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A Tunable Hemispherical Platform for Non-Stretching Curved Flexible 
Electronics and Optoelectronics 
 

Jinda Zhuang and Y. Sungtaek Jua) 

 

Mechanical and Aerospace Engineering Department, University of California, 420 Westwood Plaza, Los 

Angeles, CA 90095, U.S.A. 

 

Abstract 

 

One major challenge in incorporating flexible electronics or optoelectronics on curved surfaces is 

the requirement of significant stretchability.  We report a tunable platform for incorporating 

flexible and yet non-stretching device layers on a hemisphere.  In this configuration, an array of 

planar petals contractively maps onto the surface of an inflatable hemisphere through 

elastocapillary interactions mediated by an interface liquid.  A mechanical model is developed to 

elucidate the dependence of the conformality of the petal structures on their elastic modulus and 

thickness and the liquid surface tension.  The modeling results are validated against experimental 

results obtained using petal structures of different thicknesses, restoring elastic spring elements 

of different spring constants, and liquids with different surface tension coefficients.  Our 

platform will enable facile integration of non-stretching electronic and optoelectronic 

components prepared using established planar fabrication techniques on tunable hemispherical 

surfaces. 
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1. Introduction 

There recently have been growing interests in so-called flexible electronics and optoelectronics 

for a wide variety of applications, in particular, smart biomedical devices, biomimetic imaging 

devices,1,2 wearable electronics, and robotics.3   Some classes of the flexible device concepts, such 

as spherically curved focal plane detector arrays, require fabrication of electronics and 

optoelectronics on spherical surfaces.  Such non-planar geometry is difficult to achieve in part 

because of the intrinsically planar nature of established micromachining techniques for 

semiconductor devices.    

To deform a planar substrate into a spherical shape, one must stretch the center of the 

substrate isotropically and/or compress its perimeter tangentially.  This is problematic because 

the resulting strains exceed the yield or fracture strength of most materials.  To circumvent this 

issue, previous studies had to adopt a complex and challenging lift-off process sequence4 or 

relied on “stretchable” conductors, such as thin interconnections that bend out of their planes, to 

accommodate the large strains.1,5–7  These highly customized fabrication and integration 

strategies may lead to increased costs and degraded mechanical reliability/performance (e.g., fill 

factor) of target devices and systems.   

It is therefore of great interest to develop alternative mechanical architectures for spherical 

electronics or optoelectronics that utilize non-stretching substrates and conductors while still 

taking full advantage of established planar fabrication processes.  In this article, we report the 

design, micro-mechanical modeling, and experimental validation of an alternative architecture 

based on the contractive wrapping for possible applications in tunable hemispherical electronics.  

The architecture exploits high conformality and bendability of ultra-thin plastic, metal, or paper 
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substrates and can deliver tunability often reserved only for devices incorporating stretchable 

substrates/conductors.   

 

2. Tunable Platform Design  

A basic design of our tunable hemi-spherical device is schematically illustrated in Fig. 1.   Its 

main component is a flexible membrane (for example, a thin polyimide layer in the present 

study) that is patterned into a radial array of petals and then bends to wrap a hemisphere (Fig. 

1a).   

In conventional origami, a flat polygon of paper is folded along creases into a 3D object, a 

process that may be represented mathematically as a non-crossing isometric mapping.  There, 

however, is no isometric folding of a flat surface into an object with infinitely many points of 

non-zero Gaussian curvature, such as a sphere.  One approach to approximate a sphere is based 

on contractive wrapping.8  In the petal wrappings employed in the present study, the contours of 

the petals are defined as  

b = tan-1 (sin c tan (/n))  (1) 

Here, b is the angular width of the petal at an angular location c (0 ≤ c ≤ π) measured along 

the meridian and n is the number of the petals used to approximate a sphere (Fig. 1a).  The length 

contraction can be achieved by forming continuous infinitesimal crinkling, by juxtaposing 

“semi”-flat triangles like in a geodesic dome9,  or by targeting a sphere of slightly larger 

diameter although at the expense of leaving finite gaps between some of the petals.  The third 

approach is adopted here. 
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In the present implementation, a tunable hemisphere is formed and actuated by pneumatically 

inflating an elastomer membrane made of polydimethylsiloxane (PDMS).  As depicted in Fig. 

