
UC Irvine
ICS Technical Reports

Title
A cost-effective heuristic storage for minimizing access time of arbitrary data templates

Permalink
https://escholarship.org/uc/item/4476x3vh

Authors
Al-Mouhamed, Mayez A.
Seiden, Steven S.

Publication Date
1993-06-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4476x3vh
https://escholarship.org
http://www.cdlib.org/

A J2ost-Effective Heuristic Storage For Minimizing
Access Time of Arbitrary Data Template~

Mayez A. Al-Mouhamed and Steven S. Seiden
~- ~~~

ICS-UCI Technical Report 93-30

June 18, 1993

Notice: This Material
may be protected
by Copyright Law ·
(Title 17 U.S.C.)

A Cost-Effective Heuristic Storage For
Miniinizing Access Tiine of Arbitrary Data

Teinplates

Mayez A. Al-Mouhamed* and Steven S. Seident

ICS-UCI Technical Report 93-30

June 18, 1993

Abstract

The serialization of memory accesses is a major limiting factor in high performance
SIMD computers. For these machines, the data templates that are accessed by a prog·ram
can be perceived. by the compiler, and therefore, the design of conflict-free storage
schemes may dramatically improve performance.

The problem of finding storage schemes, with minimum hardware requirements,
for accessing a set of arbitrary templates is proved to be NP-complete. To design
cost-effective storage schemes, we introduce two parameters: the number of 1 's in the
storage matrix (affecting hardware complexity) and the access frequency of each tem
plate. Heuristics are proposed to find storage schemes with minimum hardware (Perfect
Schemes) but without enforcing a high degree of conflict reduction. Another heuristic
is proposed to augment perfect storage schemes by using minimum additional hardware
in order to reduce the degree of conflict (Semi-Perfect Schemes).

Experimental evaluation is carried out using a Monte Carlo simulation. Performance
of the proposed heuristics is compared to solutions obtained using branch-and-bound
search. Results show that perfect-schemes may deviate on the average by 20% from the
optimum access time in the case of 10 arbitrary templates and 16 memories. However,
semi-perfect schemes lead to dramatic reduction of the degree of conflict compared to
perfect-schemes. The proposed heuristic storage outperforms row-major interleaving
and row-column-diagonals storage. The time complexity of the proposed heuristics is
O(p(t + n) + n2t), where t, 2P, and n, are the number of templates, the number of
processors, and the number of distinct vectors of the template bases, respectively.

Keywords: Heuristics,' NP-completeness, parallel memories, performance
evaluation, storage schemes

*Department of Information and Computer Science, University of California, Irvine, CA 92717. On leave
from King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

tnepartment of Information and Computer Science, University of California, Irvine, CA 92717.

1

1 Introduction

Non-uniform memory access is frequently encountered in high-performance computers. The
serialization of memory accesses is a major limiting factor to bandwidth balancing between
processor and main memory. With increasing processor speed, memory interleaving has been
used as a simple storage scheme to map consecutive addresses into different physical memories
so that simultaneous accesses can be performed in one memory cycle.

Interleaving allows conflict-free access only when the stride associated with successive
references is relatively prime to the number of memories. Increased numbers of patterns can
be conflict-free accessed when the number of memory modules is prime [l]. Unfortunately,
the address transformation becomes computationally expensive[2].

Budnik and Kuck [3] proposed storage schemes based on row rotation which have been
statically implemented on SIMD computers [4, 1] for conflict-free access to arbitrary row,
column, and both types of diagonals of arrays. Using linear arddress transformation, multi
stride vector access has been proposed [2] for vector-computers by factoring the stride into
two integers, the first is a power of 2 and the other is relatively prime to 2. Conflict-free
access is obtained for that stride. The resulting storage outperforms the regular interleaving
for arbitrary strides provided that a buffer is used for every memory. Access to interleaved
memories in vector processors can also be improved [5] by using non-singular skewing-matrices.

Improving the performance of ~calar access to parallel memories has also been addressed [6]
for long-instruction-word (LIW) computers. LIWs have multiple functional units that operate
in lock-step and fetch data required by parallel operations from multiple memory modules.
Conflict-free allocation of data may not always exist, but a high percentage of memory conflicts
can be avoided [6] by using a very low degree of duplication.

In applications such as numerical analysis and vision processing, many other data patterns
than the rows and columns are frequently accessed. These are applications that require
the highest execution speed. Because the knowledge of patterns or templates is within the
capability of the compiler, storage schemes that offer higher flexibility have been proposed [7,
8] as dynamic linear transformations from the processor address to the storage location. A
necessary and sufficient condition [7] for conflict-free access of combined templates is that the
image by the storage scheme of the basis of each template should be linearly independent.
As the interconnection network should provide data alignment [9] between processors and
memories, other constraints can then be used for finding the storage matrix.

The data templates that are accessed by a program can be mapped by a dynamic storage
scheme that minimizes the overall memory conflicts for a set of given templates. Dynamic
storage schemes make the hardware transparent to the user and avoid reorganizing the data,
but require the address transformation be implemented as part of every processor hardware
to increase concurrency.

We are concerned with dynamically reconfigurable storage schemes for SIMD models that
minimize the overall access time for an arbitrary set of weighted data templates. We are
proposing procedures to automate the process of finding combined storage schemes that min
imize the hardware cost of implementing the storage scheme. The derivation of combined
storage schemes is based on two newly introduced factors: the number of 1 's in the stor
age matrix and the frequency of access of each template. The· first factor controls overall
hardware complexity. The second factor establishes a precedence among templates. Given a

2

program that requires access to a set of arbitrary weighted templates, the problem is to find a
cost-effective storage scheme that minimizes the degree of conflict, i.e. minimum access time.

This paper is organized as follows. Section 1 presents the notation and assumptions
used. In sections 3 and 4, we define the bases associated with a given template and the
storage matrix (XOR-scheme), respectively. Sections 5 and 6 introduce perfect and non
perfect XOR-schemes, respectively. Section 7 treats the NP-completeness of the problem. In
sections 8 and 9, semi-perfect schemes and heuristics are presented, respectively. Evaluation
of heuristics is carried out in Section 10. Conclusions and future extensions to this work are
presented in Section 11.

