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PHASE I::QUILIHRIA FOR COHPLEX FLUID MIXTURES 

J .H. Prausnitz 
Molecular and Materials Research Division 
Lawrence Berk~lcy Laboratory & 
Department ot Chemical Engineering 
University of California 
Berkeley, CA 94720 

ABSTRACT 

After defining complex mixtures, attention is given to the canonical 
prol.:cdure used for the thermodynamics of fluid mixtures: first, we establish 
a suitable, idealized reference system and then we establish a perturbation 
(or excess function) which corrects the idealized system for real behavior. 
For complex mixtures containing identified components (e.g. alcohols, ketones, 
water) discussion is directed at possible techniques for extending to complex 
mixtures our conventional experience with reference systems and perturbations 
for simple mixtures. Possible extensions include generalization of the quasi­
chemical approximation (local compositions) and superposition of chemical 
equilibria (association and solvation) on a "physical" equation of state. 

For complex mixtures containing unidentified components (e.g. coal-derived 
fluids), a possible experimental method is suggested for characterization; 
conventional procedures can then be used to calculate phase equilibria using 
the concept of pseudocomponents whose properties are given by the characteriza­
tion data. Finally, as an alternative to the pseudocomponent method, a brief 
introduction is given to phase-equilibrium calculations using continuous 
thermodynamics. 

INTRODUL"TION 

During the last two or three generations, a conventional procedure has been 

generally adopted for quantitatively representing the properties of nonelectro­

lyte fluid mixtures. This procedure has been extensively used for relatively 

simple mixtures, i.e. for those mixtures where all components are chemically 

ide11tified and where the molecules of these components are relatively symmetric 

with respect to shape and electronic structure. To a rough first approximation, 

such molecules mix in a random manner. Extension of this procedure to more 

difficult mixtures, however, is not immediately obvious. This work discusses 

some possible methods for making that extension and gives a few examples. 

for our purposes here we distinguish between two classes of complex fluid 

mixtures: 

Class 1: A mixture of chemically identified nonelectrolyte components whose 

molecules are far from simple. In this class we include strongly polar mole­

cules and those that form semi-stable molecular aggregates through hydrogt:!n 

bonding or other "chemical" forces. In these mixtures, preferential orJo:ring 

and orientation produces strong deviations from random mixing. Examples are 
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mixtures containing alcohols, water, organic acids, nitriles, nitro-compounds 

or amines in addition to common hydrocarbons and common gases such as nitrogen, 

carbon dioxide, ammonia, etc. These mixtures are frequently found in the 

petrochemical industry. 

Class II: A mixture of many nonelectrolyte components that are not chemically 

identified. The molecules of these components are not necessarily highly 

complicated but little is known about their structural or electronic proper­

ties. These mixtures may have many hundreds of components and therefore it is 

not possible or practical to carry out a customary quantitative analysis to 

determine the mixture's composition. 

In the physical sciences, where we try to describe quantitatively the 

properties of a real system, the conventional procedure is first to idealize 

the system, that is, to abstract from reality the primary essential features 

while neglecting secondary characteristics. The idealized system, often called 

the reference system, is described quantitatively using some idealized theory. 

Corrections are then added to account for differences between the real and the 

idealized system; these corrections are often based on semitheoretical models 

and in sam~ cases these models are strictly empirical. Corrections to the 

reference system are often called perturbations. 

An effective procedure is one that can be applied to a large class of phase 

behavior and that can give reliable results with a minimum of experimental 

effort; to achieve that effectiveness, the_ choice of reference system is 

crucial. 

For a liquid mixture at temperature T, pressure P and composition x, 

the customary procedure is to write the Gibbs energy of mixing: 

~G(T,P,x) = ~G(T,P,x) + ~G(T,P,x) 
Reference Perturbation 

For ~G (Reference),we commonly use an expression derived for an 

(1) 

ideal mixture (Roault's Law) or for an athermal mixture of chains (Fiery­

Huggins). For ~G (perturbation) we have many semi-empirical 

(activity-coefficient) models such as those of van Laar, Wilson, etc. In the 

activity-coefficient formulation, ~G (perturbation) is often called an 

excess function. ' I 

More generally,-for fluids that may be either gaseous or liquid at volume 

V, the customary procedure is to write for Helmholtz energy A 

!(T,V,x) = A(T,V,x) + A(T,V,x) 
Reference -Perturbation (2) 
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For A (Reference) we commonly use an expression assumed to hold for a 

mixture of non-attracting convex bodies, usually spheres, such as the expres­

sion of Carnahan and Starling or some simplified version of that expression. 

