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 INTRODUCTION 
 
Despite available therapeutics, tuberculosis (TB) remains an eminent global killer. The World 
Health Organization (WHO) estimates that in 2012, there were 8.6 million people that developed 
active TB disease, and 1.3 million who died from the disease (1). Although there has been an 
average of 2% decline in incidence of active disease over the past decade, 22 nations continue to 
struggle with controlling the disease. These 22 nations (the so-called high burden countries, or 
HBCs), represent 80% of the active TB cases, and only half are on track to meet the Millennium 
Development Goals (MDG) targets of reduction in incidence, mortality, and prevalence. This has 
become even more challenging as new drug-resistant stains of TB have developed.  
 
A large reason for the surge in TB deaths over the past two decades has been the emergence of 
the human immunodeficiency virus (HIV), especially in sub-Saharan Africa. In 2012, 320,000 
HIV-infected individuals were estimated to have died from tuberculosis, while 1.1 million HIV-
positive individuals had active disease. Fortunately, significant efforts have been made 
worldwide to control the HIV/AIDS epidemic, including massive rollout of anti-retroviral 
therapy (ART), resulting in significant less risk of HIV-associated TB (1). 
 
Many of these nations are now increasingly experiencing a double burden of communicable and 
non-communicable disease. As less-developed economies become more globalized, some low-
income and middle-income nations have found themselves with quickly rising GDPs and a 
concomitant rise in life-expectancy. Additionally, global populations are becoming more 
urbanized, adopting Western diets, and increasingly following a sedentary lifestyle. This has 
caused a shocking increase in prevalence of non-communicable disease traditionally faced by 
exclusively wealthy nations, such as cardiovascular disease and diabetes. Although there has 
been a noted linked between diabetes and tuberculosis since antiquity, it is now understood that 
diabetes mellitus (DM) may become comparable to HIV in terms of a population-level risk factor 
for TB (2). Although the mechanisms are not well understood, individuals with diabetes have a 
3-fold increased risk to progress to active TB, and an increased TB-associated mortality (2,3).  
 
A nation with a very high burden of these converging epidemics is South Africa. South Africa 
has one of the highest prevalence of HIV world wide (17.9% in 14 to 54-year-olds), and the 
second-highest incidence of TB per capita in the globe (1,4). Additionally, it has a high burden 
of diabetes: 3.9-8.8% of the population is diabetic (5), and an estimated 8.3% of the population is 
pre-diabetic as defined with impaired glucose tolerance (6). Diabetes prevalence is projected to 
rise by 2-fold in Africa within the next 15 years (6). Unfortunately, there is little understanding 
of the potential impact of the increasing burden of DM in South Africa, and how it will affect TB 
and/or HIV burdens.  
 
One way to predict the effects of changing disease dynamics is through mathematical modeling. 
Modeling diseases allows policy-makers to collect relevant data, analyze potential future 
projected scenarios, compare policy options, and decide how to allocate resources.  They are 
particularly helpful with more complicated conditions, where predicting the effects of policies or 
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interventions is difficult to ascertain a priori. Models can also help bring stakeholders together to 
determine where key data needed to understand a disease are missing.  
 
In order to understand the trajectory of TB in South Africa, an understanding of the trajectories 
of HIV/AIDS and diabetes must also be understood, as well as the interaction between these 
diseases. Unfortunately, there is a lack of precedent of evaluating more than two diseases and 
their interactions in a single model. Although there are a few examples of models with different 
diseases in them (in particular, WHO’s SPECTRUM), we have been unable to identify any 
which evaluate more than two diseases and their interactions, as opposed to separately-operating 
models which are only synchronized through population size. 
 
Modeling two diseases—however—is more common, and is often used to model TB and HIV in 
sub-Saharan Africa. Additionally, many well-developed models of DM exist.  
 
Given the approaching convergences of these epidemics, a population-level mathematical model 
of TB, HIV/AIDS, and diabetes mellitus is desperately needed, especially in a setting such as 
South Africa. Unfortunately, no investigation has yet been completed, potentially due to a lack of 
a precedent of multi-disease modeling approaches, or the fact that these interactions were 
elucidated relatively recently. Therefore, this paper attempts to review a variety of topics 
necessary to build such a model, namely: modeling theory required to an understanding of multi-
disease modeling approaches, the relevant physiology of each of the diseases (as to aid in the 
understanding of potential disease interactions), the epidemiology and economics of each of the 
disease in South Africa, recent modeling attempts of the individual diseases, and the 
characterized interactions between the diseases. 
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DISEASE MODELING METHODOLOGY 
 
Introduction 
Throughout human history, epidemics of many varieties had destroyed populations in wanton 
and unpredictable manners. Due to a lack of understanding of many of the environmental, 
physiological, and pathophysiological processes at play, it was difficult for researchers to 
understand or in any way predict patterns of health. However, as medicine matured, researchers 
began applying methods borrowed from other disciplines to help understand these dynamics. 
 
One of the first individuals to do so was Anderson Gray McKendrick, a Scottish physician. 
Working with Ronald Ross and William Ogilvy Kermack, he wrote the first treatise on modeling 
disease, entitled Application of Mathematics to Medical Problems in 1926 (7). Since then, the 
field has matured significantly, pulling in methodologies from operations research, industrial 
engineering, mathematics, and computational biology. 
 
One of the core methodologies used in disease modeling is the Markov method, proposed by 
Andrey Markov in 1906. What Markov suggested is conceptually simple. He proposed that 
populations could be broken into compartments, or states. In the case of disease modeling, these 
represents disease progression, such as “healthy,” “sick,” “very sick,” and “death.” He suggested 
that from any one state there was a probability (p) associated with moving to another state within 
one discrete time interval (or cycle). For example, if one is “very sick” there is a probability of 
0.9 of dying within one year. These transitions are assumed to take no time. This has been called 
a discrete-time Markov chain, or simply a Markov chain. It is helpful to imagine a physical 
chain, where each link of the chain represents some time period.  
 
These can be represented visually using a state transition diagram. In state transition diagrams, 
circles (also called nodes) are used to represent the disease states, while directional arrows (also 
called edges or arches) represent the potential transitions, and their probability per cycle (p) is 
written next to them. Impossible transitions, such as moving out of the “death” state, are not 
draw. In this example, an individual can become more ill, but can also recover. 
 

 
 
Although it is common to make these models using discrete time intervals, it is also possible to 
model these events in a continuous manner. These are referred to as continuous-time Markov 
processes, or simply Markov processes. Instead of looking at probabilities of transfer during a 
segment of time, such as a year, Markov processes use rates of transfer from one state to another, 
such as 1000 people per year. The first models of disease, by McKendrick et al, used continuous-
time Markov processes. We turn to those now, and will then return to the discrete-time method. 
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Continuous-time models 
 
The classic model is one developed by McKendrick, looking at an infectious disease, whereby 
individuals could be categorized into one of three states: susceptible (S), infected (I), and 
removed (R), the so-called SIR model. In these SIR models, individuals in the removed 
compartment are either immune to infection or have died from the infection.  
 
