d) = Qo.m(Gr(r,n), d) because there
is not a canonical way to contract the quotient sequence when a component be-

comes unstable. As above, there are universal sections

Com(Gr(r,n), d)
i

A
éo,m( GT(T, n)> d)
along which @ is locally free. The condition that Q be locally free at the markings

produces evaluation morphisms
ev; = g;0ev: Qom(Gr(r,n), d) = Com(Gr(r,n), d) -» G(r,n).
Let A denote the boundary of the moduli stack (the locus where the underlying
curve is reducible).
All of our results on the Picard group are for d > 1 (if d = 1 then the moduli

space is isomorphic to Mom or it is empty).



041 m2>3

In the case of 3 or more markings, we calculate the Picard group of the moduli
space of stable quotients to Gr(r,n) for all r and all n.

Our first result is the following:

Theorem 0.4.2. For m > 3, we have the following generators and relations for

the Picard group:

o Forr=1,7%n, Pic(Qum(Gr(r,n), d)®Q is generated by m.c>(Q) and the

irreducible components of A. All relations are pulled back from Mo,m'

o Forr >2, 1 #n, Pic(Qom(Gr(r,n),d) ® Q is generated by m.c2(Q),
m.C2(Q), and the irreducible components of A. All relations are pulled back

from Mq,,.

In the next case, when r = n, we know that there is an isomorphism of coarse

moduli spaces

ﬁO,mld/Sd = @Qm(Gr(l, 1), d)
([MOP11], Proposition 3) which induces an isomorphism of Picard groups. The
first moduli space is an instance of the moduli space of weighted pointed stable
rational curves from [Has03]. [Cey09] has already calculated the Picard group (in
fact the Chow groups) of the moduli spaces Mﬂ,mld and showed that the Picard
group is generated by the pushforwards of the boundary classes under the map
which reduces the weight on a marking to € << 1 [Has03]

T MO,erd - Mo,m\da

and all relations come from pushing forward the relations of [Kee92| on ﬂoﬂmd un-
der these weight-reducing maps. The Picard group of the moduli space Mo,m\d/sd
is the Sy-invariant piece of the Picard group of M07m|d, which, as we shall see in
Chapter 4, is generated by the boundary divisors.

However, in the stable quotients moduli space, there is an additional, natural
class to consider: m,c?(Q). We determine the expression of the class m.c?(Q) in
terms of the irreducible components of the boundary.

For each A c [m], 0 < k < d, define Ay to be the divisor parametrizing
reducible curves with weight one markings labelled by A and a degree k divisor of

weight € << 1 on one component, and the rest of the markings and a degree d — k



divisor of weight € << 1 on the other component, subject to the stability conditions

we mentioned in the definition of stable quotients. Observe that Ay = Ase gk

Lemma 0.4.1. For m > 2, under the isomorphism Mma/Sq 2 Qom(Gr(1,1), d),

we have the following relation

m 5]

Y 3 (A - B L k(A= k) ¥ Aax = 3 (Q).

4=1k=0 |Al=j

The next case we consider is when r = n > 2. Although considering rational
maps to a point may appear trivial, the moduli stack Qg ( Gr(n,n), d) nonetheless
has interesting geometry from a sheaf theory perspective, and it does not have an
appropriate analogue for stable maps. There is a determinant map

det : Qo (Gr(n,n), d) > Qom(Gr(1,1), d) 2 Mo ma/Sa
which takes the determinant of the inclusion of the subsheaf in C* ® O.

We can pull back the relations among the boundary divisors to obtain relations
among the boundary divisors in the case r =n > 2.

The notation for A 4, is the same as above, where k is the degree of the quotient

on the component.

Proposition 0.4.1. For m > 2, when r = n > 2, Pic(Qyn(Gr(n,n),d)) ® Q

is generated by m.co(Q), m.c2(Q) and the irreducible components of A, with the
relations among the boundary divisors coming from Mo,m‘d/sd via det, and the
following relation

(£

D) <_jd2(j_1>) - D +7<J(d—/f)> Y Ak = mci(Q).

)
SSirso N mm |Al=j

042 m=2andr+n

A different method will apply to the case m = 2. We obtain generators and
relations by intersecting with curves.

In this case there are two new classes to consider: the evaluation classes
evic1(Og(1)) and evye1(Og(1)).

As before A;j = Ay 4, parameterizes reducible curves with the marking 1 on
one component such that the restriction of the quotient to this component has
degree k, and the marking 2 on the other component such that the restriction of
the quotient to this component has degree d — k. These are subject to the stability

conditions in the definition of stable quotients: k,d -k > 0.
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Our result is the following:
Theorem 0.4.3. When m =2, r #n:

o Forr=1, Pic(Qy2(Gr(r,n), d)) ®Q has a basis given by
{AL}, evier(Oa(1)), evzer(Oc(1))}.

Furthermore, there is a relation

d(evici(0g(1)) + evse1(0(1))) + Zik(d_k)Al’k = m.c3(Q).

o Forr>2, Pic(Qo2(Gr(r,n),d)) ®Q has a basis given by
{Awk}icts meea(Q), evier (06 (1)), evier(Oa(1))}-

Furthermore, there is a relation

d(evrer(Oa(1)) + evier(Oa(1))) + Zék(d—k)ALk _ n.2(Q).

0.5 The moduli stack of stable quasimaps to GIT

quotients

[CFKM14] introduced the moduli stack of stable quasimaps Qmap, ,,,(V// G, /)
to certain GIT quotients V' //G. The setup of the moduli stack is more general than
what we need for the purposes of this paper, as can be seen from the exposition
below. However, the moduli stack we will be interested in is the special case of the
moduli stack of genus zero stable quasimaps to partial flag varieties. This moduli
stack is a generalization of the moduli stack of stable quotients, the underlying
philosophy being that, in the compactification of the morphism space, we should
not only allow the curve to vary in moduli but also allow the morphism to the
target to degenerate to a rational map.

We will explain what points of the moduli stack are. Define

7i=(r1,...,m0) €Ny, d = (dy,. .., dy) e N,
where r; <11 V1 <i </l with r,1 =n. To set up the definition (in our specific

case), let

¢
V = @ Hom(Cri, Cri+1)
i=1

¢
G~ [1 GL(r;,C).
i=1
G actson V as
(915 -5 90) - (A, ooy Ag) = (92014109{17 cee Aeogil)-
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Taking the GIT quotient V//G with the linearization coming from the trivial
¢

line bundle on V endowed with the nontrivial representation [] det; yields the
i=1

¢
(partial) flag variety FI(rq,...,r,;;C*) with the linearization @ det(&;), where &,
i=1
is the i** universal subbundle over the flag variety. See the Appendix for details.
A map from a quasi-stable curve to the stack quotient [ V/G] consists of the

following data:

e a projective, connected, reduced, at worst nodal curve of arithmetic genus g

C' with m distinct marked points in the smooth locus of C

e a principal G-bundle p:P — C with a G-equivariant morphism to V,
P—2ov.
|
C
This is equivalent to giving the data of the fiber bundle

P xg V where P xg V is the quotient of P x V with G acting diagonally
1
\
C

( (p-g,v) ~ (p,g-v)), and whose fibers are isomorphic to V. Here u is a section
of the fiber (vector) bundle such that (P, u) is of class 8 € Homz(x(G),Z).

We follow the explanation of § in [CFKM14]: since V is a vector space, its
Picard group is trivial. Thus, the group of G-equivariant line bundles on V is
equivalent to the character group of G. Given a character x € x(G), we get a
G-equivariant line bundle on V, L, := C x,, V. In turn, this yields a line bundle

P xq Ly

l

P Xa V.
We can pull back the line bundle P x ¢ L, under the section u to get a line bundle

P x¢ C, over C, and take the degree of this line bundle.

This data yields a homomorphism 5 € Homgz(x(G), Z). Given that x(G) =
éZdeti, which we prove in the Appendix, we see that the choice of [ relevant for
2021111‘ setting is B = (dy, ..., dy) under the above isomorphism.

The map from the quasi-stable curve C' to the stack quotient [V /G] above
yields a quasimap to the GIT quotient V//G if there exist finitely many points



12

t e ¢smooth\{p, 3™ such that u(t) € V¥, and for all other z € C, u(x) € V*. Here,
Vs, Vus are the stable and unstable points of the G action on V with respect to
the linearization x; see [MF82] for the definitions.

In [CFKM14], the moduli stack of stable quasimaps to V//G was proven to
be a Deligne Mumford stack of finite type over Spec(C) which is proper over the
affine quotient V/,¢/G.

In order to explain our results, we must introduce some notation. The notation
comes from the isomorphism we will produce in the next chapter, where we will
show that the moduli stack is isomorphic to a moduli stack Qg (FI(7,C"), d) of
generalized stable quotients to the flag variety.

Define 7 := (r1,...,7) € N, d:=(dy,...,d;) e N¢,, where r; <7 V1<i<,
with rpq =n.

Unravelling the definitions, we see that the moduli stack of generalized stable

quotients to the flag variety parameterizes:

e a projective, connected, reduced, at worst nodal curve C of arithmetic genus

9

{p; };”:1 distinct markings contained in the smooth locus of the curve

e aflag sequence 0 > S; - ... 5 ->C"®@0 > Q> ...> ()~ 0

such that @); is a coherent sheaf of rank n —r; and degree d;

e cach inclusion of sheaves S; < S;;; only fails to be an inclusion of vector
bundles at finitely many points which are necessarily away from the nodes
and markings - this is the nondegeneracy condition imposed on the section

u

e subject to the stability condition that
m l
wo(3 p)) @ (@det(S)")
j= i=
is ample for any € € Q..

An isomorphism of generalized stable quotients

(CoApi}i, C"®O0c >~ ... > Q—~0)

Jo

(cr, {p; 1,000 »> Q) — ...~ @, ~0)
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consists of the following data:
e an isomorphism of curves ¢ : C' - ¢’ which maps p; to P} forall1<j<m

e such that we have a commutative diagram

C'®0¢—>¢*Q —>...—=¢*Ql—=0

bk

C"®O¢ 1 Qv 0

with the vertical arrows isomorphisms.

We construct the moduli space of generalized stable quotients as a quotient

stack in Chapter 1.

Proposition 0.5.1. The moduli stack of generalized stable quotients is a global
quotient
Qym(FI(F, C"), d) 2 [X /PGLy]

for a quasiprojective scheme X with an action of PGLy, for some N.
We use this construction to prove the following theorem:
Theorem 0.5.1. The coarse moduli space Q,,,(FI(T, C"), d) is projective.

We describe the structures over the moduli stack.
There is a universal curve with m universal disjoint sections and a universal

rational map ev

Com(FI(F,C), d) &'~ = FI(7,C")

I
o gx T
—_— \ p—
Qom(FI(T,C"), d)

together with a universal flag sequence
09819...9«5@9@”@0—)Q1—>...—>Qg—>0
such that for all 1 <7</,

e the ** quotient Q; is flat over the moduli stack and has fiberwise degree d;

and rank n —r;

e fiberwise, the inclusion of sheaves S; — S;,1 only fails to be an inclusion of
vector bundles at finitely many points which are necessarily away from the

nodes and markings of fibers of 7



14

e cvog;:=ev; is a genuine morphism to the flag variety.

We can pull back classes from the flag variety along each ev;. Notice that if

d; = 0, then the maps
pioevi: Qom(FI(F,Cm), d) - FI(F,C") - Gr(ri,n)

all agree since the fibers of 7 are collapsed by the universal evaluation map followed
by the projection p;. Let ¢; denote this morphism.

Let Fi denote the k** universal quotient over the flag variety.

In the case that the number of markings is > 3, as in the stable quotients case,
there is a stabilization morphism

st Qom(FI(T, C"), d) = Mg,

which forgets the flag sequence and stabilizes the underlying curve. When m >
3, we obtain generators and relations for the Picard group of genus zero stable

quasimaps to the flag variety of any degree type d and rank type 7.
Theorem 0.5.2. For m >3, Pic(Qom(FI(F, C"), d)) ® Q is generated by
o ¢ici(F;) for each 1< j <t such that dj = 0
o m.c2(Qy) for each 1 <k <{ such that di >0
o m.2(Q;) for each 1 <i </l such that r; — r;i.y > 1 and d; >0
o m,.co(Qp) for each 1 < h <l such that r, — rp_qy = 1 and dy, dp—1 >0
o the irreducible components of the boundary.

All relations among the boundary divisors are pulled back from Mo,m; and there

are no other relations.

When m = 2, we obtain the result for partial flag varieties where the ranks of
the subspaces differ by at least 2 in each pair of consecutive positions in the rank
type 7, and all entries in the degree type are > 0. The method we use when m =2
is intersection with curves together with an induction argument to relate to the
Grassmannian case.

Following with our notation for the Grassmannian case, if we fix a tuple

e:= (e, ..., e) €Ny

subject to the stability condition that 37 such that e; > 0, and 3k such that dy—e; >
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0, the divisor A;z parameterizes reducible curves with the marking p; on one

component such that the degree of each @); restricted to this component is e;.

Theorem 0.5.3. When r; — r;_1 > 1, d; >0 for all 1 <1 < ¥, the rational Picard
group of Qoo(FI(F,C"), d) is spanned by the following classes:

e the boundary divisors

o T,.0o(Q;) for each 1<i</

o m.c3(Q;) for each 1<j<t

o cvici(Fi) foreachw = 1,2 and 1 <k </
with the following relations:

e foreach1<j</,
Yej(dy = e;)Az + dj(eviei(Fy) + evsei(Fy)) = mci(Qy)

e for each pair (j, k), 1<j+k</,
—dijevl*cl(]:j) + iev{cl(}"k) + dijevgcl(}"j) - éevz*cl(}"k)
+ Z(Z—IZ — Z_;)ALE = 0.
€

0.6 The canonical class and future study

We make a conjecture on the expression of the canonical class of the moduli
stack of genus zero stable quotients (to the Grassmannian Gr(r,n)). This formula
is obtained via intersecting with test curves. The result hinges on a few technical
details on the cotangent complex for the Artin stack of semistable curves Mg,

which we could not find in the literature.

Conjecture 0.6.1. For m > 2, d > 1, the canonical class of the moduli stack

Qo.m(Gr(r,n), d) can be expressed in terms of the generators we found above as
d

m-1[3] o
Kf — nk(d—k) _ Jj(-1) + 9 — 2 A +
Qo.m (Gr(rn),d) ng kgo( 5 m=1 T J ) ‘A|Z:j Ak

(L=224) £ 2(Q) + (-n+ 21)maca(Q).
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It would be interesting to determine the canonical class of the moduli space of
genus zero generalized stable quotients to the flag variety as well. The case of flag
varieties of type B, C, and D, as well as toric targets deserves further study.

Given the calculation of the Picard group, this allows us to study the birational
geometry of the moduli space, similar to the work of [Venll] on the Quot and
HyperQuot scheme. We plan to pursue this avenue in future work.

In a slightly different vein, a logical next step is to calculate the cohomology ring
(or Chow ring) of the moduli space of generalized stable quotients. Along similar
lines, it would be interesting to calculate the Poincaré polynomial, as [Che01] has

done for the HyperQuot scheme.

0.7 Outline of the Dissertation

e In the first chapter we define the moduli stack of generalized stable quotients
to the flag variety and show that it is isomorphic to the moduli stack of
stable quasimaps to the flag variety as defined in [CFKM14]. We construct
the moduli stack as a stack quotient. We also prove smoothness of the moduli

stack when ¢ = 0.

e In the second chapter we prove projectivity of the coarse moduli space. First,
we produce a semipositive vector bundle on the moduli stack. From here we
construct an ample line bundle which descends to the coarse moduli space,

a priori an algebraic space.

e In the third chapter we use the fact that the coarse moduli space is projective
to allow us to use the Bialynicki Birula stratification for smooth DM stacks
with the action of a torus. We calculate the number of relevant fixed loci
which contribute to the calculation of the second Betti number of the moduli
stack. Then we calculate the second Betti numbers of the relevant fixed loci.
The latter are finite group quotients of moduli spaces of weighted pointed

stable rational curves of [Has03].

e In the fourth chapter we analyze the interior of the moduli stack in the case

that the number of markings is greater than 2, and we intersect with curves
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when the number of markings is 2. This will be combined with the Picard

rank calculation to describe the Picard group completely.

In the fifth chapter we repeat the steps in the third chapter for the case of

the flag variety. The analysis is of course more involved.

In the sixth chapter we use the calculation of the Picard rank in the previous
chapter, combined with an analysis of the interior of the moduli stack when
m > 3, to produce generators and relations for the Picard group of the moduli
stack of genus zero generalized stable quotients to the flag variety of any
rank and degree type. When m =2, we use intersections with test curves to
determine generators and relations for the Picard group of the moduli stack

of genus zero generalized stable quotients to a partial flag variety.



1 Quotient Construction and

Foundational Results

Recall from the introduction that the flag variety FI(7, C") can be constructed
as a GIT quotient V//G, for V a suitable vector space and G an algebraic group
acting linearly on V.

In this chapter we prove that the moduli stack of stable quasimaps to V' //G and
the moduli stack of generalized stable quotients to the flag variety are isomorphic
Qmap,,,(V//G, d) = Qym(FI(T;Cm), d).

We first define the category fibered in groupoids of generalized stable quotients
to the flag variety. Next, we briefly describe its construction as a stack quotient,
in parallel with the construction of the moduli stack of stable quotients to the
Grassmannian in [MOP11].

Finally, we prove that the moduli stack of genus zero generalized stable quo-
tients to the flag variety is smooth.

We will use our alternate construction of the moduli stack of generalized stable

quotients in our proof of projectivity of the coarse moduli space in the next chapter.

1.1 The category of generalized stable quotients

Given a scheme T, the category fibered in groupoids Q.. (FI(7,C"), d) asso-
ciates to T the collection of all families over T consisting of the following data

which we label (x):

e A proper flat family 7 :C — T of connected, reduced, at worst nodal curves

of arithmetic genus g with m distinct sections o;: T' - C

18
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e A flag sequence of subsheaves of C* ® O over C
0S8 =... o é;g S>Cr0 -9 - ...~ Q,—0
subject to the conditions
— §; has rank r;
— the associated quotients Q; are T flat with fiberwise degree d;

— the inclusion of sheaves S; = &;,1 only fails to be an inclusion of vector
bundles at finitely many points away from the nodes and markings of
the fibers of 7

m 4

e the line bundle w,( Y. 0;) ® (® det(S;)) is 7 relatively ample Ve € Q..
j=1 =1

An isomorphism of two families of generalized stable quotients consists of

e an isomorphism of families of curves with sections over T"

¢
C——=C" suchthat o} =¢oo;

{4

T—=T
e a commutative diagram whose columns are isomorphisms
Cre O ¢ Q) p*Q, —=0
Cre O 9 . Q 0.

When /¢ = 1, this recovers the definition of the moduli stack of stable quotients
to the Grassmannian from [MOP11].

1.2 Construction of the moduli stack

We give a quotient construction of the moduli stack.

Consider a generalized stable quotient () over T' = Spec(C).

Let d = Xejdz

By (*) azrzlld the same proof of Lemma 5 in [MOP11], V k > 5,
G (5 b+ 1) © (@ det(SH) = £

is very ample without higher cohomology.
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Let W be a complex vector space with a fixed isomorphism
W ~ Cl-g+k(d+1)(2g-2+m)+kd

Then, given an isomorphism H°(C, L) @ W*, L gives an embedding of the
curve C (up to the PGL( W) action) into P(W).

We consider the Hilbert scheme of curves Hilb of genus g and degree
k(d+1)(2g-2+m)+kd in P(W). The data of the marked curve yields a point in
H = Hilb x ﬁl P(W). There is a closed subscheme of H where the markings are on

j=

the curve.

By Proposition 5, page 193 of [ACG11], there exists an open subscheme corre-
sponding to connected, reduced, at worst nodal curves with m distinct markings
contained in the smooth locus. Call this subscheme H’'. Let 7w :C" - H’ be the
universal curve with the m sections o, : H' — C’.

Now, we will construct an open subscheme of the 7 relative HyperQuot scheme.
We do this inductively. Start by forming the 7 relative Quot scheme

Quot (C"® O, n—-ry, dy)
parameterizing rank n —r; degree d; coherent quotient sheaves of the trivial rank
n vector bundle on the fibers of 7. We have the diagram
C x3y Quot ——=C'
o} /{‘lm o Qw
\
Quot H'

We can find an open subscheme corresponding to quotients which are locally free

at the nodes and marked sections on the fibers of 7. Call this subscheme Y.

Pull back the universal curve, the sections, and the universal quotient to Y;
(the ’ is used to denote the restriction to the subscheme Y7 of the Quot scheme
and will be used throughout the construction to make this distinction)

CXHI Y1,0—>81—>Cn®0—>Q1—>0.
i
crl.’(i ™

J

\
Y

Next, form the 7] relative Quot scheme Quotﬂi(Ql, n—rq,dy) parameterizing rank
n —ry degree dy coherent sheaf quotients of Q; on the fibers of 7}. As before, we
can find an open subscheme corresponding to quotients which are locally free at
the nodes and markings on the fibers of 7j. Call this subscheme Y;. Pulling back

the universal curve and quotient sequences
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CXH/ Yg,O—>Sl—>(C”®O—>Q1—>O,O—>IC1—>Q1—>Q2—>O

J?,rlﬂé
\

Yy

we see that we have a universal sequence
085 ->85->C"0->9;, >09,—>0
where S, is the kernel of the composition C* @ O - Q; — O».

Notice that the cokernel of §; & S5 is Ky, so we see that this inclusion of sheaves
only fails to be an inclusion of vector bundles at finitely many points of each fiber
of 7, away from the nodes and markings.

Iterating this process, we end up with a scheme Y, with the following data:

C ,08>..85->C"00->Q1—»...-Q,—>0

7{i
£r i !
i 4
g

Y,

g

such that
e for 1 <i </, each Q; has rank n —r; and degree d; on the fibers of 7,

e for 1 <i </, each inclusion of subsheaves S; - S;,1 fails to be an inclusion
of vector bundles only at finitely many points of each fiber of 7, away from
the nodes and markings (here if i = ¢ then Sy = C* ® O).

As in Proposition 5.1 of [MF82|, we can construct a locally closed subscheme

of Y, where the line bundles
m , 0
o L := w:£d+l)( > k(d+1)0t") ® (@ det(S;))*
j=1 i=1

o Op(w)xv,(1)

agree on the fibers of 7, as described below.

By [MBG66], Item b, the relative Picard functor of the universal family of curves
over Yy is representable. The two line bundles £}, Op(w)xy,(1) yield a mor-
phism (€,1) : Yy = Picy, x Picy,, where € is induced by £}, and 7 is induced by
Op(w)xv,(1). We can consider the fiber product

Q' Y,

| o

,PZ.Cﬂ—Ie Picﬂ/e Xy, ,P’L.Cﬂ-l[.

A



22

Notice that A is always a locally closed immersion, since affine locally the
corresponding diagonal map of rings is surjective. Thus, ()’ is the universal locally
closed subscheme of Y, with the property that the restrictions of £} and Op(w)«y,
to C xy, ' differ by a line bundle pulled back from the base.

The map of sheaves

P(Op(wyxq (1)) = T Op(wyxqr(1)lexq, o
has a cokernel, call it R. We can consider the open subscheme where R is zero on
stalks, call it @’. This is the locus of flag sequences whose underlying curves are
embedded via the global sections of L] .

There is a natural PGL( W) action on H’, which induces an action of PGL( W)
on Q'. We take the stack quotient [Q'/PGL(W)].

Notice that the universal sequence of sheaves on the universal curve over Q’
can be endowed with a PGL( W )-equivariant structure.

We check that this stack quotient [Q'/PGL( )] is equivalent to the category
fibered in groupoids @, (FI(7;C"), d) (Proposition 0.5.1 from the Introduction).

Proof. By Lemma 5.1, page 282 of [ACG11], it suffices to give a functor A between
the two categories fibered in groupoids such that for any scheme 7', we have an
equivalence of categories

Ap: Qg (FUF T, A)(T) > [Q PGL(W)](T).
Our argument will follow the argument given in Theorem 5.6, in the same reference,
as well as [Vis05] Theorem 4.38, with some modifications for the data of the flag
sequence.

Define the functor A as follows. Consider a family of generalized stable quo-
tients () and the vector bundle (7.Lx)* on T. We can projectivize this vector
bundle, and consider the associated PGL( W) bundle p: P - T.

We have an embedding of the family of curves and sections as a family of
curves in C <= P((m,Ly)*) over T. When we pull back P((7.L;)*) along p, we get
a canonical isomorphism

pP((m. L)) 2 P(W) x P.
Pulling back the family under p yields a family
CxpP——=P(W)xP, 08 ~>...5<>C'e00->9 »...>Q,~>0.

,?‘i
ol
\ /

P
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This data yields a PGL( W )-equivariant morphism ¢ : P - Q' by construction.
Since Ly, restricted to fibers of 7 is very ample and without higher cohomology,
cohomology and base change ([Oss]) yields that 7,£; commutes with base change.
Also, the formation of the associated principal bundle to a vector bundle commutes
with base change, so this defines a functor.

To check that A is an equivalence of categories fibered in groupoids, by Lemma
5.1 in Chapter XII of [ACG11], we must prove that A is fully faithful, and that
A is essentially surjective.

Let (7, {0}, {@ ¢_,) denote the family of generalized stable quotients over
T, and let (p, ¢) denote the family of principal PGL( W) bundles over T' together
with the PGL( W) equivariant map to Q’, as above.

Then, we must show that we have a natural isomorphism
Ar : Homg gy (7, {0371, {aitiny), (7, {03} {aitiny)) = Homygyearomir) (b, 0), (p, 9)).
To see this, we must prove that every automorphism of the family of generalized
stable quotients is induced by a unique automorphism of Pi> Q' , and vice

p

T

versa.
Notice that curves embedded in P( W) via the choice of an isomorphism

H O(C, Lk) - W*

are not contained in any hyperplane inside P(W).

Suppose we are given an automorphism )
Pl g
”l \ /
¥ ¢
T P

AN

T
of the principal bundle and the PGL( W) equivariant morphism associated to the

family of generalized stable quotients over T'.

Then, this induces an automorphism ¢ : P((m.Lr)*) - P((m.L1)*). I claim
that this automorphism is actually an automorphism of

4C*>IP’((7T*£;§)*) 085 o...85-C"00->09;~>...>9,—0.

e~

T
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This is a consequence of the condition that the automorphism comes from an
automorphism not only of the principal bundle but also of the equivariant map to
Q.

First, we check that the induced automorphism v : P((m.Ly)*) = P((m.Ly)*)
yields an automorphism of the family of curves 7 : C - T. We can check this at
the level of fibers. Let oy : P((m.Ly)*): = P(W) be an element of P. Suppose that
¥(ay) = B;. Then, we have a diagram

Cr = B((m L))y — = P(W)
T -
C, B((m.L2)" ) — = B(W)

in which the rightmost square commutes, and we claim the left square is commuta-

it

tive. The composition of the horizontal arrows in either row defines the embedding
of the fiber of C x7 P - P over oy, [, respectively, into P( V). Commutativity
of the outer square follows by pulling back the universal curve under ¢ and ) o ¢.
It follows that the left square commutes. The same argument shows that the
automorphism ¢ yields an automorphism of the sections 0j.

We must check that the automorphism 2Z~J|c yields a commutative diagram

P58 c P58 Cr® Oc
S ¢ € S© Cre O

in which all columns are isomorphisms. We use fpqc descent to prove this. Let
CU - Q' denote the universal curve, p:C x7 P - C denote the natural projection,
¢:CU xor P = CY denote the natural projection, and 1 denote the induced auto-
morphism of CV xo/ P. That we have such a commutative diagram when we pull
both sequences back to C x 1 P follows from the condition that the automorphism
1) preserve the equivariant map ¢: the pullbacks of the sequences to C x, P are
canonically isomorphic to the pullbacks of the universal sequence on CU along ¢o),

¢, respectively. We have a commutative diagram whose columns are isomorphisms
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TS . e T[S Cm @ 55O,

VoS PGS oY ¢ O

—% —%

¢ SUc L ¢SV C"® ¢ Ocw

ﬁ*Sf RS ﬁ*SgC Cre® ,5*(90
where the U denotes the universal object. The isomorphisms in the middle dia-

gram are equivariant, as are the isomorphisms in the top and bottom diagrams.
By Theorem 4.23, Theorem 4.46 of [Vis05], the isomorphisms given by the com-
positions of the isomorphisms in the columns descend to isomorphisms of sheaves
on C which yield a commutative diagram as desired.

Now, we claim that the induced automorphism of the family of generalized
stable quotients determines the automorphism of the principal bundle and the
PGL( W)-equivariant morphism.

Over open subschemes of T where the projective bundle is trivial, the auto-
morphism of the underlying curve in each fiber of the family of generalized stable
quotients determines the automorphism of the projective space since the curves
span P(W). Since each automorphism on a fiber comes from a global automor-
phism of the family of generalized stable quotients, these automorphisms of the
projective bundle glue. This determines the automorphism of the projective bun-
dle, which in turn determines the automorphism of the principal bundle. This
proves that the functor A is full.

Suppose we have two automorphisms ~, y, of the family of generalized stable
quotients over T which induce the same automorphism of the principal PGL( W)
bundle and the PGL( W)-equivariant morphism to @’. Then, we have a commu-

tative diagram

P((7m.Lx)*)

T

P((m.L1)*)
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where the horizontal arrows are the fiberwise embedding of C' from before, and
the arrow from P((m.Lg)*) to itself is the composition
P((mLi)*) —=P((my*Ly)*) —=P((7.Li)*) -

P((m L)) —=P((max* L)) —P((m: Lk)*)-

Over open subschemes of T' where the associated principal bundle (and hence
the projective bundle itself) is trivial, we see that the automorphisms v, x are
induced by the corresponding automorphism of the projective space on each fiber
(since the curve in each fiber of 7 spans the projective space, specifying the auto-
morphism on the curve is the same as specifying the automorphism of the projec-
tive space). This forces them to be equal on the fibers, and thus equal on all of C.
Automatically they induce the same isomorphism of the pulled back flag sequence
with the original flag sequence. Therefore A is also faithful.

We have shown that Ar is fully faithful.

We now show that Ar is essentially surjective.

Given an object in the fiber [Q'/PGL(W)](T), we have the following data:
P Q' where P is a principal PGL( W) bundle and ¢ is a

|
T
PGL( W)-equivariant morphism.

Now, we can pullback the universal curve together with its sections and the

universal flag sequence to yield a family of generalized stable quotients over P

CHP(W)XP’09819,_,98@‘9@”@0—)Q1—>..._>Q£_>0.

i
ol |m
\

P

By definition of @', there is an isomorphism of line bundles on C :

v Opwyxp(1)le 2 L @ T (Opwyxp(1)|c ® L}).
The embedding C - P(W) x P is a PGL( W )-equivariant embedding, since ¢ is
PGL( W)-equivariant.

However, this does not imply that Op(wyxp(1)|c is a PGL( W )-equivariant line
bundle on C, since Op(w)xp(1) does not admit a PGL( W) linearization ([MF82]
pg 33). Instead, we know that Op(w)xp(N) admits a PGL(W) linearization,
where N := dim(W) ([Dol03], [MF82]).
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Since the embedding of the family of curves C - P(W) x P is nondegenerate,
we know that we have an exact sequence of sheaves
Op(wyxp(1) = Opwyxp(1)lc = 0
such that, when we push forward along the map ¢ : P(W) x P - P, we obtain an
isomorphism
W*® O =, Op(wyxp(1) = T.Opwyxp(1)le 2 Ly @ T (L5 ® Op(wyxp(1)e).
This yields an isomorphism of projective bundles over P,
T P(W) x P > P((mu L)),

We have the family of curves embedded equivariantly in P(Sym~ W) x P to-
gether with the PGL( W) linearization of Op(gym~ wyxp(1)|c on C, along with the
PGL( W) equivariant locally free sheaf Sym™ W* ® Op on P. This means that
we have an isomorphism

G :pr3SymNW*® O - o*SymN W* e O
where o : PGL(W) x P — P is the action, and pry : PGL(W) x P - P is the
projection onto the second factor, such that the following diagram ([Vis05] Propo-

sition 3.49) commutes

(pra o (nxidp))* A

(uxidp)*

(00 (uxidp)) A

(praoprag)* A (00 (idpgr(w) x 0))*A

m (idpgL(w)xo)*0

(00 prog)* A== (pra o (idpgr(w) x 0))*A
where A := Sym™N W* ® O, pu is the group operation, and

pr3: PGL(W) xPGL(W)xP - P,
praz : PGL(W) x PGL(W) x P > PGL(W) x P are the projections onto the
third, second and third factors, respectively.

By Theorem 4.46 and Theorem 4.23 of [Vis05], since QCoh/Spec(C) is a stack
in the fpqc topology, P - T is a PGL( W) torsor (and thus an fpqc torsor), A is

a PGL( W)-equivariant locally free sheaf, there exists a unique locally free sheaf
M on T together with an isomorphism v : p*M — A. This yields a commutative
diagram
C——PA*)——=P
)
T

P(M*) —
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where the right square is a fiber diagram.

Since C - P(A*) is a PGL(W)-equivariant embedding, Aff/Spec(C) is a
stack in the fpqc topology ([Vis05] Theorem 4.33), P(A*) - P(M*) isa PGL( W)
torsor (by the cartesian property of the diagram above), then by Theorem 4.46 of
[Vis05], we see that there exists a unique affine scheme C’ over P(M*) together
with an isomorphism C’ xp(r+) P(A*) =2 C. By [Stal7, Tag 02YJ], being a closed
immersion is local in the fpqc topology, so C’ is a closed subscheme of P(M*). By
[Stal7, Tag 0C58], being an at worst nodal curve is fpqc local on the target, so
C’ is a family of nodal curves. It is clear that the genus of all fibers is zero, since
we can consider any fiber of m mapping to the fiber of C’ - T : this will be an
isomorphism of curves over Spec(C). Using the same arguments applied to the
sections o, together with [Stal7, Tag 02YJ], we see that we have disjoint sections
of " : C' - T which do not pass through the nodes of the family by the same
argument as above (looking at a fiber of m mapping to the fiber of 7/).

Since the morphism P - Q' is PGL(W) equivariant, and the universal se-
quence of sheaves on CU is PGL( W )-equivariant, this implies that the flag se-
quence

0->81-..5->C"0-9Q1—>...- Q-0
is a PGL( W)-equivariant sequence of equivariant sheaves.

By Theorem 4.23, Theorem 4.46 of [Vis05], the sequence over C — P descends
to a flag sequence

0=>S=...>5=>C00-Q9 —-...» Q9,0
over C’, such that the pullback of this flag sequence to C is equivalent to the original
flag sequence on C. The flag sequence has all the desired properties since C — C’ is
fpqc.

Stability on each fiber of 7’ follows from considering stability on a fiber of 7
mapping to the corresponding fiber of 7’ (the relative dualizing sheaf is functorial,
the sections pull back to the corresponding sections, and the flag sequence pulls
back to an equivalent flag sequence).