1c, the elastomer membrane is sandwiched between two clamping metal plates.  The top plate 

has a center hole of radius R to define the hemisphere and the bottom plate has a small gas inlet 

for actuation.  The capillary force exerted by a liquid confined in the gap between the elastomer 

membrane and each of the petals is used to maintain conformal contact while allowing the petals 

to glide freely on the elastomer membrane and the top metal plate as the elastomer membrane is 

inflated or deflated.  The petals can reversibly return to their planar states when the elastomer 

membrane is deflated through the action of the peripheral elastic spring elements shown in Fig. 

1.  The elastic spring elements are made by bonding elastomeric joints on pre-folded segments of 

the polyimide film.  
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Figure 1 (color online): Conceptual design of the tunable hemispherical platform: (a) A single petal in its flat 

state and in its bent state to contractively map the surface of a hemisphere. (b) Top view of the tunable 

hemisphere platform with an array of the petals. (c) Side view of the hemisphere (d) Zoomed view near the 

edge of the hemisphere.  The petal structures shown in (b, c) include extended strips that accommodate the 

elastic spring elements. 

 

 

Figure 2a shows an optical image of the fabricated tunable hemispherical platform.  An array 

of eight polyimide petals is conformally mapped on the surface of the elastomer membrane.  As 

discussed before, small but finite gaps between the petals were intentionally incorporated into the 

design to eliminate crinkling or bulging associated with contractive mapping.  
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For further illustration, we also present in Fig. 2b a separate side view of a single isolated 

petal on the surface of a fully inflated elastomer membrane.  The upper and middle portions of 

the petal are in good conformal contact with the elastomer membrane whereas the lower portion 

is lifted away from the membrane.  The lower portion still maintains contact with the elastomer 

membrane and the top metal plate via a liquid bridge through its capillary interactions. 

In actual integration of optoelectronic or electronic devices, one may first fabricate the 

devices using established planar fabrication techniques and then transfer bond them on petals 

made of thin polyimide films or comparable flexible “substrates.”  These petals are then mounted 

on the tunable hemisphere platform using a non-volatile liquid with negligible vapor pressure, 

such as ionic liquids. 

 

Figure 2 (color online): (a) Optical image of the tunable hemispherical platform with an array of 8 petals in 

contact with an inflated elastomer membrane. The inset shows a zoomed view of the two adjacent petals.  (b) 

The contour of a single isolated petal on the surfaces of a fully inflated elastomer hemisphere and the top metal 

plate.  
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3. Mechanical Model 

A mechanical model is developed to predict the geometric contour of a single polyimide 

petal bent under elastocapillary interactions on the inflated elastomer membrane surface.  As 

illustrated in Fig. 3a, the bent petal structure is approximated as two arc segments AB and BC 

with a radius of curvature R and r, respectively.  The coverage angle  of the petal segment AB 

is used as a quantitative measure of the conformality of the petals.  The coverage angle and the 

two radii of curvature are interrelated: r(1-cos()) = Rcos().  We determine the coverage angle 

 from the minimization of the total energy, which is the sum of the elastic energy Ee and the 

interfacial energy Es.   