These models are deterministic, meaning they produce only a single mean value of transitions or 
occupants in states. One can represent the number of individuals in each state as functions of 
time t, i.e. S(t) is the number of susceptible individuals at time t. If we assume a constant total 
population of N, and a rate of recovery to full-immune status of α, we can express these functions 
are differential equations (note that epidemiology uses a prime notation, X’, to signify 
derivatives, not the traditional dx/dt). For example, the rate of change in susceptible population 
(S’) can be estimated at time t to be the negative number of contacts sufficient for infection (β) 
multiplied by the proportion of the population that is susceptible, multiplied by the number of 
infected individuals.  
 

𝑆" = 	−β
𝑆
𝑁
𝐼 

 
To make this more concrete, let us imagine a pandemic of influenza in a small city of 50,000 
individuals. This specific type of fanciful influenza is only transmitted by shaking hands, which 
people do at random in the population, and causes infection 100% of the time. Imagine that each 
person shakes 5 hands per day, and by the third day there are 200 individuals infected, and 10 
have recovered. What is the rate of change in the susceptible population? 
 

𝑆" = 	−
5
𝑑𝑎𝑦

×
49	790
50	000

×	200 

 

𝑆" = −	
995.8
𝑑𝑎𝑦

 

 
This means that the susceptible population will shrink by approximately 996 people on the third 
day – this makes sense as the 200 people will shake in total 1000 hands but some of these 
individuals will potentially already be infected, meaning no infection could occur. What if we 
wanted to find the derivative of the infected compartment? It is not just the negative of the 
susceptible derivative, because people are recovering from infection in this model (at the rate of 
α). Therefore, it can be expressed as such: 
 

𝐼" = 	𝛽
𝑆
𝑁
𝐼 − 	𝛼𝐼 

 
If we assumed that 10% of the infected population recovers per day, we could find the solution 
with our example: 
 

𝐼" = 	
5
𝑑𝑎𝑦

×
49	790
50	000

×	200 −	
0.1
𝑑𝑎𝑦

×200 

 

𝐼" = 	
995.8
𝑑𝑎𝑦

−	
20
𝑑𝑎𝑦
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𝐼" = 		
975.8
𝑑𝑎𝑦

 

 
996 people will become newly infected on the third day, and 20 will recover. Therefore the rate 
of change is approximately 976 people per day. It is also easy to see that: 
 

𝑅" = 	𝛼𝐼 
 

and 
 

𝑁 = 	𝑆 + 𝐼 + 𝑅 
and 

 
𝑆" + 𝐼" + 𝑅" = 0 

 
Because the SIR model assumes no changes in population, it is best suited for modeling short 
amounts of time, such as immediate infections.  
 
Another useful statistic is R0, pronounced “R-not,” defined as the basic reproductive number. 
This represents the average number of infections caused by one person over the length of one 
infection and is defined as β divided by α. If it is larger than one, the infection will spread; if it is 
less than one, the infection will not spread. It can also be broken down into constitute parts: 
 

𝑅: = 	
𝛽
𝛼
= 	 contacts	per

	unit	time
probability	of	transmission

	per	contact
length	of	time	person

	is	infectious
 

 
Even with our outlandish scenario of hand-shaking influenza, one can imagine how these 
methods could be very useful to predict the patterns of epidemics. More complicated models are 
made with these methods, including treatment stages, screening, detailed pathologies, or even 
age-structuring.  
 
Now that we have a more full understanding of McKendrick’s model, we can see a state 
transition diagram could look something like this (note that instead of probabilities per cycle, we 
are using rates to signify the transitions): 
 

 
 
Sometimes, however, it is much more simple to model these processes using discrete time 
cycles, with the previously-described Markov chain. 
 
Discrete-time models 
 
The discrete-time models are also conceptually simple. For example, one could create a similar 
example to the influenza-handshake one above: 
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In our above discrete-time SIR model, instead of using the rate of transfer to the infected state, 
we would instead have two probabilities for one year: the probability of becoming infected in 
one year (p1, let’s imagine 0.1) and the probability of staying in the susceptible state (which, 
since they can go no where else, would be 0.9). Let’s imagine that the probability of infected 
people recovering per year, p2, is 0.1. Transitions which are impossible in the model’s 
framework (such as R to I) are assigned probabilities of zero.  The transitions probabilities of 
staying in the same state can be added to our diagram, shown as recursive arrows: 
 
 

 
 
In addition, one can display these transition probabilities in the form of a transition matrix, 
which shows the estimated transition probabilities. The transition matrix can be represented as a 
traditional table or a mathematic matrix, classically labeled P. All rows (but not necessarily 
columns) should add to one, since an individual in a state must either transfer or remain in their 
state during a cycle. 
 
 
 

  Transition to state: 
  S I R 

Transition from state: 
S 0.9 0.1 0 
I 0 0.9 0.1 
R 0 0 1 

 
 

𝑃 =
0.9 0.1 0
0 0.9 0.1
0 0 1

 

 
 
Using these probabilities, it is easy to calculate the progress of an epidemic given initial 
conditions, or initial state. Imagine an group with 90% of individuals in the susceptible category, 
10% in the infected category and none in the recovered category. This can be represented as a 
vector, traditionally called p0, of our threes states (p0

1, p0
2 and p0

3).  
 
 

𝑝: = 𝑝O:, 𝑝Q:. 𝑝R: = 	 0.9, 0.1, 0  
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At the beginning of the first year, we would have 90% of individuals in S and 10% in I. After the 
first year passes, we can find the new distribution of individuals, p1, through a simple matrix 
multiplication: 
 
  

𝑝O = 	𝑝:×	𝑃 = 	 0.9, 0.1, 0 	×	
0.9 0 0
0.1 0.9 0
0 0.1 1

= 	 0.81, 0.18, 0.01  

 
Therefore, by the beginning of the second year, 81% of our population is susceptible, 18% is 
infected, and 1% has recovered. To find the next year’s matrix, p2, we would multiple p1 by P. 
This can be continued for as many years as one desires to investigate. Put another way, any 
cycle’s results can be found by multiplying the last vector by the transition matrix: 
 

𝑝O = 	𝑝:×	𝑃 
𝑝Q = 	𝑝O×	𝑃 
𝑝R = 	𝑝Q×	𝑃 
𝑝S = 	𝑝STO×	𝑃 

 
Or, even more simply, just the power of the transition matrix can be used. This is called the 
power method. 
 