For A (Perturbation), many suggestions have been made; the most commmon is the 

mean-field approximation of van der Waals. 

From Equations (1) or (2) we can calculate the chemical potential of any 

component in the mixture. Therefore, either of these equations is sufficient 

for calculating phase-equilibria and other thermodynamic properties. 

If we want to apply this conventional procedure to complex mixtures of 

Class I, we must first ask: what shall we use as our reference system? Having 

answered that primary question, we can then decide on a suitable model for the 

perturbation. 

One possible answer is to say that we will use the same reference system as 

that to which we are accustomed from our experience with relatively simple 

mixtures. For example, for complex liquid mixtures, we can use the ideal 

mixture (Raoult's Law) as our reference and express the perturbations by some 

simplified model for nonrandom mixing such as that given by the NRTL equation. 

Alternatively, we can use Staverman's modification of the athermal Fiery­

Huggins model for the ·reference and then express the perturbation with the 

residual part of the UNIQUAC equation. This procedure has provided some 

success but it is limited to liquid mixtures of subcritical components. 

For hydrogen-bonded systems, we might use a chemical hypothesis by postulat­

ing the existence of dimers, trimers, etc. including, perhaps, solvated aggre­

gates (complexes) consisting of chemically different molecules. In this case, 

we use for our reference system an ideal, athermal solution (either in the 

sense of Raoult or in the sense of Flory-Huggins) containing not the apparent, 

but the true species in the mixture; the concentrations of these true species 

are determined by chemical equilibrium constants and by material balances. 

When this "chemical" reference system is used, the perturbation is usually 

small. These "chemical" theories of liquid solutions have been applied with 

success to a variety of mixtures, especially to liquid mixtures of alcohols 

and hydrocarbons. However, when applied to Equation ('1), these "chemical" 

theories are also limited to liquid mixtures of subcritical components. 

To represent the properties of complex mixtures (Class I) that may contain 

also supercritical components, we must use Equation (2). Again the same 

question arises: What shall we use for our reference system? 
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In recent years there has been progress in applying Equation (2) to complex 

mixtures. First, suppose we use for such mixtures the familiar reference 

system, viz. some "hard-sphere·· form such as the Carnahan-Starling expression 

or one of its variations (including, perhaps, the original van der Waals "hard­

sphere·· expression). In that event, we must include in the perturbation term 

the effect of orientation, clustering or segregation, i.e. nonrandom mixing. 

One way to do so is to use in the perturbation the concept of local composi­

tions that has been successful for describing complex liquid mixtures. This 

procedure must take into account the effect of density, with the following 

boundary conditions: 

At low density, ! (perturbation) + an expression for random mixing. 
-

At high density, A (perturbation) + an expression for nonrandom mixing. 

Another way of stating these boundary conditions is to say that at low 

densities the expression must give a second virial coefficient that is 

quadratic in mole fraction while at high densities it must give an expression 

for the excess Gibbs energy similar to that given by the Wilson or NRTL 

equations. 

Suggestions for calculating A (perturbation) as a function of composition 

have been offered by several authors, notably by Vid~l and co-workers, by 

Mollerup and by Whiting. To illustrate, consider the recent work of Dimitrelis 

and Topliss who use the simple equation of state: 

Pv 
z = -= 

RT 

ap 
z (Carnahan-Starling) - RT 

where, for a pure component, van der Waals "constant'" a is an arbitrary 

function of temperature. Here p = 1/v is the molar density. 

For the molar perturbation energy UP, Dimitrelis and Topliss use a 

generalized van Laar expression of the form 

(3) 

(4) 

where NAv is Avogadro's number, and qi is a size parameter (external surface 

area of molecule iz· For pure component 1, characteristic energy ~ll 

is related to a11 ~hrough 

aa /T 
- p ( 11 ) 

NAvql 31/T 

£ 
11 = 

There is a similar relation for £ 22 . 