We would now like to show that, given this data of a family of generalized
stable quotients over 7', we can recover the principal bundle p : P - T and the
equivariant map ¢ : P - Q. Since pulling back P((7',L';)*) along P - T yields

a projective bundle isomorphic to P((m.L;)*), which in turn is isomorphic to
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P(W) x P, then by the universal property of the associated principal PGL( W)
bundle to P((7'.L'x)*), which we call
P’ = Isom(P((miLy)*), P(W)x T)

we get a unique morphism

e:P =P
such that the isomorphism

P((n".L7)*) xp P >P(W) xP
is a pull back of the universal isomorphism
P((7'.L7)*) xp P > P(W) x P’
over P’. We seek to prove that € is equivariant, from which it follows that € is an
isomorphism.
Notice that we can factor € as
P — Isom(P((m.Ly)*), P(W) xP) = Isom(P((7, L)), P(W) x T) xp P - P’

where the first arrow comes from the trivialization given as part of the data of the
equivariant morphism ¢ : P — Q' the second arrow is the induced isomorphism by
the canonical isomorphism p*7, L, = 7, L}, and the last morphism is the projection
of the fiber product onto the first factor. The last two morphisms are PGL( W)
equivariant, where the action on P’ x, P is the diagonal action. We just need to
see that the arrow P - P’ x 7P is PGL( W) equivariant. We have a fiber diagram

¢

o

pLoT
and p*m, L} = L;. The family of curves C is embedded equivariantly in P(W). Via
the map P((7.Ly)*) 2 P((7,.L;})*) x7 P, we see that for each collection of fibers of
P((7.Lx)*) which lie over points in the same fiber of p, we get a canonical identi-
fication P((7.Ly)*)p = P((7,.L})*)s, where p(p) = t. From the diagram above, the
corresponding fiber of m embedded in P((7w,L;)*) is isomorphic to the fiber of 7’

over t embedded in P((7}L})*);. We have a commutative diagram
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¢, P((m.L)")y P(IV)
Cl——P((x.L})* P(W)
Cg~p P((W*Ek) )gp P( W)
/ P
Cl P((n.LL)* P(W)

from which it follows that the leftmost vertical arrow from P( W) to itself must be
multiplication by g. This shows that the arrow
P — Isom(P((7,.L})*), P(W)) xp P

is PGL(W)-equivariant. Thus, the composition from P to P’ is PGL(W)-
equivariant. It follows that P = Isom(P((7,L},)*), P(W) x T).

Therefore, if we form the associated principal bundle to P((7, £} )*) we recover
a principal bundle isomorphic to P, and we recover a family isomorphic to the
original family over P, which yields the equivariant map to Q’. This proves that

A is essentially surjective. m

This proves Proposition 0.5.1.

1.3 The equivalence of categories
Qmap,,,(V//G, d) = Qyu(FI(T,C"), d)

We begin by defining a functor
F:Qmap,,,(V//G, d) > Qgum(FI(T,C"), d).
Suppose we are given a family of stable quasimaps to V //G of class

d e Homy(x(G), Z), which amounts to:

e A proper, flat family of connected, reduced, at worst nodal curves of arith-

metic genus g with m distinct sections o;  C

T

e a principal G' bundle over C together with a G-equivariant morphism to V
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Py
i”
C

Equivalently, this yields a section u : C = Px g V of the induced vector bundle

on C such that when restricted to a fiber C;, several conditions are satisfied:

— (P, ) has class d
— u maps the generic point of each fiber into the stable locus of V'

— if u(z) € Vs, then z is not one of the nodes or markings of the fiber.

o Furthermore, the line bundle w,( Y 0;) ® u*(P x¢ Ly )¢ is 7 relatively ample
=1

]:
Vee Q>0.

The data of the principal G bundle allows us to construct a vector bundle

¢ ¢
Pxe@Criz@S; (it splits into a direct sum of rank r; vector bundles since G is
i=1 i=1
¢
the product [T GL(r;,C)).
i=1

The fiber bundle P x4 V — C splits into a direct sum é W;, where each W; has
rank r;-r;,1, based on the fact that the G action preservesjt_ﬁe splitting of V. Notice
that the W; have transition functions given by the inverse of the transition functions
for S; tensored with the transition functions for S;.;. From this description, it is
clear that each W; 2 Hom(S;, Siy1). The section
uE€ Ho(é Hom(S;, Siz1)) = é Hom(S;, Si41) defines morphisms

o o Ji:8i=>Sin
such that, when restricted to fibers of 7w, each f; drops rank at only finitely many
points of the fiber which are away from the nodes and markings of C' (by the
conditions imposed on u, see the Appendix for details).

Therefore we get a flag of subsheaves of C* ® O on C :

0SS =...o85=>C"e0
such that the §; fail to be subbundles of each other at only finitely many points of
each fiber, away from the nodes and markings.

Recall that 8 = (dy,..., d¢), and the character x used in the GIT linearization

¢
is the product of the determinants [] det;. Returning to the construction of the
i=1
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¢
GIT quotient, we have that L, := C, x V = ® det((C;
i=1

GL(r;,C) X V)*) Thus, the

i
line bundle P x¢ Ly over P x¢ V is isomorphic to & det(P x¢ (Cjy,, ) x V)*)-
i=1 (2]

Then, pulling this back to C' under u, we see that this is isomorphic to é) det(S}),
and the condition 8 = (dy, ..., dy) translates into deg(S;) = d; on the ZAf?ll)ers of 7.
Thus, w, (jné 0;)®u*(PxgLy)" 2wy (g 0;)® (Zé det(S}))< is ample when restricted
to the fibers of .

This defines a functor since the formation of the associated vector bundle to a

principal G bundle and taking determinants commute with base change.

Proposition 1.3.1. F yields an equivalence of categories
Qmapg,m( V//G7 E) = @g,m(Fl(F, Cn)? E)
Proof. By Lemma 5.1 in Chapter XII of [ACG11], we must show that Fr is an

equivalence of categories, for any scheme T

We must first show that there is a bijection

FT : HOQOap(T)((ﬂ-ao-jﬁpv ¢7 u)7 (ﬂ-vo-j#p?gﬁau)) = Homé(T)((7T7Uj7Qi)7 (7T7Uj7Qi))‘

Suppose we are given a family of stable quasimaps (T):

P—eV PxgV

F

T=C C
Then, form the associated family of stable quotients. Fix an automorphism 1) of

the associated family of generalized stable quotients
C ,0851>..85->C"00->91—>...-Q,->0

gj le
\
T
This consists of an automorphism of the family of curves

(]

C——C

S

T———T
such that we have a commutative diagram

P 8§ §——= C" @ Y*O
l% J/W l
S ¢ - C 8¢ Cre O

where the last vertical arrow is the canonical isomorphism.
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We can take the direct sum of the subsheaves in both rows and we get an
isomorphism
VS~ @S
Passing to the GL bundles of frames, we obtain an isomorphism ) : *P — P. We

can consider the inverse of this map

G PP
(via the isomorphisms ;).

The following diagram

1

PXG VL'PXGv

{ e

C

is commutative (where u, 1 *u are induced by the flag sequence and its pullback).
Thus we get an automorphism of the associated stable quasimap. Given the iso-
morphism of principal bundles and the commutative diagram as above, we see
that this data is equivalent to giving an automorphism of the family of curves and
sections which yields an isomorphism between the flag sequence (coming from )
and the pullback of the flag sequence along ¢ (coming from ¢*(u)). This proves
that Fp is full.
To see that it is faithful, suppose we are given an automorphism v of the family
of stable quasimaps over T (}). The automorphism consists of the following data
c— Y ¢ , 7 :P —*P which induces P xg v-2.p xqg V
AT {
T———T C
We form the associated vector bundle to P. This splits as a direct sum é&
7 yields isomorphisms between each of the direct summands v; : S; — 22:*1&. The

condition that the second diagram commutes implies that we have a commutative

diagram
Si© RS Si€ CreO
| |
PY*8; € G PY*SC Cre® O

where the horizontal maps between the sheaves are induced by the sections u, 1*u,
and the vertical maps are the isomorphisms induced by 7. By taking the inverse

of the ~;’s, call them p;, together with the automorphism of the family of curves



34

1 we get an automorphism of the family of generalized stable quotients.

Given this automorphism, we get an isomorphism p;!' : S; - ¢*S; for each
1 <i<¢. This induces an isomorphism 7" : é&- - h* éSi, which in turn induces
an isomorphism of the associated principaf_i)undles 5‘11 : P - ¢*P. From the
equivalence of categories between the category of vector bundles over C and the
category of principal GL bundles over C, we recover ¢ as i \. We recover the
section v via the homomorphisms S; = S;;1. The commutative diagram of sheaves
above yields the commutativity of the diagram

PxgV—"=PxcV.
| e

C
Therefore the functor Fp is faithful.

To see that the functor is essentially surjective, fix a family of generalized stable
quotients. Since the functor Fr preserves the family of curves, all we have to see is
that given a flag sequence over C, we can produce a principal bundle over C with a
G-equivariant morphism to V and a section of the vector bundle P x5 V' such that
when we form the associated bundle to P and we consider the induced morphisms
between its direct summands (by the section u), we recover the flag sequence. This
can be done as follows.

Given a family of generalized stable quotients, (we omit the family of curves)

0=>So...o85-C"00-91—->...-9,—0

¢
we define P to be the associated principal bundle to @ S;. Notice that P x5 V =
i=1

Gg’Hom(Si, Sii1), and this vector bundle has a global section u induced by the flag
Zs:elquence on C. Now, if we take P and form the associated Vector bundle, we get
back a bundle isomorphic to 69 S;. The section u:C - Pxg V = GB Hom(S;, Siv1)
yields homomorphisms between the direct summands, and smce u gave the data
of the homomorphisms of the original flag sequence, we recover the flag sequence
on the family C. [
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1.4 Smoothness for g =0

We will prove that the moduli stack is smooth over Spec(C) when g = 0. Notice
that, as in [MOP11], the moduli stack is equipped with a morphism to the Artin
stack of prestable curves,

v: Qom(FI(T,C), d) > MY
the latter of which is known to be smooth [Beh97]. Therefore we just need to show
that the morphism v is smooth. We will use an analog of [MOP11] Theorem 2.

Let C be the underlying curve to any genus 0 generalized stable quotient.
Notice that the fibers of v are open subschemes of HyperQuot schemes over the
curves corresponding to the points in M7 In [Lau88] Proposition 2.5, [CF99],

Proposition E, it is shown that

e the tangent space to the HyperQuot scheme HQuot . (FI(7, C"), d) at a point
0>S1=...o85->C"0->9,—>...-9,->0

is given by the global sections of the kernel K in the following exact sequence
0K - élHom(Si, Q) » ?eiﬁom(sj, Q1) ~ 0,

where the last map prec;}nposes a section gz of Hom(S;, Q;) with the map

S;_1 = §; and takes the difference of this section with the section obtained

by post-composing ¢;_; with the map Q; 1 - Q;

e the HyperQuot scheme is smooth at this point if Ext'(S;, Q;) = 0 for all 4
and H'(K) =0.

We will show that both of these are satisfied. For the first, we have the exact

sequences
085088 -C'eS>S5'®Q,~0
We see that we have another exact sequence obtained by dualizing the original quo-
tient sequences
0->Hom(Q;,0)->C"®0 - S > Ext'(Q;,0) - 0.
Since the arithmetic genus is 0, O has no higher cohomology. We can split this up
into two exact sequences, which, after taking cohomology, yield =—
HY(Cr®O) - H(im) -0
H(im) > HY(S) - HY(Ext1(Q;,0)) - 0.

The first term in the first sequence is 0 as we saw above, which forces the second
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term to be 0 as well. Since Q; only fails to be locally free at finitely many points
of C, the last term in the second sequence is also zero. Thus, H!(S}) = 0 for
all ¢ which forces H'(S} ® Q;) = 0 by the first sequence. Since §; is locally free,
Ext!(S;, Qi) 2 HY(S! ® Q;) = 0.

To prove the next statement we use the method of [CF99] : there is a morphism
p:Hom(C",C")® O — 69 Hom(S;, Q;) given by mapping ¢ to the precomposition
of ¢ with §; - C"®0O followed by the projection onto Q;. This yields a commutative
diagram

S§——~Cr o0 —-Cre0—Q

T
0]

S$i——C"O0—C"® 0 —— 9y

from which it immediately follows that Hom(C",C")® O — 69 Hom(S;, Q;) factors
through K. We claim that this map only fails to be surJectlve at finitely many
points of C, and these points are exactly the points where Q; fails to be locally
free. Away from this locus, the inclusions §; < S;,1 are inclusions of vector bundles.
Choose such a point where all Q; are locally free.

Suppose we are given a collection of homomorphisms of sheaves ({¢}¢_,) which
are sections of the kernel K over some open subset U c . We will show that
their images in the stalk K, are in the image of Hom(C",C") ® O¢ ,. Since ¢ is a

section of K, we have a commutative diagram
é1

Sjp Cn®007p Cn@OC,pi»'le
(—>Cn®00p Cn@)OC,p*»Qgp
be
We would like to fill in this diagram with a single morphism C"®O¢ , - C"®O¢ .

Choose generators for Sy, {a;}7L, as an O¢,, module (it is free). Since the

vertical arrows on the left side have free cokernels, inductively we can choose
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generators for each subsequent §;,, such that the first ¢ — 1 generators are given by
the images of {a;}}!, which we will also denote by ;. Also, since the vertical
arrows on the right side have free kernels, we can choose generators {3}, |* for
Q;, such that the images of { 5’6}2;;1—“ in Q;, generate it as a O¢,, module, which

we will also denote by [.

Next, we pick preimages of 8, in C* ® O¢,, call them ~;. Now, we can write

n—-ri

the ¢; images of {a;}L, in Q; in terms of {B}; ", say ¢(ay) = ¥ 740k
! k=r;—r1
n-ri
Then, we define a map from S;, to C*®O¢ , by ¥i(a;) = ¥ 717 Notice that
k=r;—-r1
these maps are compatible with ¢, the injections S;, ¢ S;41,, and the surjections
Qip - Qi p-

We can pick generators of the orthogonal complement of Sy,/m,S;, c C* ® C,
and lift these to elements of C* ® O¢ ,. By Nakayama’s lemma, the collection of
generators for the submodule Sy, and the elements we lifted from C"® C, generate
Cr® O¢,p. We can define the map from C" ® O¢ , to C* ® O¢,,, by Y|s,, = ¥;,
and ¥

generators of the orthogonal complement. It is clear that this map makes the

s, = 0, where S, denotes the submodule generated by the lifts of the

diagram commutative, so it is a lift of ¢.
Therefore we have an exact sequence
Hom(C*",C") 9 O - K —>7-0
where the cokernel 7 is a torsion sheaf supported on finitely many points of C.
Since HY(C, O) = 0, then H(C, im(Hom(C",C") ® O - K)) = 0. Since 7 is a
torsion sheaf supported on finitely many points, it too has no higher cohomology.
Thus, H'(K) = 0.

This shows that the moduli stack is smooth over ME"®

0,m*



2 Projectivity

In this chapter, we will prove that the coarse moduli space of generalized stable
quotients to the flag variety is projective, using the construction of the moduli
stack as a quotient stack from the previous chapter. This will enable us to use the
homology basis theorem from [Opr06a] in the next chapter to compute the second
cohomology group of the stack (with coefficients in Q), which we use to determine

the rank of the rational Picard group.

2.1 Semipositivity

We will produce a semipositive vector bundle, functorial under base change,
on the base of every family of generalized stable quotients, using the methods
[Kol90], [FP97]. In the next section we will use this to show that we have a
set theoretic classifying map to a product of Grassmannians coming from taking
frames of quotients of vector bundles, where the quotients are semipositive. Then,

we will use this to produce an ample line bundle.

Definition 2.1.1. A vector bundle V on a scheme S is said to be semipositive if
YV smooth complete curve C' and Vf : C' - §, every quotient bundle of f*V has

nonnegative degree.

The following are Proposition 3.3 , Corollary 3.4i, and Proposition 4.7 of
[Kol90]

Proposition 2.1.1. A locally free sheaf V on a scheme T is semipositive if any

one of the following conditions is satisfied:

e Opyy(1) is nef on Pp(V).

38
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o YV map from a proper curve ¢ : C — T, every quotient bundle of ¢*V has

nonnegative degree.

o Y map from a proper curve ¢ : C — T, every quotient line bundle of ¢*V

has nonnegative degree.

o YV map from a proper curve ¢ : C' - Tand ¥V ample line bundle L on C the
bundle L ® ¢*V is ample.

Lemma 2.1.1. Quotients and extensions of semipositive vector bundles are semi-

positive.

Proposition 2.1.2. Let f: S - C be a map from a smooth complete surface to
a smooth curve. Assume that the general fiber of f is smooth. Let {C;} be a set of
distinct sections of f. Then

f*(wé/c(zaiCi))

is semipositive provided that k > 2 and 0 < a; < k for every i.
Now, we have the main result of this section

Proposition 2.1.3. Let w: C — T be a proper, flat family of genus g quasi-stable
curves over a smooth curve T , p; : T — C be disjoint sections of w fori=1,---,m,
and

0812 ...985->C"00s-> Q1—...9,—~0
be a family of degree (dy,...,d;) stable quotients to the partial flag variety
FI(7, C"). Let P; be the images of the sections p;. Define

Lo=wl(E 1 ) @ (@ det(S}))!

¢
where f =k(d+1), and d = ¥, dy,. Then the pushforward 7Ly is a semipositive
vector bundle on T, Vk > 5.

e The basic strategy is to express 7, L as an extension of semipositive vector
bundles then apply Corollary 3.4 of [Kol90].

e We start by reducing to the case where the family of stable quotients is glued
from families of stable quotients each of whose total space and general fiber

are smooth.
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e From here we can apply Proposition 4.7 of [Kol90].

e Then, using a relative version of the residue sequence for families of curves, we
will be able to express our vector bundle as an extension of two semipositive

vector bundles, allowing us to apply Corollary 3.4i of [Kol90].

Proof. First, I claim that 7,£; commutes with base change.
We know by Lemma 5 from [MOP11] that if £ >5 and f = k(d+1), then Ly,

is very ample with no higher cohomology, where
k

Lilc, = wét (:fpi) ® (é det(S;:)) .
Then R'm,L) vanishes and m.Ly is locally free by Corollary 1.5 of [Oss]. By
Theorem 1.1 in [Oss|, Rim, Ly, are flat over T' Vi, so cohomology and base change
commute for £, in all degrees.

We start with some reductions to bring us to the case where our family is
glued from a collection of generically smooth families of curves. These follow the
reduction steps in the proof of semipositivity in [FP97], as well as the proof of
Lemma 5.5 in Chapter XIV of [ACG11], pg 427.

Let Z be the union of the one dimensional components of the locus of nodes in
the fibers of 7. Since the fibers are at worst nodal, Z is unramified over T' [Stal7,
Tag 0C58]. We can base change under a finite map ¢g: V — T so that Z splits up
into a union of sections of .

Next, we can perform a base change, possibly ramified at certain points of the
base, so as to kill off the monodromy in the branches of the singular locus. We
normalize the base to obtain a smooth curve as our base. Thus the 1 dimensional
components of the nodal locus are smooth sections and the resulting family, call it
C" - V, has the property that there are two distinct everywhere defined branches
of each nodal section.

This way, when we normalize the total space of the family along these sections,
the family splits up into a disjoint union of components, and the preimages of the
nodal sections remain sections.

Let PP be the sections of " — V which are the 1 dimensional components
of the nodal locus. We already know that the bundle 7,L£; commutes with base

change, where we have the fiber diagram
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C'—C

V—sT
I claim that it suffices to prove that 7/ L, is semipositive on V.

Suppose 7. L, is semipositive on V. Now, let f: T/ - T be a map from a
projective curve T’ to T. Suppose we have a quotient f*w,L; — N. Form the
fiber diagram

V/ s Tl
vl
V——sT
The base change V'’ will also be a complete curve, although it may be singular, so

we can normalize it. Now, we can pull back N to V¥ (where the v refers to the
normalization) and, by semipositivity of 7L, on V', we obtain that the pullback
of N to V'” has nonnegative degree. Since the map V'Y — T has finite degree,
using the push-pull formula we see that the degree of N on T’ is nonnegative.
Thus, we can prove the result after finite base change, so we replace C' - T with
c'-V.

Now, we normalize C'" along U P}
j

CVL>O

s

T
to obtain C” =[] C,, which is a disjoint union of families of curves whose general

fibers are irreduZible nonsingular curves.

Notice that the preimages of P! are disjoint sections of the projection map
my, call them P;f%b. Here v denotes which component of C'" the section lies on,
j denotes which section the section corresponds to in the original family 7, and b
denotes which of the two preimages of P}' we are referring to.

After pulling back the quotient sequence and the marked sections to each com-
ponent Gy, as well as marking the P, ,’s, we have a family of stable quotients on
each component.

Thus, for each v, we have the data of a proper, flat family of genus g, curves

over T', m,: C, » T, with the general fiber irreducible and nonsingular, and

e P,: T — C, are the pullbacks of the natural sections which lie on C,
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e P, are the preimages of the nodal divisors P! in the fibers of 7 which lie

on C,

0 0-8,2...98,=2>C"00¢ - Q1,—> ...> 9y, »>0

is the pullback of the quotient sequence to the component C,

We would like to apply Proposition 4.7 of [Kol90] to
ToeiiLi 2 . (WL, (S 1 P+ X0 = 1) P,) @ (R det(Si)))
where i, : C, = C" is the inclusion, but the surfaces C, are not smooth as a result
of the base change, and the sections P, ,, P}, may not be distinct from sections
of det(S;,). We will show that both of these problems can be remedied. We will

use the following lemma now and later in the proof.

Lemma 2.1.0.1. Qu|p is locally free, for all 1 <h < /.

Proof. Suppose ¢ lies in the fiber C;. Then, by definition of stable quasimaps in
families, the restriction of Q) to fibers of 7 is locally free at the nodes and markings
of the fiber. Therefore (i¢,*Qp), is a free O¢, , module of rank n—1. By definition
(ic,"Qn)q 2 Qg ®0c, Ociyg
Since this is a free O¢, , module,
projdimog, ,((ic,”Qn)q) =0
I claim that this implies projdimo,),(@nq) = 0. The Auslander-Buchsbaum for-
mula [Eis95] tells us that
pd(Qnq) = depth(Oc,q) - depth(Qng)
since pd(Qp,) < oo ( localizing the original quotient sequence
S$p->Cre0 - Q-0
at ¢ provides a finite free resolution of Q,) and Q, is finitely generated as an
O¢, module. Then restricting O¢ to a fiber corresponds to modding out by a
non-zerodivisor (since the base T is smooth, the generator of the maximal ideal is
not a zero divisor in the local ring Or 4, and by flatness it cannot be a zero divisor
in Oc¢, either). Therefore passing from O¢, to Og,, corresponds to taking the
quotient by an ideal generated by a non-zerodivisor in the local ring.
Similarly, passing from Qj, to (Qp:), corresponds to taking the quotient by
a submodule generated by a non-zerodivisor : if z is the generator of the max-

imal ideal of Op,, then if z was a zero divisor on @} ,, this would imply that
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Ohq ® (2) > O, is not injective, contradicting flatness of Qy, over Or,. Since
modding out by a non-zerodivisor drops the depth by 1 [Stal7, Tag 00LE] we have
the following equalities:

depth(Og¢, ) = depth(O¢4) — 1

depth((Qnt)q) = depth(Qpg) -1

Thus,
pd( th)
= depth(Oc¢ ) - depth(Qp,) = depth(Oc, o) + 1 = (depth((Qni),) +1)
=0
since

depth(Oc, q) — depth((Qni)q) = pd((Qnt)g) =0
because (Qpt), is a free O, , module by the definition of stable quotients in fam-
ilies. Therefore 9y, is a free O¢ , module. Let g € P
(Qnlp)g = Qng ®0c, Org 2 nésh Ocqg®oc,Opg négh Opy
using the fact that Qp, is a free O¢, module. Thus, Qp|p is a locally free Op

module. O

¢

Lemma 2.1.0.2. We can pick s e HO( C,, ® det(S;,)) so that s does not vanish
h=1

identically on any of the Piw, Py

Proof. We just need to show that, for each P = P, ,, Py,
HO(det(S;,)) + HO(det(S;,) ® Ip).

Given this, then we see that since each of the subspaces H°(det(S;,) ® Zp) are
closed in H%(det(S;,)), their complements are dense in H°(det(S;,)). Then we
can consider the intersection of their complements, which will be nonempty since
HO(det(S;,)) is irreducible.

Notice that since Qp,, is locally free at the nodes and markings of the family of
curves, the first map in the exact sequence

0—=>8hy>C"®0¢, = Qpy — 0

cannot drop rank along P, otherwise @, would have torsion supported on the
node or marking, which is not allowed.

The map Sj,, - C* ® O is given by n sections of Sy . Since the map has full
rank along P, not all (:;) tuples of 7, sections of the above n sections of Sy can

be linearly dependent when restricted to every point of P. Therefore there exist r,
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of these sections which become linearly dependent only when restricted to finitely
many points of P. Taking the wedge of these sections yields a section of det(S; )
which does not vanish identically on P by construction, although it may vanish at
finitely many points in P.

This proves the nonemptiness of the complements, and thus there exists an
open dense subscheme of H%(det(S;,)) consisting of sections which do not vanish

identically on any of the P’s above. O

We can use a finite base change (following the same method we used before
to separate the nodal locus into sections) to split up div(s) into a union of (not

necessarily disjoint) distinct sections of 7/, where we have the diagram
o=,
A
T, o T
and we pull back the sections P, ,, P:,j,b along with the flag sequences.

Now we address the fact that the base changes introduced singularities of the
total space of the family. The resulting surface C] has finitely many singularities
of the form xyxy — 23%, a > 1.

We can use the change of coordinates

Ty T iy, T o T — iy, a3 - (-1)az
to see that the singularity is analytically isomorphic to the singularity at the origin
of 2 + y? + z®, the A,_; singularity. To resolve the singularity, we must blow up
a -1 times. This will result in a chain of a -1 E;’s (P'’s), each of which has
self intersection —2. We also know that £;.F5; =1 if ¢ = j — 1 or vice versa, and 0
otherwise.

Call each individual blowup morphism Bl; : ’C\'U”Z — C’Z:l, and call the compo-
sition of all of them Bl: C! - C!. Since P/, P"

+ v Py and the divisor of zeros of the

Z !
chosen section of @ det(S,*) are contained in the smooth locus of Cy,
h=1

k
Bt (Oa(z i, e 20 - DR ) o (& i) )

= ; ¢ .\
0 (S P, +2(F - VP, ) ® (;?ﬁ det(sh;;)) .
Now we have that the family
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k
oL (S SPL+ 5 - DF,) 0 (@ det S

is a proper flat family of curves with smooth general fiber whose total space is
smooth together with a family of generalized stable quotients and a line bundle of
the form wi; (Z wam), where f=k(d+1), w, < f and m are distinct sections
of 7. v

This allows us to apply Proposition 4.7 of [Kol90] to obtain: .

T (ot (207050 - D) o (8 0 E) )

is a semipositive vector bundle on T, for each v.

We would like to show that

k
ot 1P 200 P 8 (@ encs) )

>
—_

is semipositive. We claim that

— I — ¢ —\F
T (4 (217 20 - DPIL) o (8,000

>
—_

R~

- k
T (w:; (Xf P+ 2(f-1) Pyjy) ®( det(S,'L’;))

It suffices to prove the following lemma.

h

1l
—_

Lemma 2.1.0.3. Bl*w,, = wer

Proof. We already know that Bl*w,, and wzr agree when restricted to ,C’Z\UEl
We have the following sequence of Chow groups
A(UE) » A(C)) ~ A (CA\UE) ~ 0.

Therefore Bl*w,; and wer differ by O(Y. n; E;), for some n;’s.

I claim that all n; = 0.

Notice that Bl*w, .E; = 0 by push-pull. Therefore the restriction of Bl*w.s to
F; is trivial. Also, the restriction of w7 to E; is Op: (-2)®Op1(p1 +p2) = Op1 where
pi1 and p; o are the two nodes on E;. Therefore O(n;E;) restricted to each Ej is
trivial. [Mum61] has shown that the associated quadratic form to the intersection
form (E;.E;) is negative definite. Thus the intersection form is nondegenerate, so
all n; = 0. ]
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Using the projection formula, we see that the above lemma together with our
earlier observations yield the desired isomorphism.
Thus,

k
w (v @ e s -0 ) e (Ss) )
is a semipositive vector bundle on T, Yk > 5, where f = k(d +1).

We would like to produce semipositive vector bundles on 7" which fit into an
exact sequence with m,L;. We have a semipositive vector bundle on each T,. We
will show that each of these is pulled back from a semipositive vector bundle on
T coming from each family =, : C, - T.

To prove this, we check that

R (WL (S Pt 27 = 1) Pyy) (8 (det(5;,))¢) =0
which will allow us to conclude that the semipositive vector bundle
wp (WL (S I+ 20 - 0P, 8 (8 det(S;2))
is the pullback of
Mo (WSS Pt 2= 1) PLy) 8 (8 det(S,))
along T, -» T. Using our argument from before will allow us to conclude that the
latter is also semipositive on T'.

We can check that there is no higher cohomology on the fibers of m,. Observe

that

¢
Wl (S Do+ D=1 ) ® ( ® det(S7,,))

~

We, 4 ®UJC t(Z(f D) piwe + 2(f-1) pu]bt) ® (® det(Sy, t))k ®Oc, (X piwt)

where ,
Wc t(Z(f 1)pzvt+2(f )p Z,j,b,t)‘g’(gdet(sgv,t))k

is ample by the stability condition (let € = k/(f - 1)) , thus it must have positive
degree when restricted to each component.

By Serre duality,

Mo, ® L (S0 = D i+ £ = D P00 © (@ det(S;,))* ® Oc, (S pis))

W(WE (S =D prog+ Z(f = 1)) © (® det(S;;,,))*)* ® Oc, (= Zpiwi))-
As we noted above, the first term in the second expression has negative degree on

each component, and the last term has degree < 0. Therefore h' vanishes and thus
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the higher direct images vanish. Thus
Moo (WA (S oot £(F=1) PLy,) © (& det(S;,))F)
is a semipositive vector bundle on 7', Vv.

Now, we would like to relate these semipositive vector bundles to m,L;. We
have the map v : [[ C, - C. As in [Vak01] Lemma 2.8, the map v is a clutching
morphism, and Wevhave an associated exact sequence

0->0c—->v.000 - @Z.j*OPJn -0

Tensor by w, and observe that (as in [Vaf{01])

2
Vg wﬂg (b; Pj}“’j’b) :

0—wy;— Velmyy (bé P;fjvb) - ?ij*i;ww -0
In the last map in this sequence we take the residue of the section along the two
preimages of each nodal section, and then take the difference of these values, for
each j.
Using this, we have another exact sequence

2
%
0— y*wﬂg - V*wﬂg(z pn b) N l)e?l@jvb*ljvby*w” -0

V7,

where a;y @ P, — P are the restrictions of v to the preimages of the nodal

,5,b
sections, which ]are isomorphisms and ; : Pv’fj’b — (" are the inclusions. We also
have an exact sequence

0->w,®7L > w, — @ij*i;wﬂ -0
where 7 is the ideal sheaf of the P!'’s obtain]ed by tensoring the ideal sheaf exact
sequence with w — 7. Now we will put these together into a commutative diagram

as follows :
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00— w, 71 Wr @ij*i;wﬂ%o

0 —— vow, HV*WWU(ZPR p) — EB Qi ul

I CNE

v

0 0 D i wn
J

0 0 0
It is clear that all three rows are exact. We already know that the middle column

is exact. The last column is the anti diagonal embedding z — (z,-2)

(since avjp.i}, v we 2 5445wy by the projection formula) followed by the sum map,
which is exact. The map w; ® Z — v,wy,, is induced by the commutativity of the
top right square, which is clear. Commugativity of the bottom right square is also
clear from our discussion above. The bottom left square is also commutative since
sections of VW -~ are holomorphic along the preimages of the nodal sections, so
taking the residue yields 0. Thus the diagram commutes, all the rows are exact
and the last two columns are exact. A diagram chase yields an isomorphism
Wr ® L 2 VyWry;-

Thus, we have an exact sequence

0—>V*wm —>w7r—>EBz]*z wy =0

j
We would like to show that the quotient sheaf is actually @Z] N, Pr- Using the

projection formula together with the isomorphism

Viwy 2 wm(z Py,
it suffices to prove the following lemma.

Lemma 2.1.0.4. wr, (X P};,)|pr 2 Opn , , V5", 0" such that P}, c Cy, Vv.

j’.b

Proof. Since the nodal sections are disjoint, it is clear that the restriction of
O( Ujb) to P, is trivial unless 7 = 5/ and b = b'. Now, the total space of
C, may have singularities, but these are not on the marked nodal sections P;‘j b

Therefore we can perform a resolution of singularities Bl : C, - C,. The new



49

family will have smooth total space and smooth general fiber. Notice that

wﬂ'v( v,j', b/)|P:,j’, = Bl*wﬂ'u( v,j', b’)|Pn

As in [HMO8], since the total space of C, is smooth, the relatlve dualizing sheaf is

/bl

isomorphic to K¢ ® 7y K 7. Thus, using adjunction
_ (P . . ~ O
wﬂ"u(P U’j,’b,)|an,j’,b’ = Oan’jl,bl'
Using the projection formula for B, since P}y is isomorphic to its strict trans-

form, we find

wﬂ’v( 0,47, b’)|P;L,j',b’ = Opajlybl

Therefore we have an exact sequence :
0— V*wm - Wy = @ZJ*OPH -0
Now, to yield an exact sequence where Ek is the middle term, we can tensor
this with
NS IR © (@ det(S;))

and the result is

L
0 v (why (S 1P+ B0 - 1) Py © (@ det(Si 1)) -
l
- @z'j*@';(}@l det(S;))F) -0

using what we showed above jtogether with the fact that the marked sections on
C' are in the smooth locus.
Now, notice that if we restrict the first sheaf to fibers of 7y, it has no higher
cohomology (from what we have already shown) and the pushfgrward via 7 of
v (g (S £ P+ 2 =D PL,) © (8 det(S; ) )
coincides with the semipositive vector bundle
Iy *wm(z P+ 2(f-1)P;,)® (® det(&fu))’“
Using our lemma from earlier, when we restrlct each quotlent sequence to each
marked section P;
0->8lp > C"®@O - Qulp, -0
the quotient is locally free on P;. When we dualize, we obtain a surjection
CreO0 - S|p —0.
Taking rz" exterior powers, we find that we have a surjection
cl) @ O > det(S;|p,) = 0.

The trivial bundle is clearly semipositive from the definitons, so by Corollary 3.4i of
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[Kol90] the quotient det(S;

and for each 1 < h < /.

p,) is semipositive on P;. This holds for each 1 <i < m,

By Corollary 3.5 of [Kol90], tensor products of semipositive vector bundles are
semipositive, so we see that, for each 1 <i<m, (é det(S;))k|p, is semipositive on
P;. Since moi;: P; - T is an isomorphism for a}ﬁlz', we see that the pushforward
Tyl ((é det(S;))k) is semipositive on T.

Thus, when we pushforward, we get an exact sequence of vector bundles

0 mig. (why (S P+ £(F = 1) PL,) © @), (det(S; ) ) > L

> O iy ((é@1 det(s,;))k) -0
The last bundle is a direct sum of semipositive vector bundles, so by Corollary
3.5 of [Kol90], it is semipositive. Since 7,Ly is an extension of semipositive vector
bundles, by Corollary 3.4i of [Kol90], 7, Ly is semipositive.
O

Notice that this actually shows that 7,L; is semipositive for any family of
generalized stable quotients over any base: We already showed that the bundle
. L, commutes with arbitrary base change. Now, suppose we are given a family
of stable quasimaps over a base T'.