𝑝S = 	𝑝:×	𝑃S 
 
Unfortunately, such methods are only useful due to the simplicity of our model; we assumed that 
transition probabilities would be constant, whereas this is obviously not true: in the context of 
infectious disease, the probability of becoming infected is dependent on the number of other 
infected individuals. Therefore we would need to re-calculate our transition matrix before 
calculating any new vectors. 
 
Additionally, though the power method is useful, it only provides us with the distribution of the 
population at cycle n. This is called a direct solution to a Markov chain. However, as epidemic 
modelers, we are interested in the whole path – what did the population looks like at cycles n-1 
and n-2? These broader solutions are termed transient solutions. 
 
The Markov property 
 
Both the continuous and discrete-time Markov methods have what is termed the Markov 
property: each transition probability is based on the state of current affairs, regardless of past 
events. In order words, to calculate the distribution of the population in states at cycle n, we only 
need to know the distribution at cycle n-1. In many cases this is a simplification; for example, 
individuals who were infected 10 years ago might be more susceptible to a re-infection than 
individuals who recently recovered for immunological reasons. The Markov property asserts that 
each individual in a state is treated homogenously without history. The above example shows the 
Markov property well: in order to calculate p3, for example, we only need to know the state of 
the model at p2: p1 and p0 are irrelevant. This can be called a first-order Markov chain. However, 
there are variations of the Markov methodology that allow for some “memory.” If we require 
data from two previous steps (i.e. we would need p1 and p2 to calculate p3), this is called a 
second-order Markov, and so on.  
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If a state can only receive individuals, but they are unable to transfer out (e.g. death), this is 
referred to as an absorbing state. States that allow individuals to return are called recurrent; 
whereas if there is zero probability of returning to that state, it is referred to as transient (8). 
 
There are many assumptions in classic discrete-time Markov modeling as above. One of the 
problematic assumptions is the constant nature of the transition probabilities. In the context of 
infectious disease, the transition probabilities are obviously not constant; as the infection 
becomes more common in a population, the probability of a susceptible person becoming 
infected rises. Therefore, it the context of infectious diseases, the transition probabilities (or rates 
in continuous-time models) would be represented by functions of the number of individuals in 
other states, similarly to the example from McKendrick et al.  This is termed load-dependence. 
 
One can hopefully see how useful both the discrete-time and continuous-time Markov methods 
can be in modeling disease processes. However, these techniques have shown us how to model 
these conditions if the transition probabilities/rates are either functions such as those defining S’, 
or single digits, such as 0.9. These models have given us good rough deterministic estimates of 
the average pathways through diseases. However, what if we wanted to know the average path 
through a chain, as well as the variance or standard deviations? In order to do this, we need to 
introduce some randomness to our model. A method for doing this is the Monte Carlo method.  
 
Monte Carlo methods 
 
Scientists working on the development of nuclear weapons in the 1940s at Los Alamos Labs 
developed a set of methods, which they named after the Monte Carlo, a popular Las Vegas 
casino. In essence, they are defined as methods that involve deliberate use of random numbers in 
a calculation. This may seem too simple a definition, but let us explore a very basic example. 
Imagine we were presented with the following simple geometric problem and asked to solve for 
x: 
 
 
 
 
 
 
 
 
 
 
 
Using the Pythagorean theorem, we could derive: 
 

𝑥Q = 4Q + 3Q 
𝑥Q = 32.5 

 

3.

4.
x 
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Now imagine we had not developed a mathematical method for finding the square route of 32.5; 
or perhaps the mathematical computation was too difficult. Since 52 is 25 and 62 is 36, we know 
that x lies between 5 and 6. Let us sample 100 random numbers between 5 and 6, plotted against 
the distance of the square from 32. 
 

 
 
We can see that our evaluation of the square root of 32.5 lies somewhere between 5.6 and 5.8. 
Even with only 100 sampled numbers, one sample of x came within 99.1% of the true answer. 
Although this is a very simple example, one can hopefully imagine how as equations become 
more and more complex and difficult to solve analytically, these random methods can become 
useful.  
 
How can this be applied to disease modeling? Monte Carlo methods have been applied in the 
context of Markov processes. Note that the term Monte Carlo Markov Chains (MCMC) is not 
relevant here – this is a separate entity that is not as relevant to disease modeling.  
 
One method of incorporating Monte Carlo methods in Markov chains is by creating a series of 
random walks or sample paths to model at an individual level.  If we model more than one 
individual at a time, this is referred to simultaneous simulation. This is a method commonly used 
in individual-based or agent-based modeling. Whereas in our previous example we estimated at 
the percent of a cohort that would transfer to one state based on their probability, in a sample 
path we analyze the pathway of a specific individual. For example, let us look at our simple 
discrete-time SIR model once again. 

 

 
 
Let us imagine that we have 1000 individuals, 90% of whom are susceptible, 10% of whom are 
infected, and 0% of whom are recovered. In this case, we would have 900 susceptible 
individuals, 100 infected, and none dead. We complete the analysis by analyzing each 
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individual’s movement, one individual at a time. So, first, we look at out first individual in the 
susceptible category – s/he has a 0.90 probability of staying in the susceptible state and a 0.1 
probability of becoming infected. We can therefore generate a pseudorandom number between 0 
and 1 with a computer program, and use this number to determine which state the individual will 
transition to; perhaps we can say that if the number is between 0 – 0.1, they will become 
infected, whereas if it is above 0.1 they will stay susceptible. Let’s imagine we generate 0.54 – 
therefore they stay. We then move on to the second individual in the susceptible category, and 
generate a random number of 0.03; they transition and become infected. This process continues 
until each individual has been assigned a new state, then you continue to the next cycle. A full 
simulation to the end of the model is called a simulation run. An example is shown of five 
individuals over five cycles. 
 
 

Cycle 
State 
Individual 
1 

Individual 
2 

Individual 
3 

Individual 
4 

Individual 5 … 

0 S S S S S … 
1 S I S S S … 
2 S I I S S … 
3 S R I S S … 
4 S R I S I … 
… … … … … … … 

 
 
This sample path method should produce similar results to a traditional Markov chain model 
given a very large number of runs. However, it is useful because it will provide not only an 
estimate of the average path, but the distribution of paths, allowing for the calculation of 
variance/standard deviation and hypothesis testing between two models. 
 
