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Abstract

The transitional disks around young stars are protoplanetary disks
with inner holes that are relatively empty of small dust grains, as in-
ferred from the excess of far-infrared emission in their spectral energy
distribution (SED)(Espaillat et al. 2007,2010). Recently, a new class
of ’pre-transitional disks’ are identified as exhibiting substantial emis-
sion from an optically thick inner disk separated from an optically
thick outer disk by an optically thin gap(Espaillat et al. 2010). One
plausible model for gap opening in these disks is by multiple giant
planets(Zhu et al. 2011). However, two major problems remain to be
solved. Firstly, micron-sized dust grains are not removed efficiently
enough from the giant planet’s gap to explain the observed low disk
emission at near/mid-infrared wavelengths. Secondly, the presence of
multiple Jupiter mass planets in resonance is not likely in standard
disk models. We have developed a simple but robust coagulation-
fragmentation model showing that piled-up material at the outer gap
edge acts as a very efficient filter for micron-sized grains. Its reduc-
tion of the particle flow by two orders of magnitude provides excellent
agreement with observational data. We can also produce high local
surface density of particles at the outer edge of the gap, which may
trigger planet formation in the outer disk.

1 Introduction

The formation of the transitional disks – protoplanetary disks with large
holes of few to tens of AU as inferred from their SED – is still puzzling.
Various models have been proposed to explain the relative scarcity of dust
in the inner holes among which two seem to be most plausible: photoe-
vaporation by the central star(Alexander & Armitage 2007, 2009) and gap
formation by giant planets(Rice et al. 2006, Zhu et al. 2011).
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However, photoevaporation models have difficulties at explaining two
problems: the high accretion rate in some transitional disks(Espaillat et al.
2007) and the recently identified pre-transitional disks that show substan-
tial emission from the inner most disk parts(Espalliat et al. 2010). As a
result, gap opening by planets gained more and more attention. The pres-
ence of multiple gas giants(Zhu et al. 2011) succeed in reproducing the
high accretion rate and disk structure in the pre-transitional disks, but it
raises another major problem: micron-sized grains are not removed effi-
ciently enough from the giant planet’s gap to explain the observed low disk
emission at near/mid-infrared wavelengths. Moreover, the formation of mul-
tiple gas giants in resonance itself is not likely in standard disk models. One
possible mechanism to overcome these problems is the filtration effect(Rice
et al. 2006) at the outer edge of the gap opened by a gas giant, which
traps the grains coming in from the outer disk. This also increases the local
particle density,and could in principle trigger another generation of planet
formation.

Taking the idea of the filtration effect, we developed a ’one-box’ model
to probe more into the evolution of dust particles, considering the radial and
vertical particle dynamics in the presence of coagulation and fragmentation.
The derivation of the model is presented in section 2. The model parameters
and initial condition are listed in section 3. Section 4 and 5 present the
numerical results of the fiducial model, and an exploration of parameter
space respectively. The conclusion and discussion of this work are presented
in section 6 .

2 Model Setup: ’One-box’ Model

2.1 General Methodology

When a Jupiter mass planet is formed in the gas disk around a solar type-
star, tidal interactions between the planet and the disk open a gap around
its orbit. At the outer edge of the gap, the pressure gradient is positive due
to the increase of gas surface density, while far beyond the gap, the pressure
gradient in the disk is negative due to the drop of gas surface density and
temperature. The planet thus produces a local pressure maximum beyond
its orbit, where the dust particles flowing in from the outer disk can be
trapped and collide with each other. We investigate this system in a ’one-
box’ model, where the ’box’ is located near the local pressure maximum,
and assume that the dust and gas properties are uniform in the ’box’, which
is a good approximation if the ’width’ if the box is relatively thin. We
consider the dust particles flowing in and out of the ’box’ in the presence
of coagulation and fragmentation, by solving coupled ODEs for evolution of
dust and gas.