Note that~ .. is a segment-segment energy that depends on temperature 
~J 

(through the effect of teo?erature on aij) and is proportional to density. 

(5) 



In Equation (4), 
5 

e:rz = e:zr- -<e:ll e:zz)
112

vrz 

and 

where v12 (an adjustable binary parameter) is dimensionless and of order 

unity. 

The local mole fractions xzl and x11 are given by a generalization from 

Guggenheim's quasi-chemical theory: 

(6) 

(7) 

(8) 

where xzr + Xll = 1 and Szr is a density-dependent entropy term which has the 

properties 

Szr + 1 as p + 0 

Szl + rzr as p + liquid-like 

where rzr is a characteristic entropic constant. Similar relations hold for 

S12: at low densities, slz + 1 and at liquid-like densities, s12 + rrz 
-1 = r21" Dimitrelis and Topliss use an exponential switching function 

for the density dependence of Szl and s 12• 

The molar perturbation Helmholtz energy AP is calculated by integrating the 

last term of Equation (3) with respect to density, giving 

Ap -(xlall + xzazz)p AE 
-= + 
RT RT RT 

The excess Helmholtz energy AE is obtained by integrating Equation (4) 

with respect to temperature (Gibbs-Helmholtz equation) giving 

(10) 

-<e: 12 - e: iz)) 
+ xzqzln (xz + x1S12 exp 

kT 
(11) 

In form (but not in detail), Equation (11) is similar to Wilson's equation. 

An important feature of Equation (11) is that if e:12 a e:zl is given by 

the arithmetic mean of e:11 and e:zz, the mixture is athermal. 

Parameters qi are obtained from pure-component structural data, as 

given, for example in Bondi's tables. 

tin Guggenheim's theory s21 a s 12 a 1 for all densities. 
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There are two adjustable binary parameters: one is a characteristic energy 

(v 12 ) and the oth~r is a ~haracteristic entropy (r12>· These are, in 

principle, orthogonal parameters. The second one, rl2• reflects orientational 

effects due to differences in molecular size and asymmetry of intermolecular 

forces. 

Equation (4) is similar to van Laar's equation if the exponential in Equa­

tion (8) is omitted and if S21 is replaced by the constant r21• For relatively 

simple mixtures, r21 = qz/ql• In that event, the entropic constant r21 is 

determined only by differences in molecular size. 

Dimitrelis and Topliss applied their theory to vapor-liquid-liquid equilibria 

for propane(!) - water(2). Figure 1 presents a phase diagram at 344.26K which 

agrees well with the experimental data at Kobayashi and Katz. The two adjustablt 

binary parameters Cv12 ~ 1.098 and r12 = 2.60) are physically reasonable 

because CJ2 refers to a segment~segment (not molecule-molecule) interaction 

as indicated by parameter q in the denominator of Equation (5). Parameter 

r 1z is close to what one might expect from the molecular-size ratio of propane 

and water. 

Figure 2 shows liquid-liquid equilibria for the same. system for a large 

temperature range using the same (temperature-independent) parameters v12 

and r12• Agreement with experiment is surprisingly good but could be improved 

if a small temperature dependence were given to these binary parameters. 

The method developed by Dimitrelis and Topliss is shown here only as an 

illustration. It is likely that other methods, using a similar procedure, 

could produce better results. Further, in its present state, the method of 

Dimitrelis and Topliss suffers from a slight inconsistency since thermodynamics 

requires that the entropic terms S12 and S21 vary with temperature in a manner 

consistent with Equation (5). While we are free to assign any convenient 

density dependence to S12 and Szl, we are required to assign temperature 

dependencies to S12 and Szl which are related to that for c as given by 

the Gibbs-llelmholtz equation. In the approximation described here, S12 and 

Szl are considered independent of temperature. 