Another commonly used Monte Carlo method, called Probabilistic Sensitivity Analysis (PSA), 
does not rely on individual-level modeling, but instead incorporates Monte Carlo methods to the 
transition probabilities themselves. For example, let us imagine the simple discrete-time SIR 
model once again. However, let’s imagine that instead of the transition from S to I being a 
known probability of 0.9, let us imagine there is some uncertainty, and that its probability is best 
represented by a normal distribution Y, with a mean of 0.4 and a standard deviation of 0.05. We 
can then visualize this on our state diagram and transition matrix: 
 

 
 

𝑃 =
𝑌 − 1 0 0
𝑌 0.9 0
0 0.1 1
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Let’s look at how this would look if we ran the model with 1000 iterations. For first iteration, we 
would take a random sample from Y – let’s imagine we sampled 0.45. We would then complete 
the calculations in a similar manner as the above example, using this as our transition matrix: 
 

𝑃 =
0.55 0 0
0.45 0.9 0
0 0.1 1

 

 
Once the calculations for the request number of cycles were completed, we would start the 
calculation over and require a new sample from the Y distribution. In this manner, we would be 
able to develop a set of results that are more representative of the known distributions of 
transition probabilities.  
 
Modeling multiple diseases 
 
Modeling multiple diseases with Markov models presents some interesting issues. Consider a 
simple example of modeling two unrelated diseases, for example influenza and malaria. Let us 
imagine there is no interaction, and that each disease has only two states: susceptible (S) and 
infected (I). We can represent these two diseases with their two transition matrices, using 
subscript f (“flu”) to represent influenza and m to represent malaria: 
 

𝑃X =
𝑎YY 𝑎YZ
𝑎ZY 𝑎ZZ  

 
  Transition to malaria state: 
  S I 

Transition from malaria state: S aSS aSI 
I aIS aII 

 
Where aij is the probability of transferring from state i to state j in one cycle. 
 

𝑃[ =
𝑏YY 𝑏YZ
𝑏ZY 𝑏ZZ

 

 
  Transition to malaria state: 
  S I 

Transition from malaria state: S bSS bSI 
I bIS bII 

 
 
Where bij is the probability of transferring from state i to state j in one cycle. 
 
Imagine we wanted to create a master, or global, transition matrix, which could represent the 
probabilities of transferring from, for example, susceptible to both diseases to infected with both. 
To do so, we would find the tensor product of each of the matrices. For a review of matrix 
algebra, see Searle.(9)  
 
 

𝑃X ⊗ 𝑃[ =
𝑎YY 𝑎YZ
𝑎ZY 𝑎ZZ ⊗	 𝑏YY 𝑏YZ

𝑏ZY 𝑏ZZ
= 	

𝑎YY 	
𝑏YY 𝑏YZ
𝑏ZY 𝑏ZZ

𝑎YZ
𝑏YY 𝑏YZ
𝑏ZY 𝑏ZZ

𝑎ZY
𝑏YY 𝑏YZ
𝑏ZY 𝑏ZZ

𝑎ZZ
𝑏YY 𝑏YZ
𝑏ZY 𝑏ZZ

=

𝑎YY𝑏YY 𝑎YY𝑏YZ
𝑎YY𝑏ZY 𝑎YY𝑏ZZ

	 𝑎YZ𝑏YY 𝑎YZ𝑏YZ
𝑎YZ𝑏ZY 𝑎YZ𝑏ZZ

𝑎ZY𝑏YY 𝑎ZY𝑏YZ
𝑎ZY𝑏ZY 𝑎ZY𝑏ZZ

𝑎ZZ𝑏YY 𝑎ZZ𝑏YZ
𝑎ZZ𝑏ZY 𝑎ZZ𝑏ZZ
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In table form, it could resemble something like this: 
 

 

Transition to: 
Malaria 
S I 
Influenza 
S I S I 

Transition 
from: 

m
al

ar
ia

 

S 

in
flu

en
za

 

S assbss  assbss assbss assbss 
I assbss assbss assbss assbss 

I 
S assbss assbss assbss assbss 
I assbss assbss assbss assbss 

 
This seems to work for a small number of diseases with a small number of states. However, as 
these numbers increase, investigators face an exponentially increasing number of states, the so-
called state-space explosion (10). Imagine we were modeling ten diseases, each with ten 
potential disease states. This would make the total number of potential states 1010, or 10 billion. 
The number of elements in the transition matrix would need to be the square of ten billion, or 1 x 
1018, 100 sextillion. Even the fastest computers would be unable to handle this amount of data or 
calculation. 
 
One method to manage the state-space explosion is the idea of decomposition. Decomposition 
allows a large Markov matrix, the global matrix, be broken into smaller local matrices – in 
essence, the reverse of what we’ve show above. Some models might be completely 
decomposable, broken into two completely separate models with no interaction. In this case, the 
solutions to the Markov chains can be solved separately. If the global chain is not fully 
decomposable, relying on only a few interactions between the chains, it can be referred to as 
nearly completely decomposable (NCDE).  Most disease processes will need a NCDE 
methodology, since if an individual dies of diabetes, they should be moved to the “death” state in 
all of the Markov chains, not only in the diabetes chain.  
 
One method for the solution of NCDEs is the creation of locally-interacting Markov chains, also 
called stochastic automata networks (SANs). Imagine we were attempting to model 
cardiovascular disease (CVD) and diabetes. Consider that we wanted to analyze a cohort of 1000 
people, and we can represent one individual, person X, with a grey dot, showing which state they 
occupy. In this case they have uncomplicated diabetes and a low CVD risk. 
 
Now imagine that during the first cycle, this person advances to have diabetes-related eye 
damage, or retinopathy. This has no effect on cardiovascular disease, as the eyes to not affect 
your cardiovascular health. This event can be referred to as a local event, because it has no effect 
on any other local chains. 
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On the other hand, if someone with diabetes advanced to having macrovascular disease, they 
would have an increased chance of having a myocardial infarction – this means that a transition 
in the diabetes model has now interacted with the CVD model, and can force a transition to “high 
risk CVD.” This type of event is called a synchronizing event or synchronized transition because 
it requires a local chain to become synchronized with other local chains (10). 
 

 
 
Another way to represent this interaction would be to use functional probabilities – ie, the 
probability of having a myocardial infarction could be represented with a function of the state of 
the diabetes chain.  
 
Hopefully, one can see that it may be possible to represent the interaction of many diseases with 
a combination of Markov chain, Monte Carlo, and stochastic automaton network methods. 
However, once a model is built, how does an investigator know how realistic the performance of 
that model is? Even with seemingly realistic model inputs, it is possible to develop wildly 
unbelievable models. To address this issue, we now turn to the topic of model validation and 
calibration.  
 