2



2.2 Evolution of the Gas Disk

In the following, we always assume that the gas disk evolves independently
of the dust, which is only true if the dust-to-gas ratio is substantially below
unity. The standard evolution equation for gas surface density Σ of a thin
Keplerian disk is

∂Σ
∂t

+
1
r

∂

∂r
(ruΣ) = 0, (1)

where u is the radial velocity of gas in disk due to the viscous angular
momentum transfer along the radial direction:

u = − 3
r1/2

∂

∂r
(r1/2νtΣ), (2)

and r is the radius. The gas viscosity νt is mainly a result of turbulence,
and modeled using the standard α-model:

νt = αtcsh = αt
√
γΩkh

2, (3)

where cs is the local sound speed and h is the local disk scale-height. As-
suming that the gas temperature Tg can be written as a simple power law,

Tg = TgAU (
r

AU
)−1/2, (4)

where AU is one astronomical unit, the disk scale height is:

h = hAU (
r

AU
)5/4. (5)

Then equation (1) has a similarity solution (Hartmann et al.1998):

Σ(r, t) =
Md(0)
2πrR1

1
T 3/2

e−(r/R1)/T , (6)

where
T =

t

ts
+ 1, ts =

1
3

R1

νt(R1)
, (7)

where R1 is a radial scale factor and Md(0) is the initial disk mass. The
mass accretion rate of gas Ṁg is then given by

Ṁg(r, t) = 3πνt(r)σ(r, t) (8)

=
Md(0)

2ts

1
T 3/2

e−(r/R1)/T (1 − 2(r/R1)
T

) (9)

= Ṁg(0)
1

T 3/2
e−(r/R1)/T (1 − 2(r/R1)

T
), (10)

where Ṁg(0) is the initial mass accretion rate into the central star at r = 0.
As the disk evolves, the angular momentum is transported outward and the
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disk expands, while the total disk mass decreases due to accretion. The
mass flux changes sign at radius Rt:

Rt = R1
T

2
. (11)

Generally speaking, we are only interested in the gas flow into the box. As
long as the box is much is much closer in than Rt, then from (10) we see
that Ṁg is constant with r, and has gas (and consequently dust particles
too) moving inward.

2.3 Particle-Size Distribution Function

In this model, we adopt the assumption of Garaud 2007, that the size dis-
tribution of particles always follows a power law:

dnmax

dsmax
=





nmax
smax

(
s

smax

)−3.5
, s ∈ [smin, smax]

0, otherwise
(12)

where the size of the biggest body smax and the number density nmax are
both allowed to vary with time. The power law distribution over a large
size range is a common result in the equilibrium between coagulation and
fragmentation, from theory and experiment of particle collisions, and obser-
vation of Kuiper belt objects and asteroids. The coagulation and fragmen-
tation processes are still quite uncertain, and all factors such as material
strength, porosity and velocity dispersion can lead to different power law
indices. Moreover, observations show that the index can change at the
very high-mass end. The typical value for the power law index is between
[−3,−4], and we adopt −3.5 here. Within this assumption, nmax is directly
related to the surface density of particles Σp

nmax =
Σp

2mmax

√
2πhp

, (13)

assuming that ρp has a Gaussian profile across the disk with scale-height hp.
The explicit expression for hp,the particle scale-height, is given below.

2.4 Particle Dynamics

2.4.1 Turbulent Induced dynamics

Particles are coupled with the gas through frictional drag. For particles
much smaller than the mean free path of gas λ = 1

nσ (Epstein regime),
where n is the number density, and σ is the cross section of gas molecules,
the drag forces originate from random collisions with the gas molecules. The
time-scale within which the particles stop relative to the gas is

τ(s) =
sρs

ρcs
, (14)
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where ρs and ρ are the solid and gas mass density respectively. In order to
evaluate the effect of gas drag on particles of different sizes, it is useful to
define the Stokes number (Weidenschilling 1977)

St(s) =
τ(s)
τd

, (15)

where τd = 2π/Ωk is the orbital time. Very small particles with St(s) $ 1,
are well-coupled with the gas, while very big ones(St(s) % 1) barely feel
the gas drag. The imperfect coupling between gas to particles leads to
differential motion between the two, and different structures for the gas and
particle disk.