2 Background

Consider an SIMD computer that consists of a number of processing elements and memory
units connected by a network. Any processor can access any memory unit through an inter
connection network. We assume that there are an equal number P of processors and memory
units, and that P is a power of two 2P. If more than one processor tries to access a location
in a given memory unit, during a given instruction cycle, a conflict occurs. If i processors all
try to access a given memory unit during the same cycle, it takes i cycles for the memory unit
to serve them. Since all processors run in lock-step, the entire computation is dramatically
slowed. It would be desirable to store the data that should be simultaneously accessed into
different memories so that parallel access to all items can be achieved.

Suppose that we know a priori the memory access patterns of a given program. We
assume that the data to be accessed is a two dimensional array. A template is a pattern of
array elements. A particular instantiation of a template is called a template instance, and the
upper left-most element of a template instance is called the origin of the template instance.
Template instances are non-overlapping. We would like to find a function that allows us to
access all templates in a conflict free manner. By this, we mean that for all given templates,
for all template instances, all of the elements of any template instance map to distinct memory
units. For instance, in a matrix multiply algorithm, we would like to have conflict free access
to all rows, and all columns. The set of all rows (columns) is a template, and each row
(column) is a template instance. We want to allocate the array among the memory units in
such a way that no two elements of the same row are in the same memory unit, and no two
elements of the same column are in the same memory unit. Such an allocation is called a
storage scheme [2, 10, 7].

We make several simplifying assumptions which do not affect the generality of our discus
sion. First, the memory is a single two dimensional array such that the element in the ath
row and the bth column is denoted by (a, b). The upper left-most element is (0,0). Second,
the sizes of the horizontal and· vertical dimensions are both 2d. By convention, the array is
always indexed by a variable a in the vertical direction, and a variable b in the horizontal
direction.

The binary representation of an integer x is Xd-l ••• x1x0 • In other words, the zeroth bit .
(least significant) of x is x0 , the first bit is x1 etc

A row position a can also be thought of as a vector, over the finite field Z2 , the integers
modulo 2. In Z2 , addition corresponds to logical exclusive or, and multiplication corresponds

3

to logical and. (ao, ai ... ad-1) is the vector representation of a, in terms of the bits of a. We
define a vector space :F = Z~ for horizontal position. Let F = {Jo, Ji, ... fd-1} be the canonical
basis of :F. i.e. Jo = (1, 0, 0 ... 0), f 1 = (0, 1, 0 .. ~ 0) ... fd-1 = (0, 0, 0 ... 1). Each row has a
unique representation as a vector in :F. A Row a is expressed as aofo EB aif1 EB··· EB ad-1fd-1
in terms of F. For example, 11 in binary is 1O11, and so the vector representation of row 11
is (1, 1, 0, 1). Expressed as a linear combination of the basis F, row 11 is fo EB f 1 EB f3. We
similarly define vector spaces Q for column positions and 'H for memory unit numbers, with
canonical bases G = {go, gi, ... gd-d and H = { h0 , hi, ... hp_i}, respectively.

The Cartesian product of the vector spaces :F and Q is a new vector space V = :F x Q

with basis {fo, Ji, ... fd-1,go,g1, ... gd-d· Let n = 2d. We denote this combined basis as
V == {Vo, V1 ... Vn-d, where Vo = Jo, v1 = Ji, Vd ==go etc This vector space is isomorphic
to Z2. Any location (a, b) in memory is uniquely associated with a linear combination of
the basis elements aovo EB · · · EB ad-1 Vd-l EB bovd EB · · · EB bd-1 Vn-1 · Adding two vectors in Z2
corresponds to bitwise exclusive or. Multiplying a vector by the scalar 1 gives back that
vector, while multiplying a vector by the scalar 0 results in the zero vector. We refer to the
elements of the basis V using either f's and g's, or v's, depending on which is notationally
convenient.

3 Templates

We define a template T;, by a basis Ti, which is a nonempty subset of V. Notice that there
is a definite distinction between the definition of a template T;,, which is a set of sub-arrays,
and its basis Ti, which is a set of vectors. We assume all templates bases are of size p.

This is best explained by looking at some examples. Let p and d both be 3. Our basis
is V == {Jo, fi, h, go, gi, g2}, or alternatively V == {Vo, V1 ... vs}. Consider the template Ti
defined by T1 == {f0 , fi, f2}. The set of templates instances described are all non-overlapping
columns of eight elements, the upper left-most template instance having origin (0, 0). Every
element in a template instance is a linear combination aofo EB aif1 EB ad2 EB bogo EB big1 EB b2g2,
where the b's are constant, and the a's are allowed to vary (b0g0 EB b1g1 EB b2g2 is the template
instance's origin). Intuitively, we are letting the three least significant bits of a vary, while the
other bits of a, and all bits of b, remain fixed. By allowing different bits to vary, we generate
templates of different shapes. Let 72 have basis T2 == {f0 , fi, g1 }. Then, in 72 all template
instances are four elements tall. Since g0 is omitted, this template skips a column. Thus, we
have two 4 x 1 sub-arrays, spaced two columns apart. We define 73 by T3 == {Ji, f 2 , gi}. This

'template is four 1 x 2 sub-arrays spaced two rows apart. We let 74 have basis T4 == {Jo, Ji, go}.
It is a 4 x 2 sub-array. All of these templates are illustrated in Figure 1.