Calibration, validation, and bench-marking 
 
Creating models of disease often requires adaptation of data from a wide variety of sources, 
many with different research goals. One or two poor estimated parameters could result in model 
predictions that are unpredictable and, at times, quite unreasonable. In order to prevent the use of 
unverifiable models for policy decisions, investigators are required to analyze their model 
outputs and assess their reliability. If the models are judged to be unrealistic, investigators should 
adjust their parameters with the highest degree of uncertainty to improve goodness-of-fit with 
other available reliable data. This process can iterate, as shown below. 
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In the context of multiple diseases, modelers need to show that each individual disease model 
works well on its own, and that the interaction between the diseases occurs in a way that would 
be expected. 
 
One newer methodology for calibration called Bayesian melding allows the use of distributions 
for both inputs and outputs, and attempting to find the parameters that fit both inputs and outputs 
best. It has been used in the context of HIV modeling in South Africa and elsewhere (11,12) Its 
specific methods are discussed by Poole et al (13).  
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REVIEW OF DISEASES & THEIR MODELS  
 
In this section, I review the relevant physiology of each of the three diseases, as well as explain 
two to three recent modeling approaches to them. 
 
HIV/AIDS 
Pathogenesis & pathophysiology of HIV/AIDS 

Overview  
The human immunodeficiency virus (HIV) is the causative agent of acquired immunodeficiency 
syndrome (AIDS). It is a small retrovirus of the lentivirus family, which infects and destroys 
CD4+ “helper” T-lymphocytes, causing serve immunosuppression. There are two forms, HIV-1 
and HIV-2, which HIV-2 being primarily constrained to West Africa (14). 
 
Viral transmission occurs through sexual contact (especially receptive anal sex), blood 
transfusions, sharing of intravenous drug equipment, breastfeeding, and childbirth (14). 
 
Once HIV has entered the host’s body, it is able to bind CD4+ cells, primarily lymphocytes, 
macrophages and dendritic cells. It initiates a program of membrane fusion, which allows the 
HIV genome to enter the cytoplasm of the cell. Once inside the cytoplasm, the virus undergoes 
reverse transcription (via reverse transcriptase), modifies its proteins to be functional enzymes 
(via protease) and is able to incorporate itself into the host’s genome (via integrase). Integrated 
into the host genome, the provirus may enter a latent infection state, whereby it is not transcribed 
for weeks or years. Alternatively, it may undergo transcription, form complete viruses and reach 
the surface of the cell, forming small “buds” that are able to leave the cell cytoplasm. If this 
budding program continues for some time, cell death will occur. Note that viral DNA is only 
transcribed in activated T-lymphocytes, meaning that an active infection will produce the 
cascade of viral transcription, budding, and cell death (14). 
 

Acute disease 
Early in infection, patients can be described as having acute disease. The first cells to be infected 
are mucosal lymphocytes, resulting in a significant decline in the number of lymphocytes. Once 
dendritic cells are infected, the dendritic cells begin migrating to lymph nodes in order to present 
the HIV antigens. Once in the lymph nodes, HIV is able to infect other lymphocytes and 
replicate heavily. The host mounts an immune response (both humoral and cell-mediated), which 
lowers detectible virus levels.  Flu-like symptoms develop in 50 to 70% of patients, which cell 
resolve upon control of the virus by the immune system, resulting in conversion from sero-
negative to seropositive. Although symptoms are minimal or flu-like during this period, 
transmissibility is at a maximum level due to heavy viremia. Once this decline in viremia occurs 
(after approximately 12 weeks), patients return to a relatively healthy state, and can be 
characterized as having chronic disease during this clinical latency period (14). 
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Chronic disease 
Patients in the clinical latency period have no or very few symptoms (such as mild opportunistic 
infections and lymphadenopathy). HIV replication and destruction continues in the lymph 
organs, which contain 90% of the body’s lymphocytes. This allows total CD4+ T-cell counts to 
drop gradually with minimal symptoms, since the majority of peripheral T-cells are uninfected. 
In addition to the gradual decline in CD4+ T-cells from direct virus-mediated cell lysis, HIV 
also: disrupts CD+ T-cell precursors, induces apoptosis in non-infected CD4+ T-cells, 
dysregulation cytokine production, disruption of lymphoid tissue structure, immune-mediated 
killing on CD4+ infected cells, and improper function of CD4+ infected T-cells. These events 
cause complete dysregulation of the immune system. During the chronic phase, as CD4+ T-cell 
lymphocyte level continue to decline, HIV-related symptoms may become more common. Fever, 
fatigue, or rashes may present. 
 

Severe disease 
Once CD4+ T-cells drop below 500 cells/µL of blood, more severe symptoms develop as the 
immune system is unable to fight off infections. This can be seen as a crisis phase. Fatigue, 
fever, weight loss and diarrhea are common. Other severe conditions, such as secondary 
neoplasms (eg, Kaposi’s sarcoma) and opportunistic infections can develop. There is a large 
number of common HIV-associated opportunistic infection, fungal, parasitic, bacterial and viral. 
These secondary manifestations of disease or a reading of 200 CD4+ T-cells/µL of blood places 
a patient into the category of AIDS, as opposed to chronic HIV infection. Without treatment, 
most patients will progress to AIDS in 7-10 years after infection, although there is a high range 
of variability. Untreated, AIDS is invariable fatal. 
 

Screening, prevention, and treatment of HIV/AIDS 
 
HIV prevention is a well-studied topic with a variety of potential interventions, including the 
distribution of condoms, educational campaigns, reduction in needle-sharing among injection 
drug users (IDUs), male circumcision, and prophylactic therapy among at-risk individuals (15). 
 
Voluntary HIV testing and counseling has been a strategy long recommended by public health 
officials. Diagnosis can be suspected from symptoms or sexual relations history, and is 
determined with an enzyme immunoassay (EIA) and confirmed with a Western blot (16). These 
test confirm the presence of an antibody response to HIV. Therefore, individuals in the acute 
phase, pre-seroconversion, will not be detected by this test. There is also a PCR-based test. 
 
Clinical monitoring of HIV patients is done through two primary mechanisms: the concentration 
of CD4+ T-cells in the blood, and an estimate of viral load. CD4 is better than viral load, due to 
lower costs (17). 
 
Treatment is accomplished with a drug cocktail targeting specific proteins necessary for the HIV 
lifecycle, so-called anti-retroviral therapy or ART.  
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Protease enzymes (such as those encoded by the pol gene) are used by HIV to clip non-
functional proenzyme into functional enzymes. Protease inhibitors (PI), such as indinavir and 
ritonavir, are used to disrupt this process. Unfortunately, there is a high level of P450 interaction, 
and they cause a metabolic-syndrome-like disease process, with dyslipidemia and insulin 
resistance, though less so in newer PIs like atazanavir (18). 
 