In principle, however, the method proposed by Dimitrelis and Topliss, 

suffers from a more serious deficiency: it concerns itself only with the per­

turbation term. For the reference term (Carnahan-Starling), they used a 

simple one-fluid approximation wherein b(mixture) ~ x1b1 + xzbz. Computer­

simulation calculations by Shing and Gubbins have clearly shown that a one­

fluid approximation is poor for mixtures containing molecules of different 

size, particularly in the dilute region. However, it may be that this defi­

ciency is, in part, cancelled by the entropic contribution of the perturbation; 

even if c 12 = c 1i, AE does not vanish unless, in addition, s12 = s21 • 
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HELMHOLTZ ENERGY A FOR A "CHEMICAL'' SYSTEM 

An alternate way to describe both liquid and gaseous complex mixtures 

is provided by introducing the well-known chemical hypothesis into an 

expression for Helmholtz energy A. This hypothesis profoundly affects A 

for the reference system. It has also an effect on the perturbation 

contribution but the major effect is on the reference system which now 

is an assembly of "true", rather than "apparent" molecules. The chemical 

hypothesis assumes that strong forces of attraction lead to new chemically­

bonded species. Following recent work of Hu, Azevedo and Ludecke, we assume 

that in a mixture of components A and B, there exist chemical equilibria 

of the form 

Al + Ai :_ Ai+1 (12) 

A1 + B1 ~ (AB)l (13) 

(AB)l + (AB)i : (AB)i+l (14) 

where Al is a mono~er, A
2 

is a dimer, etc. Each of these chemical 

equilibria is characterized by a chemical equilibrium constant which depends 

on temperature but, for simplicity, is assumed to be independent of i. 

A possible advantage of the "chemical'' hypothesis is that the Helmholtz 

energy of the reference system now takes into account repulsive forces of the 

"true" mol~cules; the number and identity of these "true" molecules depend 

. . ·~ 
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strongly on temperature and density. The perturbation Helmholtz energy takes 

into account only physical forces of attraction between the "true" molecules. 

To calculate phase equilibria, we use well-known general relations for 

the chemical potential~: 

for component A, 

for component B, 

A chemical hypothesis was used many years ago to represent thermodynamic 

properties of liquid mixtures or of moderately dense gases (second virial 

coefficients) but only recently has this hypothesis been applied 

(15) 

(16) 

toward an equation of state for fluids at low and high densities (Heidemann; 

Wenzel and co-workers; Gmehling and Liu). A systematic general treatment 

has now been provided by Hu, Azevedo and LUdecke who used a Carnahan­

Starling expression for the repulsive contribution and a simple van der 

Waals expression for the contribution of (physical) forces of attraction. 

Through reasonable but well-chosen simplifying assumptions, Hu and co-workers 

have very much simplified the complicated algebra to obtain a tractable 

analytical method which requires no numerical integrations and,which is 

applicable to multicomponent as well as binary mixtures. In this treatment, 

the maximum degree of polymerization can be arbitrarily set anywhere from 2 

to infinity. It is advantageous to use infinity since, in that event, the 

algebra is simplified because material balances are replaced by easily-summed 

geometric series. 

The chemical potential ~A has the form 
1 

"AI= <ef[(~), ~. T,(::l)] + UA~[(~).~,T, D 
nTb n0 

where reduced density E; =- =- (xAbA + xsbs ) 
v v 1 1 

a1 and b refer to van der Waals constants and 

Here nT is the total number of true moles and x is the (apparent) mole 

fraction. The ratio nT/n 0 is found from~, T and the chemical equilibrium 

constants. 

(17) 

(18) 

·<. 

v 
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The most sensitive test of any theory is to apply it to the dilute region. 

Therefore, Hu and co-work~rs used their method to calculate Henry's constants 

for ~onpolar solutes in water. First, it was necessary to obtain equation-of­

state parameters for pure water and, as so often happens, it was found that 

several ~ets of physically reasonable parameters could equally well represent 

the properties of gaseous and liquid water over a wide temperature range. To 

obtain a unique set, Hu used experimental data for Henry's constant of methane 

in water, arbitrarily setting the usual binary parameter k12 = 0. 

[Here k12 is defined in the usual way: a12 = (a11a 22 ) 112(1-k12), where van 

der Waals parameter all is for the attractive forces in pure methane and 

parameter azz is for the "physical" attractive forces between water monomers; 

the strong "chemical" forces between water molecules are reflected in the 

chemical equilibrium constant for association.] 