4

13
rn
rn
rn
rn

Figure 1: From left to right T1 ... 4

4 XOR-Schemes

An XOR-scheme is a linear function </> : F x Q ~ H. The function ¢ is represented by a p x n
matrix, which we denote <I>. We apply </> to a vector X by matrix multiplication:

The ith entry of the jth column of <I> is <I>i,j. (The upper left-most entry is <I>0 ,0 .) We denote
the ith column of <I> by <I>*,i' and the ith row of <I> by <I>i,*· The columns of this matrix.represent
the values, in terms of the basis H, of</> on the members of the basis V. I.e. <I>*,i is the value
of ¢(vi)·

We can also consider ¢ as an ordered set of p functions, { ¢0, ¢>1 •.• </Jp-l}, mapping from
F x Q to Z2, where ¢(X) = <Po(X)ho EB </>1(X)h1 EB··· EB </Jp-1(X)hp-l· The matrix of </Ji is <I>i,*·

Then </> allows conflict free access to ~, if and only if </> maps each linear combination of
Ti to a unique element of H. Since </> is linear, all translations of these linear combinations
are also conflict free. In other words, if for one template instance X in ~' </> restricted to X
is one to one, then for all template instances X in ~, ¢ restricted to X is one to one.

5 Perfect XOR-Schemes

We say that an XOR-scheme is perfect if and only if all columns <I>*,i contain at most one non
zero entry. In other words, in the expression </>(X) = </>0 (X)ho EB </>1 (X)h1 EB··· EB </Jp-1 (X)hp-1,
any particular Xi is used at most once. Finding a perfect XOR-scheme is desirable, because
such a scheme requires minimum hard ware to be implemented.

We give an example using the templates of Section 3. The bases of these templates are
shown in Table 2. (An 'x' indicates a vector's inclusion in a template basis.) We haven= 6
and p = 3. We would like to find a perfect XOR-scheme for this set of templates. But first,
let us consider the subset of templates {Ti, Tri, 13}. Notice that Ji appears in all templates
bases of this subset. Therefore, let ¢>0 (a0 , a1, a2, b0 , bi, b2) = a1. Further, notice that go
appears only in T3 and / 0 appears only in T1 and T2. Therefore, let ¢1(a0 , ai, a2, bo, b1, b2) =
bo EB ao. Finally, notice that g1 appears only in T2 and /2 appears only in T1 and T3 • We let
¢2(ao, al, a2, bo, b1, b2) = b1 EB a2. Let us generalize this procedure.

5

Jo f 1 h 9o 91 92
T1 x x x
T2 x x x
T3 x x x
T4 x x x

Figure 2: Templates bases T1 ... T4

Figure 3: Conflict graph for T1, T2, T3

Theorem 5.1 Let cI> be the matrix of a perfect XOR-scheme. If cI>k,i = 1 and cI>k,j = 1 where
i =/=- j, and Vi and Vj are both in T1_, then ,T,, cannot not be accessed conflict free.

Proof This is easily seen by a counting argument. </>k can only take on two values. Xi and Xj

can each take on two values, for a total of four. Further, because each column of cI> contains
at most one non-zero, no other <f>k varies with Xi or Xj. Therefore, given a template instance,
we are mapping two elements of it to each memory unit in its image. •

Let T : V f-t 2T be a function mapping from a given basis vector to the set of templates bases
which contain that vector. More precisely, Ti E T(v) if and only if v E Ti. We allow cI>k,i = 1
and cI>k,j = 1 only if T(vi) and T(vj) are disjoint. To represent this relationship, we create a
graph (V, E), called the conflict graph of the template set. The vertices of the graph are the
vectors of the basis V. An edge (vi, Vj) is in E if and only if i =/=- j and T(vi) n T(Vj) =/=- 0.

The graph for Ti, T2 , and T3 is illustrated in Figure 3.

Theorem 5.2 For a set of templates T, a conflict free XOR-scheme for P memory units
exists, if and only if the conflict graph of the templates is p-colorable.

Proof Suppose the conflict graph is p-colorable. Then let cI>i,j = 1 if and only if vertex Vj
has color i. </> is perfect and conflict free, since for all i, if cI>i,j = 1 and cI>i,k = 1, then Vj and
Vk cannot be in the same template. Conversely, given a conflict free XOR-scheme </>, color
the conflict graph of its templates by giving a vertex Vi the color j if and only if cl>j,i = 1.
No vertex is assigned more than one color, because each column of cI> contains at most one
non-zero entry. No two adjacent vertices are assigned the same color, because this would
imply that the XOR-scheme is not conflict free. •

Indeed, the graph in Figure 3 is 3-colorable. The matrix of the perfect XOR-scheme is:

h 9o 91
0 0 0
0 1 0
1 0 1

6

Figure 4: Conflict graph for T1 ... T4

However, consider what happens when Tt is added. The graph of T1 ••• T4 is shown in Figure 4.
This graph is not 3-colorable, because g0 , / 0 , / 1 and /2 form a clique, and thus no perfect
XOR-scheme exists.

We now prove:

Theorem 5.3 Finding a perfect XOR-scheme for a set of templates and arbitrary p is NP
complete.

Proof It is simply shown that finding a perfect XOR-scheme is in NP. We non-deterministically
choose were to place the one in each column, and verify that the resulting matrix maps each
template conflict free. Graph coloring is NP-complete [11]. Suppose we are given an arbitrary
graph (V, E). We construct a set· of templates as follows. For each vertex Vi in V of degree
zero, create a template containing only the vector Vi. All other vertices are covered by some
edge. For each edge (vi,Vj), create a template basis containing only Vi and Vj. (V,E) is
the conflict graph of the set of templates thus constructed. We have already shown that the
conflict graph of a set of templates is p-colorable if and only if there is a perfect XOR-scheme
for P memory units. If we have n vertices in the graph the number of templates is O(n2

),

thus finding a graph coloring is polynomially reducible to finding a perfect XOR-scheme. •

Note that two-coloring is polynomial, and thus finding a perfect XOR-scheme for 4 memory
units is tractable.

6 Non-Perfect XOR-schemes

Suppose we do not restrict ourselves to perfect XOR-schemes. Does the set of templates in
Figure 2 have an XOR-scheme? By inspection, we find the matrix of one possible XOR-scheme
1s:

Ii
1
0
0

h go 91 g2

~ ~ ~ ~o)
1 0 1

7

Why does this function allow conflict free access? Consider r/> restricted to the template Ti.
The matrix of this restricted function is:

Notice that this matrix has rank 3; its columns are linearly independent. The dimension of
the image of </> restricted to T1 is three, and therefore, conflict free access is assured. We
denote¢> restricted to Ti by </>(Ti). The matrix of </>(Ti) is <I>(Ti) = (<I>*,j)vjETi· The matrices
of ¢> restricted to T2 ... T4 are, respectively:

fa Ji 91

o~n
f i h 9o

<I>(n) 0 0 n 0
1

f o Ji 9o

0 1 n 0
0

all of which have rank 3. In general, we need to find a function </> with matrix <I>, such that
<I>(Ti) has rank ITil, for all templates X,. How can such XOR-schemes be found? First consider
a more general problem.