The elastic energy Ee, which is a sum of the strain energy of the bent petal and the elastic 

energy of the elastic spring element, is written as 
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Here, the arc segment AB is modeled as a thin shell with the principal curvature equal to 1/R and 

the arc segment BC is modeled with a curvature of 1/r.  The bending stiffness BP for a film of 

thickness h, elastic modulus EP, and Poisson ratio  is Bp = Eph
3/12(1-2).  The net horizontal 

elongation of the elastic spring element dl is given as  
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The interfacial energy of the liquid in the gap Es is approximated by ignoring variations in the 

curvature along the long edges of the petal (Fig. 3b) as 
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where lg  is the surface tension of the liquid in the unit of N/m.  The associated interface areas 
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where ´ = lAC/R and b is the angular width of the petal that varies as a function of the meridian 

coordinate c as shown in Eq. (1) and Fig. 1.  The liquid wetting factor  is defined as the ratio of 

the wetted surface area SCD of the petal segment CD to the sum of the petal surface area SBC and 

the air-liquid interface area at the gap SCDE: = SCD/(SBC+SCDE). 
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Figure 3 (color online): A geometric model of a petal structure and an elastic spring element designed to 

reversibly wrap the hemisphere through contractive mapping. 

 

 

4. Experimental 

To experimentally validate our model, we prepared thin polyimide films of varying 

thicknesses (3.6 ~ 12.7 m) by spin coating a precursor solution (PI-2545, HD MicroSystemsTM) 

on a glass substrate at different speeds, curing them at 250 °C for 30 minutes, and then baking 

them for another 30 minutes at 350 °C.  The polyimide film has an elastic modulus of 2.5 GPa 

and a Poisson’s ratio of 0.34.   

Each of the cured polyimide films was peeled off from the glass substrate and cut into the 

petal structure with extended strips where elastic spring elements were to be formed.  One such 
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patterned polyimide film was mounted on the actuation platform incorporating an inflatable 

elastomer membrane.  A liquid was next applied to fill the gap between the polyimide petals and 

the elastomer membrane.  For a given petal structure connected to an elastic spring element with 

a given spring constant, we performed experiments using three different liquids: water, glycerin 

and silicone oil with a surface tension coefficient lg of 73 mN/m, 64 mN/m, and 20 mN/m, 

respectively.  In each set of experiments, a set volume of liquid was first applied using a pipette.  

Additional amounts of the liquid were then added in a small increment to investigate the effect of 

the total liquid volume.  A digital camera was used to capture the profiles of the polyimide petal 

under given experimental conditions, which were then analyzed using ImageJ.  The spring 

constants of the elastic spring elements were measured independently by mounting each element 

between a mechanical stage and an analytic balance.  

 

5. Results and Discussion 

The elastocapillary length Lec = (BP/αlg)
1/2 is used to describe the deformation of the 

polyimide petals under capillary interactions.10  It can be roughly interpreted as a measure of the 

length of the polyimide petal segment that can stay flat (due to elasticity) while counteracting the 

capillary forces.  To make our model for hemispherical platforms more generally applicable, we 

non-dimensionalize the hemisphere radius R and liquid volume V using the elastocapillary length 

Lec: 𝑅̅ = R/Lec and 𝑉̅ = V/Lec
3. 

The contour of the polyimide petal structure is governed not only by the elastocapillary 

interactions but also by the elasticity of the spring element.  For a given spring constant k of the 

spring element, the smaller the elastocapillary length Lec is, the larger the coverage angle is.   
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Figure 4 shows the modeled and experimentally measured coverage angles as a function of 

the normalized radius of the hemisphere.  Larger normalized hemisphere radii (or smaller Lec) 

result in larger values of , signifying better conformality.   The spring element counteracts the 

capillary forces exerted on the petal, effectively increasing the elastocapillary length.  The 

coverage angle, therefore, is reduced as the spring constant of the elastic spring element 

increases (Figs. 4 and 5).  Our approximate analytic model captures the two trends observed 

experimentally reasonably well.   

The capillary effect itself is mainly a function of the surface tension coefficient lg.  The 

higher the surface tension coefficient is, the larger the elastocapillary length is.  As a result, the 

petal has larger coverage angles for liquids with higher surface tension coefficients as illustrated 

in Fig. 5.  
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Figure 4 (color online): Modeling (lines) and experimental (symbols) results of the coverage angle  for 

different values of the spring constant k.  The results are plotted as a function of the normalized hemisphere 

radius 𝑅̅.   
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Figure 5 (color online): Modeling (lines) and experimental (symbols) results of the coverage angle  for 

different liquids.  The results are plotted as a function of the spring constant k of the elastic spring elements.  