~igure 3 ~how~ Henry's constants for methane in water over a wide tempera­

ture range. It is particularly gratifying that the calculated results 

correctly reproduce the maximum. When a simple equation of state (without 

chemical effects) is used with customary mixing rules, it is not possible to 

reproduce the experimentally observed maximum. 

Figures 4 and 5 show Henry's constants for other gases in water. The 

indicated values of k12 are reasonable when we recall that they 'are relative 

to the arbitrarily chosen k12 = 0 for methane. 

Figure 5 indicates a small but significant displacement for the largest 

solute, xenon. Such displacement is even more pronounced for hydrogen (whose 

molecules are much smaller than those of water) and for benzene (whose mole­

cules are much larger than those of water), as indicated in Figure 6. These 

results suggest that the chemical method, while offering improvement over 

~trictly "physical~ theories, does not allow us to escape from the fundamental 

problem: What reference system shall we use for mixtures of molecules that 

differ appreciably in size? Hu and co-workers took into account formation 

of dimers, trimers, etc. but they retained the one-fluid approximation for 

the repulsive term. The computer-simulation studies of Shing and Gubbins 

suggest that this approximation is untenable, especially for Henry's constants, 

even though the strong orientation forces in water (association) were included 

in the reference system. 
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For complex mixtures of Class I, it is relatively easy to introduce ad hoc 

phenomenological modifications into the perturbation term; no doubt, many will 

be suggested in the next few years. What is more difficult--but ultimately 

more important--is to establish a good reference system for such mixtures. 

The chemical method provides a possible route provided that judicious simplify­

ing assumptions are adopted to reduce the tedious algebra. However, the central 

problem--mixtures containing molecules'of different size--remains. 

The only theoretically significant analytical method for mixtures of 

different-sized, non-attracting molecules is that given by Mansoori (who 

generalized the Carnahan-Starling equation to mixtures) and its extension to 

mixtures of convex non-spherical molecules by Boublik and by Naumann. 

Unfortunately, these methods require tedious algebra, although it is still 

small compared to that in the Chandler-Anderson-Weeks theory. For engineering 

purposes, our first need is to establish a mathematically simple expression 

which can approximate the properties of a mixture containing non-attracting 

molecules of different size and shape over the entire range of fluid densities. 

Our s~cond ne~d is to devise a theoretically sound method for incorporating 

siz~ effects in the perturbation term. 
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We now turn attention to the second class of complex mixtures, i.e. those 

where the molecules are not identified. In chemical engineering practice, 

such mixtures commonly appear in the technology of heavy fossil fuels. To 

describe the thermodynamic properties of such mixtures, we must first perform 

an approximate chemical analysis to determine at least partial information 

concerning the nature and concentrations of the molecules present. This 

approximate analysis is called characterization. 

Gibson, Alexander and Chough have recently described a possible 

technique for characterization which is intermediate between the simplistic 

methods introduced fifty years ago (e.g. Watson characterization factor) and 

the highly sophisticated methods of modern analytical chemistry: the complex 

mixture is first fractionated by distillation in a spinning-band column 

operating at low pressure and high reflux. Typically, eight or ten fractions 

are obtained. When a fraction is removed, the temperature and pressure are 

noted, giving one vapor-pressure datum. 
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Each fraction is characterized by measuring: the number-average molecular 

weight (cryoscopy); ratios of carbon, hydrogen, nitrogen, sulfur and oxygen, 

(elemental analysis); aromaticity (proton-nuclear-magnetic resonance); and, 

for fractions with high hetero-atomicity, concentrations of hydroxyl, primary 

amine and secondary amine groups (infra-red spectroscopy). These character­

ization data for each fraction are then used to calculate constants in some 

equation of state. Each fraction is considered to be a pseudocomponent. 

Vapor-liquid equilibria are then calculated in the usual way. 

To illustrate, characterization data have been used to calculate constants 

in a modification of the Soave-Redlich-Kwong equation of state: 

RT a(T) 
p = --- - ------

v-b v(v+b) 

where 

a(T) = aCl) (1 + aC2)(1 - T/T*)n]2 

T* ~ (0.2027)aCl)/Rb 

(19) 

(20) 

For pure fluids, Soave uses n ~ 0.5. Constants b, a(l) and a(2) are known for 

model compounds whose characterization data are also known by inspection. 