2.4.2 Vertical Disk Structure

In the vertical direction of the disk, grains settle down to the mid-plane
under the gravity of central star, but are also mixed upward by turbulent
diffusion. Following the work of Garaud 2007, the size-averaged turbulent
diffusivity Dt is related to νt by the effective Schmidt number Sceff

Dt(s) =
νt

Sceff
(16)

Sceff =
√

Stmax

arctan(
√

Stmax)
, (17)

where Stmax = St(smax) is the Stokes number for the maximum sized par-
ticle. The particle scale-height hp can be obtained in the equilibrium state,
and written as

hp = h

(
1 +

2π
3

StmaxSceff

αt
√
γ

)
. (18)

2.4.3 Radial Drift of Particles

Feeling the gas drag, the particles exchange angular momentum with the
gas, moving radially at the velocity (Weidenschilling 1977)

up(s) =
u

4π2St2(s) + 1
− 2ηvk

2πSt(s)
4π2St(s) + 1

, (19)

where u = Ṁg/2πrΣ is gas radial velocity, vk is the Keplerian orbital veloc-
ity, and

η = −1
2

h2

r2

∂ ln p

∂ ln r
, (20)

is related to the gas pressure gradient. Integrating equation (19) over all
sizes, the mass averaged radial velocity is (Garaud 2007)

up = uI(
√

2πStmax) − 2ηvkJ(
√

2πStmax), (21)
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where the functions

I(x) =
√

2
4x

[f1(x) + f2(x)], (22)

J(x) =
√

2
4x

[−f1(x) + f2(x)], (23)

with

f1(x) =
1
2

ln

(
x2 + x

√
2 + 1

x2 − x
√

2 + 1

)
, (24)

f2(x) = arctan(x
√

2 + 1) + arctan(x
√

2 − 1). (25)

2.5 Dust Filtration

Within the gap, the gas undergoes gravitational interactions with the planet,
inducing a much more vigorous angular momentum transport. We model
this with

αt(r) = αt0 +
αt1 − αt0

2

(
1 + tanh

(
rplanet − r

∆r

))
, (26)

where rplanet is the semi-major axis of the planet, ∆r is the width of the
gap edge, and αt0 and αt1 are the turbulent parameter in the gap and the
outer disk. As a result, νt within the disk is

νt(r) = αt(r)csh (27)

= αt0csh · αt(r)
αt0

(28)

= νtAU

r

AU
· αt(r)
αt0

. (29)

The first term in equation (29) is the viscosity without a gap, and the second
term models the effect of the gap.

∆r can be evaluated from advection-diffusion balance

∆r =
νt

u
=

Ṁg/3πΣ
Ṁg/2πrΣ

=
2
3
r (30)

This is reasonably consistent with the results of Zhu et al. 2011 and Crida
et al. 2006.

In this model, the box centered around the outer edge of the gap, located
at r = rbox with

rbox = rplanet +∆r =
5
3
rplanet. (31)

This assumes the local density maximum overlaps the local pressure max-
imum. Considering that the temperature drops at outer radius, the local
pressure maximum should actually be closer in.
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Combining equation (8) and (29), we get the gas density profile at across
the gap

Σgap =
Ṁg

3πνtAU
r

AU · αt(r)
αt0

(32)

The increase of surface density at the gap edge creates a region where η is
negative, causing the particles to gain angular momentum and move outward
to the local pressure maximum. However, very small grains remain well-
coupled with the gas and flow inward. This acts like a filter for the particles
coming in from the outer disk and only the larger particles can be trapped.

In equation (19), let up = 0 and in the limit St $ 1, strap can be solved
as

strap =
1

4π
√

2π

(
− 1
ηbox

)
Ṁg

ρsrboxvk
, (33)

where ηbox by definition is calculated using equation (20), where the gas
pressure is relate to Σgap in equation (32):

ηbox = −1
2

h2
box

r2
box

(
3
4
αt1 − αt0

αt0
− 11

4

)
. (34)

2.6 Surface Density Evolution of Particles

The conservation of mass of particles in the ’box’ is written as

Ṁ box
p = Ṁ in

p − Ṁout
p (35)

The mass inflow of small particles coming from the outer disk is

Ṁ in
p (t) = ZinṀg(rbox, t), (36)

where Zin is dust to gas ratio in the outer disk. The mass outflow is calcu-
lated by considering only the particles in the ’box’ which are smaller than
strap, and therefore move with the gas

Ṁout
p = 2πrboxuΣp(s < strap) (37)

=
Ṁg

Σ
Σp

√
strap

smax
. (38)

The last term in equation (37) comes from the integration over the −3.5
power law distribution of particle sizes.