Nucleoside reverse-transcriptase inhibitors (NRTI), such as zidovudine/azidothymidine (AZT) 
and didanosine (DDI), prevent the production of DNA from the RNA virus by introducing a non-
functional nucleoside that is preferentially taken up by HIV’s reverse transcriptase, ending 
reverse transcription. Unfortunately, there is a high amount of resistance to AZT. When used 
with protease inhibitors, is referred to as highly active antiretroviral therapy (HAART). Non-
nucleoside reverse transcriptase inhibitors, such as nevirapine and efavirenz, disrupt the same 
pathway through a different mechanism (18). 
 
Fusion inhibitors (FIs), such as enfuvirtide or maraviroc, block entry of the HI virus into host 
cells by disturbing membrane machinery (such as gp41 or CCR5). Integrase inhibitors, such as 
ratelgravir, block the entry of the DNA provirus in the host genome (18). 
 
Currently, most patients receive a drug cocktail with medications of different mechanisms.  
Successful treatment can expand lifespan extensively, and reduce infectiousness by 96% (19). 
 

Epidemiology & economics in South Africa 
 
Over 22 million individuals have died from AIDS (hereafter referred to as HIV/AIDS) since it 
was recognized in 1981. Of the 33 million individuals living with HIV/AIDS in 2009, 70% were 
in Africa and 20% were in Asia.  
 
South Africa has had one of the highest prevalence’s of HIV/AIDS since the beginning of the 
early 1990s. There have been a few factors proposed for the disease’s continued persistence: the 
common age difference between sexual partners, multiple concurrent partnerships, widespread 
extreme poverty, and large amounts of migration and population mixing because of extractive 
industries (20,21). 
 
Although the epidemic was somewhat concentrated in the 1980’s among men who have sex with 
men (MSM), it became a generalized epidemic in the 1990’s. Between 1990 and 1994, 
prevalence among pregnant women rose from 0.8% to 7.6%, mostly through heterosexual 
contact (20). Prevalence in pregnant women rose to over 20% by 2000, and peaked in 2004 at 
30.2% (22). Mortality surged reducing the life expectancy by approximately 20 years (23).  
Prevalence of infection was much higher in black South Africans than white south Africans. 
 
Unfortunately, according to Karim et al, the South African response to the epidemic has been 
characterized by “denialism, ineptitude, obtuseness, and deliberate efforts to undermine scientific 
evidence as the basis for action.” Nevertheless ART was introduced in the public sector in 2004, 
and has made significant gains in reducing morbidity and mortality. From 2003 to 2011, life 
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expectancy in the KwaZulu-Natal province for adults rose 11.3 years, to 60.5, largely due to 
ART scale-up (24). 
 
Currently, HIV remains an enormous problem, with 17.9% of the 14-54yo population infected 
and 240,000 yearly AIDS-related deaths estimated for 2012 (4). 
 
Previous modeling attempts 
 
Unlike DM, HIV/AIDS has a long history of being modeled with another disease – tuberculosis. 
In addition, HIV models have been well-developed over the last decade. Here, I will review one 
HIV-only model, which utilizes methodology common to many HIV models. More detailed 
models of HIV with TB are discussed below, in the TB section. 
 
Granich et al built a deterministic model to predict the outcomes of immediate antiretroviral 
therapy on population-level epidemic in South Africa (25). This model was used later with other 
analyses (26). They did not include homosexual transmission, as most transmission is confined 
to heterosexual interactions in South Africa. They created four HIV/AIDS “progression of 
disease” states, defined by CD4+ T-cell counts, as well as a separate “acute” and “final” state, 
both with marked increases in transmissibility. The model was calibrated by fitting it to 2005 
national data. They included a screening rate (and subsequent migration to treatment states), 
treatment drop-outs from refusal, treatment failure, second-line treatment states, and an 
aggregate reduction in HIV transmissibility due to various prevention interventions (e.g. condom 
distribution). Transmission was calculated with a stochastic model calibrated to South African 
national statistics, and accounted for population HIV/AIDS prevalence as well as treatment 
status (25). 
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Diabetes mellitus 

Pathogenesis & pathophysiology 

Type 1 diabetes mellitus 
Insulin is normally produced by pancreatic Beta cells. In type 1 diabetes mellitus (T1DM, or 
insulin-dependent DM), an agent on the surface of beta cells becomes identified as an antigen 
(limited evidence suggest that a beta-cell enzyme or insulin itself may be these antigens). It is 
unclear how this component losses its ability to be recognized as normal. Regardless, the islet 
cells are invaded by T lymphocytes and are necrotized. This process is called insulitis. 
Additional pathways for beta cell destruction include locally produced cytokines, as well as 
antibodies. It is unclear whether antibodies are produced directly to beta cell antigens, or if it is a 
byproduct of beta cell destruction by T lymphocytes. Classic manifestations of DM show up 
after ~90% of beta cells have been destroyed.  
 
A lack of insulin creates a condition where blood glucose is unable to enter cells and is retained 
in the plasma of the blood, forming a hyperglycemic mixture of blood. The insulin deficiency 
causes metabolic imbalance by essentially promoting a starving state: muscle degradation, 
gluconeogenesis, lipolysis are all activated. Ketoacidosis becomes a primary complication. 
 
Buildup of glucose in blood increases its osmolality. This creates a large osmotic gradient; 
passing blood extracts water from the cells and interstitial space. Thus patients present with 
polyruria, polydipsia, polyphagia and glycosuria, and are normally identified at a young age. 
 
In summary, T1DM results in a lack of insulin secondary to immune-modulated beta-cell 
destruction. 

Type 2 diabetes mellitus 
Type 2 diabetes is a far more common occurrence, and has a different pathogenesis. T2DM is 
often found in older, obese individuals and is characterized by a loss of sensitivity to insulin.  
Macrovascular disease 
The hyperglycemic state of diabetes results in glycosylation of many proteins that are not 
normally glycosylated. A notable one is hemoglobin, where long exposure to large amounts of 
blood glucose causes a glycosylation of HbA to HbA1C. The process is called non-enzymatic 
glycosylation (NEG), and produces advanced glycation end products, or AGEs. 
 
Another common target of glycosylation are extracellular matrix proteins (such as collagen) and 
vessel endothelial basement membrane. This sets off a cascade of pathways: lipids get stuck in 
the matrix, plasma proteins bind to it, a coagulation cascade starts, macrophages are attracted the 
site, and even more extra-cellular matrix is produced.  This leads to atherosclerosis, or the 
formation of plaques in the vessel. Atherosclerosis is an artery wall thickening as a result of the 
accumulation of fatty materials. It is characterized by a chronic inflammatory response in the 
walls of arteries, caused largely by the accumulation of macrophages and white blood cells and 
promoted by low-density lipoproteins (LDLs).  
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This increase in atherosclerosis puts individuals at risk for myocardial infraction, which is the 
largest cause of deaths in diabetics. 
 