Therefore, using model-compound data for calibration, correlating equations 

were obtained relating these ~onstants to characterization data: these are of 

the form 

b • b(MW, FA, HA) 

a(l) • a(l) (MW, FA, HA) 

aC2) = aC2) (MW, FA, HA) 

(21) 

where MW =molecular weight, FA • fraction aromaticity and HA = hetero­

atomicity. Exponent n is then determined by matching the single experimental 

vapor-pressure datum to the vapor pressure calculated from the equation of 

state. 

For light components (e.g. methane or carbon dioxide), all constants are 

found as specified by Soave. 

For three fractions obtained from Belridge Crude, Figure 7 compares cal­

culated and observed vapor pressures. Calculations were performed with 

Equation (19) using constants obtained from characterization data. While 

agreement is generally good, it is clear that there is a systematic deviation 

for Fraction 1, probably because the vapor-pressure datum from the spinning­

band column was not obtained at the same conditions as those prevailing in the 

vapor-pressure measurements; since each fraction is itself a narrow-boiling 

mixture, there is no unique vapor pressure at a fixed temperature because, for 

a mixture, bubble point and dew point. are not identical. The characterization 

'· j v 
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procedure, therefore, is in need of sam~ refinement or, more precisely, we 

must more carefully define what we mean by the vapor pressure of a fraction, 

as discussed elsewhere. 

We do not as yet have any experimental data for K-factors in mixtures of 

characterized fractions with common gases but we can calculate such K-factors 

using Equation (19) with constants obtained from characterization data and the 

usual mixing rules; here the K-factor is defined in the usual way as the ratio 

of mole fractions in the two phases. To illustrate, Figure 8 shows K-factors 

for methane-metacresol and Figure 9 shows K-factors for carbon dioxide­

quinoline. The i~portant point here is that constants for the heavy components 

were obtained not from critical data and acentric factors, but from character­

ization data. For our present illustrative purposes, the usual binary parameter 

k12 was set equal to zero. It is evident that for carbon dioxide-quinoline, 

a small positive value for k12 would bring the calculated results into essential 

agreement with experiment. Figs. 8 and 9 suggest that if fractions are properly 

characterized, they can be treated as pseudocomponents in conventional phase­

equilibrium calculations based on an equation of state. 

Class II: Continuous Thermodynamics 

While the finite-pseudo-component method provides a useful technique 

for calculating phase equilibria in a complex mixture, an alternate technique 

is provided by infinite-component, continuous thermodynamics. In finite­

component (discrete) thermodynamics, the compositi~n of the mixture 

is given by mole fractions. In infinite-component (continuous) thermo­

dynamics, the composition of the mixture is given by a distribution function 

of some continuous variable chosen to characterize the mixture. Fig. 10 

illustrates the correspondence between discrete and continuous thermodynamics. 

Let I stand for the characterizing variable and let F(I) stand for 

the distribution of that variable. For example, I could be the normal 

boiling point t. As shown by Ratzsch and Kehlen, for a mixture with an 

infinite number of components, we can reformulate Raoult's Law at 

temp~rature T and total pressure P 

FV(t) p = FL(t) psat (T,t) 

where FV is the distribution in the vapor phase and FL is the distribution 

in the liquid phase. The pure-component vapor pressure psat is given by 

the simple form 

psat (T,r) 2 P
0 

exp [A(l- r/T)] 

~here P0 is 1 atm and A is a constant. 

(22) 

(23) 

J 
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At temperature T, the total pressure P is the sum of all the partial 

pressures 

p "" ~FL(T) pSat(T,T)dT 

allT 

Suppose we choose a normal distribution for FL(T) with mean eL and 

variance at. It can then be shown that the vapor-phase distribution 

FV(T) is also normal with mean 

2 ev = eL - aLA/T 

The vapor-phase variance a~ is the same as the liquid-phase variance at. 
More generally, as indicated by Morrison and Kincaid, we can apply an 

equation of state to calculate phase equilibria using continuous thermo­

dynamics. Instead of writing for chemical potential ~: 

for every component i, 

we write 

for every I. 