Although the particles tend to be trapped at the local pressure maxi-
mum, they are not contained in an infinitely narrow region, because they
diffuse due to turbulent mixing. The width of this region is determined by
advection-diffusion balance similarly with equation (30), but the diffusion
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coefficient and velocity should be that of particles averaged over all sizes in
equation (16) and (21)

∆rp =
Dt

up
. (39)

As the particles grow bigger, they become less affected by the turbulence
diffusion and more concentrated at the local pressure maximum. The biggest
ones barely feel the turbulence and stay where they are formed. We model
this effect by varying the ’thickness’ of the ’box’ while conserving the total
mass Mp in the box. Therefore, the particle surface density in the box is
given by

Σp =
Mp

2πrbox∆rp
. (40)

2.7 Particle Growth

Here we follow the Garaud 2007 paper in the treatment of particle growth.
The number density of particles in a given size range increases by fragmenta-
tion of bigger bodies and decreases by their coagulation with other particles.
Assuming the time-scale for the balance of coagulation and fragmentation is
shorter than other dynamical time-scales in the ’box’, the size distribution
follows a fixed power law, and the size of the biggest particle grows with
time. The evolution of smax follows the standard coagulation equation

dmmax

dt
=

∫ smax

smin

dn

ds
(s′)ms′∆v(smax, s′)A(smax, s′)εds′. (41)

The relative velocity of particles of different sizes ∆v is assumed to be driven
by turbulence. The collisional cross section A here is the geometric cross
section, for in our model where r > 30AU , particles never grow big enough
for the gravitational focusing to become important. In this case, equation
(41) can be written as

dsmax

dt
=
Σp

ρs

√
2πγ

h

hp

√
αtStmax

1 + 64St2max(2 + 2.5St−0.05
max )−2

ε

τd
. (42)

The sticking efficiency ε is a constant here, and can be seen as an average
sticking efficiency over all sizes and velocities. This is treated as an uncertain
free parameter.
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2.8 Dust to Gas Ratio in the Gap

Since only particles smaller than strap are allowed to pass through the pres-
sure maximum, the dust-to-gas ratio in the gap is given by

Zout =
Σbox

p (s < strap)
Σbox

(43)

=
Σbox

p

√
strap/smax

Σbox

∆rp

∆r
. (44)

The last term in equation (44) ∆rp/∆r models the spreading of the smaller
particles, via advection-diffusion balance, in a wider area while the big ones
concentrates around the local pressure maximum.

2.9 Numerical Procedure

We solve two coupled ODEs, equation (35) and (42), for the evolution of
particle mass and size distribution in the ’box’, using the fourth order Runge-
Kutta method. The dust-to-gas ratio in the gap is deduced from the diag-
nostic equation (44).

3 Model Parameters and Initial Conditions

3.1 Model Parameters

The parameters used in the fiducial model are listed in Table 1, including
stellar parameters, disk parameters, and grain parameters.

Table 1: Fiducial Model Parameters
Parameter Symbol Value
Stellar mass (Msolar) M∗ 1
Initial disk mass (Msolar) Md(0) 0.1
Initial gas accretion rate onto the central star (Msolar/yr) Ṁg(0) 10−8

Disk aspect ratio at 5AU (h
r )5AU 0.06

Turbulent parameter in the outer disk αt0 0.001
Turbulent parameter in the gap αt1 0.01
Dust-to-gas ratio in the outer disk Zin 0.01
Semi-major axis of planet (AU) rplanet 30
Adiabatic index γ 1
Solid mass density (g/cm3) ρs 1
Sticking efficiency ε 0.1