Let f: C'> T be any map from a projective curve to T'. Let f*m,L; - M be
a quotient line bundle on C. We can pull everything back to the normalization of
C, where we have already showed that v* f*L; is semipositive, thus forcing v* M
to have nonnegative degree on CV. Since the normalization is finite, it will not
affect the sign of deg(M). Thus M has nonnegative degree on C. By definition,

7, Ly is semipositive on T'.

2.2 The ample line bundle

Now, given a family of generalized stable quotients over a scheme T, we would
like to construct a collection of tautological semipositive vector bundles and quo-
tients on the base T which are functorial under base change. It will be shown that
these yield a set theoretic map to the GL( W) orbits of a product of Grassmannians

which factors through the map to moduli.
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We work with the family:

(*) C 0= Sl<—>...<—>84‘—>(C"®(’)c—> Qi—>...>09Q,—> 0

|
Plf ™
\

T

The Q line bundle

wn(2, F7) @ (@(det(S)"))
is m-relatively ample for any € € Q.. Just as in [MOP11] we will fix e = 7-=. We
use our construction of the moduli stack as a stack quotient [Q'/PGL(W)] from
the first chapter to construct the factorization.

The following is Definition 3.8 of [Kol90].

Definition 2.2.1. Suppose T is a scheme and V is a vector bundle of rank v with
structure group G. Let V — Q — 0 be a quotient vector bundle of rank q. The
natural map from the closed points of T to the set of G orbits of Gr(q, v) is called
the classifying map. This map is said to be finite if every fiber is finite and for each

te T only finitely many elements of G leave the kernel of Vy —» Oy — 0 invariant.

Here, Gr(q,v) refers to the Grassmannian of ¢ dimensional quotients of C¥ as
opposed to subspaces, as it has been used throughout the rest of the paper. This
terminology will only be applied in this chapter.

2.2.1 The tautological quotients associated to a family

Consider a family of generalized stable quotients (*).
The bundle £ gives an embedding p of the fibers of C over T into the fibers

of P((mw.Ly)*) over T, which yields a commutative diagram

C —P((m.Ly)")
\ e
n T

We obtain sections t; : T — P((w.Ly)*) via pop;. Call T; the subscheme of
P((7m.Ly)*) defined by the image of ¢;. We have the natural exact sequence of
sheaves on P((m,Ly)*)
0-> Z¢ — Op((ricy)r) > 1:0c— 0
By [Nit05], Theorem 2.3, there exists an M such that Z., is M regular for all
t e T. It follows that p.Og, is also M regular for all t € T' by Lemma 2.1 of [Nit05].
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This implies that Vm' > M,
o hWi(Ze,(m')) = hi(1 O, (m')) =0 for all i > 1
e 7o, (m') and ;. O¢,(m') are generated by global sections

for all t € T. By Theorem 3.7 of [Nit05], we have that, for all m’ > M,

0 - p.Zo(m') — Sym™ w, Ly — T (L) >0
is an exact sequence of vector bundles (where all higher direct images vanish) on
T such that

o p*p.Ie(m') = Zo(m')
° p*Symm/ﬂ'*ﬁk — O]}DT((W*Lk)*)(m,)
. p*ﬁ*ﬁzn/ - M*EZL,

are surjective Vm/ > M. Therefore we have a commutative diagram of sheaves on
C ([Nit05])

0 — p*pLe(m') — p*Sym™ 7. L), — pem L ——0

|

0 IC(m,) OPT((W*ﬂk)*)(mI) HM*‘CZL, —0

with the columns surjective and the rows exact.

Notice that, given the data
Sym™ 7, Ly = T (L) =0

we can recover the original sequence as follows ([Nit05]).

Pulling back along p we have an exact sequence of vector bundles

p* Sym™ 7, Ly, P LY =0
whose kernel is naturally isomorphic to p*p.Zo(m’). Consider the composition
p*pLo(m!') - p* Sym™ w, Ly — Op 1 ((r2)) (M)).

Based on the diagram above, we see that the image of this map of sheaves is the
kernel of Op, ((x,2,)) (M) = ,u*ﬁzn'. Taking the cokernel of
p* 0L (m') = Opy((masy)s) (M) we recover Op,((r, i) (M) = L. Twisting by
Op((ro2)+)(=m') allows us to recover the original quotient sequence.

The sections t; yield surjections

T Ly =t Ly = 0.

1th symmetric powers, we obtain surjections

Taking m
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Sym™ m Ly > t: L],
which correspond to the m’-uple embedding of the sections, so we can recover the
sections from this data.

We can push forward each of the exact sequences from the flag sequence:
° 0_)/~L>e$1 _)(Cn®,u>(—00 _>,LL*Q1 _)0
¢ 0= K5 = 11, Q; = Q1 =~ 0, for 1 <j<l-1.

Notice that we have the following commutative diagrams of sheaves on C'

(*) N*j*sl 4>(Cn®ﬂi*ﬂ*004>/l*ﬂl*g1 —0

0 S Cre O¢ 1 0

(*); Wy ——= e Qj —— p*pe Qjir —= 0.
0 K, o) Qi1 ——0

with the rows exact and the columns surjections. These diagrams will play a role
in what follows.
Considering the kernel G; of the composition
C"® Opr((reci)r) > C"® . Oc > . Qs

by [Nit05] Theorem 2.3 we can find an N such that G; is N regular on the fibers
of p. By [Nit05] Lemma 2.1, this implies that u,Q; is N regular on the fibers of
p. Choosing M’ > maz{M, N} + 1, we see that .Sy is M’ regular when restricted
to fibers of p. Thus we have a commutative diagram

04>g1(m’) Cn@)OpT((mLk)*)(m/) HM*(Ql ®£ZL’) —0.

| |

00— 1. (S1 ® L) C" @ pu, L7 11:(Q1 ® L) —=0
where the rows are exact, the first two columns are surjections, and all the sheaves

in the above sequence are both globally generated and without higher cohomology

when restricted to the fibers of p, for any m’ > M’. If we pick m/ > M + 1, then

pushing forward under p will preserve the surjectivity of the columns (the kernels

are M’ + 1 regular). Replace M’ by M’ + 1. Pushing forward under p yields a

diagram where the rows are exact sequences of vector bundles and there are no

higher direct images. By M’ regularity, all the sheaves F in the diagram satisfy
prpF = F



54

is surjective. This implies that we have a commutative diagram as follows (*x)

0 0
0 0
p*pGi(m’) P (S ® L)
\
Gi(m") e (S ® L)
Cre® P*Symm’mﬁk Crg p*mE;”’
\ \
C" @ Oy ((reiy) () Cr® L
prr(Qi®Ly) P (Q1® L7)
\ \
1 (Qu® L) 11.(Qr ® L7
0 0
0 0

where all the horizontal and down-right arrows are surjections, with the columns
exact.

Inductively we will show that an analogous regularity statement to those we
found for the curve, the sections, and the first quotient sequence holds for

0= p i = 1. Qj = 1. Qjuq = 0, for 1 <j<l-1.

First, we consider the kernel of C" ® Op,((r,2,)*) = 1:+Q1 = 1+Q2 = 0. By
Theorem 2.3 of [Nit05], there exists an M; such that the kernel is M, regular when
restricted to fibers of p. This implies that p,Qs is My regular when restricted to
fibers of p. Using the sequence

0— ,MJQ g M*Q1 - ,U*Q2 -0
we see that for MJ := max{M’, My} + 1, all sheaves in this exact sequence are M,
regular when restricted to fibers of p.

Suppose that we have found an M}, such that Vj <k, u.Q;, u.Kj_1, 1+S;, pZe,

and p,O¢ are My regular when restricted to fibers of p. Considering the kernel of

C"® Opr((mui)) = 1+ Q1 = o = 1 Qp > 112 Qg1 — 0,



95

we see that by, Theorem 2.3 of [Nit05], there exists M| such that this sheaf Gy
is M| regular when restricted to fibers of p. Then, letting My := max{M], My},
we see that all of the above sheaves as well as p, Q1 and Ky are My, regular
when restricted to fibers of p. The induction is complete.

By M, regularity, for any h > M,, we have the following diagram, for each
1<j<t-1

0 ——=Gj.a(h) C" ® Opy((ro)*) (h) — 11:(Qjs1 ® L)) —0..

| |

OHM*(K]@)‘CZ) ,U*(Q]®£Z) M*(Q3+1®EZ)H'O
such that all the sheaves have no higher direct images, their direct images are

locally free, and the restriction of any sheaf in the diagram to a fiber of p is a sheaf
generated by its global sections.
If we replace M, with M, +1, then surjectivity of the columns is preserved after

pushing forward along p. This yields a diagram (*x);

0 0
0 0
p*psGj1(h) prm(K; ® L)
\
Gjr1(h) 11 (K ® L)
Cr ® p* Sym" . Ly P (Q; ®L})
\ \
Cm ® Opy((r.2r)) (R) 1:(Q; ® L)
P (Qji1 ® LI) P ( Qi1 ® L)
\ \
11+ (Qje1 ® L) 1:(Qji1 ® L})
0 0
0 0

where the columns are exact and all right and downward-right arrows are surjec-

tions.
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We can associate to the family of generalized stable quotients the following

exact sequences of vector bundles on T’
o 0 p.Zc(h) - Sym"m. Ly — m. LI~ 0
o Sym"m. L) — t:Lr—>0,for 1<i<m
e 0> m(Si®LY) > Crem LI > (Q1®LE) >0
e 0> m(K;®LM) > (Q;®LY) > m(Qjr1 ®LY) » 0, for 1<j<l-1.

Using the first exact sequence, we can replace the last ¢ sequences so we have the

following collection of exact sequences of vector bundles (for h > M)
o 0 p.Ie(h)— Sym"m. Ly — m. L -0
o Sym"m L) - trLh -0, for 1<i<m
o Cn® Sym"m.Ly - m.(Q;®LM) >0 for 1<j<

Call each of these quotients W,, for 1 <e<m+ 1+ {. We have already seen that,
from the first m+1 surjections, we are able to recover the curve C' and the sections.

We claim that we can recover the flag sequence as well from the data of the
collection of quotients {W,}™+1*¢ (along with the quotient maps). We describe
this below (using [Nit05]).

By pulling back the m + 2"¢ quotient sequence and taking its kernel we recover

0= p*p.Gi(h) - C* ® p*Sym" 7. Ly, - p*m.(Q1 ® L) — 0.
Consider the composition
p*p.Gi(h) - C" @ p* Sym" . Ly, > C" @ p*m LI > C" @ p, L]
where the first map is the same as in the exact sequence above, the second map is
the pullback of the direct sum of n copies of the first map we were given as part of
the starting data, and the third map is the direct sum of n copies of the surjection
we obtained from M, regularity. By considering the diagram (xx), if we look at
the cokernel of the above composition p*p.Gi(h) - C" ® pu,. L}, then we recover
Cr @ Ll - pe(Q1 ® L) - 0. We can twist this by Op,((x.c,.)+)(~h) and we
recover the pu pushforward of the first quotient sequence
0-> S >C"® p.Oc - 1,91 -~ 0.

By the commutativity of (), if we consider the cokernel of
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St —=Cr @ p*p.Oc —=C" e O¢
then we recover the quotient sequence C* @ O¢ - Q1 — 0.
We will now show inductively that we can recover each of the sequences
O—>’Cj—>Qj—>Qj+1—>O
given that we can recover the curve, its marked sections, and the first quotient
sequence above.
Suppose for some j that we can recover all the quotient sequences in the line
above for any 5’ < j.
Then, using the diagram (*x);.1, we see that if we consider the kernel of
Cr ® p* Sym"m. Ly — P ( Qo ® L)
then we recover the exact sequence
0 = p*p«Gira(h) > C" @ p*Sym" 7, Ly > p*m.(Qjra ® L) — 0.
By the same diagram, if we consider the cokernel of the composition
P peGiin(h) > C" ® p* Sym" 1. L1 > C" ® Op . ((r.zy) (h) = 1+ (Qji1 ® L})
(the last two maps we have by the inductive hypothesis) then we recover
11:(Qj1 ® L) = 11 (Qjra ® L7) = 0.
Taking the kernel and twisting by Op,((r.z,)*)(—h), we recover the exact sequence
0= pljs1 = 1. Qji1 = ps Qi > 0.
By commutativity of (x);.1, taking the cokernel of
P K1 = e Qi —~ Qi

we recover Q1 - Qj.0 = 0, and the induction is complete.

2.2.2 The classifying map

Given t € T, once we pick an identification H°( Cy, L) = W*, we obtain quotient

sequences (for h > M)
o Sym" W+ = Sym"r L], - T L =0
o Sym" W+ = Sym"r Ly - t;[ﬁﬁt -0, for1<j<m

e Cre Sym"W*zCre® Symhmﬁkh > (Q;® L))y — 0 for 1<i</

Let the quotients have ranks wy. Considering the collection of all identifications

yields a map from the closed points of T to the GL( W) orbits of
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m+1 +1+£

H Gr(w,, Sym" W) x H Gr(w;, C* ® Sym" W~).
Notice that this 1dent1ﬁcat10n is only upn’lco C* multiplication since multiplying by
C* does not change the kernel.

We seek to prove the following proposition.

Proposition 2.2.1. There exists a set theoretz’c classifying map
n Gr(w,, Sym"(W*)) x n Gr(wz, Cr @ Sym" (W~ )))/GL(W)

where the actzon s the diagonal actzon whzch factors through the map to moduli

via a set theoretic injection
Qg (FI(T,C), d)

(n Grw,, Sym" (W) x ' TI Gr(w:, C* & Sym"(W* )))/G’L(W)

i=m+2

Proof. We proved the existence of the classifying map above. It suffices to prove

the following lemma.

Lemma 2.2.1.1. There exists an injective map of sets

Qym(FIUT,C™), d)

(lell Gr(w;, Sym™(W*)) x Gr(wmqa, C* ® Sym"( W*)))/ GL(W).

Proof. Suppose
(C, P}, 058 >...285->C"00~>Q,~>...>Qr~0)
(c, {pj 08 - oS5 Cre0 -9 »... > Q,-0)
are two generalized stable quotients which are mapped to the same GL( W) orbit
in the product of Grassmannians.
Then, there exist isomorphisms ¢, : HO(C, L) = W*, ¢g: H(C', L) 2 W*

such that we have commutative diagrams (xx)

o Sym"HO(C, L1) % Sym" W+ —L~ HO(C, L]

|

Sym"HO(C", L) Sym" W+ — e go(cr, ch)
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o Sym"HO(C, Ly) % Sym" W+ —% HO(C,, ® L]

|

Sym" HO(C", L) Sym" W+ — HO(C,, @ L])

o C®Sym"HO(C, L)%= Cr e Sym" W* 2 [10(C, Q; ® L1

|

Cr o Sym"HO(C", L))"~ Cn ® Sym" W* "™ o 07, Q! @ L)

where 2 <e<m+1,1<i</¢ and e = j+1. The isomorphisms ¢,, 15 yield
embeddings of the curves C, C’ and their markings {p;}",, {p/}?, in P(W). If
we consider the kernels of ¢;, ¢] in the first diagram, we recover

0—= H%Z¢(h)) —= Sym" W* —— HO(C,Ll) —=0

| |

OHHO(ZC/(h)) —>Symh w* HHO(C’,EZ) —0

by definition of the classifying map. From what we have already seen, if we con-

sider the cokernels of the maps
H(Zo(h)) ® Opwy = Sym" W* @ Op(yry — Op(ry (h)
H(Zer(h)) ® Opwy = Sym™ W+ ® Op(wy = Opcwy(h)
then we recover
Op(w)y(h) = §o. LI >0
Opwy(h) > 5. Ly~ 0.
Now, putting this together with the data we have already found, we have a com-

mutative diagram
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0 0
0 0
H(Zo(h)) ® Opw) HO(Ze(h)) ® Op(w)
Zo(h) Zeo(h)
Sym" W* ® Op(w) Sym" W* ® Op(w)
Op(w(h) Op(wy(h)
HO(C, L) ® Opcw) HO(C", L}) ® Opw)
GarLh Vg L}
0 0
0 0

where each of the downward-right arrows are surjections, each right arrow is an
isomorphism, and the columns are exact. We can fill in the kernels of the leftmost
of the two collections of downward-right arrows, and we see that we have an exact
sequence

0-& 28 —-E -0
where &; is the kernel of the i** leftmost downward-right arrow. We can do the
same for the rightmost downward-right arrows yielding an exact sequence

0-Fr->F—->F3-0
where & =~ F,. Since the composition

Ey = Fo — Sym" W* @ Op(wy — Op(wy(h) — %*Cz
is zero, and & — &3 is surjective, by commutativity of the diagram we see that the
composition
E— HO(C,LY) ® Opcwy ~ HY(C', L) @ Op(wry ~ Eﬁ*ﬁz

is the zero map, which yields a morphism & — F5. In turn, this induces a mor-
phism ¢, L} — 15, L0, By commutativity, we see that this must be surjective.

But now since all of the right arrows are isomorphisms we can repeat this
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argument (by reversing the arrows) to show that there is an induced morphism
g, Ll > ¢, L. By the commutativity of the following square (}) in either
direction

Op(wy(h) — ¢o L}

l

Op(w)(h) —=35.L}
and the fact that the rows are surjective, we see that the composition of the two

opposite direction vertical maps in either order is the identity, and so C' and C’
represent the same curve embedded in P( ). Therefore the two generalized stable
quotients correspond to the same point in Hilb, recalling the notation we used in
the construction of the moduli space.
For the markings, we can consider the kernels of g;, ¢; in the second collection
of diagrams, and we recover the diagram
0—= H%Z, ® L}) — Sym" W* — HO(C,, ® L}') —0

| |

0 —— HO(Zyy ® L) — Sym" W* —— HO(C,y ® L) —0

by definition of the classifying map. Just as for the quotients ¢, g1, if we consider

the cokernels of the maps
HO(Ipi ® £Z) ® O]p( w) ~ Symh W*® OIP’(W) - OP(W)(}L)
HO(Ip; ® L:Z) ® Op( w) — Symh W*e® OP( w) — OP(W)(h)
then we recover the quotients
OP(W) - Ea *Cpi ® EZ
Opw) > ¥5.Cpr ® EZ
The same diagram chase as before will show that we have a commutative diagram
with the right vertical arrow an isomorphism

OIP’(W)(h) Haa *(sz‘ ® [’Z

|

Opwy(h) — ¢,,Cp, ® L}
This tells us that the points represent the same point in P( W) under the h-uple
embedding, and so they represent the same point in P( ).
Now we show that the flag sequences are isomorphic. By definition of the

classifying map, we have unique factorizations
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qdm+2

//——_—\

Cr® Sym"W* —2~Cre HO(C, Ll —1= HY(C,Q,® L!) .

| |

Cr ® Sym" W~ —~C'e HO(C", Lh) 1~ HO(C, Q) ® Lh)

\_—//

’
A2

Take the kernels of ¢,,+2 and ¢/, ,, to yield the following diagram
0——= H%Gi(h)) —=C"® Sym"W* ——= H(C,Q, ® LI) ——=0.

| |

0—— H(G](h)) —=C" ® Sym" W* — HO(C", 0} ® L) —0
Recall that we have the following commutative diagrams as a result of M, reg-

ularity

HO(Ql(h)) ®Op(w) —C"® Symh W= ®O]p(w) —C"® HO(C,CQ) ®0]p(w) — HO(C, 9 ®C£) ®O]p(W)

i i | |

gl(h)—>(cn®oﬂ’(W)(h) (Cn®$0*ﬁz &a*(gl@ﬁz)
Ho(g{(h)) %9 O]P’(W) _— (Cn X Symh W* Q O]p(w) HC" 9 H0(0/7£Z) %9 O]p(w) _— HO(C,, Q’l X EZ) 9 O]p(W)

l i l l

Ggi(h) C" @ Op(w)(h) Cr ey L] U5.(Q1® L])
where the columns are surjective. Therefore we can recover

C"® G L > bo (Q1® L))
Cr @y, Ly > 15.(Q © L))
as the cokernels of the compositions
H°(Gy(h)) ® Op(wy ~ C"® H(C,L}) ® Op(wy = C" ® b, LT
HO(G{(h)) ® Opcwry ~ C* @ HO(C', LE) @ Opwry > C* @ b5 L1

using what we have already proved.

Taking the kernels, we obtain a diagram
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0 0
0 0
HO(S, ® L) ® Op(w) HO(Sp® L) ® Op(w)
bo(S1®LY) Vp.(S]® L))
Cr e HO(C, L) Cr e HO(C', L1
\ \
C"® b, LI Cr® iy, L}
H(C, Q1 ® L) ® Op(w) HO(C", Q1 ® L})) ® Op(wyy
$a.(Q1®LY) Vg (Q1®LY)
0 0
0 0

where the arrow C" ® ¢, L} - C" ® Eﬁ*ﬁz exists from what we have already
shown, and it is an isomorphism. The same diagram chase as before produces an
arrow
Ew(Ql ®£Z) _’Eg*(Qll ®£Z)
and vice versa (by reversing the horizontal arrows in the diagram)
The fact that the composition of these is the identity (in either order) follows
from the commutativity in either direction of

C"® Op(wy(h) —=C"® o LI} — ¢, ,(Q1 ® L)

I

Cr ® Op(w)(h) —=Cn ®E5*LZ Hﬁﬁ*(Q’l ® L.
After twisting by Op(w)(=h), we have a commutative diagram

C"®Opwy—=C"® im0 O0 —icn har

| |

Cre® O]P’(W) —C"® Z'C//*T;/g*OCI —_— Z'CII*TZJB*Qll
where here ¢, : C - C”, 1;5 : C" - (" are the isomorphisms with the embedded




curve in P(W), which we call C”.
Notice that the first two arrows factor uniquely through the map
C"® Opwy = C"®icn Ocn.
Thus we have a commutative diagram

Cr®icn Ocn —=C"® iC”*(ba*OC —— Z'C//*(ﬁa*Ql .

| |

(Cn ® icw *OC" —_— Cn ® iC”*w,B*OC’ —_— ’]:CN *’l;ﬁ*Qll
Let 51, S~1, be the kernels of

Cre OC’” -C'® anx—oc - an*Ql
Cn ® OC" e d (CTL ® QZ,B*OC’ d T/Z/B*Qll
Pulling back along i¢» and using the fact that, for all sheaves F on

ignion < JF — F is surjective, we find the commutative diagram

0
Pnlion .S Vgt on *51,
\ \
S S
C" @ it g s O Cr ® iticn . Ocn
\ \
Cr®Ocn Cr®Ocn
ionfasQn . iGuion g Q) 4
\ \
an Q1 QZ’B * Qi
0 0
0 0

where ¢ and ¢’ are recovered as the cokernels of the compositions
itnicn«S1 = C" ® it icn «Ocgn = C" @ Ocn

. . g , . .
Z*C,,Zcrr O > C'e ZE«HZC" Ocrn > C*"® Ocn.

64

"
c",

. . o . . ~ , . . . . . .
We can replace iy, cn «Si, ignicr»S1 with their images in C"®i%,,icn . O cr and
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we will still have a commutative diagram except now the rows will be exact, and
all downward right arrows will be surjective. The same diagram chase as before

(for showing the curves are the same in P(WW)) yields a commutative diagram

(Cn ®OC” Héa*Ql .

|

Cre OCH EE— 1/15*Q’1

The same proof as before shows that the right vertical arrow is an ismorphism.

Since qz;a* and (;5;1* are naturally isomorphic functors, and 1;5* and QZJBI* are
naturally isomorphic functors, we see that the first steps of the flag sequences are
equivalent. Thus, we have a commutative diagram with surjective rows and whose

columns are isomorphisms
CreOcn —= ;1 * Qs

|

Cr® Oc¢n —>¢5“Q’1

We will inductively prove that we have a commutative diagram with the right

arrows surjections and the downward arrows isomorphisms
Cr®Opn —— 51" Q) —— - —— ¢ Qy

y |

@n®00,,*>¢51*giH...H@Zél*gzj_
Suppose now that for j > 1, the first m + j + 1 diagrams in (#x) yield the

following diagram
(Cn ® OC” E— anl*Ql —_—— e ———> Q;&l*Qj

| |

(Cn ® OC’” 4>’(/}B1*Q,1 HH{/}E]**Q;

whose right arrows are surjective and whose columns are isomorphisms.

Now, consider the m + j + 274 diagram in (**)

Cr @ Sym"HO(C, L1,) 22—~ C" & Sym" W* — HO(C, Q;11 ® L1)

Am+5+2

|

Cr @ Sym" HO(C", Ly) " Cr @ Sym" W* —— HO(C", Q' ® L]).

m+j+2

We know that ¢y.j42 and gy, ;,, factor as



66

gm+j+2

T

6j+1

Cr® Sym"W* —— . —= H(C,Q; ® LI') —> H(C, Q.1 ® L)

]

C @ Sym" W* —> - —— HO(C, Q) ® L]') —+ HO(C", Q' @ L]).

q:n+j+2
Taking the kernels of ¢+ .2 and q;mm, we obtain the following diagram
0——= H(C,Gji1(h)) —=C"® Sym" W* —— HY(C, Q1 ® L) ——0

| |

0—=H(C", G, (h) —=Cre Sym"W* —= H(C",Q),, ® LI') —0.
The analogue of (#x); for the case of T a point shows that if we consider the
cokernels of the compositions

HO(C,Gj1(h)) ® Opewry — C" @ Sym" W+ @ Op(yy > HO(C,Q; ® L) ® Opiwry = b0, (Q; ® L1)
HO(C".G!,1(h)) ® Opwy > C" @ Sym" W* ® Opwy —~ HO(C', Q; ® L) ® Opwry = 105.(Q; ® LT)
( the middle and second maps coming from the inductive hypothesis) then we re-
cover
Gar(Q®LY) = 0 (Qu1®LYE) >0
E,B*(Q;' ® Ly~ %*(th ® L) - 0.

We get a commutative diagram
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0 0
0 0
HO(C,K; ® L) ® Op(w) HO(C", K L})
\ \
ba.(Kj ® L]) Vs.(Kj® L))
HY(C,Q,® L) HO(C", Q) ® L)
\ \
$0.(Q5 ® L}) V5.(Q)® L})
HO(C, Q.18 L) HO(C", Q) ® L}
\ \
60 (Q1® L)) Vp.(Qy ® L1)
0 0
0 0

The same diagram chase we have already performed allows us to produce arrows
aa*(gj‘*'l ® ‘EZ) e Eﬁ*(Q;#l ® ‘C,Z)
V5 (Qjur ® L] = 04.(Qj21 ® L]).

The fact that the composition of these is the identity follows from the commuta-

tivity in either direction of
C" ® Op(w)(h) — ¢,.(Qjr1 ® L)
(]
A
C @ Opw)(h) —= 5. (Q),, ® L}).
Taking kernels and twisting by Op(w)(=h), we find the commutative diagram, all

of whose rows are exact and whose columns are isomorphisms

Oﬁaa*lcj Hq_ba*gj HEQ*QJ"H —0

b

0T Ky Ty O Ty, Oy —=0,
As before, let gz~5a :C - (O, zﬂg : " — (" be the isomorphisms with the embedded

curve C" c P(W). Pulling back to C”, we have a commutative diagram



0
izwiC”*¢a *K:j izrriC”*/(/)B *K";
¢a *Kj 1/)/?
izuic”*éa*gj iEuiC"*@/Jﬁ*Q;
¢Q*Qj 1/)5
Z‘)é//ic”*géa*g]#l Z‘Euic”*wﬂ*g‘;+1
d)a*Qj-%—l Q/JB*
0 0
0
Here we recovered the arrows
¢a*Qj - ¢Q*Qj+1
T / 7 /
wﬂ*gj - ¢,8>+Qj+l

as the cokernels of

v\

.Q

!
J+1

iB//iC” *Qsa *Kj d izwic’” >(-¢04 *Qj d ¢a>{- QJ
i*CHiC” *wﬁ x—’C; - Z'Ewic” *wﬁ *Q; g w,ﬁ *Q;
from which we are able to recover the kernels.

Replacing ituicr «@aKj ; iguicn g« K by their images in

68

ignicnsPaxQj 5 TanicnPp+Qj, respectivley, we obtain a commutative diagram

all of whose columns are exact, whose right arrows are isomorphisms, and whose

downward-right arrows are surjections.

The same diagram chase as before produces an isomorphism

an*Qjﬂ = QZJ/B*Q/- fitting into a commutative diagram

J+1
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éa*gj %’Q;B*Q;

| |

&a * Qj+1 - 1;,8 * Q;-+1~
Observing that &a » and gz~5;1 * are naturally isomorphic, and 1/;5 . and 1/;[}1 * are natu-
rally isomorphic, we can concatenate this square with the preexisting commutative
diagram
C' @ Opn — ;1" Q) — - — ;17 Q;

| |

Cr® Ocn —> 5" Q) — - —= 431" Q]
completes the induction. This proves that the two generalized stable quotients

represent the same point in the moduli space. O

Therefore there is a set theoretic injective map from the moduli space to the
GL(W) orbits of the product of Grassmannians. It is clear from what we have

shown above that the classifying map factors through this map. O

2.2.3 Ampleness

In the previous section, we produced a classifying map which was given by the

data of m + 1 + ¢ vector bundle quotients
o Sym"m. L), - W; >0, for1<j<m+1
o C» ® Symhﬂ-*ﬁk - Wm+1+i - 07 for 1 <1< l.

By Corollary 3.4i of [Kol90], since 7L, is semipositive, all of the above vector
bundle quotients are also semipositive.

Given any family of generalized stable quotients over a base scheme, we can
consider the line bundle méM det(W,) on the base. Since the line bundle is func-
torial, it is naturally a liné):ll)undle on the moduli stack.

By [KM97], the coarse moduli space exists as an algebraic space. Since gener-
alized stable quotients have finite automorphism groups, some tensor power of this

line bundle descends to a line bundle on the coarse moduli space. We will show in
N

+1+4
this section that a large enough tensor power of the line bundle (m® det(W,)
v=1

is ample on the coarse moduli space, for N >> 0, using the techniques of [Kol90].
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By Theorem 16.6 of [LMBO00], there exists a scheme 7' together with a finite
surjective generically étale morphism to Q, ., (FI(¥,C"), d), which yields a finite
surjective map

T - gm(Fl(r Cn), d)°
where T has a universal family of stable quasimaps over it (by pulling back the

universal family under the map to the moduli stack) and its moduli map is finite

and surjective. The line bundle (méM det(Wv))N pulls back to the corresponding
line bundle over T . N

Since the moduli map is finite, it suffices to prove that (méﬂdet(wv)) is
ample on T'. .

Here, the classifying map is finite (following [Kol90], [Has03]) if it has finite
fibers and each point in a GL( W) orbit in the image of the classifying map has
the property that its stabilizer is finite. Since generalized stable quotients have
finite automorphism groups, and the map to moduli is finite, it is clear we are in
the above situation.

Using the reduction steps from [KP], Lemma 4.6, we can reduce to the case of
the Ampleness Lemma 3.9 in [Kol90], which allows us to work with just one vector
bundle and one quotient vector bundle.

We will describe this reduction.

To start, we can embed
m+1

H Gr(wJ,Sym W) x H Gr(Wys145, C* ® Sym” W)

in the Grassmannlan

m+l+1 m+1
Gr Z W , @Sym W*@@C"@Sym W*)
We let GL(W) act on
m+1
(&) Sym W*EBEBC”@Sym W
7=1

via its natural action on Sym W*. Notlce that the embedding of Grassmannians

is a GL(W) invariant embedding, as in [KP]|. Therefore we get an embedding
m+1 4
( ﬁ Gr(w;, Sym" W+) x TT Gr(wpms14:, C* ® Sym” W*)) | GL(W)
j=1 i1

]

m+l+1 m+1
Gr( > w,, 69 Sym" W*@EB(C"@Sym W*)/GL(W).

v=1
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In this case, the classifying map is given by taking the direct sum of the quotients,
m+l+1
and the determinant of this bundle is still & det(W,). The classifying map will
v=1
still be finite.

m+0+1 N
By [Kol90] Ampleness Lemma 3.9, the line bundle ( J(rX)Jr det(WU)) is ample
v=1

m+0+1 N _ —
on T. Therefore ( J(rX)Jr det(Wv)) is ample on @, ,,(FI(7,C"), d).
-1

This proves Thegrems 0.4.1, 0.5.1.



3 Picard Rank Calculations 1

In this chapter we will calculate the Picard rank of the moduli space

Qo.m(Gr(r,n), d) using the natural 1-dimensional torus action.

3.1 Betti numbers via torus actions

In this subsection we recall the work of [Opr0O6a] necessary to perform the
calculation of the dimension of the second cohomology group of the moduli stack
of genus zero stable quotients to the flag variety.

Let T 2 C* act on C* with weights -\, ..., =\,. This induces an action on
FI(7, C") and Qo (FI(F,C"), d) by translation.

Lemma 3.1.1. The Betti numbers of Qo ., (FI(F, C"), d) are given by the following
sum over the fixed loci F;

W (Qo  (FUF, ©), d)) = 5 =207 (F,),
Here n; is the number of negative weights on the tangent space at a point in the
fized locus F;.

The rational Chow rings and the rational cohomology are isomorphic:

A*(Qom(FI(F, C"), d)) ® Q = H2*(Qym(FI(F, C"), d)) ® Q.

Proof. By Theorem 2.5 of [AHR], for any closed point q of Qq,,(FI(F, C™), d),
there exists a reparameterization ¢ : T — T and an étale neighborhood

(Spec(R), v) = (Qom(FI(T, C*), d), q)
which is equivariant with respect to ¢. This yields an affine smooth étale atlas
which is T-equivariant. This allows us to apply Theorems 0.4.1, 0.5.1, together
with Proposition 5 and Lemma 6 of [Opr06a], from which the first result follows.

We will see later that the rational Chow groups and the rational cohomology
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groups of the fixed loci are isomorphic, from which the second statement follows
by [Opr06al. O

Remark 3.1.1. Given the above lemma, to calculate the Picard rank of the moduli
space, it suffices to determine the second or zeroth Betti numbers of the fixed loci

with 0 or 1 negative weight on their normal bundles, respectively.

3.2 Tangent space calculations I

In this section we will count the number of fixed loci with either zero or 1

negative weight on their tangent bundles.

3.2.1 The weights on the tangent space I

Here we collect the weights on the different C* representations that arise in the
tangent space calculations.