7 A General Problem

Suppose we are given:

• A vector space Z = Z~.

• A set of variables V = {Vo, v1, ... Vn-1 }.

• A set T = {T1 , T2 , ••• Tt}, where each Ti is some member of 2v. Each variable must
appear in some Ti.

The problem is to assign each variable a value in Z, such that for all i, the vectors assigned
to the variables in Ti are linearly independent. We call this problem linear independence ·
satisfaction (LIS).

Theorem 7.1 LIS is NP-complete.

8

(~) (~) G)

G) (~) G)
Vo V1 V2 V3 V4 V5

Ti x x
T2 x x
T3 x x
T4 x x
Ts x x
T6 x x
T1 x x

Figure 5: T1 ••. T7 and their independence graph

Proof Consider the case where p = 2 and ITil = 2 for all Ti in T. We call this problem
2-LIS. The vectors in Z~ are:

Zo = (n Zt = 0)
Z2 = (n Z3 = 0)

Note that z0 cannot be assigned to any variable. Let Z* = {z1 , z2 , z3 }. Any two distinct
members of Z* are linearly independent. Therefore, for each Ti = { Vj, vk} we must assign to
Vj and Vk distinct members of Z*. We call (V, T) the independence graph of T. Each vertex
in the graph is a variable Vi, and there is an edge between Vi and Vj if and only if {Vi, Vj} is
in T. We can solve 2-LIS if and only if the independence graph is 3-colorable.

2-LIS is obviously in NP. To prove that 2-LIS is NP-complete, consider an arbitrary undi
rected graph. We would like to know if this graph is 3-colorable. For all the vertices of degree
greater than zero, we create a variable. For each edge (Vi, Vj), we create an == {Vi, Vj }. We
use the algorithm for 2-LIS to assign each Vi a value in Z*. We use this assignment to color
the non-zero degree vertices of the conflict graph. We then color the degree-zero vertices with
some fixed color. •

We clarify the idea of the independence graph with an example. Let V == { v0 • •• v4} and
T be as defined in Figure 5. The independence graph of T is also illustrated in this figure.
This graph is 3-colorable; one coloring is shown. Thus we can make a satisfying assignment
to all Vi.

Our proof that LIS is NP-complete does not depend on the fact that Z is over Z2 • LIS is
NP-complete over any finite field.

9

It is easily seen that LIS is equivalent to finding a non-perfect XOR-scheme. Note that
finding a general XOR-scheme for 4 memory units is NP-complete, where finding a perfect
XOR-scheme for 4 memory units is polynomial. Also note that we can build independence
graphs only for p = 2. We need to find a model of XOR-schemes for p > 2, from which good
heuristics can be derived.

8 Semi-Perfect XOR-Schemes

We investigate a class of XOR-schemes which are somewhere between perfect and general
XOR-schemes. We call this class of XOR-schemes semi-perfect. We say that an XOR-scheme
¢, represented by a matrix <I>, is semi-perfect if and only if for all templates ~ in T, the
matrix of ¢ restricted to ~ contains at most one column with two non-zero entries, and the
rest of the columns have one or zero non-zero entries.

Theorem 8.1 Let <I> be a matrix over Z2 with at most one non-zero entry in each column.
Let <I>' be defined by:

<I>~ . = { 1 i = c and j = k
i,J <I>· · otherwise i,J

for some fixed c and k. Then rank(<I>') ~ rank(<I>).

Proof If <I>c,k = 1 then <I>' = <I>, and therefore rank(<I>') = rank(<I>). Otherwise, if some other
column <I>~,x has a non-zero in row c, then add <I>~,x to <I>~,k giving a new matrix <I>", which
has the same rank as <I>'. Since this other column must have at most one non-zero entry, the
only change to <I>" will be that <I>~ k = 0. Now <I>" = <I>, and therefore rank(<I>") = rank(<I>). If
no other column <I>*,x has a non-z~ro in row c, then the rank of <I>' is one greater than that of
<I>. •

Given a perfect XOR-scheme for a set of templates (in which some templates are not accessed
conflict free), we can use the preceding theorem to create a semi-perfect XOR-scheme with a
decreased number of conflicts, by selectively adding ones to its matrix. In fact, the example
given in Section 6 is a semi-perfect XOR-scheme. We call this process of selectively adding
ones augmenting.

Given a perfect XOR-scheme which is not conflict free, we want to know if it can be aug
mented to a conflict free semi-perfect scheme. Unfortunately, answering this is NP-complete.
Each column <I>*,i will either be augmented or not. For each template 'Tj at most one column of
<I>('Tj) may be augmented. Given these restrictions, we wish to find a subset of columns to aug
ment such that all <I>('Tj) are augmented. For p = 3 this problem is exactly ONE-IN-THREE
SAT, which is NP-complete [12].

9 Heuristic Approaches

Since no good algorithm is known for any NP-complete problem, we are justified in proposing
heuristics for finding XOR-schemes. It is reasonable to assume that if the memory access
patterns of a program are known, the access frequency to the given patterns will also be

10

Figure 6: Weighted conflict graph

known. For instance, given the templates introduced in Section 3, suppose that 7i is accessed
10 times, 72 is accessed 5 times, and ~ and 4 are accessed 3 and 1 times, respectively. We
assign each template ~ a weight w(~) based on this information. So we have w(7i) = 10,
w(12) = 5, w(~) = 3 and w(Lt) = 1.