Microvascular disease 
Thickening of the vascular wall with a non-cellular protein substance (referred to as hyaline 
arteriolosclerosis) reduces the size of the artery’s lumen, thereby increasing blood pressure. 
Therefore, hypertension is a common complication of diabetes.  Additionally, many endothelial 
cells, such as those forming the basement membranes of different tissues, are not insulin-
dependent and therefore absorb much of the glucose with which they are bathed in. This creates 
huge concentrations of intracellular glucose, and cells respond by creating more membrane 
glycoproteins. This overproduction of membrane glycoproteins thickens the membranes 
significantly. Although thicker, the membranes become more permeable to protein.   
 
This “microangiopathy” (microvascular disease) is responsible for the other major complications 
of diabetes: diabetic nephropathy, retinopathy, and neuropathy, among others. 

Diabetic nephropathy 
Diabetic nephropathy includes diffuse glomerulosclerosis (hardening of the glomerulus in the 
kidney) and nodular glomerulosclerosis (development of hyaline lesions in glomerulus loops). 
These are also called Kimmelstiel-Wilson lesions.  

Diabetic retinopathy 
Diabetic retinopathy has two stages: non-proliferative and proliferative: Non-proliferative 
retinopathy is characterized by damage to vasculature of retina. Some vision problems may 
develop. Proliferative retinopathy occurs as body attempts to build new vasculature. This causes 
problems, and can lead to blindness. 

Diabetic neuropathy 
Diabetic neuropathy is caused by damage to the vessels which supply the nerves. Damage can be 
within the autonomic or voluntary pathways; pain, sensation and afferent.    

 Diabetic foot 
Although not well understood, DM slows the healing process. Along with a loss of sensation in 
the feet, it is common for diabetics to develop foot ulcers that are resistant to healing.  
 

Screening, prevention, and treatment 
 
Since the exact etiology of type 1 diabetes is poorly characterized, there are no known 
preventative options. On the other hand, prevention of type 2 diabetes is a well-studied topic that 
includes many behavioral interventions aimed at reducing the amount of simple carbohydrate 
intake and the promotion of active lifestyles (27). 
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Treatment of DM is aimed at reducing the symptoms of active hyperglycemia and reducing the 
risk of macro and microvascular complications. 
 
Similarly to prevention, nutrition is one of the main treatment strategies (so-called medical 
nutrition therapy, or MNT). DM patients are encouraged to eat a diet low in carbohydrates and 
pursue an active lifestyle. 
 
Pharmacological treatment for type 1 and type 2 diabetes can involve the use of insulin (sort or 
long-acting), to replace or supplement endogenously produced insulin. One class of medications 
relies on increasing the amount of insulin released by the pancreas, the insulin secretagogues. 
These drugs (such as glyburide, glipizide, and repaglinide) imitate glucose in the beta cell, 
causing a cascade that results in the release of insulin (18). 
 
The most common non-insulin treatment for DM is metformin, a biguanide. Metformin’s 
mechanism is still not fully understood, but is believed to increase peripheral intake of glucose, 
as well as reduce hepatic and renal gluconeogenesis (18). 
 
The thiazolidinediones (such as rosiglitazone) bypass traditional pharmacologic targets, and 
activate a glucose-absorbing program in peripheral tissue on the DNA itself (18). Many other 
treatments for DM exist, and are continually in development, but those described above are core 
to the management of DM in the developing world.  
 
Screening DM patients for TB could also advanced detection and treatment (28). Screening is 
currently not standard practice in some settings, and finding ideal cost-effective strategy has not 
been studied. Screening is suggested by some guidelines (eg ATS & CDC 2000).  
 

Epidemiology & economics in South Africa 
 
Globally, in 2013, it was estimated that there was 382 million individuals living with diabetes, 
estimated to rise to 592 million by 2035, and 5.1 million diabetes-related deaths (6). More than 
80% of adults with diabetes live in low and middle-income nations and is often found in younger 
individuals in these nations (29). 
 
Diabetes prevalence in South Africa has been steadily rising due to increased urbanization, 
Western-style diets, and sedentary lifestyle (30,31). This is especially important considering 
South Africa’s already-burdened health system and the high costs of diabetes complications and 
treatment, estimated to be approximately 11,400 international dollars per diabetes case per year, 
in similar nations (32).  Prevalence of diabetes is estimated to be 8.3% in South Africa (2.7 
million people), 57% of which are undiagnosed (6). Betram et al attempted to use multiple 
studies to estimate the age-adjusted prevalence within South Africa, showing that prevalence 
increased as patients aged (33). 
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Berta et al also estimated the incidence of diabetic to be 126 per 100,000 population across all 
ages, but were unable to provide estimates for neuropathy or diabetic foot. There were 83,114 
estimated diabetes-related deaths in 2011. Type I diabetes is rare, with an incidence of 0.8 cases 
in 0-14yo per 100,000 people per year (29). 
 

Previous modeling attempts 
 
Since the majority of DM incurred worldwide is type 2, the majority of modeling efforts 
undertaken have been focused on T2DM.  
 
Type 2 diabetes modeling is complex, and involves an understanding of demographic shifts, as 
well as shifts in risk factors, such as obesity, nutrition, and physical activity. Additionally, the 
complexity and variety of diabetic complications makes modeling more challenging. Also, due to 
the relative novelty of diabetes epidemics in Africa, diabetes-specific models are lacking for 
many African nations, including South Africa.  
 
One oft-cited article by Huang et al, attempts to predict trends of DMT2 in the United States. 
They created a Markov-based model that accounted for the variables of diabetes status and BMI. 
They did not account for age, gender, or race/ethnicity. Individuals “progress” towards diabetes 
with a variable that was determined through calibration to estimates from the National Health 
Interview Survey (NHIS). Once theoretical individuals become diabetic, they can develop 
various complications: retinopathy, nephropathy, neuropathy, coronary heart disease, and CVAs. 
Each of these complications can contribute to the risk of mortality.  
 
In 2010, Boyle et al continued modeling DMT2 in the US, placing non-diabetics into two states 
of risk, based on national estimates of glucose control and obesity. Previously, Honeycutt & 
Boyel et al completed a similar analysis, and stratified states by age (in one-year intervals from 
0-99), race/ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, other), and sex (male, 
female)– this allowed them to predict the effect of the demographic shifts occurring in the United 
States to an older and more ethnically diverse population. A logistic regression model was made 
using NHIS data to estimate the risk of diabetes for a patient based on these demographic 
characteristics. Changes in national demographics was accomplished through different age 
distributions for ethnicities and immigration data. Race, age, and sex did not contribute to 
diabetes-specific mortality risk. (34) This method of modeling could be very useful in a South 
African context, considering that some South African ethnicities (black, colored/bruinmense) are 
at a higher risk of developing HIV, TB, and DM compared to white South Africans (21,35). 
 