We begin by recalling the facts needed for the calculation of the relevant fixed
loci, following [MOP11]:

o Cractson Cmast-(z1,...,2,) = (t72, ..., 172 ), \; < \; for i < j, with fixed
points (e;,,...,e;. ) := span(e;,...,e; ), where e := (0,...,1,...0) with the

1 in the k" position.

e The fixed rational curves in the Grassmannian are of the form
[s:t] (e, ..., e 8 € +t-e )

(see [Wit95]).

e Let §, Q be the universal subbundle and quotient, respectively, over the
Grassmannian. Then TGr(r,n) 2 S*®Q, and TGr(r,n)
Aij = Ak, where j=1,...,rand ke {1,...,n}\{i;}]_,.

has weights

(€iqsenr€ip)

e Given a degree d map
[Pt Pli=[s:t] = (e,...,6 8% e, +tt-e; ) c Gr(rn)

from a curve to a fixed curve in the Grassmannian, the weights on the tan-

ir

gent space to the preimages of [1:0] and [0 : 1] are % and A”‘%,
respectively; see Exercise 27.2.2, [HKK*03] page 538.
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Associated to a C*-fixed genus zero stable quotient (C,p1,...,pm,q¢: C"0@O - Q),
we have an exact sequence defining the tangent space to the moduli stack (x)
0— Aut(C,p1,...,pm) = Def(q) = Def (C,p1,...,0m,q) = Def(C,p1,...,pm) = 0.
Here, the first term is the group of infinitesimal automorphisms of the marked
curve, the second is the group of first order deformations of the quotient, the third
is the tangent space, and the last is the group of first order deformations of the

marked curve.
e There are no obstructions since the genus is zero.

e The only infinitesimal automorphisms come from components with exactly
two special points on them, and they can be contracted or noncontracted.
The case that the component is noncontracted is covered in [HKK*03] page
543, and all weights on the space of infinitesimal automorphisms are zero. In
the second case, since the component is contracted, the induced C* action on

the space of infinitesimal automorphisms of the marked component is trivial.

e Next we consider deformations of the quotient. By [FGO05] pages 152 — 155,
Def(q) 2 Hom(S, Q). We have an exact sequence:
0->8"0Q~>®(S*®Q)lc, > B(S*®Q)n, >0
If the component C, is noncom?lramted7 then ’
HO(S*® Ql¢,) 2 HO(f*TGr(r,n)).
If the component is contracted, S splits as a direct sum of O(-d;)’s and each

of these injects into a distinct copy of O :
0> @O(-d) > CreO.
i=1

e The last term in the sequence (*) is the group of first order deformations of
the marked curve. As it is shown in [ACG11] Theorem 3.17 page 186,
Def(C.pr,.. . pm) = Ext!(Qe, oc(—gp,.)),
and it fits into a short exact sequence
0 H'(Hom(Qe, Oc(= £ pi)))  Bxt! (2. Oc(- £ p)) = HO(Ext! (R, 0(= £ p))) = 0.
The only nonzero weights come from the last term,
HO(Ext! (e, O(- Z pi))) = EB Thor Ca® Ty, Cars
which is the subspace of deformatlons smoothlng the nodes, Where N1y Ma2

are the preimages of the node n, under the normalization map ([ACG11]).
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Now, we will determine the weights on the spaces Hom(S|¢,, Q|c, ),
Hom(S|,,, Qln,), Hom(S, Q), and T,,, , C,® T, , Cor, where C,, Gy are irreducible
components of C'.

We first cover the case of a map from a component of C' onto a C* fixed curve
P! c Gr(r,n). We assume the map takes the form

[Pl Pl=[s:t]—(e;,...,€6 8% ¢e, +t-e; ) c Gr(rn),
where here we drop the assumption i; < i if j < j/ (for ease of notation). Notice
that if we restrict S (the universal subbundle) to the curve P! ¢ Gr(r,n), then
Slpr = V(eil,..., y© Op1 © Opi (-1),

) is the subspace of C" spanned by e;,,...,¢e;, ,. We can restrict

where ‘/<€i17~~~z€ir_ o

the universal sequence over the Grassmannian to P!, then tensor with S*|p1, pull

back via f and take cohomology to yield the following exact sequence
0—-H/>(f*(S*®S)) > Cre HO(f*S*) - H(f*TGr(r,n)) - H'(f*(S*®S)) —» 0.

Using this exact sequence, we determine that the weights on HO( TGr(r,n)|¢,) are
o (kx )1 Ny —Acforke{l,...,r=1}, Ce{1,... n}\{ix )i
o (x%)y w — A\ for £ as above, j € {0,...,d}
o (x%)3 N, —% for k as above, g€ {1,...,d-1}

Now, we determine the weights on Hom(S|¢,,, Q|¢,,) where Cy is a contracted

component. In this case, the quotient sequence takes the form

0—>é0(—dij)—>(:”®(9—>é(921,69 @ O-0.
j=1 j=1 T ke{ig)y,
We find that the weights on H(S*|¢, ® Q|¢,,) are

o (*»**)1 A, = \i, (d;, times) for j,he{1,...7}
o (xxx)y Ay = Ap, (di; + 1 times) for j as above, k ¢ {i;}7_,

When we restrict $* ® Q to a node, notice that since the node must be mapped
to a C* fixed point, the weights on S*|, ® Q|,, are entirely dependent on which fixed
point the node gets mapped to: if the node gets mapped to (e;, ..., €; ), then the
weights on §*|,, ® Q|,, are

Aij = Ak, for je{l,....r} and k¢ {i;}7_,.
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If a node is on a contracted component, the weight on the tangent space at
the preimage of the node on the corresponding component in the normalization is
ZEro.

Recall that we are counting the number of fixed loci such that the number n-
of negative weights on the tangent space to a general point in the fixed locus is
<1.

We count the dual graphs of the fixed loci with the desired properties. Given
a stable quotient, the dual graph associates ([MOP11]):

e to each contracted curve (does not have to be irreducible) a vertex labelled by
the corresponding C* fixed point it maps to and a tuple (s1,...,s,) (coming

from the quotient sequence) together with an inclusion {1,...,r} c {1,...,n}

e to each noncontracted component an edge labelled by the degree of the map

to the C* fixed curve and the corresponding fixed endpoints of the fixed curve

e to each marking py, ..., pm, the vertex corresponding to the curve containing

the marking

A vertex in such a graph does not always correspond to a curve; in some cases it
corresponds to a node where two noncontracted components come together or a
marking on the curve; in both cases the valence is 2. The dual graph for genus

zero stable quotients is necessarily acyclic.

3.2.2 The fixed loci of Qs (P, d)

We let C* act on C? with weights —\;, —\y where Ay < A\;. Let the fixed points
be p; and p,. Notice that by stability, the curve must be a chain of curves with
the markings 1 and 2 on the terminal components.

We begin with a lemma.
Lemma 3.2.1. In order for n= <2, there cannot be a node mapped to ps.

Proof. We observe that if N consecutive nodes get mapped to py, then there are
N + 1 components that are incident to those N nodes. This follows from the fact
that the genus is zero, and thus the dual graph of the curve does not have any

cycles.
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For each collection of N consecutive nodes that get mapped to po, the negative
weight Ay — A\; appears exactly N times in @ S*|, ® Q).

Notice that for each noncontracted cu;%esCa, the weight Ay — A\; appears in
HO(frTP') from (x*)y. For every component C, contracted to p,, the weight
A2 — A1 appears on H(S*|¢, ® Q|¢.,) at least once, as in (x x *),.

Therefore, we see that the negative weight Ay — \; appears at least N + 1 times
in @ HYS*¢, ®9|c,). This shows that the negative weight Ay — A appears

components
at least once for each cluster of consecutive nodes mapped to ps.

This argument shows that the curve cannot have two nodes both mapped to
po that do not lie on a common irreducible component.

Now we are reduced to the case where all nodes that map to p, are consecutive;
that is to say, for each node mapped to po, there is another node mapped to p, on
the same irreducible component (unless the node attaches to a terminal irreducible
component). But this forces these components to be contracted. Since we only
have to consider a general point of the fixed locus, we can assume that only one
irreducible component of the curve is contracted to po, or the curve contains a single
node which is mapped to ps but it does not contain any components contracted to
Dp2.

In the case that there is a component C, which is contracted to p,, we find

another negative weight as follows:

% appears in T, C, ® T, Cy if there is a noncontracted component C

[ ]
incident to C,, where d, is the degree of the map on the noncontracted

component.

e )\ —\; appears d+ 1 > 1 times on H°(S* ® Q) if the entire curve is a single
irreducible component contracted to ps, as in (x * x)2. Since there are no

nodes, these weights also appear on the tangent space.

In the case that there is a single node mapped to p, and there are no components
contracted to po, then we see that the negative weight % + )""d;a,)‘l appears in
T, Cy® T,,Cy, where d,, d, are the degrees of the maps on the noncontracted
components C,, C,, respectively.

In any case, if a node maps to py, then there are at least two negative weights

on the tangent space. O]
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Lemma 3.2.2. In order for n= < 2, the dual graph to the fixed locus cannot have

an edge with degree > 2.

Proof. We handle the case where the dual graph has an edge of degree d, > 3 first.
In this case, HO(f* TP') has weights
(du_j))@d_a(da_]'))\l fOI' ] € {O, . ;da}

as in (x%)y. For 1 < j <d-1> 2 these weights do not appear as weights on

S*|n ® Q|, (where n is any node). Therefore we have at least 2 negative weights
on the tangent space in this case.

Next, we consider the case where there is a degree 2 edge in the dual graph.

A2—\1
2

If the other negative weight, Ay — A1, does not appear in §*|,, ® Q|,, then we are

As above, we obtain one negative weight on the tangent space, , from (x)s.
done.
If Ay — A1 does appear in §*|,, ® Q|,, then we have a node mapped to p,. This

is excluded by the lemma above, so we are done. O

Thus, the dual graph can have at most two edges, with their common vertex
being labelled by p; by what we showed above.

However, two-edged graphs are also ruled out since each edge will contribute
the weight Ao — Ay to HO(f* TP'), as in (x*),, and this weight does not appear in
S*,, ® 9|, leaving us with two negative weights in H%(S* ® Q).

If d > 2, the dual graph must consist of 1 edge and 2 vertices, one corresponding
to a marking and the other to a contracted component, or it must be a single vertex,

corresponding to a curve contracted to py.

e In the first case, one of the vertices is labelled by p, and it must correspond
to a marking mapped to py, and the other vertex is a genus zero curve which

is contracted to p;. Since the noncontracted component yields the negative

weights (dl_j)&d_l(dl_j)h for 7 =0,...,dy, where d; is the degree of the quotient

on the noncontracted component, then d; = 1.

e In the second case, the vertex has degree d and it is contracted to p;. There
are no negative weights on the tangent space to the stable quotient in this

case.
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We consider the case d > 1; the analysis for d = 1 is similar. We have the

following relevant fixed loci:

e The generic point of the first type of fixed locus corresponds to an irreducible
curve with 2 markings which is contracted to p;. The quotient has degree d.
For this fixed locus, n~ = 0.

e The generic point of the second type of fixed loci corresponds to a reducible
curve with 2 irreducible components such that one component is contracted
to p1, and the other component is mapped 1 :1 to the fixed curve joining p;
to po. The degree of the quotient on the contracted component is d—1. Each

component has a marking. For these 2 fixed loci, n~ = 1.

These fixed loci are isomorphic to Mgvg‘d/gd and MO,Q d-1/Sa-1, respectively.
By Lemma 3.1.1, we see that, for d > 2,
h2(Qoa(P',d)) = h2(Mo21a/Sa) + 2.
It has already been shown in [MOP11] Lemma 2 that h?(Mg24/Ss) = d—1. Thus,
h2(Qpo(Pl,d)) =d+1.

3.2.3 The fixed loci of Q,,(P',d)

Notice that Lemma 3.2.1 and Lemma 3.2.2 both still hold in the case that
m > 2.

Therefore the relevant fixed loci cannot have any points corresponding to stable
quotients with either a node mapped to ps or a noncontracted component with a
map of degree > 2.

Notice that the relevant fixed locus does not contain points corresponding to
curves with more than one noncontracted component: in order for n~ < 2 the
two components have to be incident to either a curve contracted to p; or a node
mapped to p; either way, the weight Ay — A\; appears on H%(S* ® Q) using the
same argument from before (no node is mapped to ps).

Thus the relevant fixed loci cannot have more than one noncontracted com-
ponent, and we see that the only contracted component can be mapped to p;.
Since we are assuming m > 2, the entire curve cannot be a single noncontracted

component.
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e The generic point of the first type of fixed locus corresponds to an irreducible
curve with m markings which is contracted to p;. The quotient has degree
d. For this fixed locus, n~ = 0.

e The generic point of the second type of fixed loci corresponds to a reducible
curve with two irreducible components such that one component is contracted
to p1, and the other component is mapped 1 :1 to the fixed curve joining p;
to pa. The degree of the quotient on the contracted component is d — 1. The
contracted component has m—1 markings, and the noncontracted component

has 1 marking. For each of these m fixed loci, n= = 1.

These fixed loci are isomorphic to M07m|d/8d and Mo,m\d—1 /Sa-1, respectively.
By Lemma 3.1.1, for m > 2, d > 1,
h2(Qom(P',d)) = h2(Momal/Sa) + m.

3.2.4 The fixed loci of Q,,(P"! d), for m>2, n>3

Let the C* fixed points on P*~! be denoted py, ..., p,.

We will start by proving an analogous lemma to the case of P!.

Lemma 3.2.3. In order for n~ < 2, there cannot be any nodes mapped to p; for

7>1.

Proof. The same start to the proof of Lemma 3.2.1 shows that if the curve contains
a cluster of nodes mapped to p; for j > 1, then the negative weight \; — A\, appears
at least once. Thus, there cannot be more than one such cluster of nodes.

We are reduced to the case where the only nodes that map to p; are consecutive;
that is to say, for each node that maps to p;, there is another node mapping to p; on
the same irreducible component (unless the node attaches to a terminal irreducible
component).

Notice that if the entire curve is contracted to p;, then since d > 0, one of the
contracted components must have a quotient which has degree > 0, in which case
our argument above shows that we get at least 2 negative weights on the tangent
space.

We can assume that there is a noncontracted component C, containing a node

mapped to p;. There are two cases to consider here.
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e (, maps to the line joining p; to p;, where 7 > j. In this case, since 7 > j > 1,
the point mapped to p; cannot be a node, so \;—\; appears in HO(f* TP"1),
as in (x%)y, but notin @ S*® Q.

nodes
e (, maps to the line joining p; to p;, where j > <. If the other irreducible
component (g containing the node mapped to p; is contracted, then )‘jd;a’\i
appears in T,,, C, ® T,,, Cyr, where d, is the degree of the morphism from C,

onto the fixed curve.

If the other irreducible component C, containing the node mapped to p;

is noncontracted, it maps to the line joining p; to pi, for some k # j. If

k > j, then we are in the case above. If j > k then Ajdji + /\J(;,A’“ appears

in T,,C, ® T,,Cy, where here d,, d, are the degrees of the maps on the

noncontracted components C,, C,/, respectively.

Thus, either way we end up with at least 2 negative weights on the tangent space.
m

Now, we would like to show that the relevant fixed loci cannot correspond to
a stable quotient with a component mapped onto a fixed curve via a degree > 2

morphism.

Lemma 3.2.4. In order for n= < 2, there cannot be any noncontracted components

with degree > 2 maps.

The proof is analogous to the proof of Lemma 3.2.2 so we omit it.

Now I claim that there cannot be more than one noncontracted component.

Lemma 3.2.5. In order for n= <2, there cannot be more than one noncontracted

component.

Proof. Suppose there was more than one noncontracted component. Then the only
possibility is that each noncontracted component is incident to the same connected
component, which is contracted to py.

The noncontracted components C, must map to the curves joining p; to pg
where k > 1, for various values of k > 1. Then {\;—\;}, appear in %B HO(fr TP 1),

as in (x*)s, and they do not appear in @ S*|,® 9|,,. Since we are assuming there
nodes
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is more than one such noncontracted component, this yields as least 2 negative

weights on the tangent space. O]

Thus the dual graph of the fixed locus can contain at most one edge.
Observe that if the noncontracted component is mapped to any curve other
than the one joining p; to ps, the weights
Aj = A
where j > 2, for all i < j, would appear in HO(f* TP"~1) as in (x%)s, and not in
% S*|, ® Q|,. The edge must have vertices labelled by p; and ps.

We omit the analysis of the case d =1 as before.

We list the relevant fixed loci below:

e The generic point of the first type of fixed locus corresponds to an irreducible
curve with m markings which is contracted to p;. The quotient has degree
d. For this fixed locus, n~ = 0.

e The generic point of the second type of fixed loci corresponds to a reducible
curve with two irreducible components such that one component is contracted
to p1, and the other component is mapped 1 :1 to the fixed curve joining p;
to pa. The degree of the quotient on the contracted component is d—-1. The
contracted component has m—1 markings, and the noncontracted component

has a single marking. For these m fixed loci, n~ = 1.

These fixed loci are isomorphic to M&mu/&l and Mo,m\cH /Sa-1, respectively.
By Lemma 3.1.1,

o forn >3 m=2d>1, h2(Qpa(P"',d)) = h®(Moa/Sa) + 2 =d+1 using
Lemma 2 in [MOP11]

o forn>3,m>3,d>0, h2(Qoum(P*',d)) = h2(Mo,ma/Ss) + m.

3.2.5 The fixed loci of Qy,,(Gr(r,n),d), r>2,n-r>2

We start by proving a lemma similar to the one we proved in the case of stable

quotients to P".

Lemma 3.2.6. In order for n= <2, there cannot be any nodes mapped to

(€iry--.,€.), where ij <ijq and i, > 7.
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Proof. 1f there is a node which is mapped to (e;,,...,€;. ) where i, > r, then there
exists an h ¢ {i;}7_, such that h <i,.

We observe that (similar to the P case) for each collection of N consecutive
nodes mapped to fixed points of the form:
(**) (es, .., e ) such that there exists an index ¢ with ¢ =i, and h ¢ {&};zl,
there are N + 1 irreducible components incident to these nodes. For each of these
nodes, \;, — A\, appears once in @ S*|, ® QJ,.

For every contracted compoyrlfedre; mapped to a fixed point (ey,...,eq.) of the
form (**) , \;. — A\, appears at least oncein =~ @  S*|¢, ® Q|¢,, as in (* x *),.

components

For every noncontracted component C, that maps to a line joining such a fixed

point (eg,, ..., e ) of the form (*+) to (e, ...¢é,,...€4,.,,), (here éy,, means we omit

this index, and /,.,1 is not necessarily greater than ¢,.), there are several possibilities:

o (;# (=1, and h # {,,1, in which case ;. — A, appears in H(f; TGr(r,n)),

as in (x*);.

o ly =l =1, and h # {,,1, in which case \;, — A\, appears in H(fr TGr(r,n)),

as in (x*)s.

o (y# (=1, and h ={,,1, in which case \;, — A\, appears in H(frTGr(r,n)),

as in (x*)j.

o (; =V =i, and h = {,,1, in which case \;, — A\, appears in H(fTGr(r,n)),

as in (x*)s.

Therefore, at least one negative weight appears on the tangent space for each
cluster of consecutive nodes mapped to fixed points of the form (#x), so there can
be at most one such cluster.

Suppose there exists such a cluster of consecutive nodes mapped to fixed points
of the form (*x).

Notice that if the entire curve is contracted, \; — A, appears at least twice, as
in (x**)o. To see this, observe that the quotient must have strictly positive degree
on at least one of the irreducible components (, in which case \; — A, appears at
least twice on H9(S*|¢, ® Q|c, ), as in (x * x)2. The fact that the curve is acyclic
(using the same argument from before) shows that this weight must appear at least

twice in the tangent space.
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Therefore there must be at least one noncontracted component in the cluster.
We will consider the irreducible noncontracted components incident to, or con-
tained in, the cluster, i.e. those noncontracted components C, mapping to the
line joining such a fixed point (e, ..., e, ) of the form (*%) to (es,... €, .. .€4,.,),
(£,41 is not necessarily greater than /) where either : ¢, = ¢, =i, and h # {,,1;
by + 0y =1. and h =0, 1; by # 0, =1, and h # l,,1; or by =0, =1, and h={,,q.

We handle each of these cases separately.

For ¢; =l =i,, h # {,,1 there are two subcases to consider:

o (41 >4, in which A\, , — N\

HO(frTGr(r,n)) (as in (**)2) and it does not appear in @ S*|, ® 9|,

nodes
since this would imply that there is another cluster of nodes mapped to fixed

, appears in

points of the form (*x).

e /.1 < t;, in which case we have to consider the quotient sequence on the

other component C, containing the node mapped to (e, ..., ey, ).

Ao, ~ e .
L appears in T, Cy ® Ty, Cyr.

wi

If C, is contracted, then

If C, is noncontracted, then it is mapped to the line joining (e, ..., e )
to (eqs..-5€0,,...,€0,60,,). Notice that h # £y since h ¢ {¢,...(,}. Again,

there are two cases here: either £,.5 >y, or £,.5 < y.

— In the first case, A, —A¢, appears in H(f2 T'Gr(r,n)) and it does not
appear in @ S§*|,,® 9|, for the same reason we outlined above (if it did
appear it ;lvo(c)lifld yield the existence of another cluster of nodes mapped
to fixed points of the form (#x)).

LYY Ae,,— e, .
— In the second case, ;.5 < {/, and —— + t'dw2’*2 appears in T;,, C, ®

wi
T, Cr.

For the next case, ¢; # (), =1,, h = {,,1. In this case, either

e h > {;, in which case \, — A, appears in HO(f*TGr(r,n)) (as in (*x)s),
and does not appear in @ S*|, ® Q|, for this would imply the existence of

nodes
another cluster of nodes mapped to fixed points with the property (*x), or

e h < /{;, which splits into two cases:
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If the other component C, containing the node mapped to (e, ,...,ep.) is

A, -\ .
contracted, then 4= appears in T, C, ® T, Cuy.-

If C, is not contracted, then it is mapped to the line joining (ey,, ..., €. ) to
(€ers---,€0,5. .. €4,.,). Notice that h # €y since h ¢ {¢,...(,}. Again, there

are two cases here : either £,,o > ly, or £, .0 < ly.

— In the first case, Ay, — Ag,, appears in HO(f TGr(r,n)) (as in (**)q)

and does not appear in @ S*|, ® Q|, for the same reason we have
nodes
explained in the cases above.

r+2

D VRV VP

— If 4,19 < ly, then — + 4= appears in T;, Co® T, Cor.

In the third case, ¢; # £y, =4, , h # {,,1. We split this into two cases:

e (.41 >/, in which case )\, , — \;, appears in
HO(fz TGr(r,n)) (asin (¥*)s ) and it does not appear in @ S*|,, ® 9|, (by
nodes
the same argument above).

e /,..1 </ in which case we consider the quotient sequence on the other com-

ponent C,s containing the node mapped to (eg,, ..., ey, ):
If C, is contracted, then % appears in 1T}, C, ® T,,, Cyr.
If C, is not contracted, then it is mapped to the line joining (ey,, ..., e, ) to

(6@1,. .. ,egt,,. .. ,egr,egHQ).

Ao, =g Ae —AZT .
— If by > ly49, then ———rtt + —£-—7*2 appears in T;,, Cu ® Ty, Cyr.

a

— If by < 4,42, we see that the point mapped to (es,,..., €, ,...,¢€s,€0.,,)
cannot be a node otherwise we would have another (since h # ¢;/) node
mapped to a point of the form (*x). This node is still in the cluster of
nodes, but applying the same argument as we made above to the col-
lection of consecutive nodes mapped to fixed points of the form (e, )q,
such that there exists an index ¢ with aw = /¢,,5 and ¢y # o, for any c,
we see that we have another negative weight which is distinct from the

negative weight we already found.

— Thus, Ay, — A, appears in HO(f2 TGr(r,n)), and it does not appear
in @& §*,® 9|,

nodes
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In the final case, ¢; = ¢}, =i, and /,,1 = h. We have two cases:

e If the other component C, containing the node mapped to (e, ..., e ) is
Ag = AR
da

contracted, then appears in T;,, C, ® T,,, Cyr.

o If C, is not contracted, then we apply the same arguments from above to

show that we obtain another negative weight, either

Ao, —An Ae,, = .
- =+ 2 in T, C,® Ty, Cyr, Or

dg o
Y —)\gt, in HO(S* ® Q)

T+2

using the notation we used in the cases above.

Thus, if a node is mapped to (e;,, ..., e;. ) where i; <i;,; and ¢, > r, then there are

at least two negative weights on the tangent space. O]
We prove the analogue of Lemma 3.2.2 for the Grassmannian case.

Lemma 3.2.7. In order for n= < 2, there cannot be any noncontracted components

with a degree > 2 map.

Proof. Suppose there was a noncontracted component C, mapped to the line join-
ing (e;,,...,€i.) to (€, ., €, €, €., ) where i; <i;y1. Without loss of gener-
ality, we may assume 4,1 > ix. Then W appear in HO(f: TGr(r,n)),
fore=0,...,d,—1>1, and do not appear in @ S*|,, ® Q|, since this would yield

nodes
the existence of a node mapped to a fixed point of the form (xx). O

I claim that there cannot be more than one noncontracted component.

Lemma 3.2.8. In order for n= <2, there cannot be more than one noncontracted

component.

Proof. Suppose there were at least two noncontracted components, C,, C,. The
lemmas above show that the only possibility is that C, and C, meet the same
connected component which is contracted to (es,...,e,). Let C,, C, be mapped
to the lines joining (e,...,e,) to (e1,..., €k, ... € €0) , (€1,...,Ej,... €, €p3), TE-
spectively. Then, since o, ¢ {1,...,r}, automatically a > k, 5> 7. Thus A\, — Ak
appears in HO(f; TGr(r,n)) and A\g - A; appears in HO(f} TGr(r,n)). These do
not appear in @ S*|, ® 9|, by Lemma 3.2.6. O

nodes
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Thus, the dual graph of the fixed locus can contain at most one edge.

One of the vertices must be labelled by (ey,...,e.). If there is another vertex,
it is labelled by (e, ..., €k, ..., €r,€q)-

Notice that if & > r + 1, then A\, — A\ry1, Ao — Ar appear in H(S* ® Q), as in
(x%)2. Therefore a = 7 + 1 (it must be greater than r and the argument above
shows it must be <r +1).

Also, if k # 7, then A, — A, appears in H(S* ® Q), as in (x*);. Thus, k=r.

We must consider the weights in H(S*|¢, ® Q

component. Studying the weights in (* * x); and (* » x )5, we can see that, for fixed

¢.), where C, is the contracted

Ce{l,...,r}, if d; # 0, the negative weights A\; — A\, appear in the tangent space for
each /< j.

In the case that we have a noncontracted component, there is already 1 negative
weight, so we must have that d; =0 for all j <, and d, =d - 1.

If the entire curve is contracted, then either

e we must have d; =0 for all j <r-2, with d,_; =1 and d, = d -1, which yields

one negative weight, or
e d; =0 for all j <r, with d, = d, which yields no negative weights.

We consider the cases (m = 2,d > 1) and (m > 3,d > 1); the analysis for
(m=2,d=1) is similar.

In these cases, the relevant fixed loci must take the following forms:

e The generic point of the first type of fixed locus corresponds to an irreducible
curve with m markings which is contracted to (ey,...,e,). The inclusion of
subsheaves takes the form

C1e000(-d)->Cre 0O,

where the inclusion respects the splittings. For this fixed locus, n~ = 0.

e The second type of fixed locus is almost the same as the first type, except
now the inclusion of subsheaves takes the form
C20000(-1)20(-d+1)>C"® O,

where the inclusion respects the splittings. For this fixed locus, n~ = 1.

e The generic point of the third type of fixed loci corresponds to a reducible

curve with two irreducible components such that one component is contracted



38

to (e1,...,e.), and the other component is mapped 1 : 1 to the the fixed curve
joining (eq,...,e,.) to {(e1,...,e._1,€r41). The inclusion of the subsheaf on the
contracted component has the form

C1le0a0O(-d+1)>C"® O,
where the inclusion respects the splittings. The contracted component has
m—1 markings, and the noncontracted component has a single marking. For

these m fixed loci, n~ = 1.

These fixed loci are isomorphic to ﬁ07m|d/8d7 Mo,m|d/8d—17 and M07m|d_1 [Sa-1, re-
spectively.
Using Lemma 3.1.1 together with Lemma 2 in [MOP11], for m > 3, r > 2,

n-r>2,d>0
hz(@O,Q(GT(T)n)ud) = hQ(MO,md/Sd) + ho(Mozw/Sd—l) +2- hO(MO,Z\d—l/Sd—l)
=d+2;
and forr>2, n-r>2,d>0,

h? (QO,m( Gr(r,n),d)

h2 (Mo,mw/sd) + ho (Mo,mu/sd—l) +m- ho (Mo,mklfl/sd—l)
h2(Momia/Sa) + 1 + m.

3.2.6 The fixed loci of Q,,(Gr(n-1,n),d), for n—1>2

Lemma 3.2.9. In order for n= <2, there cannot be any nodes mapped to

(e1,...,Ck,...,€n), where k n.

Lemma 3.2.10. In order for n~ < 2, there cannot be any noncontracted compo-

nents with maps of degree > 2.

Lemma 3.2.11. In order for n= < 2, there cannot be more than one noncontracted

component.

The proofs of the lemmas above are very similar to the proofs of Lemmas 3.2.6,
3.2.7, and 3.2.8 so we omit them.

We analyze the dual graphs. One of the vertices must be labelled by (ey, ..., e,1).
If there is another vertex, it is labelled by (e1,...,é,...,e,), for k <n. We see
that A, — A appears in Ho(f*TGr(n-1,n)), as in (x*)2 and it does not appear
in @ S*,® 9|, by the first lemma above.

nodes
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Notice that if k < n—1, then \,_; -\, appears in H°(f* TGr(r,n)), asin (x*),
and it does not appear as a weight on @ S*|,, ® Q|, by the first lemma above.
Therefore, we see that k=n - 1. nodes

We must consider the form of the quotient sequence on the contracted compo-
nent, C..

Considering the weights in (x* )7, (***)a, we see that for fixed £ € {1,...,n-1},
if dy # 0, \; = \; appear, for each ¢ < 5. If £ <n -2, then more than 1 negative
weight appears.

When the fixed locus has a noncontracted component, there is already 1 nega-
tive weight, A, — A,_1, which forces d; =0 for all j <n -1, and d,,-; =d - 1.

If the entire curve is contracted, then either

e d;j =0 forall j <n-2, with d,—o =1 and d,,; = d -1, in which case there is

one negative weight on the tangent space, or

e d; =0 for all j <n -1, with d,_1 = d, in which case there are no negative

weights on the tangent space.

We describe the relevant fixed loci for (m =2,d > 1) and (m > 3,d > 0); the

case (m=2,d=1) is similar.

e The generic point of the first type of fixed locus corresponds to an irreducible
curve with m markings which is contracted to (eq,..., e, 1). The inclusion
of subsheaves takes the form

Cr29000(-d)->Cre 0,

where the inclusion respects the splittings. For this fixed locus, n~ = 0.

e The second type of fixed locus is almost the same as the first type, except
now the inclusion of subsheaves takes the form
Cr30000(-1)20(-d+1)>C"® O,

where the inclusion respects the splittings. For this fixed locus, n~ = 1.

e The generic point of the third type of fixed loci corresponds to a reducible
curve with two irreducible components such that one component is contracted
to (e1,...,e,-1) and the other component is mapped 1:1 to the fixed curve

joining (eq,...,e,-1) to (e1,...,e, 92,€,). The inclusion of the subsheaf on
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the contracted component has the form

Cr2?29000(-d+1)>C"o 0,
where the inclusion respects the splittings. The contracted component has
m—1 markings, and the noncontracted component has a single marking. For

these m fixed loci, n= = 1.

These fixed loci are isomorphic to Mo,m|d/8d7 Mo,m|d/8d—la and Mo,m\d—l [Sa-1,
respectively.
Using Lemma 3.1.1 and Lemma 2 of [MOP11], we find: forn-1>2,d>0

h2(Qo2(Gr(n-1,n), d)) = h*(Moa/Si) + h°(Moga/Sa-1) + 2+ h*(Mojd-1/Si-1)

d+2;

and form>3,n-1>2,d>0

h2(Qom(Gr(n-1,n), d)) = h*(Moma/Sa) + h*(Momja/Sa-1) +
m - h? (Mo,m\d—l/sd—l)
= hQ(Momﬂd/Sd) + 1+ m.

3.2.7 The fixed loci for Qy,,(Gr(n,n),d) , for d>0, n>1

In this case, all curves are contracted, so we only need to consider the weights
on H°(S* ® Q) where the component is contracted.
If n =1, then automatically we see that the quotient sequence is
0->0(-d) >0 - 0x 0.
There are no negative (or positive) weights on H°(S* ® Q), thus, n= = 0. The
only fixed locus corresponds to an irreducible curve with m markings and whose
quotient sequence is as above. This fixed locus is isomorphic to Ho,mu/sd'
In fact, using Proposition 3 in [MOP11], we see that we have an isomorphism
of the following coarse moduli spaces
Mo mialSa 2 Qom(Gr(1,1),d).
Thus, h?(Mo,ma/Sa) = h*(Qom(Gr(1,1),d)).
Now, suppose n > 1. Then, if the quotient sequence takes the form
0> @O(-d;) > BO > GOy, »0
j=1 j=1 j=1
we have the following weights on H°(S* ® Q):
A\; — A¢ appears dy times, where j, £ € {1,...,n}.
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As we have already seen, for fixed ¢, if d; # 0, the negative weights A\; — A,
appear dy times, for all j > ¢. If / <n -1 and d, # 0, then there are at least two
negative weights, so we must have dy, =0 for all / <n - 1.

For 1 negative weight to appear, we let d,,_1 =1, and d,, =d - 1.

For no negative weights to appear, we let d,_1 =0 and d,, = d. To describe the

fixed loci, we only have to specify the inclusion of sheaves:

e The first type of fixed loci corresponds to the inclusion of sheaves
Cr1e0a0(-d)>Cre 0O,
where the inclusion respects the direct summands. This fixed locus has

n- =0.

e The second type of fixed loci corresponds to the inclusion of sheaves
Cr2?29000(-1)a0(-d+1) > C"® O,
where the inclusion respects the direct summands. This fixed locus has

n- = 1.

These are isomorphic to Mo,mu/sd and Mo,m|d/8d—1a respectively.
Using Lemma 3.1.1, for m > 2, d > 0,
h2(Qom(Gr(n,n),d)) = h*(Moma/Sa) + 1.

3.3  Calculating h*(M,a/Sq) for m>2, d>0

In this section we prove the following lemma:

Lemma 3.3.1. h2(Mga/Sa) = 2L (d + 1) — m4m2d - for > 9,

We stratify the moduli space MO,mld /Sq based on the number of components the
curve has together with its marking and degree distribution on the components.

Since the spaces M ;4 are smooth, then after taking the quotient by &g we can
use Poincaré duality (when we take cohomology with coefficients in Q) to calculate
h2m+2d-8 = b2 We will use the fact that the virtual Poincaré polynomial is additive
on the strata, allowing us to calculate the coefficient on ¢2™+24-8 in the virtual
Poincaré polynomial (and thus h?m+24-8) after removing pieces of codimension > 2.

The relevant strata will be the interior of the moduli space, Mg mja/Sq4, and the

locus of curves with exactly two irreducible components.
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We have a forgetful map My njq/Sa = Mo - It is clear that the fibers of this map
are Hilbert schemes of zero dimensional subschemes of length d of P'\m points.
This is just SYP\{p1,...,pm})-

We will show that

PP (Moma/Sa) = P (SUP\{p1, - - pm}) - 0" (Mom)
where p" is the virtual Poincaré polynomial. Using Lemma 2.1 in [Cool5], it
is sufficient to show that the fundamental group of M,,, acts trivially on the
cohomology groups of the fibers.

Notice that it suffices to prove the result in the case that d = 1, since in that
case the fibers are P'\{py,...,pn}. The (compactly supported) cohomology of
SAYPN\{p1,...,pm}) is just the Sy invariant piece of the (compactly supported)
cohomology of the d-fold product of P'\{p1,...,pm}-

We will use the proof of Proposition 4.1 in [Chal6].

Let 3o, = P\{p1,...pmn} where all p; are distinct. As [Chal6] explains, the
fundamental group of M, ,, is isomorphic to the pure mapping class group, I'g .

By Theorem 2.2.1 in [Sch03], 'y, 2 Out™ (71 (Lo, )), where the * denotes the
subgroup of automorphisms which fix the conjugacy classes of loops around the
punctures. The classes of these loops generate Hy(My,,). Thus the action of Iy,
on Hy(Xg,,) is trivial. Since the corresponding cohomology dual elements to the
classes of the loops surrounding the punctures generate the compactly supported
cohomology, we see that the action of 7, (My,,) on the compactly supported coho-
mology of X, is trivial.