First, we consider two heuristics for finding perfect XOR-schemes. We will heuristically
attempt to p-color the conflict graph of our template set. To do this, we extend the weight
function to the ~dges and vertices of the graph. We define the weight of an edge:

w(vi,vj) = I: w('4)
Vj,VjETk

The weight of a vertex is:
w(vi) = maxw('lj)

ViETj

These definitions should be intuitive. The weight of an edge is proportional to the number
of extra CPU cycles that will be spent if the vertices of that edge are identically colored
(assuming that ~ll other edge constraints are met). The weighted graph for T is shown in
Figure 6.

The heuristic coloring of graphs has been studied extensively. Graph coloring heuristics
are used for solving problems such as scheduling [13], and register allocation (14]. One of the
simplest heuristics is the greedy coloring algorithm (15]. Although there are no performance
guarantees associated with this method, it has the advantage of simplicity, and it seems to
work well in practice. The heuristics \Ve present are modifications of the basic greedy method
for weighted graphs.

A color number is an integer in the range (0 ... p - 1]. A vertex number is an integer in
the range [O ... n -1]. A template number is an integer in the range (0 ... t - l]. We will use
the following data structures:

• An array of color numbers color [v] indexed by vertex numbers.

• A boolean array colored [v] indexed by vertex numbers. Initially all elements are false.

• An adjacency list for each vertex adj [v], implemented by a doubly linked list.

• An incidence matrix edge. If v is adjacent to w then edge [v] [w] points to the entry of
v in w's adjacency list. Otherwise edge [v] [w] is nil. This allows us to delete an edge
from the graph in 0(1) time.

11

color_vertex (v)
{ m := infinity;

for i := 0 to p-1 do
if loss[v] [i] < m then

{ c := i;
m := loss[v] [i]; }

color[v] := c;
colored[v] := true;
forall win adj[v] do

{ delete_edge(w,v);
loss [w] [c] : = loss [w] [c] +

weight(w,v); } }

Figure 7: Subroutine used to color a vertex

• An array of weight values loss [v] [c], indexed by vertex numbers and colors. All values
are initially zero.

• A max-heap heap of vertices, ordered by weight. Operations on heap are: build_heap()
which initializes the heap to contain all vertices, delete...max..heap () which removes the

. maximal vertex from the heap, insert..heap (v, w) which inserts a vertex into the heap,
and empty ..heap () which returns true if the heap is empty, and false otherwise.

In both of the heuristics presented, we make use of the coloring subroutine color _vertex
shown in Figure 7.

This routine colors a vertex with the color which has the lowest 'loss', and updates the
loss values of the vertex's neighbors. It picks the best color locally. It deletes edges from the
graph incident to the vertex being colored, as they will need no further consideration.

The first heuristic is called Highest- Weighted-Confliet-First (HWCF) and works as follows.
Put all vertices in a priority queue ordered by weight. Pick the maximally weighted vertex.
Color it. Repeat until all vertices are expended. This is illustrated in Figure 8.

We analyze the time complexity of HWCF. Let m be the number of edges in the conflict
graph of the template set. The size of the input is O(tp). We require O(n2t) time to build
the conflict graph. The subroutine color _vertex will be called exactly n times. The body of
the first loop will therefore be executed O(np) times. The body of the second loop might be
executed as many as n times on each call to color_vertex. However, overall it will be executed
m times. So the amortized complexity of color_vertex is O(np+m). Build-heap takes O(n)
time. The main loop of HWCF will be executed n times, and each delete...max..heap operation
takes O(logn) time. HWCF runs in O(p(t+n)+n2t) time, where t, 2P, and n, are the number
of templates, the number of processors, and the number of distinct vectors of the template
bases, respectively.

For the second heuristic, we require the data structures used by HWCF, and the following
additional ones:

12

HWCF ()

{ build..heap () ;
while not empty.Jieap() do

{ v := delete...max_heap();
color_vertex(v); } }

Figure 8: Heuristic HWCF

• A max-heap heap2 of vertices, ordered by weight. Operations on heap2 are: build.Jieap2 ()
which initializes the heap to contain all vertices, delete...max.Jieap2 () which removes
the maximal vertex from the heap, delete.Jieap2 (v) which deletes a vertex from the
heap, and empty .Jieap2 () which returns true if the heap is empty, and false otherwise.

• A boolean array candidate [v], indexed by vertex numbers. All entries are initially
false.

• An array h2v [i] of pointers to heap2 entries indexed by vertex numbers. h2v [i] always
points to the entry of vertex i in heap2. (Operations on heap2 keep h2v up to date.)
This allows us to perform delete..heap2 (v) in O(log n) time:

The second heuristic, called lvfost-Immediate-Confiict-First (MICF), works as follows. We
are best equipped to decide the color of a vertex when some of its neighbors have already
been colored. The un-colored neighbors of vertices in the colored set are coloring candidates.
Whenever a vertex is colored, add the vertices adjacent to it to a priority queue (which is
empty before any vertices are colored). We repeatedly remove the maximal vertex from the
priority queue and color it, until-the current component is completely colored. Within each
component of the graph (the graph may not be connected) we begin by coloring the vertex
with maximal vertex weight.

We keep a priority queue heap of vertices which are coloring candidates. We also must
have some method of locating the maximal vertex in each component. This is facilitated
through the use of heap2, which contains all vertices which have not been colored.

Initially, all vertices are in heap2. The algorithm begins by selecting the vertex with
maximal weight from heap2 and coloring it. Its neighbors are then inserted into heap, and
deleted from heap2. We then repeatedly delete the maximal vertex in heap, color it, remove
its adjacent vertices from heap2 and add them to heap. We keep track of which vertices have
been inserted into heap using the candidate array. We use this information to insure that
no vertex will be inserted into heap twice. This proceeds until there are i10 edges in heap.
We have completely colored the current component. We proceed to the next component by
deleting the maximal vertex remaining in heap2. The code for MICF is illustrated in Figure 9.