The stellar and disk parameters are taken as the typical values for pre-
transitional disks in Espaillat et al. 2010. The position of the planet rplanet =
30AU gives the location of the ’box’ r = 50AU , which is the typical outer
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edge of the gap. The adiabatic index γ = 1 is for an isothermal disk in
vertical direction. The solid mass density should depend on radius and
particle size in principle, but is taken as a constant here for simplicity. We
choose ρs = 1g/cm3 for these are icy grains coming from the outer disk,
and even for more porous or denser silicate grains, the variation of density
is within a factor of a few, so this may not be a bad approximation. The
sticking efficiency is the most uncertain parameter in our model, which can
be seen as the average sticking efficiency for the growth of the biggest particle
over all particle sizes and collisional velocities. We start with ε = 0.1, and
later carry out a parameter search.

3.2 Initial Conditions

The initial conditions used in this model are listed in Table 2. In fact, later
we will show that smax and Mp grow significantly after ∼ 1Myr, and the
result is relatively insensitive to the initial conditions.

Table 2: Fiducial Model Initial Conditions
Parameter Symbol Value
Maximum particle size (cm) smax0 0.1
Surface density of particles (g/cm2) Σp0 ZinΣ
Total particle mass in the box Mp0 2πrboxΣp0∆rp(smax0)

4 Results in the Fiducial Model

The fiducial model was integrated for 1Myr. Figure 1 shows the evolution of
mass and surface density in the ’box’. Figure 2 shows the size growth of the
biggest particle and the change of the ’width’ of the ’box’. Figure 3 shows
the properties of gas background: accretion rate of gas at r = 0, rbox and
the gas surface density Σg(r = rbox). Finally, Figure 4 shows the depletion
of metallicity in the outflow and the evolution of strap due to the evolution
of gas background.

4.1 Evolution of Particle surface density

As can be seen from Figure 1, after 1Myr, several Earth masses solids are
trapped at the outer edge of the gap. The particle surface density increases
rapidly at first, and then slows down after ∼ 0.5Myr, as a result of the
concentration of particles due to size growth shown in figure 2. Finally
the surface density of particles is increased locally by a factor of ∼ 100,
comparable to the surface density of gas.
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Figure 1: The evolution of total particle mass M box
p (left) and the surface

density of particles Σbox
p (right) in the ’box’.

4.2 Particle Growth
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Figure 2: The size of the biggest particle sbox
max (left) and the effective ’box

width’ ∆rp (right).

Figure 2 shows that as the result of filtration and particle growth, ∼
0.1AU belt of ∼ 100m planetesimals forms beyond the orbit of the planet
1Myr after its formation. In the classical planet formation scenario, this
area should be a much more favorable place for the formation of another
generation of planets in the outer disk than the standard disk model.

As expected from equation (42), the growth rate of the particles is pro-
portional to the local particle surface density, and Figure 1 and 2 show that
they both have a period of rapid increase, which correspond to the sharp
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decrease of ∆rp at t ∼ 0.5Myr. This effect can be inferred from equation
(39) and (19): when smax grows to a size (∼ 1cm in the fiducial model)
that Stmax ∼ 1, the particle radial velocity up reaches its peak, where ∆rp

is minimum. As smax continue to grow, in the limit of Stmax % 1 and
u $ ηvk, equation (17) and (21) equals to

Sceff =
π

2

√
Stmax, up = −2ηvk

√
π

4
√

Stmax
(Stmax % 1), (45)

Which leads to a constant ∆rp:

∆rp = −
√
πνt

ηvk
(Stmax % 1). (46)

Physically, this means that very big particles, which are barely affected by
the surrounding gas wind or turbulence, stay where they are formed.

4.3 Gas Background
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Figure 3: The evolution of gas background: accretion rate of gas at r = 0
(left) and r = rbox (middle), and the gas surface density Σg(r = rbox) (right).

Figure 3 shows the properties of the gas background in the self similar
solution of disk evolution, which shows no significant change over the 1Myr
timescale. The surface density in the ’box’ is about 10 times larger than the
surface density used in the simulation of Zhu et al 2011. The accretion rate
at r = rbox is generally one order of magnitude less than the accretion rate
into the central star.