In order to calculate pU"(Mymia/Sa), it suffices to calculate p*(My,,) and

pUr(SYPN\{p1,...,pm})). We will begin by calculating pv" (SY(P"\{p1,...,Pm}))-
We use a similar technique to the one in the proof of Lemma 2 in [MOP11].

Lemma 3.3.2. poir(S(C*\{p1})) = 2/ — 24262 4 204

Proof. We will prove the result by induction on ¢. The case ¢ = 2 follows from the
decomposition
S4(C*) = S2(C\{p1}) U(C\{p1}) U{(pr.p1)} -
pUr(S2(C*)) = t* -2 (as in [MOP11)), p*"(C*\{p1}) = t2-2, so
P (SH(C\{p:})) = t*-22 + 1.
Suppose for some £, Vk < £, p*" (S*(C*\{p1})) = t2F — 2t2k=2 4 t2h-4,



Again, we use the result in [MOP11]
pvir(sk+1(C*)) = $2k+2 _ $2k
£+1
We can decompose S“1(C*) = U S*(C*\{p1}). Therefore,

k=0
p(SEIC) = £ pn(SHE\ ),

and the result follows by induction.

We generalize this to ST (C*\{p1,...,pm-3}).
d
Lemma 3.3.3. p*"(SYC*\{p1,...,pn})) = Z(_l)j(h;fl)t2d72j'
=0

Proof. We prove the result by induction on g = h +d.
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Suppose the result is true for ¢, we will prove that it is true for ¢ + 1. Notice

that we have the decomposition

d
Sd(C*\{pla ce 7ph—1}) = UO S7 (C*\{pla s 7ph})‘
]:
Using the induction hypothesis,

d d-1 j
kzo(_l)k(Z)th—% — p”"(Sd(C*\{pl,...,ph})) n Zjokio(_l)k(hzl)tzj—%_
= =0 k=

Look at the coefficient on ¢2¢ on both sides, for £ € {0, ..., d}:

e On the left side, the coefficient is (—1)d-¢ (d]fg)

. . . . d-1-¢ h+1
o On the right side, the coefficient is Y. (-1)%("}")
k=0
Comparing coefficients, the coefficient on ¢2¢ in p* (S4(C*\{py,...,pn})) is
d-¢f h Lt k+1(h+1
(D) (,2,) + Eo DR ()
I claim that i
d-1-¢
() + 8 () - ()
or, equivalently,
d—¢
Eo(_l)k(hiil) = (D).
We see that it suffices to prove the following lemma.
Lemma 3.3.0.1. For all m,n € N2, %nj(—l)k(”;l) = (-1)™(")
k=0
Proof. We have the identity

(1 _:C)n _ Tf:(l_x)nvtlajmfk — xm+1(1 _x)n.
k

=0
Comparing the coefficients on ™ on both sides yields the desired identity.



94

The result now follows. O
We must calculate the virtual Poincaré polynomial of M.
m-2
Lemma 3.3.4. p*"(My,,) = TI (1 —1) for m > 4.
i=2

Proof. We will prove this by induction. M3 is a point, so p*(My3) = 1. Next,
Mo4 2P\{0,1,00}. We have already seen that pv (P*\{0,1,00}) = 2 -2.

Suppose for some m, pU"(My,) = mﬁQ(t2 - 1) Now, using our earlier result,
that the monodromy action of m (M) Zc:)il the compactly supported cohomology
of the fibers of Moy 41 = My, is trivial, we see that

P (Moni1) = p* (Mom) - 0" (P'\{p1, - .., D }).
We have already calculated that pU(P'\{pi,...,pm}) = t2 = (m —1). By the
inductive hypothesis together with the observation above, we see that
P (Mogmen) = (2= Gm = 1)) T (12 )

The result now follows. O

Thus, the virtual Poincaré polynomial of the open locus My (q/Sa is
A , m2 o d ,
P (M) (SH PN, })) =TT =0) - £ (-1 (7 ),
i= j=
We want to find the coefficient on ¢?™+24¢=8 in this product. Let 0 < h < m -
3. Then we must have h+d -7 = m+d-4, so h = m -4+ j . But since
0 <h<m-3, either j =0 or j = 1. Therefore the coefficient on #?7+2d-8 jg

~(Z7R%i) = (m—1) = “mlmfiined _ onfim?

The case that m = 3 follows by direct calculation.
We consider the locus of reducible curves with exactly two components. In
the case that m = 3, there are 3d components in the moduli space parameterizing

reducible curves with exactly two components. Assume m > 4.

e Component A has 1 marking, degree £ > 0, and component B has m -1

markings and degree d -k >0

e Component A has m —2 > j > 2 markings, degree k > 0, and component B

has m — j markings and degree d — k

m—2
There are md curves of the first type, and there are %- > (T) curves of the second
j=2

type. Therefore, there are 2m‘1-(d+1)—w+md = 2. (d+1) - 2d22m

components corresponding to reducible curves with exactly two components.
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Thus, the coefficient on 27+24-8 in the virtual Poincaré polynomial of
MO,mld/Sd is 2m-1.(d+1) - m2+m+2d g1 1 > 3. This completes the proof of Lemma

2
3.3.1.

3.4 The rank of the Picard group

By Corollary 2 of [Cey09], A~ (MO,m|d) ®Q H2*(M0,m|d) ® Q, so the same
is true for M07m|d/8d. This was needed in the proof of Lemma 3.1.1 in order to
conclude that

4@y n(Gr(r,n), d)) ®Q = H2 (Do m( Gr(r,n), d)) © Q.

Putting together the results of the previous subsection, we obtain:

Proposition 3.4.1. Form>2,n>2,d>1,

m2—m +2d

rank(Pic( Qom(P™, d))®Q) = 2™ (d+1) - 5

Form>2r>2,n-r>1,d>1,

rank(Pic( Qom(Gr(r,n),d)) ®Q) = 2" (d+1) - W 1,

Form>2r=n=1,d>1,

m2+m+2d

rank(Pic( Qom(Gr(1,1),d))®Q) = 2™ 1. (d+1) - :

Form>2,r=n>2,d>1,

rank(Pic(Qom(Gr(n,n),d)) ® Q) = 2"+ (d+1) - W 1,

Notice that since the rational Chow groups are isomorphic to the rational co-
homology groups, then we see that numerical equivalence coincides with rational
equivalence

Num(Qom(Gr(r,n),d)) ® Q 2 Pic(Qom(Gr(r,n),d)) ® Q.
We will use this when we intersect with curves to determine generators and rela-

tions for the Picard group when m = 2.



4 Picard Group of Stable

Quotients

In this chapter we find generators and relations for the rational Picard group of
the moduli stack of stable quotients to the Grassmannian. When m > 3, we use an
excision sequence to calculate generators for the Picard group. We show that the
interior of the moduli stack is isomorphic to an open subscheme of a relative Quot
scheme. Its Picard group is known [Str87]. By a dimension count and accounting
for the relations pulled back from Ho,m, we will have a complete set of generators
and relations when r # n. When r = n, we will intersect with curves to find an
additional relation.

When m = 2, the interior of the moduli space does not have as simple a de-
scription as before. Instead of the equivariant cohomology approach of [Opr06b],

we produce a collection of generators and relations by intersecting with curves.

4.1 The Picard groups when m > 3

4.1.1 The analysis on the interior

We describe the Picard group over the interior of the moduli space of stable

quotients. We begin by proving the following:

Lemma 4.1.1. The interior Qy,(Gr(r,n), d) of the moduli of stable quotients is

1somorphic to an open subscheme of the relative Quot scheme

Quotpiy sy . /aty, (Gr(1r,m), d) over Mo,

In the proof we will use the analysis of the boundary in Quotp: (Gr(r,n), d) in
[Ber94] and [Mar07].

96
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Proof. As in [Ber94|, [Mar(07], the locus Quotp (Gr(r,n), d)™=¢ parameterizing
those quotients whose quotient has a torsion subsheaf of degree exactly e has a
morphism

Quotp: (Gr(r,n), d)™=¢ - S¢(P') x Mory_.(P*, Gr(r,n)),
where S¢(P!) is the et symmetric product of P! and Mor, (P!, Gr(r,n)) is the
morphism space parameterizing degree d — e morphisms from P! to the Grassman-
nian. This map is obtained by mapping

[C*® Op1 > Q = 0] = [Supp(7), C* ® Opr > Q/7 > 0]
where 7 is the torsion subsheaf of Q.

We will use the fact that My, = (C*\{1})™=3\A, where here A is the union
of all the diagonals. We can realize S¢(P') as P(H°(O(e)) by taking the section
which vanishes at the tuple of e points in P!, up to C* multiplication.

Let y; be coordinates on (C*\{1})™3\A, and let

(zo,...,x.) € HY(P(H°(O(e))), O(1))
be a basis. We consider the closed subschemes of ((C*\{1})™3\A) x §¢(P!) given
by the unions of the vanishing of the following equations:

e for each 1, ze‘bxj -y° where here we think of y; as an element of P! via [y, : 1]

4=

e the preimages under the projection ((C*\{1})m™3\A) x S¢(P') —» S¢(P!)

of the vanishing of xg, x., or ixz in S¢(P'), whose vanishing corresponds
to the locus of points in Se(IPglz) where at least one of the elements in the
(unordered) tuple in S¢(P') is [1: 0] = oo, [0: 1] = 0, or [1:1] = 1,

respectively.

The vanishing of the first collection of equations corresponds to the locus of tuples
in ((C*\{1})m™3\A) x S¢(P') where there is an entry in the first factor which
coincides with at least one entry in the second factor. The individual vanishing
of each of the second equations corresponds to the locus of (unordered) tuples in
((C\{1})™3\A) x S¢(P') where at least one of the entries in the second factor is
o0, 0, or 1, respectively. Call the union of all of the above closed subschemes A¢.
We can consider the preimage of A¢ under the projection map
((C\{1})m=3\A) x §¢(P') x Morq_.(P!, Gr(r,n)) - ((C*\{1})m3\A) x Se(PP')

which we also call A¢ by abuse of notation.
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We consider the preimage of A¢ under the morphism
Moy m x Quotp: (Gr(r,n), d)7=¢ - My, x S¢(PY) x Mory_.(P*, Gr(r,n))
Call this A¢. Repeat this process for each 0 < e < d. Call the union
LC_lJ A¢ =1
a closed subscheme of M, x Quot];:(l Gr(r,n), d).

Points in My, x Quotp:i (Gr(r,n), d)\T parameterize coherent quotient sheaves
of C* ® O of rank n —r, degree d on an m pointed P!, where the first three
markings are at 0, 0o, 1, such that the quotient does not have torsion supported on
the markings (if it has torsion at all).

Since the number of markings is at least 3, stable quotients whose underlying
curve is smooth are automorphism-free. Since the coarse moduli space is a scheme,
the substack Qp,,(Gr(r,n), d) is representable by a scheme which we denote by
Qo.m(Gr(r,n), d) as well.

We claim that the scheme is isomorphic to My, x Quotp (Gr(r,n), d). We

will produce a natural isomorphism between the two functors.

e If we consider a morphism
T - Mom x Quotpi (Gr(r,n), d)\7
then we get a family C*® O - Q — 0 of coherent quotient sheaves of C*® O
of rank n —r, degree d on P! x T with m distinct sections (the first three of
which correspond to the constant sections 0,00,1 ) and the quotient Q does

not have torsion supported on any closed subscheme of the marked sections.
This yields a map from 7' to Qg,,(Gr(r,n), d).

e Since any family of stable quotients over T to Gr(r,n) whose map to moduli
has image contained in Qq,,(Gr(r,n), d) has a map to My, by forgetting
the quotient sequence, then the underlying family of curves is isomorphic
to a trivial family with the first three marked sections being the constant
sections 0, co, 1. We can pull back the quotient sequence under the inverse of
this isomorphism and this yields a map T — My, x Quotp: (Gr(r,n), d)\7

since the torsion of the quotient is away from the marked sections.

By construction, the two natural transformations we defined above are inverse

to each other on objects and morphisms, so the result follows. O



99

Let
Ce ,0-S,-C"®90 - Q9,0
a.,/i
“\
Qom(Gr(r,n), d)

be the universal curve with its m sections and the restriction of the universal
sequence over the universal curve.

Let ¢ = dimc(Qom(Gr(r,n), d)) =nd+r(n-r)+m-3.

We show

Lemma 4.1.2. 19c¢2(Qy) and m2c2(Q,) generate Ay—1(Qom(Gr(r,n), d)) ® Q.

Proof. By excision,
Ay (Mo x Quotp: (Gr(r,n), d)) ® Q - A;1(Qom(Gr(r,n), d))®@Q -0
which reduces the problem to the following lemma.
Lemma 4.1.3. p.c2(F") and p.co(F') generate Ay—1( Mo m x Quotp (Gr(r,n), d))
over Q where
Pl x My m x Quotp (Gr(r,n), d)

ip
Moy 1 x Quotp: (Gr(r,n), d)

18 the universal curve over the relative Quot scheme, and F' is the universal quo-

tient of C* @ O on the universal curve.

We use the methods in [Opr06b].

Proof. We have the fiber diagram
P x Moy x Quotp (Gr(r,n), d) T pix Quotp: (Gr(r,n), d)
/| l”
Moy 1 x Quotp: (Gr(r,n), d) ! Quotp (Gr(r,n), d)
In [Str87], it is shown in Theorem 2.2, that Al( Quotp (Gr(r,n), d)) ® Q is gen-
erated by c1(p.F) and c1(p.(F ® p;O(-1))), where F is the universal quotient

sheaf over P! x Quotp: (Gr(r,n), d). [Str87] shows that there exist exact sequences

(>e * *)
2
0 p(FopiO(k)) - ,EBlm(waO(k +1)) = p(FopiO(k+2)) -0

We claim that ¢;(p.F) , cl(pt(f@p{(?(d)) generate A(Quotp (Gr(r,n), d))®Q

It suffices to prove the sublemma:
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Lemma 4.1.0.1. ¢;(p.(Fop;O(h))) = (h+1)-c1(p+F) = h-c1(p.(Fop;O(-1)))
for all h > 1.

Proof. The proof follows by induction together with (x* * ). O]

By Lemma 4.1.0.1, it follows that ¢;(p.F) , c1(p«(F ® p;O(d)) generate
A (Quotpi (Gr(r,n), d)) ® Q.

By [Opr06b], we see that

AY(Mym x Quotp: (Gr(r,n), d)) ® Q = Ay1(Moy.m x Quotp: (Gr(r,n), d))®Q

= Aq—l( QUOtpl(GT(T7 n)a d)) ®Q

is generated by f*ci(p.F) and f*ci(p.(F @ p;O(d)). By base change, these gen-
erators can be rewritten as ¢;(p.F’) and ¢;(p.(F' ® p,;*O(d))).

Notice that on the fibers P} of p', det(F")[p; = O(d)lp1, so by Seesaw Theorem
([Mum70]), 3 a line bundle N on My, x Quotp: (Gr(r,n), d) such that

det(F) 2 p*N @ p'10(d).

We will show that ¢;(p,F’) and ¢1(p, (F' ®p'70(d))) can be written as unique

Q linear combinations of p,c?(F') and plca(F’). This follows via Grothendieck-

Riemann-Roch. Indeed, it is not difficult to compute:
o ci(plF) = a(N) + 3p.ci(F') - plea(F)
o a(p(F e pi0(d))) = (d+1)ar(N) + 5p.ci(F') - plea(F')
o ci(N) = 50Lcd(F).

Putting all of this together, we find:

a(plF') = aWV) + p*cl(f’) - plea(F)
d+1 , ,
= 2—dp*01(7:) - plea(F),
/A ! 1 ! ! ! !
(P (F ep10(d))) = (d+1)a(N) + —P*C%(}—) - pLea(F')
2d+1 , ,
=~ PLE(F') = plea(F').
d+l  2d+1
2d 2d

Since the matrix is invertible, we see that p,c?(F') and plca(F')

generate A,1 (Quotp (Gr(r,n), d) x My,) ® Q. O
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This concludes the proof of Lemma 4.1.2.
O

Corollary 4.1.1. 7,.c2(Q), m.c2(Q), and the irreducible components of the bound-
ary generate the Picard group of Qom(Gr(r,n), d) when m > 3.

Proof. The proof follows from the excision sequence for stacks as in [Kre99]
Ag-1(A) @ Q > A1 (Qom(Gr(r,n), d)) ® Q > Ag-1(Qom(Gr(r,n), d)) ®Q — 0

where here A is the union of the boundary divisors. O

4.1.2 Picard group when r #n
In this subsection we will prove Theorem 0.4.2.

Proof. By a dimension count, we see that:

o for m =3, n>2 Pic(Qus(P™, d))®Q is generated by freely 7,c?(Q) and

the irreducible components of A;

e for m =3, Pic(Qo3(Gr(r,n), d))®Q is generated freely by 7.c2(Q), T.ca(Q),

and the irreducible components of A for r #n, r > 2.

We consider the case m > 3.
We must count the boundary divisors. There are md boundary divisors corre-
sponding to distinct reducible curves with one marking on one of the components

m—2
and the other m — 1 markings on the other component. There are % Y (m)
~ \j

boundary divisors corresponding to reducible domains with one component carry-
ing 7 > 2 markings and the other component carrying m — j > 2 markings. Thus,
there are 2m-1(d+1) —m —d -1 such boundary divisors.

There is a map Qg (Gr(r,n), d) - My, given by stabilizing the underlying
curve. We can pull back relations among the boundary divisors using this map.
[Kee92] calculated that there are (™;') — 1 independent relations amongst the
boundary divisors of Mo,m' These relations will stay independent when we pull

them back to Qp,,(Gr(r,n), d).
When r = 1, the collection of boundary divisors and the classes m.c?(Q) =
m.c2(Q), with the relations pulled back from M, yield the dimension count

(2 1(d+1) —m-d-1) + 1 - (mE=3me2 1) = 9m-1(g 4 1) — mizms2d
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which agrees with our calculation of the Picard rank (Proposition 3.4.1). Thus,
for m >3, n>2, Pic(Qym(P"!, d))®Q is generated by 7.c3(Q) and A, such that
all relations are pulled back from Mo,m-

Similarly, when m > 3, 7 > 2, r # n, Pic(Qm(Gr(r,n), d)) ® Q is generated by
m.c2(Q), m.c2(Q), and the irreducible components of A, such that all relations are
pulled back from M.

This proves Theorem 0.4.2.

4.1.3 Test curves I

In this section we construct the curves used to calculate the generators and

relations of the Picard group.

The curves A,

The first collection of curves are for the r = n = 1 case. Consider the curves A; .

constructed as follows:
e Start with py : P! x P! — P,
e Pick the 2 trivial sections of py at [0: 1], [1:0], call them s1, $,,.

e Pick j — 1 smooth irreducible sections of O(1) ® O(1) whose only pairwise
common vanishing points are ([1: 0], [1:0]) and ([0: 1],[0: 1]), and at
these points they have distinct tangent directions both from each other as
well as from the 2 trivial sections above; call these s; for i € {2,...,j} (we

also allow j =1, in which case e > 0 below).

e Pick m —j — 1 trivial distinct sections of ps, distinct from sy, s, above; call
these s; , ke {j+1,...,m—1} (we allow j = 1, which means that in this case
ke{2,...,m-1}).

e Pick 0 < e < d smooth irreducible sections of O(1)mO(1) whose only pairwise
common vanishing points are ([1:0],[1:0]) and ([0:1],[0:1]), such that
at these points they have distinct tangent directions from each other as well

as from s; above, and they have distinct tangent directions from the marked
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sections s at their points of intersection; call these d, , £=1,... e, (e =0 is
still allowed, but then j > 1 above).

e Pick d- e trivial distinct sections of ps, distinct from the sections above; call
these oy, h=1,...,d—e (d—e =0 is still allowed).

e We also impose the conditions that e+j > 2, (d—e)+(m—-7) > 2, for stability.

The conditions j =1 == e>0and e=0 == j > 1 ensure that the resulting
family we obtain is nontrivial in moduli.

Now, we blow up P! x P! in:

([1:0],[1:0]) and ([0:1],[0:1]) (when m =2, these are the only points

blown up; for arbitrary m we blow up further)

the (j—1)-(m -7 -1) intersection points of U s; MU s
i k

the e(m — j — 1) intersection points of U sk MU,
k ;

the (d-e)(j—1) intersection points of LiJsi N L}g O

We have a family of stable quotients over P! to Gr(1,1) given by:
o py: Pl xP! P!

e the strict transforms 5y = Bl*sy - Ey, 5, = Bl*s,, — E,, (if j > 1)

e the strict transforms 5; = Bl*s,—E1—Ep,—Y E; p—Y Ep;, foreachie {2,...,5}
% h

(if j > 1; if j = 1 then we do not have any of these sections)
e the strict transforms 5, = Bl*s; — Y Eiy - %:Ek,g (if e #0)
e the strict transforms 6, = Bl*8, - E, - E,,, — %Ek,ﬂ ife£0
e the strict transforms @, = Bl o}, - 2 En, (if j>1)

e an inclusion of the subsheaf

O(-%0,-Y73) = O.
¢ h
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We can push forward these curves under the morphism
Qom(Gr(1,1), d) = Qom(Gr(n,n), d)
given by
[S=>0]»[SeC'0->0aC"!e 0]

where n > 2. We call the resulting curves A; . as well.

The curves A?e

The next collection of curves are unique to the n > 2 case. Call these curves
Aie. The family of curves and sections is the same as A;., except we change the
inclusion of the subsheaf to be

O(-X0)00(-Y5,)eCr200->000aC20.
4 h

4.1.4 Intersections of curves with A

In order to find relations by intersecting with curves, we will need to be able
to calculate the intersection numbers of various curves with the irreducible com-
ponents of the boundary.

To do so, observe that given a map from a curve T to the moduli stack, the
pullback of the boundary is the discriminant scheme of the corresponding family
of curves m: C'— T over T. This discriminant scheme is defined (as in [Eis00]) as
the vanishing of the 0! Fitting ideal of the pushforward of the structure sheaf of
the singular scheme in the fibers of 7, which in turn is defined as the subscheme
given by the vanishing of the 1% Fitting ideal of the relative cotangent sheaf of .

Since all of our families are blowups of P! bundles, and the singular scheme
is defined locally, we can compute the discriminant scheme explicitly in all of our
cases. In our families, the stable quotients whose underlying curve is reducible will
be without automorphisms. Thus, to calculate the degree of A on T, all we must
do is determine the length of the discriminant scheme.

Since the singular scheme is defined locally, on the P! bundle we can restrict
to an open subscheme of the base so that the P! bundle has the form P! x C — C.
Since the blowup is local, we can consider the blowup of C?2 — C in a point. Picking

coordinates on the blowup, we see that our family locally takes the form
Spec(Clz, y, t]/(zy - t) > Spec(C[t]).
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We have the following resolution of €2 :
C[ZE‘, Y, t]/(l’y - t) - C[.T, Y, t] (l’y - t)dl' ® (C[l‘, Y, t]/([ﬁy - t)dy e Qﬂ' - 07

dz
where the first map is given by the matrix yd . Then, the 1 Fitting ideal
wdy

is given by (z,y) + (ry-t) = (z,y,t). Pushing the stucture sheaf of this point
forward to Spec(C[t]), we obtain the structure sheaf of 0 in Spec(C[t]), which
has 0" Fitting ideal given by (¢). Thus, the discriminant subscheme has length
1. If our family of curves has more than one nodal fiber, we can repeat the same
calculation for each nodal fiber one at a time in the same way we just did for a
single nodal fiber since the discriminant subscheme commutes with base change.
Thus, for all the curves we consider, the intersection of A with our curve is the

number of nodal fibers in the family over the curve.

4.1.5 The Picard group of Q,,(Gr(n,n), d)

Now we separately handle the case r = n.

The case r=n=1

In the first case, we have the isomorphism of coarse moduli spaces (as in Propo-
sition 8 of [MOP11])
Qom(Gr(1,1), d) = Mo mja/Sa-
In [Cey09], the Picard group of Mo,mu was calculated, where it is shown that the
Picard group is generated by the irreducible components of A, as well as the classes
D, parameterizing curves where the it" and j** weight ¢ markings coincide. All

relations come from pushing forward the relations on Ho,mm- [Cey09] shows that
Dij= Y Aan

ieB, j¢B

where Ac{1,...,m} and Bc{l,...,d}. Then,
YDij=3 % d}|B|(d—|B|)AA,B

i<j Bc{1

-----

is S, invariant, so it gives us a relation in Pic(M07m|d/Sd) ® Q. Thus,
Pic(ﬁoﬁmu/Sd) ® Q is generated by the S, invariant sums of irreducible divisors in
A.

However, we have an additional generator, m,c?(Q) = m.ca(Q), so we will write

the generator m,c?(Q) in terms of the irreducible components of A. To do so, we
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use the test families of curves. Notice that since S,, acts on the moduli space,
assuming the relation has nonzero coefficients on all of the boundary terms, it will
be &, invariant, so the coefficient on A4 only depends on the cardinality of A,
where here A 4, refers to a reducible curve with A markings and degree k£ on one
component.

If our desired relation has the form R :

m [£]
Y X ik X Aap = mci(Q)

3
j=1k=0 ~ |Al=j
in the rational Picard group, then we have the following relation among the coef-

ficients in the relation by intersecting with A, :
2+ (J-1)(m=j-Dego+(e(m-j-1)+(d-e)(j-1))cin =
2de — 2e?2 —e(m-j7-1) - (d-e€)(j-1).

We must solve for the coefficients. Let j =1, e =1 to start:

mcy1 = (2d—m) — 11 = QEd -
Next we let j =2, e=0:
2 _9.2
(m-1)cao+dcry=-d = (m—1)cyo+ % —d=-d = ¢ = m(gg—l)'

Substituting these back into the original expression =—
PG  ne2ed ooy,

m(m-1) m

Cj,e
Thus, we see that we have the relation
m 51 5 .
Y 3 (G - L h(d - k) ¥ Ay = mE(Q)
_ gElk=0 |Al=j
in Pic(Qom(Gr(1,1), d))®Q, for all m > 3. This proves Lemma 0.4.1 when m > 3.

The case r=n>2

Now we consider the case of Qq,,(Gr(n,n), d), where n > 2. Notice that if
d =1, then we have an isomorphism
Qom(Gr(n,n),1) = Mo x Pt
which goes as follows.
Suppose we are given a family of stable quotients

CZ=T ,0-8-C"®0¢c—->7-0
pi
where the support of 7 restricted to each fiber is a single point. We can push

the quotient sequence forward to the base, yielding an exact sequence C* @ Oy —

.7 = 0, noticing that the quotient is locally free by cohomology and base change
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[Har77]. This defines a section of P*~! x T'— T. We can take the determinant of
the inclusion § < C* ® O, yielding £ c O¢. Taking the dual yields a section of
L*, and we can consider the vanishing of this section in C', which is a section of 7.
By definition, this section does not vanish on the marked sections, so considering
the family 7 with the extra section yields a map from T to Mo’mﬂ. This yields
a morphism 7T — Mo,mﬂ x Pn=1. Since cohomology and base change commute for
7,7, this defines a natural transformation.

Suppose we are given a family of m + 1 pointed stable curves together with a

section of projective n — 1 space over T

Pm+1

11/;‘?\ n—1
C'—=sT [ PixT—=T.
5 S~

Pulling back the universal quotient sequence over P*~! x T along o, we get an exact
sequence C"®@O7 — 0*Opn-1(1) = 0. We can pull back the quotient sequence along
m, and restrict the quotient to the m + 15¢ section, C* ® O¢ — 70*Opn-1(1)|p, .., -
By construction, the quotient is supported on the m+ 1% marking, and if we forget
the m + 1¢* marking, this defines a map from T to Qq,,(Gr(n,n), 1). This yields
a natural transformation.

By construction, these natural transformations are inverses.

Given the universal quotient sequence, 0 > § - C"®0O - Q — 0, by cohomology
and base change, since Q is flat over Qq,,(Gr(n,n),1) and it meets every fiber in
a single point, 7, Q is a line bundle.

Similarly, 7,5 has no higher direct images. Thus, we get an exact sequence
Cr® 0O - 7,Q — 0. This yields the map to P*!. Under this map m,Q is the
pullback of O(1).

To recover Q, we start with C"® O - O(1) - 0 on P*~1. We can pull this back
to Mo,mﬂ x P?~1 and pull it back further to Woymﬂ x P7~1. the universal curve.
Then, we consider the restriction

C 00 - mp30(1) » T PO, = 0,
where 3J,,,1 is the image of the universal section corresponding to the last marking.
Then, Q 2 mp;0(1)|x
Using the multiplicativity of the Chern polynomial applied to
0> T p30(1) 8 O(-Tp1) » Tp30(1) > ps0(Ds,,., > 0

we see that

m+1"°
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o a(mp;0()ls,..) + a(mp;0(1) © O(-Xm.1)) = mp3ai(O(1))

— a(™p;0()ls,..) = Zma = md(@p;0(1)s,..) = X5

m+1

o co(mp;0(D)ls,..,) + a(m*p;0(1)ls,..) a(mp;0(1)@O(-X41)) = 0 =
CQ(W*pEO(l)bmu) = Z?nﬂ - Zm+1 ’W*p§€~

We will show that 7,32 ., is in the span of the pull backs of the boundary divisors
under py :Mo’mﬂ x Pl Vojmﬂ. However, notice that

Teca(Q) = X2, — pit,
and the latter of the two terms is clearly not in the span of the pull backs of the
boundary divisors under p;. This will show that the Picard group is generated by
the boundary classes and m,c2(Q), with all relations among the boundary divisors
being pulled back from Mg ,.1.

Now, we express m, %2 ., in terms of the boundary divisors. Notice that ¥,,,1 is
the pullback of the universal m + 15t section over Mo,mﬂ, so it suffices to calculate
the self intersection on MOMQ, and then pull this back under the projection map
P1-

Recall that WQZ;%H = =41, Where 7’ ZMo,erz - Mo,mﬂ is the universal curve
over Mo,mﬂ, and ¥/ | is the m + 1% universal section.

Thus, ™37, = .27 .1 = =P} Y-

Let i,5 € {1,...,m}. There is a forgetful morphism Mg, — M()’{i,j,mﬂ}. By
[Koc01],

_wmﬂ = - Z AA.
m+1leA;i,j¢A
If we sum over all pairs (4,7) € {1,...,m}, we see that
-1A m+1-|A|
(2 = T —(EA, — iz, - p UEa,
miled m+leA 2

Now, we see that Ay € Pic(Mom:1) ® Q, where m + 1 € A, pulls back to the
divisor Ag\(m+1},1, Which is the divisor parameterizing reducible curves with one

component containing A\{m + 1} markings and degree 1. Thus,

rcd(Q) = 5 (S 1) $ Ay in Pie(@on(Gr(n,n), 1)) Q.
j=1 |Al=j

Therefore, Pic(Qom(Gr(n,n), 1)) ® Q is generated by the boundary divisor
classes, T.c2(Q), and m.c2(Q), with all relations among the boundary divisors

pulled back from Mo’mﬂ, and the relation

m—2 X . .
T 3(Q) = ¥ (Amd=i_1) ¥ Ay,
5=1 =
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We will see below that this agrees with the expression we find for m.c?(Q) in
terms of the boundary divisors in Pic(Qq,.(Gr(n,n), d)) ® Q where d > 1, n > 2.
Now we handle the case d > 1.
If our desired rel%tion has the form
m [5]
Y X ik X Auy + camci(Q) + cpmeca(Q) = 0

J=1k=0 "~ |Al=j
in the Picard group, then we see that we have the following relation among the

coefficients after intersecting with A, .

2eje + (= 1)(m=j = Desg + (e(m=j—1) + (d=e)(G-1) Jers +
(2de-2e?2 —e(m—-j-1) - (d-e)(j-1))ca +

(2de—2¢%2 —e(m-j5-1) - (d—e)(j—1))cs = 0.

We see that we have the two relations
e mcyy + (2d—-m)c, + (2d-m)cg = 0
e mcyy + (2d-m)cy + (-m+d+1)cg =0

among the coefficients after intersecting the relation with A;; and A?,, respec-
tively, which allows us to conclude that ¢cg = 0 = ¢1; = (1 - 2Ed)ca. Now the
argument is identical to the one we gave in the case of n = 1, and so we see that

we have the relauon

ol SEGD 2Dk (k) S Aag = m(Q)
j=1k=0 |Al=j

in Pic(Qom(Gr(n,n), d))®Q, where n >2,d > 2. By rank considerations (Propo-

sition 3.4.1), there are no relations in the rational Picard group other than the
one above and those among the boundary divisors, which are pulled back from
Qo.m(G(1,1), d) under the map det : Qy,,(Gr(n,n), d) - Qo.m(G(1,1), d)
Notice that this agrees with what we found when d = 1. Putting together
everything we have done above concludes the proof of Proposition 0.4.1 when

m > 3.

4.2 The Picard groups for m =2

The goal of this section is to completely describe Pic(Q(Gr(r,n), d)) ® Q,
thus proving Lemma 0.4.1, Proposition 0.4.1, and Theorem 0.4.3.
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4.2.1 Test curves 11

We construct the curves needed in the calculation of the Picard group.
We have the same curves A , Aie as in the m > 3 case. We can pushforward
the curves A; ., Aie under the morphism
Qo2(Gr(r,r), d) = Qoo(Gr(r,n), d)
given by
[S>Ce0]~»[SaCr"0->Ce0aC" 0]

where n >r. We call the resulting curves A, , A%e.

The curves B, .

The next collection of curves is defined for » =n = 1, but as before we can push

them forward. Call these curves B ..

e The underlying family of curves is P! x P! - P! together with the two trivial

marked sections sq, $o.
e We keep the same d - e trivial sections oj, as in A .

e We can pick our e smooth irreducible sections 0, of O(1)®O(1) so that they
simultaneously vanish along the first marked section s; at ([1:0], [1:0]),
but they do not vanish simultaneously or even in pairs along the second

marked section s,.
e We blow up the point on s; and the e points Uy(d, M s2) along ss.

e We consider the strict transforms of sq, s, d¢, o, :
51 = Bl*s) - E1,5y = Bl*sy = Y Eyy, 6y = Bl*S; — Ey — Eay, 54 = Bl*oy,.
¢

e We have the inclusion of the subsheaf
O(-%0,-Y73) = O.
I h
The curve C

We need a curve which only meets the divisor A;;. The resulting curve C is

constructed as follows:

e Start with the Hirzebruch surface P(O(1) ® O).
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e It has the two sections s, sy corresponding to the subbundles O and O(1)
of O(1) ® O. These sections have numerical classes £ + f, &, respectively, by
[Har77] Proposition V. 2.6.

e Pick d smooth irreducible sections d; of H°(Op(1) ® p*O(1)) which do not
vanish pairwise simultaneously along s;. By construction they do not vanish

along s,.
e We blow up each of the d points on the first marked section.

d
e We have the following strict transforms: 5, = Bl*s; — Y. E;, S5 = Bl"s,,
i=1

Si = BZ*CSZ - Ez

e We have the inclusion of the subsheaf

O(-35,) > 0.
=1

The next collection of curves are for r=1,n > r.