We analyze the time complexity of MICF. Again, the size of the input is O(tp), and it takes.
O(n2t) time to construct the graph. The analysis of color_vertex is the same as for HWCF,
0(np + m) time is used. Each vertex is inserted into heap exactly once. We therefore have n

calls to insert, and delete_edge. delete...max.Jieap is also called n times. insert..heap and

13

MICF ()
{ build..heap2 () ;

heap := empty..heap;
while not empty...heap2() do

{ v := delete...max...heap2();
done := false;
while not done do
{ forall win adj[v] do

if not candidate[w] then
{ insert...heap(w);

candidate[w] .- true; }
color_vertex(v);
delete...heap2(v);
if empty...heap() then

done := true;
else

v := delete..max...heap();}}}}

Figure 9: Heuristic MICF

delete..max...heap take at most O(log n) time, while delete_edge takes 0(1) time. The sum
of the number of calls to delete..max...heap2 and delete...heap2 is n, and each call requires
O(log n) time. The total is O(n log n). The total complexity is O(p(t + n) + n2t), the same
as that of HWCF.

We now introduce a heuristic SP for augmenting a perfect XOR-scheme, which has con
flicts, to a semi-perfect scheme, with fewer conflicts. We assume that a perfect XOR-scheme
is given. We require the following data structures:

• An array T [i] indexed by template numbers. Each T [i] is a list of the basis vectors in
Ti. T [i] [j] is the index of j th vector in the ith template basis.

• A max-heap heap3 of templates, ordered by weight. Operations on heap3 are: build...heap3 ()
which initializes the heap to contain all templates, delete..max...heap3 () which removes
the maximal template from the heap, and empty..heap3() which returns true if the heap
is empty, and false otherwise.

• A boolean array used_set [i] indexed by colors.

• An array temp [i] indexed by vertex numbers. temp [i] is a list of the templates whose
basis contains the basis vector corresponding to Vi.

• An array card [i] indexed by vertex numbers. card [i] is the number of template bases
in which the basis vector corresponding to Vi appears. (card [i] is the size of temp [i].)

• A boolean array blo~ked [i] indexed by vertex numbers. All entries are initially false.

14

augment (t,v)
{ for i := 0 to p-1

used_set [i] : = false;
for i := 0 to p-1

{ c : = color [T [t] [i]] ;
used_set [c] : = true; }

for i := 0 to p-1
if not used_set[p] then

{ Phi [i] [v] : = 1;
break; }

forall w in blocked_by[v]
blocked[w] := true; }

Figure 10: Subroutine augment used by SP

• An array Phi[i] [j] which is initialized to be the matrix of the perfect XOR-scheme.

• The color [v] array of the perfect XOR-scheme. Both HWCF and MICF pro.duce this
array as a side-effect.

• An array blocked..by [v]. blocked..by [v] is a list of all vertices w that will become
blocked if v is augmented. (All basis vectors represented by v and w are both in some
template.)

The heuristic works as follows. If a one is added to a column <P*,i' then a one cannot be
added to any column <P*,j' where <P*,i and <P*,j are both in some <P(7k). Or alternatively, Vi

and Vj are both in Tk. Whenever a one is added to a column <P*,i' mark all 7k such that Vi is
in Tk as blocked.

Initially, no columns are blocked. We consider templates in order of their weight (maximal
first). If ~ is conflict free, go to the next template. Otherwise, two columns of <P(7£) are
necessarily identical. Adding a non-zero to one of the columns will increase the rank of <P(~),
provided that the row to which the non-zero is added contains only zeros, and that the column
is not blocked. In the case that one of the columns is blocked, we augment the other one. If
neither is blocked, we may choose to augment either. We choose the one which is contained
in the least number of templates. Let the column so chosen be <P*,J' We examine the rows of
<P(~). If some row k contains only zeros, we set <Pk,j = 1, and add all the vectors (columns)
which appear in some template with Vj to the blocked set. We then proceed to the next
template.

SP uses the subroutine augment which is shown in Figure 10. The code for SP is illustrated
in Figure 11.

SP begins by initializing heap3 to contain all templates. SP then selects the maximal
template t from heap3. If the template is blocked, we skip directly to the next template.
Otherwise, every pair of vectors T [t] [i] and T [t] [j] in the template basis is checked in

15

SP ()

{build..heap3 () ;
while not empty..heap3() do

{t := delete...max..heap3();
done := false;
for i := 0 to p-1 do
{ for j := i+1 to p do

if color[T[t] [i]] = color[T[t][j]] and
(not blocked[T[t] [i]] or not blocked[T[t] [j]]) then

{ if blocked[T[t] [i]] then
augment (t, T [t] [j]);

else if blocked[T[t][j]] then
augment(t,T[t] [i]);

else if card[T[t] [i]] > card[T[t] [j]] then
augment(t,T[t] [j]);

else
augment(t,T[t] [i]);

done := true; }
if done then
break; } } } }

Figure 11: Heuristic SP

16

the inner two loops. Each pair corresponds to an edge in the conflict graph of the template
set. Each vector corresponds to a vertex. If some pair with identically colored vertices is
found, augment the column corresponding to the vector which appears in fewer template
bases. Once this is done, the inner two loops are broken out of by setting done to true. This
process continues until heap3 is empty. We maintain a set blocked of templates which are
blocked.

The augment subroutine works as follows. We initialize used....set to be empty. The ith
basis vector of the tth template has color c. This corresponds to the cth row of the matrix~
containing a non-zero. When the second loop is completed, used....set [c] will be false exactly
when the cth row of ~ is all zeros. We may augment any of these rows. In the third loop the
·first such row is found, and augmented. We then update blocked in the fourth loop.

We analyze the time complexity of SP. Let a be the number of calls to augment. The first
three loops of augment all run in O(p) time. The body of the third loop may be executed as
many as n times in the worst case. The overall complexity of all calls to augment is O(apn).
The main loop of SP will be executed t times. Each call to delete..lllax..heap3 takes at most
O(log t) time. The body of the innermost loop will be executed at most O(p2llog t) times.
The overall complexity of SP is O(p2t log t + apn). Note that it is not possible that a = t.
If this were the case then all template bases would be disjoint, and either HWCF or MICF
would find a conflict-free coloring.

10 Performance Evaluation

We experimentally evaluate the performance of the proposed schemes and compare them to
other known schemes.