The normalized hemisphere radii 𝑅̅ are 5.5, 5.2 and 2.9 for water, glycerin and silicone oil, respectively.  

 

 

The liquid confined in the gap between the petal and the elastomer membrane forms liquid 

bridges with different shapes and wetting areas for different volumes of the liquid.  When the 

liquid volume is insufficient to fill the entire gap, disconnected liquid bridges are formed around 

the edge of the hemisphere.  As the liquid volume is increased, a larger area of the petal is wet.  

The increased wetting factor α leads to a smaller elastocapillary length, which in turn results in a 

larger coverage angle.  Referring back to Fig. 3, we note that although both the wetted petal 

surface area SCD and the liquid-gas interface area SCDE increase with the liquid volume V, the 

former is much larger and therefore has a larger effect on the liquid wetting factor. 
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At sufficiently large liquid volumes, the entire petal structures are wetted by the liquid and 

thus the wetted petal surface area SCD remains constant.  Any accumulation of the excess liquid 

in the gap causes the coverage angle to decrease with further increase in the liquid volume.  The 

model prediction once again agrees well with the experimental data as shown in Fig. 6.  
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Figure 6 (color online): Modeling and experimental results of the coverage angle  as a function of the 

normalized liquid volume 𝑉̅ for two different liquids. The normalized hemisphere radii 𝑅̅ are 5.5 and 5.2 for 

water and glycerin, respectively. 

 

We use the coverage angle  as a quantitative measure of the conformality of the petal.  This 

coverage angle is governed by the normalized radius 𝑅̅ and the spring constant k of the elastic 

spring element.   For a given bending stiffness of the petal, one reaches a maximum coverage 
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angle m (or a minimum radius of curvature rm) when k = 0.  This extreme condition allows us to 

separately illustrate the intrinsic effect of the bending stiffness on the conformality of the petal. 

Figure 7 shows this theoretical maximum coverage angle m as a function of the bending 

stiffness for two different liquids.  From this plot one can determine the upper limit of the 

bending stiffness for a targeted coverage angle.  The actual limit for elastic spring elements with 

finite spring constants will be lower.  The limit on the bending stiffness in turn constrains the 

acceptable elastic modulus and/or thickness of the petal. 
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Figure 7 (color online): Theoretical predicted values of the maximum coverage angle as a function of 

bending stiffness BP for two different liquids. 

 

Figure 8 shows the normalized radius as a function of bending stiffness for water and silicone 

oil.   The bending stiffness once again is given as Bp = Eph
3/12(1-2).  The elastic moduli of 

common flexible polymeric or rubbery materials are of the order of 100 MPa.  With minimum 
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practical layer thicknesses of the order of 1 m, one has a practical lower bound in the bending 

stiffness of the order of 10-10 N m.   As a practical upper bound, bending stiffness values of the 

order of 10-3 N m are obtained for very “stiff” films of thickness 50 m and elastic modulus 100 

GPa.  
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Figure 8 (color online): The normalized radius 𝑅̅as a function of bending stiffness Bp for different values of 

the hemisphere radius R. 

 

 

When designing of a specific system, one needs to choose combinations of the normalized 

hemisphere radius 𝑅̅and the spring constant k consistent with a targeted value of the coverage 

angle.  Figure 7 provides the maximum possible coverage angle, which one may achieve in the 

limit k = 0.  In practice, the elastic spring elements with a finite spring constant (k ≠ 0) are 

necessary to provide restoring forces and achieve reversible operations.  Figure 9 shows 

predicted contour lines of the coverage angle as a function of the normalized hemisphere radius 
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𝑅̅ and the spring constant k.  For each contour line (that is, for a given targeted coverage angle), 

the normalized hemisphere radius increases with the spring constant and diverges when the 

spring constant reaches a certain critical value.   