The curve D

We consider the curve D in the moduli space obtained by the following con-

struction:
e Start with py : P! x P! — P

e Pick n smooth irreducible sections {d;}?, of O(1)=mO(1) whose only pairwise
common vanishing points are ([1:1], [1:1]) and ([-1:1], [-1:1]).

e Use the same two sections at 0,00 from before as the two marked sections

S1, S2.
e Pick n(d-1) trivial distinct sections o; 5, of py which are not sy, ss.

e Consider the inclusion
d-1
O-1)r0O(-1)® ® p;O(-1) > C"e O
h=1

given by the sections d;, 0, above.
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The curve F

We construct the curve F as follows:
e Start with the vector bundle O(v) ® O(w) - P!, where v # w, v,w > 0.

e Consider the projective bundle p: P(O(v) @ O(w)) — P! with two sections
s1, 82 given by the subbundles O(w), O(v) of O(v) @ O(w). These sections
have numerical classes £ + vf, £ + wf, respectively, by [Har77] Proposition
V. 2.6.

e Fix h > 0 such that —vd + h, —wd + h > 0, and H°(Op(d) ® p*O(h)) >> 0.
We pick sections {x;}",, x; € H(Op(d) ® p*O(h)) such that the induced
rational map to P! has no basepoints along the marked sections: first pick
a section x1; this meets the two marked sections in —wd + h and —vd + h
points (counted with multiplicity), respectively; it is an open condition that
the second section does not vanish at these points; now the rest of the sections

can be chosen arbitrarily.
This gives a family of stable quotients to P*~! over P! with 2 marked sections.
The next two curves are for the d =1 case.
The curves G, Gy

The first curve G; is obtained as follows:

e Consider the Hirzebruch surface p : P(O(1)® Q) — P! with two sections 1, so
given by the subbundles O, O(1) of O(1)®O. These sections have numerical
classes & + f, &, respectively, by [Har77] Proposition V. 2.6.

e Pick n smooth irreducible sections {d;}", of Op(1) ® p*O(1) which do not
vanish pairwise simultaneously along the first marked section (they do not

intersect the second marked section).
e Consider the inclusion of sheaves Op(-1) ® p*O(-1) » C*® O given by é d;-
i=1

G, is defined by reversing the roles of 1 and 2 in G;.



113

The curve H
The next curve is ford=1, n-r>1, r > 2.
e Start with py: P! x P! - P! with the two trivial sections s;,s9 at 0 and oo.

e Pick a trivial section o of py which is distinct from the two trivial sections

above.
e Pick two disjoint sections of p;O(1); call them f; and fo.
e Consider the map of sheaves
C2e0e (piO(-1)®p;0(-1)) > C 2?00 (0aC*e0)aC" "0

where the map pj(O(-1)) c O is given by o, and the map p;O(-1) cC?@ O
2

is given by @ f;.
j=1

4.2.2 Independence of the boundary divisors
We begin with a lemma which holds in all cases.

Lemma 4.2.1. The collection of boundary divisors Agy for a=1,2, 1<b<d-1
in Pic(Qo2(Gr(r,n), d)) ® Q are linearly independent, Yr,n.

Proof. First, we shall prove the result in the case that r =n = 1. In the case that
d =1, there are no boundary divisors, so the result is trivially true. In the case
that d = 2, there is a single boundary divisor, so again the result is trivially true
since the family A;; has nontrivial intersection with the single boundary divisor
(when d = 2).

Suppose d > 3. We know that if there is a relation among the boundary divisors,
then it must take the form Z c1xA1r = 0, where A, parameterizes the locus of
reducible curves with one Coﬁnponent containing the marking p, and whose quotient
has degree k when restricted to this component.

It is clear that il 1 eA1 g - Ale = Cle + Cld-e, 50 We see that ¢1 . = —C1 4.

Notice that ichAl,k “Bie = c1e + €c1g-1 = 0. Using these relations, we
just need to sholi;/1 that ¢14-1 = 0 (or ¢;1 = 0 ) in order to show that all of the

coeflicients are zero.
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It is clear that Z c1;01;-C=dciy = 0.

This shows that these divisors are linearly independent for r =n = 1.

Now, having established the result for Pic(Qp2(Gr(1,1), d)) ® Q, notice that
there are morphisms

Qo2(Gr(1,1), d) - Qya( Gr(r,n), d)
given by
[S=>0]~» [SeC190->00C10aC"®0O].

Notice that the boundary divisors in Pic(Qg2(Gr(r,n), d)) ® Q pull back to

the same boundary divisors in Pic(Qg2(Gr(1,1), d)) ® Q under this morphism.

d-1 _

If we have a relation Y ¢;xA1x = 0 in Pic(Qo2(Gr(r,n), d)) ® Q, we can pull
k=1

it back to Pic(Qo2(Gr(1,1),d)) ® Q, where we see that all ¢;; = 0 from our

argument above. Thus, the boundary divisors are linearly independent Vr,n when
m=2. O

To determine the Picard group completely, we handle the individual cases (r =

n=1);(r=n>2);(r=1,n22);(r>2,n-r=1); (r 22, n—r > 2) separately.

4.2.3 r=n=1

In the case that r = n = 1, we have already calculated that the rank of the
rational Picard group is d—1, and there are d—1 such linearly independent divisors
we found above. These divisors form a basis.

We also have the class 7,¢2(Q) which can be expressed in terms of the boundary
divisors

Z C1 eAl e = W*Cl(Q)
Intersecting with A; . gives the relatlon on coefficients
Cle + Cla-e = 2e(d—e).
Intersecting with B; . gives the relation on coefficients
Cle+ecrgq =e(d—e) +e(d-1).
Finally, intersecting with C gives the relation
deyg = d? - d,
which implies ¢;; = d—-1. We see that ¢; 4.1 = d—1 as well. Plugging this back in

to the second relations we found, we see that ¢;, = e(d-e) for all 1 <e<d.
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Thus, Pic(Qo2(Gr(1,1), d))®Q is generated by Ay, k = 1,...,d—1 with the
relation
d-1
Y k(d-k)Ar g = m.2(Q).

This proves Lemma 0.4.1 when m = 2.

424 r=n>2

In the case that r = n > 2, we have already seen that the rank of the rational
Picard group is d.

First we consider the case d > 1.

We have the d -1 linearly independent boundary divisors A, ; as well as the
two classes T.¢2(Q) and m.c2(Q).

We claim that we have the same relation as in the r =n =1 case,

Zék(d— kYA = m.c2(Q),

and 7,co(Q) is not in the span of the boundary divisors.

Suppose we had a relation

d-1

kgl cLEArk + CaTec2(Q) = mci(Q).

Notice that A; . and A} intersect the boundary and 7.cj(Q) the same, but they
intersect m,co(Q) differently since the subsheaf in the quotient sequence has a
nonzero second Chern class in the family of curves Aie. Thus, we see that m,co(Q)
does not appear in the relation. The rest of the calculation is identical to the
r=n=1 case.

For d > 1, Pic(Qo2(Gr(n,n), d)) ® Q (n >2) is generated by Ay, for 1 <k <
d -1, as well as the classes m.c(Q) and 7.cy(Q), with the only relation being

S h(d- k)AL = m2(Q).
When d =1, we invoke the isomorphism of the previous section
Qo2(Gr(n,n), 1) = Moz x Pr-t = Pr-l,
Under this isomorphism, m,¢2(Q) = Opn-1(1). Thus,
Pic(Qo2(Gr(n,n), 1))@ Q= Q- m.c}(Q), for n > 2.

This proves Proposition 0.4.1 when m = 2.
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425 r=1,n>2

First we consider the case d > 1. When r = 1, n > 2, we know that m,c?(Q) =
m.C2(Q). The following two lemmas are identical to Lemma 1.2.1 i), iii) in [Pan99]

from the stable maps case. We claim that
Lemma 4.2.0.1. 7.c? ¢ span(A).

Proof. Suppose we had a relation
Zé c1 A1y = T3 (Q)
in Pic(Qo2(P" 1, d))®Q.
It is clear that Ay;-D =0, Vk = 1,...,d - 1. However,
m.c3(Q)-D = (-dé - f)? = 2d 0,

so we have reached a contradiction. O
We claim

Lemma 4.2.0.2. The classes evic1(O(1)), eviei(O(1)) are linearly independent
modulo span(A).

Proof. Notice that A,;-F = 0 for any a=1,2, 1<b<d-1. However,
evic1(O(1))-F = —wd + h, and evyc (O(1))-F = —vd + h.
If there was a relation
crevicr(O(1)) + ceevye (O(1)) = Zg c1 1k
in Pic(Q2(P"!,d))®Q, then I claim that the Q linear span of the relation must
be S, invariant.

Given the claim, the coefficients ¢; and ¢y would have to be equal in absolute
value (assuming the coefficients ¢1, ¢ are nonzero, there exists ¢ € Q such that
q-c1 = ¢z and q-¢y = ¢4, forcing ¢ = ¢2). Since —wd-vd+2h # 0 and (—~w+v)d # 0,
we see that the coefficients ¢; = ¢y are zero.

If the Q linear span is not S, invariant, then there is another independent rela-
tion with ¢, ¢y interchanged and ¢; ., ¢; 4-. interchanged. Using this, we can solve
for ¢; or ¢y in terms of the coefficients on the boundary divisors. The intersection
with F above shows that either ¢; or ¢s is zero, from which it follows that the other

is also zero. N
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By rank considerations, {evici(O(1)), evie1(O(1)), Arq,...,Arg1} form a
basis for Pic(Qa(P"!, d)) ® Q. However, we have the additional class 7,c3(Q).
We will write this class in terms of the basis. Therefore we expect a relation

m.c3(Q) = crevje(O(1)) + caevse1 (O(1)) + Zé 160 g
in Pic(Qp2(P" 1, d)) ®Q.

Intersecting with A; . yields the relation on coefficients

2e(d—€) = c1e + Clae.

The relation above must be & invariant since the space of relations has rank 1.
Hence ¢1. = ¢14- = e(d—e).

After intersecting with F, we see that

(v —w)d? + 2hd = c1(-vd — wd + 2h).

Therefore, ¢; = ¢y =d.

This yields the relation

m.c3(Q) = d(evic1(0O(1)) + evie1(O(1))) + ng(d—k)ALk

in Pic(Qp2(P" 1, d)) ® Q.

We consider the case d = 1 separately. This can be done by intersecting with
G; and Gs.

This proves the first part of Theorem 0.4.3.

426 r>22,n-r>1

In this case, we do not have m.c¢3(Q) = m.c2(Q). As before, first we consider
the case d > 1.

We will prove the following lemma

Lemma 4.2.0.3. The collection

{meca(Q), evic1(Og(1)), evser(Og(1)), Ava,. ooy Av a1}
is linearly independent in Pic(@ovg(Gr(r, n),d))®Q, forr>2, n-r>1..

Proof. Suppose there was relation :
CaTx2(Q) + cgrevic1(Og(1)) + cgaeviei(Og(l)) + Zi 1Ay =0
in Pic(Qo2(Gr(r,n), d)) ® Q.
There is a morphism Qg o(Gr(1,1), d) - Qu2(Gr(r,n), d) given by
[S=>0]~» [SeC 1000 C10aC""o0O].
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We can push forward all of our curves along this morphism.
Intersecting with A; . yields the relation among the coefficients
2e(d-e)cy + c1e + Cra—e = 0.
Notice that there is a morphism Qg o(P!, d) - Qyo( Gr(n—1,n), d) given by
[S>C200]» [SeC190->C?00aC 10 Cv1g0O].
Using this, we can push forward the curve F from the P! case. All the intersection

numbers can be computed on Qp»(P!, d), therefore we have
o cvjc1(Og(1))-F = —wd+h
o cv5c1(0¢(1))-F = —vd+h
o T,00(Q)-F=(d6 +hf)? = (-v-w)d? + 2hd
o Ayy-F=0forall1<k<d-1

The same argument as in the P! case shows that we have c¢g; = g2, and we have
the relation on the coefficients
Co + dcg = 0.
Intersecting with Aie yields the relation on the coefficients:
e(d—€)co + C1e + C14-e = 0.
Combining this relation with the first collection of relations we found, we see
that ¢, = 0, but then this forces cg = 0. Since the boundary divisors were already

shown to be linearly independent, the result follows. O]

By rank considerations,
{m.c2(Q), evic1(Og(1)), ev;e1(Og(1)), Avq, ..o, Ava)

form a basis for Pic(Qo2(Gr(r,n), d))®Q for r>2, n-r>1.

However, we still have the class 7.c¢3(Q). We will write this class in terms of
the basis above by intersecting with curves. We expect a relation

T.c3(Q) = cameca(Q) + carevic1(Og(1)) + cpaevie1(Og(1)) + Zg 160 k-

Intersecting with A, ., we find the relation on the coefficients

2e(d—e€) = 2e(d—e)cy + Cre + C1de-

Intersecting with F, we find the relation on the coefficients

(—v—w)d? + 2hd = ((~v-w)d? + 2hd)c, + (—vd + h)cg1 + (—wd + h)cga.
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2
l,e’

2e(d—e) = e(d-e)cq + Cre + Cld e

Intersecting with A7 _, we find the relation on coefficients

Combining the first and last relations on the coefficients, we find that ¢, = 0.
Plugging this into the second relation on the coefficients, combined with the same
argument from the P*~! case, shows that cz1 = cg2 = d.

The rest of the proof of the relation is identical to the r =n =1 case (intersect
with the curves By ., C). Putting this all together, we see that we have the relation
7.2(Q) = d(evier(Oa(1)) + evier(Oa(1))) + Zik(d— DAL

in Pic(Qo2(Gr(r,n),d))®Qforr>2 n-r>1.

We separately handle the case d = 1.

In this case, the rank of the Picard group is 3. We will see that it is generated
by the classes m.c2(Q), m.c2(Q), evici1(Og(1)), and eviei(Og(1)), with a single
relation.

We show that the divisors m.c2(Q), evici(Og(1)), and evyei(Og(1)) are lin-
early independent.

Suppose we had a relation

CaTC2(Q) + cgaevici(Og(1)) + cpaeviei(Og(1)) = 0.

We can pushforward the curves G; and G, from the P! case and consider the
intersection of our relation with the resulting curves. Intersecting with Gy, Go, H
yields: ¢o + 51 =0, cq + cs2=0,and ¢, + cg1 + cg2 = 0. Thus all coefficients are
Zero.

We would like to write m.c?(Q) in terms of this basis, so we expect a relation

T.c3(Q) = camic2(Q) + cgrevic1(Og(1)) + cgaevie(Og(1)).

Intersecting our relation with the curves Gy, Gg, and H we find the relations on
the coefficients: 1 = ¢4 +cg1, 1 = co +cp2 and 2 = ¢, +cg1 + cg2. We see that
cg1 = cge = land ¢, =0.

This concludes the proof of Theorem 0.4.3.
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As in Chapter 3, here we compute the rank of the rational Picard group of

Qo.m(FI(T,C"), d) using the torus action on the moduli stack and Lemma 3.1.1.

5.1 Tangent space calculations II

In this section we will count the fixed loci in Qp,,,,(FI(7,C"), d) with either one
or zero negative weights on their tangent bundles. As before, we must determine

the weights on the tangent space to a C* fixed stable quotient.

5.1.1 The weights on the tangent space II
First, we describe the fixed loci in the flag variety.

e The fixed points of the C* action on the (partial) flag variety are the flags
whose steps are the subspaces that are spanned by the coordinate vectors.

More precisely, to each fixed point we can associate a flag of subsets
I*=(lc...clyc[n])
so that the fixed point is
ere := ((€i)ier, € ... C(€)ier, cC").

e Two fixed points corresponding to flags of indices I®, J* can be joined by a

rational curve if there exist indices 1 <p<g< ¢ and 1 <« < <n such that
Il =J1 1=K1,...,Ip=Jp IZKp,

L\{a} = Jpu\{B} = Kpis . L\{a} = J\{B} = K,

120
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[q+1 = Jq+1 = Kq+1,. . 7[E = JZ = KZ

where K}, denotes the ht" mutual indices. We write the rational curve as
(€k>keK1 c...c (ek)kekp c (Gk)kexpﬂ 52 (Sea + teﬁ) c...

C (er)rer, ® (5€a + teg) € (ex)rekyur C - - - C (€k)ker, € C™.

Given this data, we can describe the fixed loci in the generalized stable quotients
moduli space. We do this by looking at the irreducible components of the curve

corresponding to the fixed stable quotient.

o [f the component has > 3 markings or nodes on it, then the component must

be contracted, and the flag of subsheaves takes the form

D O(-dy;)=...> DO(-dy;)) >C"e O
i€l iely
where each line bundle in each direct sum injects into a copy of O and

V1<k<{, ¥ dy;=dy, where |I}] = ry.

iEIk
e If the subsheaf has exactly two markings or nodes on it, then the flag of
subsheaves can either take the form above, where at least one dj; # 0, for
some k and some %, or it can come from a map to the flag variety whose

image is a C* fixed rational curve.

e Notice that this map must be a genuine morphism to the flag variety; it
cannot be a morphism only after projecting to a factor of one of the Grass-

mannians. To see this, it suffices to consider several cases.
o The first case is that of a line bundle sitting in a copy of O, O(-d;) = O.

— I claim that this cannot factor through f*O(-1) - C? ® O, where this
second inclusion is given by pulling back the O(-1) on a rational curve
in one of the Grassmannians, and one of the copies of O is the same as

the above copy of O.
— The second inclusion is given by the matrix
mgQ 0
0 x‘li2
whereas the first is given by inclusion into the first copy of O, and the

claim follows.
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— Thus, the only way the first sheaf can be in a flag with the second is if
the flag has the form
O(-d1) > 0@ f*O(-1) > 0aC?2 0
with f*O(-1) = C2e O.

— But in order for this to be fixed, we use the fact that the curve has a C*
worth of automorphisms, which we can use to absorb the torus action

on the second subsheaf.

— However, the first subsheaf will not be fixed under this action unless the
support of the quotient of O(-d;) = O is one of the torus fixed points,

which are the nodes or markings, and this is not allowed.

e The second case is f*O(-1) - C?2®0 factoring through the direct sum of two
line bundles each sitting in their own copy of O. The same reason as above
shows that this cannot happen: in order for the first inclusion to be invariant,
we use the C* automorphisms of the marked curve, but then this changes

the support of the quotients of C? ® O by the two line bundles necessarily.

e Notice that the morphism from the component to the rational curve must
have degree (0,...,0,d;,...,d;, 0,...,0) if it is to be fixed by the C* action.

By [Lau88], [CF99], Proposition 2.5, Theorem 1.2 the tangent space to the
HyperQuot scheme HQuotp: (FI(7, C?), d) at a point
0>Si=...o85->C"0->9,—>...-9,-0
has the following expression
(@ H(S; ©.0)]~[@ (S} © Q)]
in K-theory. Since the flag variety can be viewed as a particular case of the
HyperQuot scheme, the same result holds for the tangent space to the flag variety.
Using this, we can determine the weights on the tangent space to a C*-fixed
generalized stable quotient. The calculations are simillar to the Grassmannian
case.
First, we shall determine the weights on the tangent space to the HyperQuot
scheme HQuotp: (FI(T, C"), d) at a C* fixed point ¢. Let
0> @ O(-diy,) = ...~ @ O(-dy;,) >C"®0O

i1€]1 ZgEIg

be a fixed point of the C* action on the HyperQuot scheme. We have the following
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weights in
[T HQuotp (FI(T, C"), E)q]

e ()1 An— A, appears d;; + 1 times, where j is the largest index such that
hE]j but7¢[]

e ()2 Ay — - appears

— dy,, times if p ¢ I_q

— and 0 times if p € I, where k is the smallest index such that both

,LL,TE[k.

Next, we determine the weights on HO(f* TFI(7,C")) given a map of degree
(0,...,0,d,...,d,0,...,0) from an irreducible component to a C*-fixed rational
curve in the flag variety.

In this case, the flag of subsheaves has the form
®0a f*(’)mﬂ(—l) s>..oV, 0 f*OHDLYS(—l)
>V ®0- ...V, 80-C"g0.

V]1®0'—>...'—> V]q@)(oL> V1q+1
Using the description of the tangent space to the flag variety above, together
with what we have already found in the Grassmannian case (by considering each

of the ¢ short exact sequences associated to the flag sequence), we determine that
the weights on HO(f* TFI(7, C")) are the following:

e (1)1 As — A, appears as a weight once if 3k such that § € I but v ¢ Ij.

e (f1)2 For0<j<d, (d_j)/\Ta”/\ﬁ—)\g each appear once if 3k such that g+1 <k <u
where 6 ¢ I, but 0 € I,,;.

e (t1)3 For 1<g<d-1, assuming d > 1, A, - (d_g)/\+g/\ﬁ each appear once if 3k

such that ¢ +1 <k <u where € € I}, but € ¢ I,.

‘ -1
We want to calculate the weights on [@(S;® Q:)|n]-[@ (S ®Qj+1)|.], where n
i=1 j=1
is a node of the domain curve mapping to Vy, c...c V;,. Using the same methods
as our calculations above, we see that the weights are:

As — Ay appears as a weight once if 3k such that 0 € I, but 7 ¢ Ij.
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The last weights we want to calculate are the weights on the tangent space to
the domain curve at the preimages of the fixed points when we have a map from
a component of the domain curve to a C*-fixed curve in the flag variety.

These are the same as in the Grassmannian case: if the component C' maps
d: 1 to the rational curve joining two flags whose flags of indices differ from each

other by «, 3, respectively, with preimages [1:0], [0: 1], then the weights are:

e T71.0)C has weight %.

Ag—Aa

e T[p1)C has weight 7

The tangent space to the moduli stack sits in analogous exact sequence to the
one from the Grassmannian case, the only difference is that we replace deformations
of the quotient with the global sections of the kernel of

& Hom(s,, Q) EHom(Sj, Q1) >0
(the tangent space to the HyperQuot scheme from the first chapter).

5.1.2 The fixed loci with < 2 negative weights

We first prove a lemma which holds independent of the number of markings,
the rank type of the flag variety, and the degree type.

By the standard flag, we mean the flag whose i*" subspace is the subspace
spanned by the first r; standard basis vectors.

As before, since we are looking at the generic point of the fixed locus, we can

assume that there are no clusters of contracted components.

Lemma 5.1.1. In order for n= < 2, the fixed locus cannot correspond to a gen-
eralized stable quotient with a node that gets mapped to any flag other than the
standard flag.

Proof. Suppose we have a curve with a node that is mapped to aflag V;, c...c V,
which is not the standard flag.
Then 3h, k such that h € I, and h > r,. This implies that 3y < r; such that
v ¢ I),. The weight A\, — A\, < 0 appears in [é(Si* ® Qi)|n] - [E(Sj* ® Qji1)|n]-
The key observation is the same observation we made in the Grassmannian

case: if there are N consecutive nodes with the property that A\, — A\, <0 appears
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in [é(SZ.* ®Qi)ln]- [%91(8].* ® Qj11)ln] for each of the N nodes, then there are N +1
irrezi_lllcible componelﬁl;;ls incident to these nodes.

If A, — A\, appears in [é(s; ® Q)] - [jéai(sj’f ® Qj:1)|n], then this means that
the node maps to a flag with the property

(* % %) 3 an index p with he I, and v ¢ 1,.

The claim is that for each such component C, incident to a node mapping to

a flag with the property (* * *), the weight A\, — A\, appears at least once in
(@ H((5: © Q)la)] - (8 H((S; © Q)

We will consider the different cases.

In the first case, where C; is contracted, A, — A, appears at least once on
[ THQuotp: (FI(F, C™), d),], as in (1);.

The next cases are when the component is not contracted. We handle them

individually.

e First, suppose the component is mapped to the rational curve joining two
Cr-fixed flags whose flags of indices differ from each other by indices other
than h, . Then, A\, — A, <0 appears in HO(f*TFI(7,C")), as in (11)1.

e Next, suppose the component is mapped to the rational curve joining two C*-
fixed flags whose flags of indices differ from each other by h, v, respectively.
Then A\, — A\, <0 appears in Ho(f*TFI(F, C")), as in (1)2.

e Suppose the component is mapped to the rational curve joining two C*-fixed
flags whose flags of indices differ from each other by h, v, respectively, where
¥ # 7. The map has degree type (0,...,0,d,...,d,0,...,0), where there
are ¢ > 0 zeroes initially, u — ¢ > 0 d’s, followed by ¢ —u > 0 zeroes at the
end in the degree type. Notice that e; cannot be in one of the first ¢ mutual

subspaces. Let k& be the largest index > ¢ + 1 such that ~ ¢ Ij.

— If k <w, then \, — A\, appears in HO(f*TFI(7,C")), as in (f1)2.
— If k>u+1, then A\, — A, appears in HO(f*TFI(7,C")), as in (11);.
e Finally, suppose the component is mapped to the rational curve joining two

torus fixed flags whose flags of indices differ from each other by =, ¢, respec-
tively, where ¢ # h. The map has degree type (0,...,0,d,...,d, 0, ...,0),
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where there are ¢ > 0 zeroes initially, u—q > 0 d’s, followed by £ —u > 0 zeroes

at the end in the degree type.

— If e, appears in any of the first ¢ mutual subspaces, then A, -\, appears
in Ho(f*TFI(T,C")), as in (11);1-

— If e, does not appear in the first ¢ mutual subspaces, then the smallest
index b such that h € I, must be < u (by assumption there exists an
index ¢ such that h e I, but v ¢ I, and for v > u+1, y € L,), A\, - A\,
appears in HY(FI(7,C")), as in (f1);.

Therefore, there is at least one negative weight on the tangent space to the fixed
locus if there is a node mapping to any flag other than the standard flag.

The argument above shows that if there is more than one cluster of nodes which
map to fixed flags of the form (x * %), then there is more than one negative weight
on the tangent space.

Also, if a cluster of nodes map to a collection of C*-fixed flags such that there
are at least two indices 7y, ¥2, both < h, such that for each flag, there exists an
index k with Ay € Iy but 7,79 ¢ I, then the above argument repeated for each
index shows that there is more than one negative weight on the tangent space.

Therefore, if a node maps to a flag, based on what we proved above, it can only

differ from the standard flag as follows:
e V, is spanned by the first 7, — 1 basis vectors and e, +1
e 1}, is spanned by the first r, basis vectors for v e {1,... ¢}\{k}.

We will show that this still yields too many negative weights.

To prove this, consider the extremal components of the cluster of components
whose nodes map to a flag as above.

If both components C,, C, incident to the node are mapped to the rational
curve joining the above flag to the standard flag, then /\"’“;;/\T’“ + /\"’“zllaj/\r’“ appears
in 7,,C,® T, Cy.

The next three cases all involve the scenario where one component C, is mapped

to the rational curve joining the flag above to another nonstandard fixed flag. They

all rely on the following fact, which we will prove by considering the various cases:
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(A) If J* denotes the flag of indices for the second nonstandard fixed flag, Ju, 5,7
such that 8 € J, and § > 7 for some 7 ¢ J,. I claim that Az — A\, (distinct from
Arp+1 — Ay, ) appears in HO(fr TFI(7,Cn)).

e First, suppose that I\{a} = J\{B}, where 5, # 1,7+ 1. Then a € I}, and
necessarily > rp+1>a, so Ag— A, <0 appears in HO(f*TFI(T, ..., ry; C?))

as in (f1)2, and it does not appear in
¢

S (&S Q)] - [jé(s; & Q)]

nodes 1=1

since the point which is mapped to the nonstandard fixed flag with the flag

of indices J*® cannot be a node from what we saw above.

Next, suppose that It\{a} = Jp\{rs} for a # rp + 1. Then a € [ and « < 7y,
S0 Ar, — Aq < 0 appears in HO(f* TFI(7,C")), as in (ff)2, and it does not

appear in

‘ -1
% ([g(%’* ® Q)|n] - []6:91(5; ® Qj11)ln])
for the same reason as above

Suppose that L\{ry + 1} = JL\{B} for B # r. Since § ¢ Iy, and [ # ry, then
B>ri+1,50 Ag— A 41 <0 appears in HO(f*TFI(T,C")) as in (T1)2, and it
does not appear in
0 -1
2 (87 ®Q)h]-[&(S) @ Q51)ln])

for the same reason as in the first case above.

If I\{a} = Jp\{B} for k" # k, then 8 > rp > a since Iy = [ry] for k' + k. We
claim that (8, «) # (reg+1,71). If =7, +1, then k&’ < k, in which case ry ¢ Iy,
so a £ 1. If a=rg, then K/ >k, in which case r,+1 € I}, so 8 # r,+1. Thus,
BeJy, B>a,and a ¢ Ji for (B,a) # (1, +1,7;). Then A\g— A, appears in
HO(f*TFI(7,C™)), as in ()2, and it does not appear in

5 (868 0 Q)] [@(S; 0 2l
for the same reason as in the first case above.

Therefore, in the remaining cases where:

e both components incident to the node each map to rational curves joining

the first nonstandard fixed flag to another nonstandard fixed flag
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e one component maps to the rational curve joining the first nonstandard fixed
flag to the standard flag, and the other maps to a rational curve joining the

first nonstandard fixed flag to another nonstandard fixed flag

e one component is contracted, and the other maps to a rational curve joining

the first nonstandard fixed flag to another nonstandard fixed flag

we see that we have produced another negative weight in HO(f* TFI(7,C")) which
does not appear in Y ([ (SF® Q)] - [ (S ® Qjs1)ln])-

nodes 1=1

The last case to consider is when one component C, is contracted, and the
other C, is mapped to the rational curve joining this nonstandard fixed flag to the

Tk+1 -2

standard flag. In this case, the weight = <0 appears on T, Cyr @ T,,, Cy,.

In any case, there are at least 2 negatlve weights on tangent space. O
The same arguments above prove the following lemma:

Lemma 5.1.2. In order for n= <2, there cannot be more than one noncontracted

component.

Proof. 1f there was more than one noncontracted component, then the node(s)
would have to be mapped to the standard flag. Then, the incident noncontracted
components would have to be mapped to the rational curves joining the standard
flag to nonstandard fixed flags. As we saw in the proof above, each of these yield
a negative weight on HO(fr TFI(T,C")), for each noncontracted component C,.

These weights do not appear in

> (1957 © Q)] - [jej(S; & Qj1)ln])

nodes 1=1

since the nodes only map to the standard flag. O

Let us now determine what degree type the noncontracted component must

take in order for n~ < 2, assuming the curve has two components.

Lemma 5.1.3. The degree type of the noncontracted component must be
(0,...,0,1,0,...,0) in order for n= < 2.

Proof. e If the map has degree type (0, ..., 0,d, ..., d, 0, ..., 0), and the node
maps to the standard flag, then we see that

[rp]\{a} = L\{B}, - [rgl\{a} = L\{5}
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and elsewhere the two flags of indices are equal. Since a < r, and 8 ¢

[r,]\{a}, B # a, then 8 >r, >a. Thus, A\g— A, <0 appears as a weight on

HO(f*TFI(T,C"™)), as in (fT)2, and it does not appear as a weight on
i -1
zd: ([;‘91(8; ® Qz)|n] - [16:91(8; ® Qj+1)|n])
since the node maps to the standard flag.

o If we assume ¢ —p > 1, then 3y € I,,;\I,. We must have v > a. To see this,
notice first that v € L, \{5} = [rp+s1]\{a}, and v # « since a ¢ I,.;. Thus
v ¢ [rps1] = 7> rpa > a. The negative weight A\, —\, appears as a weight

on HO(fr TFI(7,C")), as in (f1)1, and it does not appear as a weight on
¢ -1
% ([Z@I(SZ ® Qi)|n] - [JG}I(S;* ® Qj11)ln])
since the node maps to the standard flag.

Thus, if the curve has two components, then the noncontracted component

must have degree type (0, ..., 0,d, 0, ..., 0). It is immediate from our calculation
of the weights on H(f; TFI(7,C")) that the degree d must equal 1 since otherwise
%appear(jzl,...,dzm. O

We would like to determine the image of the single marked point on the non-
contracted component C,.

Suppose the flag of indices is I*. Then, I;\{8} = [rx]\{a}, and I; = [r;] for
Jj#k.

If o < 7, then A, — A, <0 appears in HO(f; TFI(TC™)), as in (1)1, since 1y, € I,
but a ¢ I;,. We also have the weight A\g— A\, <0 on HO(f; TFI(7,C")). Notice that
neither of these weights appear in

3 (86 0 Q)] [8(S; 0 Q)
since the node maps to the standard flag. Therefore, we must have a = ry.

If 8>ry+1, then r, +1 ¢ I, but 8 € I. Thus, A\g — A\, 41 < 0 appears in

HO(frTFI(7,C™)), as in ()2, and it does not appear in

T (86 0 Q)]-[8(S; 0 Q)
since the node maps to the standard flag. Together with the negative weight
Ag—Aq <0, there are at least two negative weights on the tangent space, so 5 must
equal 7 + 1.

Thus, Li\{ry + 1} = [ry, — 1], and I; = [r;] for j # k. This shows us that, if the
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curve has two components, then
e the contracted component maps to the standard flag

e the noncontracted component maps 1 : 1 to the rational curve joining the
standard flag to the flag whose flag of indices satisfies I;\{ry + 1} = [rr — 1],
and I; = [r;] for j # k.

We must determine the distribution of the degrees on the subsheaves of the
flag sequence on the contracted component.

In order for there to be no negative weights coming from the contracted com-
ponent (there is already one negative weight coming from the noncontracted com-
ponent), we must have that, for j # k, d;; = 0 for 7 # r; and d;,, = dj; for j =k,
dpr =0 for 7 # r; and dy,, =di — 1.

There are m-|{1 <i < ¢|d; > 0}] fixed loci with 1 negative weight on their
tangent space as above.

Before we begin describing the fixed loci, we introduce some notation :

e ¢, nc, b stand for contracted, noncontracted, or both; these letters will be

superscripts

e sf, nf stand for standard flag and nonstandard flag; these will be super-

scripts
e i, jm will stand for i*" step, j*» markings; these will be subscripts
e ’ will be used to distinguish further.

Call the following collection }"Zb s Where 1 < j <m. We can describe them as
follows:
The generic point of the fixed locus corresponds to a reducible curve with 2 irre-
ducible components such that one component is contracted to the standard flag
and the other component is mapped 1 : 1 to the fixed curve joining the standard
flag to a flag whose flag of indices satisfies J; = [r; — 1]U{r; + 1}, and J}, = [r}] for
h #i. The contracted component carries m — 1 markings, and the noncontracted
component carries a single marking, the j**. The flag sequence of sheaves on the

contracted component takes the form
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0=>C1e0e0(-d)~>..oCile0e0(-d; +1) > ...
S>CrleO0eO(-d) = Cre O,
where each inclusion of sheaves respects the splitting. For this fixed locus,
(57 ;) =1

We consider the case where the curve has a single component which is con-
tracted.

By considering the weights above, we see that the component cannot map to a
flag such that one of the indices k in the associated flag of indices has the property
that 36,71,...,7, such that 0 € I but v; ¢ I for 1 <i <v > 2. Thus, the contracted
component either maps to the standard flag, or a flag whose flag of indices satisfies
Iy = [r = 1JU{ry + 1}, and I, = [r;] for j # k.

If the component is mapped to the standard flag, then we see that either

e d,,=0for 7 <r,and d,,, =d, forall 1 <~ <{ The corresponding fixed

locus has no negative weights on its tangent space; or

e Jk such that, Vy# k, d,, =0 for 7 <7r,, d

dir-1 =1, dir, = dr—1. The corresponding fixed locus has 1 negative weight

vy =y dy 7 =0 for all 7 <7y -1,

on its tangent space. This can occur only if either ry —ri_1 > 1 or dy_; > 0.