4.4 Dust Depletion

The metallicity in the outflow is significantly reduced in the fiducial model
due to two effects: filtration of the big particles and particle growth. In
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Figure 4: The depletion of metallicity in the outflow gas relative to the
inflow gas Zout/Zin (left) and the evolution of strap (right).

Figure 4, the filtration effect causes an initial depletion by a factor of√
strap/smax ∼ 10−2. As the particle grow, most of the mass in the small

particles coagulate into the bigger ones, leading to a depletion by a factor
of another 2 orders of magnitude.

5 Parameter Search

This simple model enables us to easily search in the parameter space and
probe more into this problem. We looked at the relatively uncertain param-
eter of sticking efficiency ε, turbulent parameter αt, and the planet position
rplanet.

5.1 Sticking Efficiency

The sticking efficiency ε is the most uncertain parameter in this model,
which can be seen as the average sticking efficiency of the biggest particle
colliding with others over all size and relative velocity range. From equation
(42), the growth rate of the particle is proportional to ε. As shown in figure
5, in order to get a significant effect of particle growth and dust depletion,
we need ε ! 10−2.

5.2 Turbulent Parameter

Figure 6 shows that the growth rate of particles is relatively insensitive to
the turbulent parameter. However, the dust depletion is smaller for more
turbulent disk, because stronger turbulence lead to weaker concentration
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Figure 5: Particle mass M box
p (left) and maximum particle size sbox

max (middle)
in the box and dust depletion Zout/Zin (right) for ε = 10−3 (dashed), ε =
10−2 (dotted dash) and ε = 10−1 (solid)

effect of particles, and the increase of ∆rp in equation (44) results in a
bigger Zout.

5.3 Planet Radius

As can be seen in figure 7, the planet position, or the radial location of the
edge of the gap, has a significant effect on the growth rate of particles. For
a closer-in planet, the particles can grow to a bigger size, simply because
there is more material in the inner disk.

6 Conclusion and Discussion

6.1 Transitional and Pre-transitional Disks

In this paper we have studied the dust evolution at the edge of the gap
opened by a giant planet in the gas disk, showing that the effect of filtration
and particle growth leads to a reduction of the particle flow by 2-4 orders
of magnitude, which provides excellent agreement with observational data.
We thus suggest that the presence of multiple gas giants is not necessary for
the formation of the transitional disk. For the pre-transitional disk, there
are two possible explanation for their optically thick inner disk: 1. The
pre-transitional disk may be a former stage of the transitional disk, with
the dust in the inner hole not yet cleaned by accretion and dust migration.
This should also lead to the effect that the gap in the transitional disk is
clearer than the pre-transitional disk. 2. The particles are trapped in the
inner disk, possibly due to the presence of another gas giant.
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Figure 6: Particle mass M box
p (left) and maximum particle size sbox

max (middle)
in the box and dust depletion Zout/Zin (right) for αt = 0.001 (dashed),
αt = 0.005 (dotted dash) and ε = 0.01 (solid)

The essential requirement for the filtration effect is the presence of a
local pressure maximum in the gas disk. Here we looked at the gap formed
by a giant planet, but in principle, the pressure maximum could be induced
by other mechanisms, such as the snow line or a dead zone, which could also
act like a filter and give rise to similar effects.

6.2 Outlook on Planet Formation

Two problems have long been existing in the standard theory of planet
formation: 1. There is a size barrier of particles growth of 1m for which the
inward migration is much faster than the particle growth. 2. The timescale
for the core formation of gas giants is significantly longer than the lifetime
of protoplanetary disk. By trapping particles and forming a local density
increase of solids at the gap edge, we showed that the particles can grow
into kilometer sized planetesimals in a timescale of 1Myr at a radius of tens
of AU. This provides a favorable place for the formation of planets beyond
the orbit of a gas giant.

For the formation of planets from planetesimals, the particle-particle and
particle-gas gravitational interaction becomes equivalently important as the
particle interaction with the gas. This is beyond the consideration of our
paper, and more realistic models such as N-body simulation are required.
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