When the spring constant is relatively small (as an example, Region I for  = 70° in Fig. 9), 

the required normalized hemisphere radii are small and hence the petal bending stiffness Bp can 

be large.  Recall that 𝑅̅ ~ R / Bp
0.5.  The “soft” elastic springs (k < 0.1 N/m), however, may not 

provide sufficient restoring forces for reliable reversible operations.  In the opposite limit of very 

“stiff” elastic spring elements (Region III in Fig. 9), the required normalized hemisphere radii are 

large and hence the petal bending stiffness Bp must be small.  In this region, petals can only be 

made of very flexible materials with small elastic moduli and/or have very small thicknesses. 
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Figure 9 (color online): Theoretical predictions of the normalized radius 𝑅̅as a function of spring constant k 

for different values of the coverage angle . 
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In summary, a mechanical design of a tunable hemispherical platform for non-stretching 

substrates is reported for possible flexible electronic and optoelectronic applications.  The 

tunable transformation of a planar substrate incorporating electronic or optoelectronic 

components into a hemisphere is achieved via contractive wrapping of petal-shaped structures on 

a pneumatically actuated elastomeric membrane.  The conformality of the film wrapping on the 

hemispherical elastomer surface under various circumstances is predicted using an analytical 

model accounting for elasto-capillary interactions.  The predicted values of the coverage angle 

and its dependence on the design parameters (the bending stiffness of the petal, the surface 

tension of the interface liquid, and the spring constant of the elastic spring elements) all show 

good agreement with our experimental results.  This study demonstrates the early feasibility of 

such non-stretching mechanical architectures for use in tunable hemispherical opto-electronic 

and other related devices and provides possible design parameter spaces. 
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Figure Captions 

 

Figure 1 (color online): Conceptual design of the tunable hemispherical platform: (a) A single 

petal in its flat state and in its bent state to contractively map the surface of a hemisphere. (b) 

Top view of the tunable hemisphere platform with an array of the petals. (c) Side view of the 

hemisphere (d) Zoomed view near the edge of the hemisphere.  The petal structures shown in (b, 

c) include extended strips that accommodate the elastic spring elements. 

 

Figure 2 (color online): (a) Optical image of the tunable hemispherical platform with an array of 

8 petals in contact with an inflated elastomer membrane. The inset shows a zoomed view of the 

two adjacent petals.  (b) The contour of a single isolated petal on the surfaces of a fully inflated 

elastomer hemisphere and the top metal plate.  

 

Figure 3 (color online): A geometric model of a petal structure and an elastic spring element 

designed to reversibly wrap the hemisphere through contractive mapping. 

 

Figure 4 (color online): Modeling (lines) and experimental (symbols) results of the coverage 

angle  for different values of the spring constant k.  The results are plotted as a function of the 

normalized hemisphere radius 𝑅̅.   

 

Figure 5 (color online): Modeling (lines) and experimental (symbols) results of the coverage 

angle  for different liquids.  The results are plotted as a function of the spring constant k of the 
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elastic spring elements.  The normalized hemisphere radii 𝑅̅ are 5.5, 5.2 and 2.9 for water, 

glycerin and silicone oil, respectively.  

 

Figure 6 (color online): Modeling and experimental results of the coverage angle  as a function 

of the normalized liquid volume 𝑉̅ for two different liquids. The normalized hemisphere radii 𝑅̅ 

are 5.5 and 5.2 for water and glycerin, respectively. 

 

Figure 7 (color online): Theoretical predicted values of the maximum coverage angle as a 

function of bending stiffness BP for two different liquids. 

 

Figure 8 (color online): The normalized radius 𝑅̅as a function of bending stiffness Bp for 

different values of the hemisphere radius R. 

 

Figure 9 (color online): Theoretical predictions of the normalized radius 𝑅̅as a function of spring 

constant k for different values of the coverage angle . 

 