Now, we consider what the weights on the tangent space are if we contract the

curve to a flag other than the standard flag.

e Assume di > 0. If the component is mapped to a a flag whose flag of indices
satisfies [j, = [1,— 1] U{rx+ 1}, and [; = [r;] for j # k, then \,, ;1 - \,, appears
at least once on the tangent space, as in (f);. Therefore, we must have
dir+1 = 0, but this forces djy . > 0 for some 7 <7 —1. Then A, 41 - A <0
appears at least once in [ T HQuotp: (FI(F, C?),d),], as in (1), and there are

too many negative weights.

e Assume di = 0. Following the argument above, we do not run into the same
problem if dj = 0. However, in order for the degrees to actually yield a valid
flag sequence, we must have d;; > d;.1, where j refers to the step in the

flag sequence and h refers to the basis element of C".

If rpe1 =7 > 1, then we let d; . = 0 for 7 <r; and d;,, = d;, for j # k. This

fixed locus has 1 negative weight on its tangent space.
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If 7441 — 7% = 1, then this does not work unless dj.; = 0 since dj,,+1 = 0 yet
dis1rp+1 = di41. In the case that 7 — 7 =1 and dj, = di41 = 0, we can define

the fixed locus just as we have done for rgq — 7, > 1.

In the case that rg — 7 = 1 and dg,; > 0, we must study the weights in
()1 and (1) more carefully. We cannot have dj.1,,+1 > 0 from what we saw
above. Therefore, we must have djy,; , = di1 for some 7 <1y If 7 <7y, then
this does not define a valid flag sequence (the degree type does not satisfy
di+ > dgs1,). Thus, 7 =1, and in this case we have no further weights on

the tangent space, as in (T)s.

Thus, if the curve is contracted and all dy > 0, it must map to the standard
flag.

The first type of contracted fixed loci (where the curve is contracted to the
standard flag) will be denoted F¢/; it can be described as follows (there is only
one such fixed locus):

The generic point of this fixed locus corresponds to an irreducible curve with m
markings which is contracted to the standard flag. The flag sequence takes the
form

0>C1e000(-d)=>...>CtleO0o0(-d) >C"®O.
This fixed locus has n~(Fesf) = 0.

The second type of contracted fixed loci (where the curve is contracted to the
standard flag and d; > 0) will be denoted ]-“Z’Sf ; and it can be described as follows:
The generic point of this type of fixed loci corresponds to an irreducible curve with
m markings which is contracted to the standard flag. The flag sequence of sheaves
takes the form

0=>C 08 0(-d))=>...oCi20000(-1)00(-d; +1) > ...
>Crtle0e0(-di+1)=>C"® O,
where each inclusion respects the splitting. For these fixed loci, n‘(ﬁi’sf ) =1

Now we come to the fixed loci parameterizing curves contracted to flags other
than the standard flag.

If d, = 0 and 7,1 — 1, > 1, then we have the following fixed locus, which we
denote by f,g;"f :

The generic point of this fixed locus corresponds to an irreducible curve with m

markings whose flag of indices satisfies I}, = [ry, — 1]U{rx + 1}, and I; = [r;] for
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j # k. The flag sequence takes the form
0>Cle0e0(-d) ... C+ 10 Okt &
>CrtleO0e0O(-d) >CreO
where all inclusions respect the splitting, but the inclusion of the k** subsheaf maps
the last copy of O into the ry + 18t summand, O, in the k + 1t subsheaf (here is
where we are using ry,1 —ry > 1). This fixed locus has n‘(f,j;”f) =1.

If di, = 0 and 7,1 — 1, = 1, then we have the following fixed locus, which we
denote by }",Z"f '

The generic point of this fixed locus corresponds to an irreducible curve with
m markings which is contracted to the flag whose flag of indices satisfies I}, =
[k — 1]U{ry + 1}, and I; = [r;] for j # k. The flag sequence takes the form
0->C11e000(-d)~...oC+1e0e00k) - C 106 O(-dy,) ®O

> oCrleO0e0(-d) >Cre O

where all inclusions respect the splitting, but the inclusion of the k** subsheaf maps
the last copy of O into the 7" summand, O, in the k + 1°* subsheaf. This fixed
locus has n*(}",g;"f’) =1.

The only case left to consider is when the number of markings is 2, and the
entire curve is a single noncontracted component. The degree type must be uniform
in order for this to occur, as we have already seen.

If the rational curve is se, +teg, then without loss of generality we may assume
B> a. Then, if d > 1, where the degree type of the map is
(0,...,0,d,...,d,0,...,0), we have the negative weights W%’\“ for 1 <j<d.
Thus, the map must have degree type (0,...,0,1,...,1,0,...,0) in order for
there to be less than two negative weights on the tangent space to the fixed locus.

Automatically we have one negative weight on the tangent space, g — A\, < 0.

If we denote by I, the k** mutual index set of the two C* fixed flags, referring
back to the weights on the tangent space ((f...7);), it is clear that we must have
that the indices in Ij, are less than every index in I{ (¢ refers to the complement),
V1i<k</.

This forces

o [; ={1,...,rj}for 1<j<qgoru+1<j<//(all the places in the degree type

where there is a zero)
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o I ={1,...,ry—1} for ¢+ 1 <k <wu (all the places in the degree type where
there is a 1)

where we used the same notation from our weight calculations.

By considering the second collection of weights, we see that we must have 3, «
less than or equal to every index in If, V ¢+1 < k < wu. This translates into o < 141,
which forces a = r44;. The same argument we used before when m > 2 shows that
q+1 = u. Therefore the curve is mapped to the rational curve joining the standard
flag to a C* fixed flag whose flag of indices satisfies I}, = [ry — 1]U{ry + 1}, and
I; =[r;] for j # k.

Thus, in the case that m = 2, we have the following fixed loci with 1 negative
weight on their tangent space, call them F7'¢ and Fj¢:

The generic point of these fixed loci corresponds to an irreducible curve with 2
markings which is mapped 1 : 1 to the curve joining the standard flag to the
nonstandard fixed flag whose flag of indices satisfies I}, = [y — 1]U{rx + 1}, and
I; = [r;] for j # k. The two markings are mapped to the standard flag and the

nonstandard flag. These fixed loci have n~ = 1.

5.1.3 The fixed loci of Q. (FI(7,C"),(0,...,1,0,...,0))

Suppose the 1 in the degree type sits in the k** position. If k = 1, then set
rg = 0.

First we describe the contracted fixed locus.

The first type of contracted fixed locus is F&*f which has no negative weights
on its normal bundle.

If . — -1 = 1, then the second type does not occur. Otherwise we have the
fixed locus f;;sf . This fixed locus has 1 negative weight on its normal bundle.

The third and fourth type of contracted fixed loci are ]—"fs’”f and ]—Z’”f ', for each
1 # k, depending on whether r;,1 —r; > 1 or r;;1 —r; = 1, respectively. There are
¢ —1 such fixed loci, and each has 1 negative weight on its normal bundle.

The noncontracted fixed loci are F'¢ and F3¢. Both of these have 1 negative
weight on their normal bundle.

The fixed locus with no negative weights on its normal bundle is isomorphic to

HO’QH, which is a point.



135

Using Lemma 3.1.1, we see that
e if r, —ri_1 > 1, then

hQ(QO,Q(Fl(?7Cn)7(OJ AR 07 ]-7 07 70))) = hQ(MO,QH) +0+2
=( + 2.

o if rp, =11 =1, then

h*(Qoa( FI(F,C™); (1,0, ...,0))) = h?(Mogy) + £ -1 +2
=0+ 1.

5.1.4 The fixed loci of Qy.( FI(7,C"), d)

Assume 3¢ such that d; > 1 or more than one d; > 0.
There are four types of fixed loci which are contracted.
The first type of fixed locus where the curve is contracted is

— ¢
Fesh = My o5 i / T1 Sa;, which has no negative weights on its normal bundle.
el 1

The second type are f,:;sf . There are

{l<y<llry —r1>1,d, >0 + {1<n<llr,—ryq = 1;dy, dp-q > 0}
such fixed loci, and each has 1 negative weight on its normal bundle.

The third and fourth types of fixed loci are ﬁi"f and fls;"f ’. depending on
whether r;,1 —r; > 1 or 7,41 —1; = 1, respectively. There are
¢ - {1 <i<{|d;>0}| such fixed loci, and each has one negative weight on its
normal bundle.

Lastly, we have the fixed loci with one contracted component and one noncon-
tracted component: F7 . for j = 1,2. There are 2|{1 <i < £|d; > 0}| such fixed
loci, and each has 1 negative weight on its normal bundle.

Using Lemma 3.1.1, we find that

- _ . l
W2(Qoa( FI(F,CY),d)) = (Mo sr 0 /T S0) + {1<i<eld; >0}
=1

+ {l<n<llry—rp = 15 d,, dyy >0} + £
+ {1<y<l|ry —rys1 > 1, dy >0}
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5.1.5 The fixed loci of Qy,,( FI(7,C"), d), for m >3

Assume that at least one d; > 0.

As before, we start with the contracted fixed loci.

The first type is Fes/ = MO,mI S0 d, /llf[1 S4;, which has no negative weights on
its normal bundle.

The second type is f,g;sf . There are

{1<y<llry = ry> 1, dy >0 + {1<n<lry—ryy = 15 dy, dyey > 0
such fixed loci, and each has 1 negative weight on its normal bundle.

The last two types of contracted fixed loci correspond to curves contracted
to a nonstandard flag: ]—"fs’"f and ffs’"f ', depending on whether r;,; —7; > 1 or
ri41 — 1 = 1, respectively. There are ¢ — [{1 < i < £|d; > 0}| such fixed loci, and
each has 1 negative weight on its normal bundle.

The last type of fixed loci parameterizes reducible curves with one component
contracted and the other noncontracted. These are }"Z i There are
m|{1<i<{|d; >0}| such fixed loci, and each has 1 negative weight on its normal

bundle.
Using Lemma 3.1.1,

- _ . V4
12(Qon( FUF,C),d)) = B(My w0 /T1Sa)+ (m-DI{1<i<t]d;>0}]
=1

+ {l<n<l|ry—ry = 1;d,, dy1 >0} + ¢
+ {1<y<l|ry = rym1 > 1, dy >0}

for m > 3.

_ i
5.2 Calculation of r*( M . o T1Sa)
Y Z:]. 1 2:1

As before, we will calculate the coefficient on ¢2m+2%iidi=8 in the virtual

— ¢
Poincaré polynomial of M, se 4 [ 1S4
e A |

5.2.1 m=2

When m = 2 stratify the space by the number of components of the curve.



137

In the first case, the curve is irreducible. We can use the Aut(P') action to
move the markings to 0 and co. Then there is a C* action on the curve that fixes
the 2 markings. Therefore, the coarse moduli space of the interior is isomorphic
to ( _]£[ Sd4i(C*) )/ C*, where the action is the diagonal action.

\;\zfé already computed that the virtual Poincaré polynomial of S%(C*) is t?¢: —
t24i=2 where if a < 0, then t* = 0.

Thus,

pm(fll Sdi(C*) [C*) = ﬁﬁl(tzdi — {24i2),
using [GP06]. The coefficient on tXi-1di-4 is —[{1<i<(|d; >0} + 1.

We can disregard the curves with three or more components, since these will

not contribute to the coefficient on tZi-1%-4 for dimension reasons. Therefore all

we have to do is count boundary divisors with two irreducible components, as we

¢
did before. There are [](d; + 1) — 2 such boundary divisors.
i=1
Putting this together,
— ¢ ‘
WMoyt o) 11S3) = T+ 1) = {1 << 0]di> 0} - 1.

5.2.2 m=3
¢
Assume m = 3. We have a map M03| s, | T18a, = Moy s which has fibers
et | '

¢
[15%(C*\{1}). By the same argument from before,
i=1

. g . K .
P (Mg s/ TES3) = pn(TTSHENIR) - (M),
Thus,

p””"(I_ISd (C*\{1})) = np”“”(Sd (C\{1}))
lﬁl(thi _ 2t2di—2 + t2dr4)_

We need to find the coefficient on ¢ 6+Zi-14=8 in this expression. By counting, we

see that this coefficient is Y, (-2) = =2[{1<i<{l|d; >0}
i|d;>0

We must count the number of boundary divisors. There are 3( H (d; +1) - 1)

such boundary divisors: one of the components has one marking, and at least one
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of the degrees must be positive on this component; repeating for each marking

gives the result.

_ l Y4
Thus, h2(My g pe o/ T1S4) = 3(T1(d; + 1) = 1) ~2[{1<i<l|d;>0}].
kR | i=1

5.2.3 m>3
¢
As above, we have a map M., se_ 4, [ [1 S84, = Mo,n which has fibers
A 25

¢
[1S5%(C*\{ps, ..., pm})- By the same argument from before,
i=1

PW(M()mm‘ld /HSd ) = p"( HSd (C*\{ps, -+ Pm}) ) - 2" (Mo,m)

i=1

npvwsdi(c*\{pg, D)) 1 (M)

ﬁdZ 1)jz(m 'Z 1)t2d 2, gz(t? ok

i=1 j;=0 J

We want to find the coefficient on ¢2m+ i1 =8 in this expression. After counting,
we see that this coefficient is
m2 m-1 m-(m-3) .
—Z(k)— Z (1)Z—T—(m—1)|{1flﬁg|dl>0}|
k=2 i|d;>0
Next we count the number of boundary divisors:

¢
e There are m J](d; + 1) — m boundary divisors with 1 marking on one com-

=1
ponent and m — 1 markings on the other component.

e There are ( ) H(d + 1) boundary divisors with & markings on one compo-

nent and m -k markmgs on the other component, for 2 <k <m - 2.

e Thus, there are

4

mz( )H(d i 1) - H(di+1)(2m—2) _m

i=1 zl

l\.’)lr—A

¢
mH(dZ + 1) -

i=1
boundary divisors in total.

Putting this all together, we see that

—_

m2 - 3m
2

[\]

_ ¢ ¢
W (Mo st g,/ [1Sa) = —H (di + 1)(2"-2) - m ~
=1 7=

-(m-1){1<i<l]d; >0}
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5.3 The rank of the Picard group 11

As in the Grassmannian case, we use Corollary 2 of [Cey09] together with
Lemma 3.1.1 to conclude that
h2(Qom (FI(F, C"), d)) ® Q = Pic((Qom(FI(T, C"), d)) ® Q.
We can put this together with what we found in the previous sections to conclude

that

Proposition 5.3.1. For m > 2,

m?2 — 3m

V4
rank(Pic(Qom( FI(F,CM), d))) = % 16 + @™ -2) = m -T2 g

+{1<n<llry—ry1 = L dy, dyy >0}
+ {1<y<l]ry —rys1 > 1, dy >0}

The reader can check that the case m = 2 agrees with the more general formula

found above.

In particular, when all d; > 0, the Picard rank is
f{(di+1)(2m—1) —miem oy gy 0y
if r; > 1, and =
f[(di+1)(2m—1) —miem oy 420 -1
if 7y = 1. -
The same argument as in the Grassmannian case shows that

Num(Qom(FI(F,C"), d)) ® Q = Pic(Qom(FI(F,C"), d)) ® Q.



6 Picard Group of Generalized
Stable Quotients

In this chapter, we use the calculations from the previous chapter to find gen-
erators and relations for the Picard group. We will split the chapter into 2 parts,
the first part being when the number of markings is > 3, and the second part being
when the number of markings is equal to 2. We obtain the full result when m > 3,
and a partial result (r; —r;_1 >0, d; >0 for all 1 <i< ¢+ 1) when m = 2. The first
is obtained using similar methods to those we used in the Grassmannian case, and

the second is obtained by intersecting with curves.

6.1 Calculation of the Picard group for m >3

6.1.1 Analysis of the interior II

Assume m > 3. Let Qp,,(FI(7, C"), d) be the interior of the moduli space,
corresponding to the locus where the curve is irreducible, but the quotients are

allowed to have torsion. We prove that

Lemma 6.1.1. Qq,,( FI(7,C"), d) is isomorphic to an open subscheme of a rela-

twe HyperQuot scheme over My, :
HQuotp (FI(F, C"), d) x My, — Mo .

Let ¢ be the dimension of the moduli space.
Then, by similar arguments to the ones we made in the Grassmannian case, we
will see that from the exact sequence ([Kre99]) :
A 1(A)®Q > Ay 1(Qom(FIF,CM), d)@Q — Ay 1( Qom(FI(F,C"), d)) @ Q>0
together with the fact from [Opr06b|, that A.(T) = A.(My,, x T) for any scheme

140
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T, the Picard group is generated by the generators of the Picard group of the

HyperQuot scheme and the boundary divisors of the moduli space.

Proof. We have a natural morphism

a: HQuot x My, — IéI Quotp: (Gr(ri,n), d;) x My
We can consider the compositions =

a; : HQuot x My, > Quotp: (Gr(ri,n), d;) x My,
With the same notation we used in the case of the Grassmannian, we consider the
closed subschemes

T = Elj A% c Quotp: (Gr(ri,n), d;) x Mo

parameterizing quotientgi;ith torsion supported on the markings.

We consider the preimages of these subschemes in the HyperQuot scheme under
the morphisms «;. It is clear that this closed subscheme is exactly the locus of
flags such that at least one of the quotients (of C"* ® O) has torsion supported on
a marking. Notice that if a quotient Q; has torsion supported on a marking, then
the inclusion of subsheaves

Si=>...o85->C"e0
has to drop rank at the same marked point somewhere in the chain of inclusions,
say at the j* inclusion. We see that in particular, the preimage of 7; contains the
locus where the inclusion of the i* subsheaf into the 7 + 15 subsheaf drops rank at
a marked point. For the same reason, the preimages of the 7; will have nontrivial
intersection.

It is clear that every point in the union of a;'(7;) corresponds to a flag of
subsheaves where one of the inclusions of subsheaves drops rank at a marked
point. Conversely, by the reasoning above, every point corresponding to a flag of
subsheaves with the property that the inclusion of the i** subsheaf into the i + 15
subsheaf drops rank at a marked point is contained in 6 a7t (m).

Thus, the locus of flags where one of the inclusion;=1of subsheaves drops rank
along a marked section is a closed subscheme of HQuot x M ,,.

By construction, the complement is isomorphic to the locus of stable quotients
to the flag variety whose underlying curve is smooth and irreducible (using the

same argument as in the Grassmannian case).

]
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6.1.2 The Picard rank of HQuotp (FI(T, C"), d)

As
with t

In

in [Kim], the rational cohomology groups of the HyperQuot scheme coincide
he rational Chow groups of the HyperQuot scheme.

order to determine how many relations there are among the generators of

the HyperQuot scheme, we can calculate the rank of h2( HQuotp (FI(F, C"), d))

using

[Che01]. [Che01] gives an algorithm for computing the Betti numbers of the

HyperQuot scheme in Proposition 3.

We will recall the notation of [Che01], except we reverse the roles of r; and s;.

Le

Let P

t S c S, be the collection of permutations ¢ such that
o(risi+1) < ...<o(r;) for each 1 <i < ¢ where 1y = 0 and 74y = n.

be the collection of tuples ({a;k 1<ice,1<k<r; » {bik }1<i<e 1<ker; » 0) Where

® A4jfk, bi,k’ 2 Oa ges

> (az’,k + bi,k) = d;

k<r;

® i > ity big 2 i1

Le

t €7, = Lif 0(j) <o(k) and 0 otherwise.

Then from Proposition 3 of [Che01] we see that

where

h(

It

terms

h?(HQuote: (FI(T, C), d) ) = {h™ (1)}

~

¢
a7ba0)=Z (ajp + big + 1) Z GZ,ﬁZZ (aig + bik) Z €k
i=1 k<ry

=1 k<r; Ti<Jj<Ti+1 ri—1<J<r;
¢
+ Z Z b@k.
=1 r;_1<k<r;
is clear that, in order for h(a,b,0) = 1, we must have that exactly one of the

is 1 and the other two are 0.

Suppose that the first term is 0. Then for each i, if £ <7; < j, we must have
o(k) > o(j). This forces o to be the following permutation :

1 LT . T n
g =
n+l-r ... n ... 1 ... n+l-nr

Since ¢ has the property that, for each i, if k <r; < j, o(k) > o(j), then we
see that, for 1 <¢ < ¢, if k <riy, Y €7, > 0. If we require that the

ri—1<j<r;
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second term in the expression h(a, b, o) is 0, then we see that we must have

Qi = bi,k =0 Vk< Ti-1, for each 1 <7< /.
Given this,
¢ ¢
h(a,b,0) = ¥ ¥ (aip+bix) X €+ X X by

1=17;_1<k<r; Ti-1<J<T; 1=17;_1<k<r;
Notice that, for each r;_; < k < r; such that 35 such that r,_1 < j < k <y,
3 €fp 21 If we want this term to be zero, we must have that a;; =
ri—1<j<ry
bip =0forall r, g +1<k<m.
Thus, we must have a;,, ;41 + b, ;41 = d; for each 1 <¢ < ¢. Notice that if

r;-1 + 1 = r;, then this term still does not appear in

14
Y Y (aip+bip) ¥ €,
i=1r;_1<k<r; Ti—1<J<r;

since €7, = 0. Since we want h(a, b, 0) = 1, we must have that 3j such
that bjﬂ«j_ﬁl =1, and for each 7 # j, b;, ,+1 = 0.
This forces Ajri_y+1 = d; -1, and for ¢ # j, a;r, 41 = d;.
There are |[{1 <i<?|d; > 0}| such points in h=*(1).
‘
Let o be as above, so Y. Y (ajx + bix +1) X e, =0, and now sup-
i=1 k<r; Ti<j<risr
¢
pose the last term . ) b; is also zero. Then b;;, = 0 for all 1 <7</,

=17, 1<k<r;
1<k <r;. Thus,

i=1k<r; 7i-1<jJ<r;
Suppose now that 37 such that r; — r,_; = 1.

¢
h(a, b, o) = ZlkZ (aix) X €T k-

We need
> Qg€ = 1, and Yaj, Y €7, =0.
k<r; j#i rj_1<s<r;
Notice that, for each k < 7,4, > €, 21, for j #i. In order for
Tj—1<85T; ’

Yajr Y €, =0, we must have that a;) = 0, for j #4, k <rj_1. Then,

VE rj-1<8<r;

by the same argument we used above, we must have a;,. .,1 = d;, and all
’ J:T5-1 vl

other a;, = 0. Notice that, in order for ) a;ie,r = 1, we must have
k<r;

a;r = 1 and a;,, = d; — 1, for some k <r;. The only k for which a;_; ;>0 is

k = ri_o+1. Since a;_1 > a; , we must have that a;,, ,.1 = 1. If 7 = 2, then

we let az; = 1 and ag,, = do — 1.

There are [{1 <i<{l|r;—r;y = 1, d;,d;_1 > 0}| such points in h=1(1).
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If r; = 7,21 > 1, then we must have a;,, .1 = dj, and all other a;; = 0 for
Jj#1i, k#r;_1+1. Then, a similar argument to the one above shows that we
must have a;,, ,+1 = d; — 1, and a;,, ;12 = 1, with a;; = 0 otherwise. Unlike
in the case above, since r; — r;_; > 1, if a; 1 > 0 for some £k < 7,_;, then

Qg X €y = Qi (1= Tic) >aip > 1,

Ti-1<S8<1;
so this cannot happen.

There are |[{1<j</{|r; — r;-1 > 1, d; > 0}] such points in ~~1(1).

e In the next case the third term is 0, so all b;; = 0, and the second term is

Zero.

We have , ,
h(a, 0, T) = DY (aip +1) X% € * > Y (aig) X €.

1=1k<r; Ti<j<rign 1=1 k<r; rioi<jsry
The second term breaks into

¢ ¢

ST (@) X €ty T (a)(k-ri-1).

1=1k<riq ri—1<j<r; i=1r;_1<k<r;
Therefore, we must have a;; = 0 for each ;1 +1 <k <r;if r; — ;.3 > 1. We
want the first term = 1, so we need there to exist unique indices v, i, v such
that v <r,, ryo1 > p > 7, for which 7(v) < 7(p) and otherwise if a < r; < 3

then 7(a) > 7(83). Then this forces p = 7,41 and v = 7,1 + 1.

Therefore, 7 differs from o by interchanging the locations of o(r,_; +1) and
o(Ty41)-

We must have a; ), = 0 for k <r;_; for all 1 <¢ < ¢. This kills the second term.
Thus, h(a, 0, 7) = f: > (aip+1) X €t For i # 7, we must have

i=1r;_1<k<r; i <J<Ti+1
Qigp 41 = d or @iy, = diifry —riy = 1. Ifry, =1y =1, welet a,, =d,
and if r,, — r,_1 > 1, then we let a,,. 1 = d,. We must have d, = 0 in order
for these points to appear in h~1(1). This yields |[{1 <y < ¢|d, = 0}| points

in h-1(1).

Putting this together with the fact that the Chow groups of the HyperQuot
scheme coincide with the cohomology groups, we see that
rank(Pic(HQuotp: (FI(F, C"),d))) =|[{1<y<l|r, —ry1>1,d, >0} +
|7”77 - Ty-1 = 1, dn, dnfl > O}| + /.
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6.1.3 The Picard group of the HyperQuot Scheme

We will use the methods and results of [OprO6b].

Let S;, Q; be the " universal subsheaf and quotient, respectively, over P! x
HQuot.

[Opr06b] shows that 3 an exact sequence of sheaves on P x HQuot x HQuot :

0->K - é?—lom(ﬂf&, T5Q;) —> ?‘%Hom(ﬁf‘gj, m5Qj41) > 0
where m; : P! x HQuolt_x HQuot - P x HQuotJ_is the projection onto the #*" factor of
HQuot and the identity on P!, and the last map pre-composes the *" entry with
the map 77S,-; — 7S; and composes the ¢—15 entry with the map 759,14 - 75 Q;,
then takes the difference.

It is shown that p,K is a vector bundle of rank equal to the dimension of the
HyperQuot scheme, where p : P! x HQuot x HQuot -~ HQuot x HQuot is the natural
projection.

We recall the argument of [CF99].

Fix two geometric points of HQuot x HQuot,

0=>S=...>5=>C"e0->Q ~...> Q@ —~0
05" ...o85"->C"e0->Q"—>...> Q" -0
This yields a map from P! to P! x HQuot x HQuot. We can pull back K along this
map. Notice that we have a natural map
Hom(C", C*) @ Opr — @ Hom(S!, Q") > @ Hom(S!, Q"51) 0
which factors through the pulllza_;ck of K. This maf)_ils generically surjective as we
already proved in the first chapter.

Since K admits a generically surjective morphism from a trivial bundle, it
follows that K has no higher cohomology on the fibers of p.

Next, a section of p,K is obtained, coming from the section of K from the
collection of morphisms {7;S; - C*® O — m;0Q;}¢_,. This section vanishes set
theoretically along the diagonal. To see this, notice that if

0=>5=...=5->C"0->Q ~...-> Q@ —~0
0=>85">...>85"->C"e0->Q"—...> Q" -0
represents a geometric point in the vanishing locus of this section of p,K, then

since the compositions

S -C"e0 - Q";
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are zero, we have a factorization

S/ - 5"-C"e 0.
Since the first Chern classes of S/, S;" are equal, the cokernel must have rank 0 and
first Chern class 0, so the map S/ - S5;” is an isomorphism for each 1 <7 < /. This
shows that, set theoretically, the vanishing of this section of p.X is the diagonal.

We would like to express the class of the diagonal in the Chow ring of HQuot x
HQuot as a multiple of the top Chern class of p, K.

If the vanishing of this section has nonreduced structure along the diagonal,
we can consider the preimage of the generic point of the zero section under this
section, which will have a certain multiplicity, say a. Since we are only interested
in the top dimensional piece of the rational equivalence class of this subscheme,
the class of this subscheme is a[A]. Thus, the class of the diagonal in the Chow
ring of HQuot x HQuot is given by a rational multiple of the top Chern class of
K, by Proposition 14.1 in [Ful98]. Using the exact sequence

0-p.K—p, é?—[om(wf&-, 75 Qi) = Ps gHom(Wij, 75Q 1) = 0,
we see that the Cherrzl_éharacter of p.K can be ]v;flritten as
ch(p. ié Hom(miS;, 75Q;)) — ch(p. § Hom(miS;, m5Q;41))-
Recursively, we can determine the top Chern class of p, K from the Chern characters
of p*é’ﬂom(ﬂf&-, 75 Q;) and p. g‘é Hom(miS;, m5Qj41).

Now, apply Grothendieck Riemann Roch to each term (note that 7;S* and

75 Q; have no higher cohomology on the fibers of p) :
ch(p.(mi 8 @ m3Q;) = p(mich(S}) - m3ch(Q;) - ¢ td(TP))
where ¢ : P!x HQuotx HQuot — P! is the projection to P!. Notice that ¢*td( TP') =
1 + ¢*¢£, where £ is the hyperplane class on P!

Lemma 6.1.2. The rational Chow ring of HQuotp (FI(F, C"), d) is generated by

the classes
i W;(p(cl(Qj)v RRR) CTj(Qj) )
d W;(Q(C1(Qk), SRR CTk(Qk) ) ’ (b,*g)

where p and q are monomials in the Chern classes of Q;, for 1 <i < (.

Proof. The method follows the proof of Theorem 2.1 in [ES93].
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The discussion above shows that the diagonal can be written as a sum of
classes p.(mima(S; ) - mams(Qr)), P (mim,(Sy) - m3m,(Q;) - ¢*€) in the Chow ring
of HQuot x HQuot, where mg,, mg, m~, m, are monomials in the Chern classes of
S5, Qx, S, and Q;, respectively, for 1 < h,i, 5, k < L.

Take any class z € A*(HQuot)®Q. We have the formula py.(pjz-0) = 2z, where
pi » HQuot x HQuot — HQuot is the projection to the " factor.

Looking at the individual terms of the intersection, we have

P2+ (P12 Ps(mima(S)) - m5mp(Qr)) ) = pa.(p«(p*pi2 - Tima(S]) - T3ms(Qr))).
We have the following fiber diagrams :
P! x HQuot x HQuot *—= HQuot x HQuot
] -
P! x HQuot - HQuot
P! x HQuot x HQuot -— P! x HQuot

ml l y

P! x HQuot Pt

/

The combination of the two diagrams and the projection formula allow us to write

this as
T2 (0 P12 T ma(S)) - mima(Q)) = h(maw (7172 Tima(S2)) -ms(Qh) ).
Notice that, from the second diagram,
T2 *71';(71"*2 ) ma(‘s‘;) ) = gb'*gbg(ﬂ"*z ' moz(S;)' )
P ("2 -ma(S;)) is either 0, z[pt], or z [P'] for some nonzero z € Q.
In the first case, the intersection is zero.
In the second case, ¢"* ¢ (7" 2 ca(S;)) = x¢""§. Then,

T (o (M7 2 Tima(S))) ~mp(Qu) ) = m(x ¢ -mp(Qr))
=z, (¢ ms(Qx) )
In the third case,

T (T (mim 2 mima(85) ) -mp(Qk) ) = wmi(ms(Qk))-

The calculation for the terms of the second type is similar.

This proves:

Lemma 6.1.3. Pic( HQuotp (FI(F, C"), d)) ® Q is generated by
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o c2(Q;) for1<i</
o heo(Qy) for1<y<t
o . (c1(Qx)-¢E) for 1<k < L.

We can improve on this lemma and will do so by calculating several intersections

below.

o If d; > 0, then we have that det(Q;)|p1 = O(d;) for each h € HQuot. As in
the Grassmannian case, 3 a line bundle N; on HQuot such that det(Q;)
7 N; ® ¢'*O(d;). Then, ¢1(Q;) = 7 c1(N;) + ¢'*d;€. A direct calculation

yields —W;cigigi) = (V).

o If d;,d; >0, then

T (c1(Q)) - a1 (Qr)) = (7" cr(N;) + ¢ d;&) - (7" et (Ni) + ¢ di€))
=djc1(Ng) + dpci(Nj)

Q) | dimie(Q)
2dy, 2d,

using what we saw above.

o If d; = 0, then Q; is the pullback of the universal quotient over the Grass-
mannian Quotp: (C"® O, n—-r;, 0) = Gr(rj, n) xP*; call the pullback of the
quotient to the HyperQuot scheme F;. We see that

T Q) = T (x" ()
CH(F)) - 7 [P' x HQuot]
0

since 7’ has positive dimensional fibers. Similarly, 7,c2(Q;) = 0.
However,

m(c1(Qy) - 9" &) = (7" er(F;) - ¢ )
= Cl(f.j) +0.
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e Also, observe that if d; = 0, then for £ such that dj > 0,

T (c1(Qy) - e1(Qx)) = cr(Fy) - (77 er(Ny) + ¢ dif) )
=y (F) - cr(Ng) -l [P x HQuot] + dici (F)
= di c1(F).

o If d; = di, = 0, then

m(e1(Q) - e1(Qi)) = () - ex(Fi) - mi[P' x HQuot]
=0.

This shows that the following classes generate the rational Picard group of the

HyperQuot scheme:
o ¢1(Fj) = mi(c1(Q;) - ¢&) for all j such that d; = 0
o m.c2(Qy) for all k such that dy >0
o m.co(Qp) for all h such that dj, >0

We will further restrict to a subcollection of these classes by making some
observations below.

Consider the situation where j is such that d; >0 but d;_; = 0. Then we have
the short exact sequence

0->Kj1->9j1>Q;->0
on P! x HQuot. Taking the total Chern class, we see that
c1(Kjo1) - e1(Qy) + c2(Kjm1) + 2(Q;) = c2(Qj1)-
Pushing forward and reducing, we have
m(c1(Qj1) - e1(Qy) ) - mct(Q)) + mhea(Kjor) + miea(Qy) = 0.

Notice that since Q;_; is actually a vector bundle, we claim that K;_; must also
be a vector bundle. Given this for now, we see that if r; — r7;_; = 1, then K;_; is a
line bundle, and so it has zero second Chern class. With our earlier calculations,
we have that

djer(Fj-1) - mci(Qy) + mea(Q;) = 0.
By our calculation of the rank earlier together with our work above, we can

conclude
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Proposition 6.1.1. Pic( HQuotp (FI(F, C"), d)) ® Q is freely generated by the

following classes:
o ¢1(F;) for all 1< j <l such that d; = 0
o .c2(Qy) for all 1 <k <{ such that dj, >0
o hco(Q;) for all 1 <i <l such thatr; — r;i.y > 1 and d; >0
o 1.co(Qp) for all 1 < h < ¥ such that ry, — rpq = 1 and dp, dp_1 > 0.
It suffices to prove the following lemma.
Lemma 6.1.0.1. In the case that dj_y = 0 above, K;_y is locally free.

Proof. Notice that when restricted to fibers over closed points,
ICJ-_1|]P’11 c Qj‘lhpi is an inclusion of sheaves, and a subsheaf of a locally free sheaf
on a smooth curve over a field is necessarily locally free. We use the Auslander
Buchsbaum formula ([Eis95]), which tells us that if ¢ is a closed point in the fiber
P}, then

p?“Ojd?;mOP}l7q(Kj—l|P}1”q) + depth(Kj-ilpr o) = depth(Op: ).
The first term is 0 since KC;_; is locally free when restricted to fibers over closed
points. Since HQuot is smooth ([Kim], [CF95]), passing from Opi.pgquet, 4 t0
Op1

14 1s given by taking the quotient by the extension of the maximal ideal of

OHQuot,», Which is generated by a regular sequence (the sequence remains regular
on Opiypquot, ¢ Dy flatness). Also, since KC;_; 4 is flat over Opguor, n, We see that the

sequence is regular for K;_; 4. Thus,
o depth(Kjilp1 o) = depth(K;-1,4) — dim(HQuot)
o depth(Op1 o) = depth(Opixnquot,q) — dim(HQuot).

e Using the Auslander Buchsbaum formula ( [Eis95]) for IC;_; ,, we see that
projdim(KC;_q,4) = 0.