Let w('Ji) be the number of accesses to 'Ji. A lower bound on the number of accesses can
be defined as:

Unfortunately, there is no guarantee that the lower bound is achievable. Therefore, the
optimum access time (Aopt) of a perfect scheme, for a given set of templates each with a given
frequency, is found by using a branch-and-bound algorithm.

We evaluate the performance of a perfect XOR-scheme by comparing the number of ac
cesses required with the optimal perfect XOR-scheme. Given a storage schemes which on the'
average requires As accesses, the average percent deviation of schemes from Aopt is evaluated
as Ps = (As/ Aopt - 1) · 100 which is the percentage of extra memory accesses beyond the
optimal that s requires. The number of memory accesses for a perfect XOR-scheme is:

As = L w('Ji)2(p-rank(<I>('li))

'JiET

We tested heuristics HWCF and MICF using a Monte Carlo simulation. Template sets
were generated randomly. Given n, p, and t, we generated randomly t unique templates
consisting of p unique vectors, selected randomly from a basis of n vectors. Each template
was given a random weight between 1 and 105 , inclusive. Heuristics HWCF and MICF were
run on each template set. The results of this simulation are disp1ayed in Table 1.

17

p=3 I p=4 l p=5 l p=6
t PHWCF PMICF PHWCF PMICF PHWCF PM I CF PHWCF PMICF

3 2.1 0.2 6.3 1.5 11.8 3.7 20.9 10.3
4 5.0 0.9 11.0 4.3 18.0 11.2
5 8.3 1.8 15.8 9.2 24.2 18.0
6 10.0 3.2 20.0 11.9 28.7 22.5
7 12.3 4.9 21.9 15.5
8 14.0 6.7 23.6 18.4
9 15.4 8.6 24.0 20.4

10 16.4 10.2 25.0 21.0
11 16.7 11.4 24.4 22.0
12 17.4 12.5 23.9 21.8

Table 1: Monte Carlo simulation comparing HWCF and MICF

p=3 l p=4 l p=5 l p=6
t SHWCF SMICF SmvcF SMICF SHWCF SMICF SHWCF SMICF

3 0.0 0.0 0.2 0.0 0.5 0.1 3.2 0.8
4 0.1 0.0 0.6 0.1 2.4 0.8
5 0.2 0.1 1.2 0.5 4.7 2.5
6 0.3 0.1 2.7 1.3 8.4 5.8
7 0.6 0.1 4.1 2.2
8 1.3 0.4 6.0 4.5
9 1.6 0.6 7.6 5.7
10 2.4 1.3 9.8 7.6
11 2.8 1.6 10.8 9.4
12 3.9 2.4 12.2 11.1

Table 2: HWCF and. MICF augmented by SP

Average PHwcF and PMicF are shown for 3 ~ t ~ 12 and 3 ~ p ~ 6. One thousand cases
were run for each instance of p and t. The speed of the branch-and-bound algorithm prohibited
us from completing the table. The number of distinct vectors of all the generated template
bases was fixed at n = 17 (17 is prime). Note that in general HWCF was outperformed by
MICF. Both heuristics degrade in a smooth fashion with increasing numbers of templates and
increasing template size. However, for a dozen templates and 16 memory modules (p = 4),
both heuristics deviate on the average by more than 20% from the optimum solution.

The semi-perfect heuristic SP has been applied to each of the perfect schemes that are
found using HWCF, MICF, and branch-and-bound, respectively. The corresponding semi
perfect schemes are denoted by SHwcF, SMICF, and SBB, respectively. Table 2 shows the
average percent deviation of SHWCF and SMrcF with respect to SBB.

The semi-perfect heuristic strongly reduces the degree of conflict and decreases by nearly
50% the deviation that is obtained for perfect-schemes. This significant improvement is
achieved at the cost of incorporating the least number of additional l's in the storage matrix.

Table 3 shows the average percent increase in the number of l's, i.e. additional hardware,

18

p = ;3 T p=4 I p=5 l p=6
t SHWCF SMICF SHWCF SMICF SHWCF SMrcF SHWCF SMICF

3 0.1 0.0 0.3 0.1 0.5 0.2 0.7 0.4
·4 0.3 0.1 0.6 0.3 0.9 0.6
5 0.6 0.2 1.0 0.7 1.3 1.1
6 0.9 0.4 1.4 1.0 1.6 1.5
7 1.2 0.6 1.7 1.4
8 1.5 0.9 2.0 1.7
9 1.8 1.3 2.2 2.1
10 2.1 1.5 2.3 2.2
11 2.4 1.9 2.5 2.4
12 2.6 2.2 2.5 2.5

Table 3: Average augmentation for HWCF and MICF

0-4 5-9 10--14 15-19 20-24 25-29 30-34
HWCF & SP 76.2 5.2 3.3 1.9 0.9 0.5 0.2
MICF & SP 78.7 3.5 1.9 0.9 0.4 0.2 0.1

Table 4: Percentages of test cases within performance ranges

p=3 I p=4 I p=5 I p=6
t INT FPS INT FPS INT FPS INT FPS
3 500 323 837 431 1259 479 1764 484
4 502 326 845 433 1276 476
5 503 327 843 431 1273 478
6 502 330 844 431 1276 481
7 502 329 841 428
8 503 330 839 428
9 502 329 840 431
10 501 328 840 432
11 501 328 840 431
12 501 330 843 434

Table 5: Average percentage deviation of interleaving (INT) and fixed-pattern (FPS) schemes

19

needed to implement the semi-perfect storage matrices of HWCF and MICF, respectively.
For all the studied cases, the cost of upgrading a perfect scheme to semi-perfect exceeds the
cost of the perfect scheme by less than 5%.

Analysis of the distribution for the deviations of SHwcF and SMICF indicates that nearly
76% and 78% of the population is within the 4% deviation boundary, respectively. The
detailed analysis is shown in Table 4. It gives the percentages of test cases (for the entire
study) which fell within the given performance ranges.