Omitting those ideal-gas contributions which depend only on temperature, 

the chemical potential in phase L is found from 

(24) 

(25) 

(26) 

(27) 

~ L 
~L(I) "".f [( aP ) - JIT. dVl- RTln V (28) 

yL anorF(I) T,V,I,. V J RTnT F(I) 

where nT ""total number of moles (conveniently set equal to unity). A similar 

relation is used for vapor phase V. 

To illustrate the application of continuous thermodynamics, Cotterman used 

the Redlich-Kwong equation of state coupled with molecular weight MW for 

variable I. Using experimental data for paraffins, Cotterman found that RK 

constants al/2 and b are nearly linear functions of MW •• 

To describe the distribution of MW, Cotterman used a gamma density function 

a-I 
I 

F(I) "" exp (-I/6) 
' sar (a) 

where r is the gamma function. For this distribution, the mean 9 is given 

by e = a6 and the variance is a 2 = aS 2. 

This distribution has the properties 

F(O) = 0 and F(ao) .. 0 

... 
/F(I)dl "' 1 

() 

(29) 

(30) 

(31) 
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It is also.possible to use this function for a semi-continuous case 

wherein all species up to some molecular weight y are treated as discrete 

components and all heavier components are treated in a continuous manner. 

In that event, the distribution function is 

(
I-y) 

exp- B (32) 

Dew-point calculations have been performed for the case where a vapor at 

20 atm contains methane (87 mole %), ethane (5%), propane (3%) and 5% "heavies". 

If we assume that the mean molecular weight of the "heavies·· is 72 (pentane), 

and the variance is 196, the calculated dew point is 301 K. However, if we 

assume that the mean molecular weight of the heavies is 114 (octane),and the 

variance is again 196, the calculated dew point is appreciably higher, 362 K. 

Figs. 11 and 12 give some details for these calculations, including the 

(given) distribution of "heavies" in the vapor and the calculated distribution 

of "heavies" in the equilibrium liquid. 



• 

• 

' 

17 

CONCLUSIONS 

To discuss the properties of complex systems we must first be clear 

about the definition of "complex". If we define complex in the sense of 

Class I, our main problem is to decide first, on a suitable reference system 

and second, on a suitable perturbation, consistent with our choice of reference 

system. Current efforts are directed toward application of equations of 

state, using either density-dependent mixing rules or else chemical equilibria 

superimposed on the usual physical nonidealities of mixtures. Both procedures 

introduce new adjustable parameters but, through reasonable simplifying 

assumptions, the number of these new parameters can be minimized. 

If we define complex in the sense of Class II, our main problem is first, 

to devise useful experimental methods for characterizing the mixture and 

second, to decide on a procedure for calculating thermodynamic properties as 

a function of experimental characterization data. One procedure is provided 

by the pseudocomponent method; another is provided by continuous thermodynamics. 

Both procedures require calibration with experimental data for model compounds. 

While the methods for complex mixtures outlined here are, in principle, 

straight-forward extensions of methods that have been used for ~ny years, we 

require more practical experience with these extended methods before they can 

be used in chemical industry in a routine way. It is likely that this experience 

will be forthcoming in the next few years. 

However, for complex mixtures, we should not be satisfied with mere extension 

of existing methods for simple mixtures. The history of science has repeatedly 

shown that when new problems arise, extensions of methods previously used 

for simple problems have only limited success; to make significant progress, 

new methods must be established. Perhaps the best example is provided by the 

state of affairs in physics at the end of the nineteenth century when classical 

methods failed to do justice to newly discovered phenomena. It was not until 

a radically new method (quantum theory) was developed, that these new phenomena 

could be properly described. 

Complex fluid mixtures are not new phenomena but it may be that their proper 

description will require radically new models. Hopefully, some of our more 

imaginative colleagues will attempt to establish such models. For these 

colleagues, I call attention to a profound sentence written about 100 years ago: 

"The principal object of theoretical research in any department of 

knowledge is to find that point of view from which the subject appears in its 

greatest simplicity." 

That sentence was written by Josiah Willard Gibbs. 
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