Thus, ;- is locally free. O
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6.1.4 Generators and relations for Pic(Qy,,(FI(7,C"), d))®Q

As we saw above, Pic(My, x HQuot) ® Q = Pic(HQuot) ® Q. We have already
seen that Qg (FI(F,C"), d) is isomorphic to an open subscheme of My, x HQuot.
From the exact sequence ([Ful98| Proposition 1.8 page 21)

Ay1 (Mo x HQuot) ® Q = Ay 1(Qom(FI(F,C"), d))®Q - 0

together with the isomorphism above, we see that:

Lemma 6.1.4. Pic(Qy,,(FI(7,C"), d))®Q is generated by the following classes:

@Y c1(Fy) for each 1< j <€ such that d; = 0

w03 (QYV) for each 1 <k <{ such that dj, >0

m0¢y(QY) for each 1 <i<{ such that r; — r;i.1 > 1 and d; >0

ey (QY) for each 1 < h <l such that vy, — -1 = 1 and dy,, djp—q > 0.

There are several items that need clarification.

Here, 70 is the restriction of the universal curve to the interior of the moduli
stack (the complement of the boundary divisors).

We will explain what is meant by qb? now. Since the degree d; = 0, the curve
underlying each stable quasimap is contracted to a point in the 7** Grassmannian,
Gr(rj, n). This yields a morphism ¢; from the moduli stack to Gr(r;, n). F; is
the universal quotient on this Grassmannian. Then, ¢2 is the restriction of this
class to the interior of the moduli stack.

Now as in the Grassmannian case, we have the exact sequence ([Kre99])

A 1(A)® Q — Pic(Qom(FI(F,CM), d)) ® Q » Pic(Qom(FI(F,C"),d)®Q -0
Since A is purely ¢—1 dimensional, the first term is the Q vector space whose basis
elements are the classes of the irreducible components of A.

Thus, Pic(Qom(FI(T,C"), d)) ® Q is generated by:

¢jc1(Fy) for each 1< j < £ such that d; = 0

m.c2(Qy) for each 1 <k < ¢ such that dj >0

m.C2(Q;) for each 1 <i < ¢ such that r; — r;_1 >1 and d; >0

7. Co(Qp) for each 1 < h </ such that r, — r,_1 = 1 and dj, dj_1 >0
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e the irreducible components of the boundary.

We have already counted that there are %f{l(di + 1)(2™ - 2) = m boundary di-
visors (there are exactly the same number of boundary divisors as there are in
Mom st a; ] 1‘1:%1 S4;). Just as in the Grassmannian case, there is a forgetful mor-
phism :
Qo (FI(F,C"), d) = Mom
along which we can pull back the (m2— 1) — 1 relations among the boundary divisors
[Kee92]. Counting dimensions, we see that the vector space spanned by the above
classes with the relations pulled back from Pic(M,,) ® Q has dimension
O+ {1<i<l]d;>0,r; —rima > 1} + {1<y<l|dy, dyy,ry — 19y = 1}
+%f{1(di +1)@2m-2) -m- (") + L
We already calculated that the Picard group has rank
%f{l(di F1)m-2) —m - <y <l — 1> 1, d, >0}
+{l<n<l|ry—ryq = 1;d,, dyoy >0} + L.

Since (m2— 1) —1=m ;37”, we see that this agrees with the dimension count we
performed earlier using localization (Proposition 5.3.1), and so there are no other
relations.

This concludes the proof of Theorem 0.5.2.

6.2 The Picard group when m =2

Going forward we assume all d; > 0. We will use the same method from the
Grassmannian case of intersecting with curves to calculate the Picard group when

m = 2.

6.2.1 Test curves 111

In this section we construct the test curves to be used in the proof of Theorem
0.5.3.
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The curves A’ ¢

¢
Fix a tuple €:= (eq,...,e,) € N, such that ¢; <d; for all 1 <i< ¢, ¥ e; >0 and

4
Y. (d;

i=1

i=1

—¢;) >0. A’y are constructed as follows:

Consider the Hirzebruch surface p : P(O(1) @ O) - P! with two sections
s1, S2 given by the subbundles O, O(1) of O(1) @ O. These sections have
numerical classes &+ f, £, respectively, by [Har77] Proposition V. 2.6. Notice

that (£ + f)-& = 0.

¢

Pick ¥ e; smooth irreducible sections {(511@}5:1 o1 of Op(1) ® p*O(1) such
i=1 e

that U {dix, };'_; vanish simultaneously at a single point on sy, yet they
i‘6i>0 '

have distinct tangent directions at this point.

¢
Next we pick Y (dg — €4) smooth irreducible sections {og s, }fl:df ;:1(1:1 of Op(1)®
q=1 ’
p*O(1) which do not have any pairwise common vanishing points on s, with

each other or with the ¢;,.
Notice that none of the sections listed above vanish on s,.

We blow up the intersection points of the d;,, 045, With the first marked
section.
The strict transforms of the sections above are given by:

dg—eq

_ * — *
S =Bl'si - By - Y % By, 5= Bl's,
q|dq—eq>0 hg=1

* o *
5i,ki = Bl (51-,;% - El, and O-q,hq = Bl Uq,hq - E,th.

The " inclusion in the flag sequence of sheaves is given by

e — di—e;
CrileOe (9(— kz 5i7ki -y Ei,hi)
=1 hi=1

€i+1

€i+1 —
Cile0ae0aCrinm 100 O0(- Y divikia— 2 Titlhi,)

kiv1=1 hiv1=1

in which the nontrivial factor in the i** subsheaf maps into the r" factor of

O in the i + 1%¢ subsheaf, and the map is the identity elsewhere.

The next collection of curves are a slight modification of A’ z.
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The curves A’}
Fix an index 1 <~ < ¢. We define the curves A’} _ as follows:
e We retain the same sections from A’y z.

e The only change from A’ z, is in the 4" subsheaf, which is given by
ey _ dy—ey
Cr20000(- X 0yk,)®0(- ¥ Tyn,)
k=1 hy=1

where the inclusion into the v + 15¢ subsheaf is given by the sections

ey _ dy—e~y
® 6’77}67 @ ® O”th’Y
ky=1 ty=1

on the 7, — 15" and the 7" factor, and the identity elsewhere.

We produce two collections of curves for when d; = 1.

The curves B;

We next construct curves B; for each j such that d; = 1.

e Start with py : P! x P! - P! with the two trivial sections s;, so at 0 and oo,

respectively.

e For each ¢ # j, pick d; trivial sections of ps, 0;1,, which are disjoint both from

each other and from sq, s-.

e Pick 2 smooth irreducible sections 07, do of O(1) ® O(1) without common

vanishing points on sy, ss.

e The i** subsheaf is given by
Cri-le Oe O(- % Tik:)
such that the last factor maps into the ri" cok[ijy1 of O in the i + 1% subsheaf,
and the map is the identity on the first r; — 1 factors.

e The ;" subsheaf is given by
Cite0oO(-1)mO(-1)
2
where the inclusion into the j + 1% subsheaf is given by @ d, on the last

u=1

factor, and the identity on the first r; — 1 factors .
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The curves B;

The next family will be very similar. The only difference lies in the j** subsheaf.

e Pick one trivial section o of py (distinct from s, $3), and choose two disjoint
sections f1, fo of p;O(1).

e Everything stays the same as in B;, except now the j** subsheaf is given by
Cri?2@ 0 e O0(-0) @ p;0(-1)
where the inclusion into the j + 1%¢ subsheaf is given by ¢ on the r; — 1%

2
factor, @ f, on the r?h factor, and the identity elsewhere.
u=1

The curves C;

Fix an index 1 < j < £ such that d; > 1. The curves C; are constructed as

follows:
e Start with py : P! x P! — P
e Fix the two marked sections si, so to be at 0 and oo, respectively.

e For each i # j, pick d; trivial sections of p, which are distinct from both each

other and sy, s9; call them o, 4,.

o Pick 2(d; - 1) trivial distinct sections of p, (distinct from o, for i # j as

well as s1, s53); call them 5,1 and ojp, 2.

e Choose two smooth irreducible sections of O(1) ® O(1) which do not vanish

simultaneously on the marked sections; these will be denoted &7, ds.

e The it subsheaf is given by
Crite Oe O(- dz Tih;)
where the inclusion into the ¢ + 1% subsheaf i};iigliven by the sections
h(jé; Tihi

on the 7" factor, and the identity elsewhere.

e The j* subsheaf is given by

d;-1
CiteO0o ® pjO(-1)® (0O(-1)=O(-1))
hj=1
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where the inclusion into the j + 1%t subsheaf is given by the sections

2 dj—l
D(® ojn,k)®h
k=1 h;=1

on the T‘;h factor, and the identity elsewhere.

curves D;

Fix an index 1 < j <{. Define a new curve D; as follows:

The

Start with py : P! x P! - P! with the two marked sections s;, s, the trivial

sections at 0 and oo, respectively.
Pick 2d; smooth irreducible sections {5]-7;1].#};3’:21 w1 of O(1) ® O(1) without
any pairwise common vanishing points on the two marked sections.

Pick Y d; trivial sections of po, U{ai7ki}Z?:1, which are distinct from each
%] ] ¢
other and from sy, $o.

The j* subsheaf is given by
d;
CiteO0e ® O(-1)rO(-1)
hj=

J

2 dj
where the inclusion into the j + 15¢ subsheaf is given @ & (5j7hj,u on the 7“;."
hi=1

u=1h;

factor and the identity elsewhere.

For i # j, the i*" subsheaf is given by
d;
Cri-teOeO(- Y oik,)
ki=1

d;
where the inclusion into the ¢ + 1%¢ subsheaf is given by ® oy, on the ri"
ki=1

factor and the identity elsewhere.

curves F;

Fix an index 1 < 7 < /. Call the next curve F;, which is constructed as follows:

Start with py : P x P! - P! with the two marked sections s;, sy being the
trivial sections at 0 and oo, respectively.
Pick Y d; trivial sections of po, U,{O—ivhi}i:l’ which are distinct from each

1#] Y
other and from s, so.
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Pick d; — 1 trivial sections of po, {Ujﬁj}%j? which are distinct from sq, s,
and o; 5, for each ¢ and each 1< h; <d;.
Choose a smooth irreducible section ¢ of O(1) ® O(1).
Blow up the intersection points d sy, 6 So.
Let the it (i # j) subsheaf be given by
d;
CileO0eO(- Y Tin,)
hi=1
d;
where the inclusion is given by the strict transforms ® @, , on the r* factor
hi=1

and the identity elsewhere.
Let the 7% subsheaf be given by

;-1 _

Cite0eO(- X Tjn —9),
h;=1
;-1 _
where the inclusion is given by the strict transforms ( ® @, ) ®0 on the 7“;.’1
hy=1

factor and the identity elsewhere.
curves G;

Fix an index 1 < j < /. We define a new curve which is similar to both D; and

. Call this curve G;.

Start with py : P x P! - P! with the two marked sections s;, sy being the
trivial sections at 0 and o.
Pick ¥ 2d; smooth irreducible sections U {d;p,.1, 5,~7hi72}fi:1 of O(1) = O(1)

%] 1#]
without any pairwise common vanishing points on the two marked sections.

Pick d; 1 trivial sections {0, }Z? i of po, distinct from each other and from

S1, S2.
Pick a smooth irreducible section d; of O(1) ® O(1).
Blow up the two intersection points d sy, 6 So.

Let the i*" subsheaf (for i # j) be given by
d;
Cri-le 0o ® BI'(O(-1)rO(-1))
h=1
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where the inclusion into the i + 15! subsheaf is given by the strict transforms

2 di _
@ & 0ip, . on the rfh’ factor, and the identity elsewhere.
u=1 hz‘=1

e Let the j* subsheaf be given by
dj-1 _
Cile0eO(- ¥ Tjn, — 0 ),
hi=1
where the inclusion into the 7+ 1%¢ subsheaf is given by the strict transforms

dj-1 _
( ® Tjn;) ®0; on the ri? factor, and the identity elsewhere.
hy=1

The curves H;
Fix an index 1 < 7 < /. Construct the curve H; as follows:

e Start with p: P(O(1) ® O) - P! with the two marked sections s;, sy given
by the subbundles O, O(1) of O(1) ® O. These have numerical classes £ + f

and &, respectively by [Har77| Proposition V. 2.6.
e Pick (X 2d;) + 2d; — 2 smooth irreducible sections

i#]
g,{5i,hi,1, G2}y U{05m,1, 5j,hj,2};léj
of Op(1) ® p*O(1) Wiéhjout common vanishing points on s; (they do not in-
tersect sy), and pick 2 smooth irreducible sections o, oy of Op(1) ® p*O(1)
with a shared vanishing point on s; such that oy, oo have distinct tangent

directions at this point.
e Blow up the intersection point o1 (o on si.

e For ¢ # j, the i*" subsheaf is given by
d;
Cri-leO0Oe ® BI'(Op(-1)® p*O(-1))
hi=1

i=

where the inclusion into the 7 + 1% subsheaf is given by the strict transforms

2 di _
® & 0;p, on the rfh factor and the identity elsewhere.
u=1 hi=1

e The j** subsheaf is given by
Ci-leOw dé)l Bl*(Op(-1) @ p*O(-1)) ® BI" (Op(-1) ® p*O(-1)) @ O(F)
where the inhélzlision into the j + 1% subsheaf is given by the sections

on the rﬁh factor and the identity elsewhere.
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The curve |

The last curve | is constructed as follows:
e Start with the vector bundle O(v) ® O(w) - P!, where v # w, v,w > 0.

e Consider the projective bundle p: P(O(v) @ O(w)) — P! with two sections
S1, S2, given by the subbundles O(w), O(v) of O(v) ® O(w). These have
numerical classes £ +vf, £ +wf, respectively, by [Har77] Proposition V. 2.6.

e Fix h >0 such that —vd; + h, —wd; + h >0 and H°(Op(d;) ® p*O(h)) >> 0, for
all 1 <i </

e For each 1< < /¢, we pick two sections 7; 1, 7.2 of Op(d;) ® p*O(h) which do

not have any common vanishing points on the two marked sections.

e The i*" subsheaf is given by
Cri-le O @ (Op(-d;) ® p*O(-h))
2
where the inclusion into the i+1% subsheaf is given by @ ~;,, on the ri" factor,
u=1

and the identity elsewhere.

One can check that all of the families above satisfy the stability condition.

6.2.2 The Picard group when r;,—r;,_1>1 for all 1<i</+1

We begin by showing that the boundary divisors are linearly independent.

Lemma 6.2.1. The irreducible components of the boundary divisors are linearly
independent in Pic(Qo2(FI(T,C"), d)) ® Q.

Proof. Suppose we had a relation } ¢, A, 7 = 0. Intersecting this relation with
A’y z we find the relation on the coefficients
¢
Cie+ ;(dz - 6z’)Cl,(o ..... 1,..,0) = 0
where the 1 is in the ** position in (0,...,1,...,0) in the i** term of the sum.
Intersecting with H; we see that ¢ .. 1,..0) =0 for each 1 <4 < /. Together with

the relation above, we see that all ¢;z = 0.
n
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Recall that (Proposition 5.3.1)
rank(Pic( Qoa( FI(T,C"),d))) = [T, (di+1) + 24 - 1
when all d; > 0.

There are [T-,(d; +1) — 2 boundary divisors. We claim that the 2 ¢ classes are
coming from ,c3(Q;), m.c2(Q;) for 1 < i < ¢. We are off by a one dimensional
subspace. Based on what happened for the Grassmannian, we can add the two
classes evicy(Fi), evscr(Fy) for some k. We will expect a relation among these

generators, which we will show excludes m.c2(Q;) for every 1< < /.

Lemma 6.2.2. The collection

{Are} Ufmec?(Q)) o Ulmeea( Qi) Yy

18 linearly independent.

Proof. Suppose we had a relation
¢ ¢
Z:lco"iﬂ.*C%(Qi) + 21057]‘7T*02(Qj) + ZCLEALE = 0.
i= Jj= 2
Intersecting with A’y z yields the relation on the coefficients

i=1
where the 1 is in the ¢*" spot in (0,...,1,...,0) in the ¢** term of the sum.

¢ ¢
Y(d? — e —di +e;) (o +Cpi) + i+ Zl(dq - €4)C1,(0,...0,1,0,...,0) = 0
q=

Notice that the only difference between the intersection of the relation with
A/V

1z and A’jg, is in the 7,c2(Q,) term, and an explicit Chern class calculation
yields
ey(dy = €y)csy =0 = ¢, = 0
for all v such that d, > 1.
When d; = 1, we use the curves B;. Intersecting with B;, we find the relation

on the coefficients

2¢q,; + 2¢cp; = 0.
Intersecting with B yields

2¢q,5 + gy = 0.
Combining this with the result we found for B;, we see that c3; = ¢,,; = 0 in this
case as well.
Thus, the relation cannot involve m.cy(Q,) for each 1 <y < /.
Intersecting with C; (for each 1 < j < /) yields the relation

deCaJ‘ = 0.
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Since linear independence of the boundary divisors has already been established,

the result follows. O
Next we prove a result involving the evaluation classes.

Proposition 6.2.1. Fiz je {1, ..., (}. Then the collection
evier(Fy)Uevier (F;) U{Aq er, o) UL (Qi) iy U{maca (Qi) 1oy

15 linearly independent.

Notice that the subspace spanned by the above classes has dimension equal to
the rank of the Picard group from our previous calculations (Proposition 5.3.1), so

for each 7, the above classes form a basis.

Proof. Suppose we had a relation

%:CLEALE + crevie (F;) + ceevie (Fy) + Z% CaiTeC3(Q;) + é:l cppmeCa(Qx) = 0.
Since we are assuming 7, — 1,1 > 1 V1 < h < ¢, we can use the same curves we
used above (A'1z, A’ 5, Bj, and BY) to show that all ¢ = 0.

Therefore, the relation has the form

ch A1z + creviel(Fy) + ceevie (F) + an mc2(Q;) = 0.

Notice that it suffices to show that ¢; = ¢ = 0, smce our lemma above showed
that the remaining classes are linearly independent.

We make use of the curve D;. Intersecting with D;, we find that

c1 +cg = 0.
Intersecting with F;, we find
C1,(0,..,1,..,0) F Cly(d1,rdj1,...de) = 0,

where the 1 is in the j* position in (0, ..., 1, ...,0).

Intersecting with G;, we find that

2 _
Z‘2dica,i T C1(0,...,1,...,0) T Cl(dy,...,dj-1,....,dg) = 0,
1%£]

where the 1 is in the j** position in (0, ..., 1, ...,0). Putting this together with

the relation we found on the coefficients above,

C1,(0,.0,1,.,0) T C1(d1, s ds-1,.dy) = 0,

we see that Y. d?c,; = 0. By considering the mtersectlon with |, we find the relation
I
on the coefficients

(—wdj + h)ey + (—vd; + h)eo + Z‘(df(—v — w) + 2hd;)ca; = 0.

1¥)
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Using the fact that ¢; = —cy, and the relations on the coefficients we found
above, we see that this relation on the coefficients becomes
(-~wd; + vdj)ey + ¥ 2hdica; = 0.
Regarding this as a polynomial in w, v, h, Wleﬁsee that ¢; = 0, which forces co =0. [
By the preceding proposition, we expect that we can express m,c?(Q;) in terms
of this basis.

Lemma 6.2.3. For each 1< j </, there is a relation
Yei(dy - ej)Aiz + dj(eviei(F;) + evier(Fy)) = m.c3(Q;).

Proof. We expect a relation

cheAle + crevici (F;) + ceevie (F;) + Z CaiTxCH(Q;) + Z cprmxC2(Qx) = 0
for each 1<j<i.

Just as before, cg, = 0 for each 1 < k < £. Therefore, the relation takes the
form

cheAle + crevice (F;) + coevie (F) + Z CaiT+C1(Q;) = 0.
Intersectmg with D;, we find the relation on the c%)efﬁments
2d% caj + dj(cr + ¢2) = 0.

Intersecting with Dy, we see that ¢, = 0, for each k # j. Thus, our relation has

the form

mM

1201z + creviei(Fy) + caevier(Fy) + coymec(Q;) = 0.

Next, we intersect with F;. This yields the relation on the coefficients
2(dj = 1)cay + c1y0,..,1,..,0) + C1,(dy, .., d;-1,....dg) = O
Intersecting with Fy (k # j), we find (recall ¢, = 0 for k # j)
C1,(0,.,1,..,0) T Cl(dy,..sdp-1,....ds) = 0O-
Intersecting with the curve |, we find the relation on the coefficients
(—wd; + h)ey + (~vd; + h)ea + (3 (~v = w) + 2hd;)ca; = 0
Regarding this as a polynomial in w,v, h, we see that
cy = €1 = —djCqj.
Thus, our relation has the form
Y 1glie = djcaj(evici(Fy) + evici(F;)) + caymeci(Q;) = 0.
Intersegting with H;, we find

C1,(0,.01,.,0) = —(dj = 1)Ca
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where the 1 is in the j** position in (0,...,1,...,0). Since
2(d] - 1)Ca7.] + 617(0""717"'70) + cl:(dly"'vdj_l""zdf) = 07
as we saw from intersecting our relation with F;, we see that
Cl,(dy,....dj—1,....,dg) = =(dj = 1)cay-
Intersecting with Hy, we have
C1,.(0,...,1,...,0) = 0
where the 1 is in the k' position in (0,...,1,...,0), for each k # j. Intersecting
with the curves A’y z, we see that we have the relation on the coefficients
cie + (dj = €j)cio,..1,0) + (dj = €5) - (dj + €5 = 1)ca; = 0.
where the 1 is in the j* position in (0,...,1,...,0). Since
1,0,...1,..,0) = —(dj = 1)cay,
we see that
c1z = —€j(dj = €j)cayy-

This completes the proof of the lemma.

O

By Proposition 6.2.1, we see that there must be some relations among the

evaluation classes. We seek to prove

Lemma 6.2.4. There is a relation
—d—evlcl(}") + Levie)(F) + —evgcl( i) - d—lkev;cl(fk)
+Z(— - —)Ale 0
for each j + k.

Proof. One way to do this is to express the two v classes in terms of the various
bases we have found.

We expect a relation

cythy + ch A1z + crevie (Fj) + coevier (Fj) + Z(’aﬂf Q) + Z cppmec2(Qy) = 0.
Again, the same method as before shows that all cgp = 0 Intersecting with
the curve D;, we see that we have the relation on the coefficients ¢; + ¢ = 0.
Intersecting with the curves Dy, we see that c,, = 0 for k # j. Therefore, the
relation has the form

P+ Lerglis + cieviei (F;) — crevie (F;) = 0.
Intersecting with the curve F;, we see that we have the relation on the coeffi-

clents
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_67 + 617(07"'717"'70) + Clv(dlv"'vdj_lv'“vd[) = 0
where the 1 is in the j* position in (0,...,1,...,0). Similarly, intersecting our

relation with the curves F;, we find that

—Cy+ C1(0,..,1,..,0) T Cl(dy,...dp—1,....ds) = 0

where the 1 is in the k** position in (0,...,1,...,0), for each k # j. Next we
intersect with | to find the relation on the coefficients

(—wd; + h)ey + (—vdj + h)eg + (£ + vf)?e, =0 =

(—~wdj + h +vd; — h)ey + (—v —w + 20)e, = 0 =

c = ;z;cv-
Intersecting with H;, we find the relation on the coefficients
C1,0,..1,..,0 + (dj = D)er + (BUU(§ + f) — E)?*c, =0 =

€1,0,...,1,..,0) T (dj - 1)61 =0 =
_dj-1
€1,(0,...,1,..,0) = ~g G
where the 1 is in the j* position in (0,...,1,...,0). Using what we found above,

1

this implies Cl(dyy oo dy=1ooodg) = T

cy. Intersecting with Hy, for each k # j, we find
the relation on the coefficients
dicy + c1,0,..1,.,00 + (BI'(§ + f) = E)%cy = 0 =
djcl + C10,..,1,..,0) = 0 = C1,(0,...,1,...,0) = Cx,
where the 1 is in the k' position in (0,...,1,...,0), for any k # j. Intersecting

with AILE, we find

N ¢
ciz + 2 (dp —ex)ey + (dj - ej)—djd_lc7 - Y (dp —ex)ey =0
k#j ! k=1
dj—e;j

70y

fr— Cl,E =
Thus, our relation has the form
dj—ej 1 1
Y1+ X de 1Az — d—jevfcl(fj) + d—jevgcl(}"j) = 0.
e

Comparing the relation above for two indices j, k and taking the difference

yields the lemma. O

Only £ -1 of these equations are linearly independent; an example of a linearly
independent collection is obtained by letting 7 = 1 and letting 2 < k£ < /. By our

rank calculations (Proposition 5.3.1), we have:
‘
e 2T1(d; + 1) — 2 boundary divisors
i-1

e ( of the m,c?(Q;) classes
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¢ of the m.c2(Q;) classes

20 of the evjci(F;) classes (k = 1, 2)

¢ independent relations

Yej(d; - ej)Are + dj(evici(Fy) + evyer(F;)) = mci(Q;)

and ¢ — 1 independent relations
—dijevl*cl(}"j) + ievfcl(]:k) - dijevgcl(}"j) - iev;cl(ﬂ)

+ Z(Z_]Z - %)ALE = 0.

Subtracting the number of independent relations from the cardinality of the
collection of generators yields
2ATT(d; + 1)) + 20— 1
which agrees with the rank of thézlljicard group (Proposition 5.3.1) we found earlier.

This proves Theorem 0.5.3.



A Appendix

A.1 GIT construction of the flag variety

We carry out the GIT construction of V' //G and show that the lineariztion
yields the correct line bundle on the flag variety.

Recall our situation
¢
V = @ Hom(Cri, Cri+t)
i=1

G 2 11 GL(r,,C).
G acts on V as i
(G155 90) (A1, ooy Ag) = (geo Avogr!, ..o, Arogyt).
Notice that G embeds in GL( V'), and the image contains C*-Iy,. The preimage
oft-Iy is
(t*tIL,,....,t7 - 1.,) e G.
We would like to take the GIT quotient V' //G with the linearization coming from

¢
the trivial line bundle on V' endowed with the nontrivial representation [] det;.
i=1
We will first explain why the linearization is correct.

Notice that we have G-equivariant bundles CZL(M o) % V on V where the action
on V comes from the embedding of G in GL(V'), and the action on C" is given
by considering the projection G — GL(r;,C) and then using the right action of
left multiplication by ¢g~!, where g € GL(r;,C).

Since C* acts freely on V\{0}, we can start by taking the GIT quotient of V by

C* with the linearization given by C , o V. The bundle CZ‘L(T- o) % V is also C'*
].—I eti v
=1

equivariant, with ¢ € C* acting as i I,. on Cri. Taking the determinant of this

bundle yields C,,,-1 x V', which is also C* equivariant, and ¢ acts on C as ¢ (#+1-9),

The bundle CTGZ'L(mC) x V yields a SL( V') N G-equivariant bundle on P(V):

166
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Cligony ¥c VA {0} 2 CH @ O(~L - 1+1)
from our above description. Thus, We see that

C, xV= ®det(((C
]'[ldet

and so the induced line bundle on P(V') is ® O(r;(L+1-1)).
Once we see that the flag variety is the GIT quotient P(V)//SL(V)N G and
that Cri@ O(-(-1+1) mduces &; on the flag variety, it will be clear that the chosen

GL(r:,C) V)*)>

linearization induces ® det(&}) on the flag variety.
Notice that we have morphisms

CoxV->CixV
of G representations over V', where the action of G on C" is given by projecting
to the ith factor of the product, for ¢ # £+ 1. For ¢ = /+1 = n, we endow C" with the
trivial G action. After taking the C* quotient, we obtain a flag of vector bundles
over P(V)

CnteO(-f)>...oCte0(-1)>C" 0.

If we pick coordinates on each C7, call them xé, for 1 < 7 <r;, then we can write
the map between C @ O(—¢-1+1) - Crixt @ O(—£ +1) as

ettt o alr @it
7
xi* ® xi+1 e xi* ® xi+1
1 T ri T;
* ® {L‘Hl l’” ® ZL’Hl
Ti+1 Ti+1

where each 2 @z} € H O(O(l)). Over the stable locus, which we shall see consists
entirely of the points corresponding to projectivized full rank matrices (after pick-
ing bases), these morphisms are injective as morphisms of vector bundles. Notice
that these bundles are SL(V') N G-equivariant bundles, which induce bundles on
P(V)//SL(V)N G. Thus, we get a flag of subbundles on the flag variety
E ... & C"e0.

By the universal property, this induces a morphism from the flag variety to itself
such that the flag sequence above is the pullback of the tautological flag sequence
over the flag variety. Since we have the above morphisms of vector bundles, if we
show that the fibers of each & can be canonically identified with the corresponding

subspaces of C, then we see that & = &. We can prove this at the level of sets
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using:
& = Clo, e VO SL(V)N G = Crixg V.

Closed points of C"i xg V* have the form ((z1, ..., 2¢), (41, ..., A)) (having
picked coordinates on each C" as above). We can define a map from this fiber
to C* by o(((z1, .-, 20), (A1, ..., Ap))) = A1--Ai(z1, ..., 2z,)t. To see that this
is well defined, suppose ((z1, ..., z¢), (A1, ..., Ap)) ~ (wi, ..., wy,), (By, ..., Be).
Then, 3 (g1, ..., g¢) € G such that

(g7 (2100 s20), (95" - Aveguy o G- A Gis - A gr)) =
((w1,...,wy,), (Bi,...,By)).
Now it is clear that
Bp-Bi(wy, ..., we,)t = Ap--Ai(z, ..oy 2,0
This map is onto the image of A;---A, by construction, and it is injective since all
A; have full rank. This is actually the map & = ... = C" ® O restricted to fibers
induced by the tautological sequence on V. Thus, we have & = & for all 1 <i < (.

We will now determine the stable points and unstable points of the action of
SL(V)N G on P(V), where P(V) has the natural SL( V') linearization given by
O(-1), as in [Tho06].

Lemma A.1.1. For the above action of GNSL(V) on P(V), we have that A =
(Aq, ..., Ay) is stable and semistable with respect to the action of G if and only if

all A; are injective. Otherwise it is unstable.

We were unable to find a proof in the literature so we have included a short
proof here, following the proof for the Grassmannian construction given in [Tho06].
Having proven this, we get that the flag variety FI(r, ..., ry; C) is isomorphic to
the GIT quotient P(V)//GNSL(V).

Proof. The proof is by the Hilbert-Mumford numerical criterion, [Tho06|, Theorem
3.9. Let (Ay, ..., A)) € V be alift to V of a point lying in P(V), A.

First we shall prove that if one of the A;’s is not injective, then A is unstable.

To see this, we must exhibit a 1 parameter subgroup of G SL(V') such that
(A, \) > 0, where (A, \) is defined to be the weight of the action of A on the
fiber of O(-1) over the limiting fixed point ltl_r)%l A(t) - A.

Suppose A = (Ay, ..., Ay) € V such that Ay is not injective. Pick a basis for
each Cri. Using the GNSL(V) action, we can assume that a matrix for Ay is



169

given by an 7,1 x rx matrix whose last column is 0.
We will now produce a one parameter subgroup with the required properties.
We pick the one parameter subgroup that acts on C"i as

Ai(t) = t(r=rd)lrea=mea) . [ for i # k, and it acts on C™ as

t(n=rE)(Te-1—Tke1) ... 0 0

AL(t) = : . : :
k(t) 0 vee =) (e —TRe) ()
0 0 te

where
¢

£ = kf(ml -rie)(n -+ ¥ 1(7“g‘+1 = i) (n = ry)r;

i=1 J=k+
+(rpe1 — 1) (re = 1)(n = 1) > 0.

We can regard A(t) as a block diagonal matrix. Now, consider the induced action
of A(t) on C* @ Cr+1. It acts on Cm* as A\71(t), and it acts on Cr+t as Ay (t).
Thus, the determinant of this block is

tririe1 (7)) (Th-1 = Thr1) +rir1Ts (M= 7i401) (Tho1 —Tha1)

We see that the exponent on ¢ in the determinant of A(¢) is

Ell(rz‘—l = 7iv1)(Teo1 = Tee)(n = )i + (reor = rre1)?(re = 1)(n = ry)

+(Pr-1 = The1)§ + j_él(rj—l = 7je1) (re-1 = Teer)(n = 757 = 0
so this subgroup does lie in G SL( V). Notice that, in our basis for V', A\(¢) acts
on e’ as
th-1=The1) (R =Ti41) = (Poo1 = Ths1) (R =78) = $ (o1 —7i) (Tiv1 —73)

for all 4, h, j except the cases (i =k-1, h=ry) and (i=k, j=71;). For (i =k-1,h =

i), A(t) acts on e’*

iy &8

4= (o1~ i) (n=T4o1)
and in the second case the entries that would have a negative weight on them are
zero in Ay. Thus all the nonzero entries of A are such that A(¢) acts on them with
a positive weight, so j1(4, \) >0 = the point A is unstable.

We must show that if A is such that all A; have full rank, where A = (Ay, ..., A,)
is a lift of A, then A is stable.

We can diagonalize a given one parameter subgroup A so that it acts on C" as
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thi1 .0

0 v Py

In our basis {v;’;} of Cri* @ Crirt, we have that A(t) acts on v)’; as A= 2is,

It will follow that A is stable if we can show that 3 v;:j such that A\jy1p —\i; <0.

Suppose for a contradiction that for each vij such that the coefficient in A on
v;;fj is nonzero, we have Aj.1p — A;j > 0.

I claim that this forces all A; ; < 0, which cannot happen if the subgroup is to
lie in SL( V') since this occurs if and only if the condition _Zej(?"i_l — Tit1) i Aij =0
is satisfied. o -

Since the matrix for A, has full rank we see that each column of A, must
have at least one nonzero entry, say the coefficient on UZ‘; ot thus forcing Ag; < 0
for all 1 < 5 < r,. By descending induction, suppose that for some h < ¢, all
Mg <0, 1 <k <r, Now pick 1 <w < rp_y. We claim that A\,_1, < 0. Since
Ajpq has full rank, the w** column has a nonzero entry, say the coefficient on vy,
By assumption, we must have Ay, — Ap_1, > 0, which tells us that A\,_1, < 0.
Repeating for all w completes the induction. Thus, A is stable with respect to
every diagonal one parameter subgroup A.

The property that every column of a matrix for A has a nonzero entry in it
is independent of the choice of matrix representation of A since A has full rank.
Thus this statement holds true for all g- A. Since u(g- A, A) = u(A, g7'Ag), we
see that A is stable with respect to every conjugate of \, for every diagonal one

parameter subgroup A. Thus, A is stable. O

We can take the GIT quotient of P(V) by GNSL(V) and from the lemma
above it is clear that the result is the flag variety.
We will now prove the following claim made in the introduction regarding the

character group of G.
Lemma A.1.2. x(GL(n, C)) 2 Zdet for all n € Z.

Proof. 1t suffices to prove the result for diagonalizable matrices since these are

dense in GL(n, C) and characters are continuous in the Zariski topology. Thus, if
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2 o 0
A=P1.-D-P thenfor D=1]: -~ ] x(A) = ﬁzf‘ If we show that all «;
0 - 2z, =
are equal, then it will follow that x is a power of the determinant, and we will be
done.
However, this is clear since this depends on the order of the eigenvalues in the

diagonal matrix. O]
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