Comparison of the proposed scheme is carried out with respect to traditional interleaving
and to a fixed-pattern scheme similar to the one proposed in [9]. Here, row-major storage is
used as representative of regular interleaving. A fixed-pattern scheme is selected that allows
conflict-free access to rows, columns, and both diagonals. Table 5 shows the average access
time deviation of accessing randomly generated data templates using row-major interleaving
(INT) and the fixed-pattern storage (FPS), respectively. As for the case of HWCF and MICF,
deviations of INT and FPS are measured with respect to reference SBB· The row-major scheme
is inadequate for arbitrary patterns as it requires nearly five times the reference access time
(S88) in case of 10 templates and 16 processors. The fixed-pattern scheme is superior to the
row-major scheme, but it is outperformed by semi-perfect schemes as shown on Table 2.

The proposed heuristics performed well for template bases of small size. However, for
larger template sets or template sets with larger bases, a more sophisticated method with
reasonable time complexity is not apparent.

11 Comparison to other approaches

By considering a given set of templates, Frailong, Jalby, and Lenfant [7], investigated the
design of conflict-free storage schemes by showing how a storage matrix can be defined in
terms of the template bases. They give the necessary and sufficient condition for conflict
free access of parallel memories for one template but no method is presented for finding the
XOR-scheme in case of composite templates. Their method to design a XOR-scheme involved
backtracking, and thus could potentially require exponential search time.

For vector processors and stride access, one approach [2, 10] is based on finding an XOR
matrix that optimizes the access for one stride. Other strides can be accessed with less conflict
than that using traditional interleaving provided that buffers are added to each memo~y.

The proposed approach differ from the above methods because our scheme finds the XOR
scheme for arbitrary combined templates for which the global access time is minimized. We
used a weighted conflict graph in which the nodes represent the basis vectors of the templates
and the edges represent the amount of access time penalty that should be paid if the image
of two nodes, connected by that edge, were not independent by the XOR-matrix. Evaluation
of this approach has experimentally proved to be effective in reducing the amount of conflicts
while using reasonable implementation cost. The contribution of our work are: 1) a non
redundant XOR-matrix for arbitrary combined templates, 2) use of conflict graph to represent
the optimization problem, and 3) an efficient heuristic for minimizing the access time.

20

12 Conclusions

The performance of SIMD computers can be dramatically affected by the serialization of
memory accesses. Perceiving data templates and their access frequency is within compiler
capability. The use of this knowledge by a cost-effective heuristic storage scheme has been
proposed in an attempt for minimizing access time.

We considered schemes with minimum hardware requirements (Perfect schemes), and
proved that finding a storage matrix that minimizes the degree of conflict is an NP-complete
problem. Thus, a heuristic approach has been proposed for finding approximate solutions ,
under strict minimum hardware requirements. In this case the number of l's in the storage
matrix is equal to the number of distinct vectors in template bases.

Evaluation of perfect schemes was carried out using a Monte Carlo simulation and by
comparing heuristic achievement to the optimum solution. The deviation from optimum of
the access time for perfect schemes smoothly increases with the number of templates and their
size. Unacceptable deviations have been observed for a dozen templates and 16 processors.

Given a perfect storage scheme, a heuristic has been proposed to further reduce the de
gree of conflict by incorporating minimum additional hardware, thus creating a semi-perfect
scheme. Evaluation shows that semi-perfect schemes strongly reduce the degree of conflict of
perfect schemes, with small additional hardware cost.

The proposed dynamic storage schemes are intended to be part of the processor segment
translation table. They convert real addresses into module and offset addresses. By applying
the proposed approach at the compiler level, significant speedup is expected compared to
the traditional memory interleaving technique and other static schemes. Since the allocation
scheme is invisible to the programmer, reduced algorithm complexity and reduced design
time.are immediate developments of this research. One possible future extension to this work
is to incorporate network requirements within the proposed heuristics, for various types of
networks.

13 Acknowledgments

Thanks to Daniel Hirschberg, George Leuker, and Michael Dillencourt for listening critically
to the various proofs.

References

[1 J D. Lawrie. Access and alignment of data in an array processor. IEEE Transactions on
Computers, C-24(12):1145-1155, Dec 1975.

[2] D. T. Harper III. Block, multistride vector, and FFT accesses in parallel memory systems.
IEEE Transactions on Parallel and Distributed Systems, 2(1):43-51, Jan 1991.

[3] P. Budnik and D. Kuck. The organization and use of parallel memories. IEEE Transac
tions on Computers, C-20(12):1566--1569, Dec 1971.

21

(4) A. Norton and E. Melton. A class of boolean linear transformations for conflict-free
power-of-two stride access. In Proceedings of the International Conference on Parallel
Processing, pages 24 7-254, 1987.

(5] G. S. Sohi. High-bandwidth interleaved memories for vector processors-A simulation
study. IEEE Transactions on Computers, 42(1):34-44, Jan 1993.

(6) R. Gupta and M. L. Soffa. Compile-time techniques for improving scalar access perfor
mance in parallel memories. IEEE Transactions on Parall~l and Distributed Systems,
2(2):138-148, Apr 1991.

[7) J. M. Frailong, W. Jalby, and J. Lenfant. XOR-schemes: A flexible data organization in
parallel memories. In Proceedings of the International Conference on Parallel Processing,
pages 276-283, 1985.

(8) D. T. Harper III and J. Jump. Vector access performance in parallel memories using
a skewed storage scheme. IEEE Transactions on Computers, C-36(12):1440-1449, Dec
1987.

[9] K. Batcher. The multidimensional access memory in STARAN. IEEE Transactions 'on
Computers, C-26:174-177, Feb 1977.

[10] D. T. Harper III. Increased memory performance during vector accesses through the use
of linear address transformations. IEEE Transactions on Computers, 41(2):227-230, Feb
1992.

[11] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85-103. Plenum Press, 1972.

[12] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
Annual Symposium on Theory of Computing, pages 216-226, 1978.

[13) J. McHugh. Algorithmic Graph Theory. Prentice-Hall, 1990.

(14] G. J. Chaitan. Register allocation and spilling via graph coloring. ACM SIGPLAN
Notices, 17(2):201-207, 1982.

[15) B. Bollobas. Graph Theory: An Introductory Course. Springer-Verlag, 1979.

22