One of the largest and most comprehensive diabetes models to date is the CORE diabetes model, 
created by the Center for Outcomes Research, a division of the for-profit ISM Health. The 
CORE model is not designed to evaluate changing prevalence or incidence within a population, 
but is mean as a tool to predict the clinical outcomes and costs incurred of a specific cohort of T1 
or T2 diabetic patients. There is a high level of detail in modeling the specific diabetic 
complications, such as neuropathy or retinopathy. They used a Markov chain to specify specific 
essential states, but found that the “memory-less” quality of them did not allow for calculation of 
interaction between different complications (i.e. how does dyslipidemia affect CVD and 
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neuropathy?). In order to do so, since Markov states are mutually exclusive, they would need to 
create a new state for every combination of potential disease state, which is computationally 
intensive and difficult to manage, as previously described. To include this feature, they 
developed a novel method – they broke each complication into separate sub-models and 
incorporated a stochastic Monte Carlo method, whereby individuals progress through each model 
in parallel. This allowed interaction between conditions to be accounted for in a computationally 
feasible manner. In total, they modeled 15 complications: “angina, cataract, congestive heart 
failure, foot ulcer and amputation, hypoglycemia, ketoacidosis, lactic acidosis, macular edema, 
myocardial infarction, nephropathy, neuropathy, peripheral vascular disease, retinopathy, stroke 
and non-specific mortality.” (36) This approach could be potentially useful to account for the 
specific interactions understood in our approach to HIV, TB and DM in South Africa.  
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Tuberculosis 

Pathogenesis & pathophysiology 

Overview 
TB is one of the oldest diseases in human history, and may have even infected hominids, and is 
characterized by an infection of the lung parenchyma (pulmonary TB), which can migrate to 
other organs (extra-pulmonary TB) (16). 
 
The etiologic agent of TB is a mycobacterium of the order Actinomycetales. The most common 
specific agent is M. tuberculosis hominis, a rod-shaped, thin bacterium, which is an obligate 
aerobe. The specific structure of the waxy cell wall (high concentration of long-chain fatty acids 
called mycolic acids) makes them particularly good at avoiding common antibiotic therapy. They 
are gram negative and cannot be decolorized by acid alcohol, classifying them as acid-fast bacilli 
(AFB). The infection of TB is unique among bacteria, as there are no endotoxins or exotoxins; 
all of the damage done to patients occurs through aggressive attack by the host immune system. 
 
Infection almost always occurs through inhalation of infectious nuclei. Transmissibility of TB is 
modified by a variety of factors, including: the infectiousness of the individual with TB, the 
duration of exposure, and environment of the contact (i.e. crowded rooms). Historically, and 
today, poverty has been recognized as a risk factor. 
 
After inhalation, the majority of the bacilli are captured by the upper airways and removed via 
ciliated mucosal cells. A small portion, make it to the alveoli where they are engulfed by 
inactivated alveolar macrophages. A portion of patients clear the infection at this point, before 
cell-mediated immunity is activated. These patients will not test positive on the skin-diagnostic 
(“PPD”) test.  
 
The macrophages begin a program designed to auto-phagocytize the bacilli, but TB is able to 
block this pathway and prevent autophagy. If completed, the bacilli begin replication, filling the 
macrophage until it lyses. This recruits other phagocytic cells, which engulf the bacilli and the 
remaining contents of the original macrophage, facilitating the spread of infection throughout the 
host. These recruited macrophage create the initial granuloma in TB (tubercle), called a Ghon 
focus. Eventually, dendritic cells become infected with bacilli, where they migrate to lymph 
nodes and begin the antigen presentation process. This creates granulomas in the lymph nodes, 
known as Ghon complexes.  

Primary disease 
Once a host has activated cell-mediated immunity (and is thus positive by PPD), they can be 
classified as having primary TB disease. Patients with primary disease often present with no 
symptoms or fever and some pleuritic chest pain, and are minimally infectious. In most 
instances, the disease resolves itself (leading to a latent infection) leaving only a small, telltale 
calcified nodule. Primary disease may progress to clinical manifestations in young children and 
those that are immune-compromised. The site of the lesion increases in size and can results in a 
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pleural effusion in two-thirds of patients. In children, may develop hilar or paratracheal 
lymphadenopathy.  
 
Pathophysiologically, there are two emerging responses that begin after two to four weeks of 
infection: the macrophage-activating response, and the tissue-damaging response. 
 
Macrophage-activating response concerns the activation of macrophages to kill bacilli. It is a T-
cell mediated process, whereby APCs present antigen fragments to T-cells, which produce 
lymphokines. These lymphokines then allow macrophages to begin neutralizing the tubercle, 
causing necrosis. This necrosis grossly appears like soft cheese, and is thus referred to as caseous 
necrosis.  
 
Often the macrophage-activating response is weak and not sufficient to remove all bacilli, so the 
immune system relies on this more intense system of destruction, called the tissue-damaging 
response. Through a delayed-type hypersensitivity (type IV), infected un-activated macrophages 
are killed, along with tissue around them. As tubercles grow, more peripheral tissue is destroyed 
and the necrotic caseous core liquefies. This creates cavities in the lungs, where high-
concentration bacilli liquid is free to drain into the airways to be transmitted to an additional 
host. 
 
Additionally, the bacilli that were transported back to regional lymph nodes are able to enter the 
venous system (“Occult hematogenous dissemination”), where they are able to develop lesions at 
other regions of the lungs or outside of the lungs (extra-pulmonary). 

Latent tuberculosis infection  
Most patients that undergo the process of primary TB disease will contain their infection and 
return to an asymptomatic state. However, there are often live bacilli contained with the 
granulomas of the lungs or other tissue. This condition is referred to as latent TB infection 
(LTBI). Contained LTBI is associated with a 79% decreased risk of reinfection (37). 

Adult-type 
Originally it was thought that this variant of TB was exclusively due to reactivation, whereby 
dormant bacilli in granulomas would escape after an immunosuppressive event, but new 
evidence exists which suggest that it may be mostly re-infections. Although not well understood, 
re-infection is associated with a more severe disease state. Regardless, this variant of TB it is 
often referred to as secondary or post-primary TB, or active TB as opposed to the 
aforementioned latent TB. Developing active TB after infection is mostly determined by 
immunological factors. Approximately 10% of individuals with dormant TB will develop active 
disease over the course of their life; approximately 50% of these diseases will develop with the 
first year and a half after infection (37). 
 
In general adult-type TB consists of an area of cavitation, often near the apex of the lungs, with 
liquefied necrosis that spills into the airway allowing passage to other areas of the lungs. Clinical 
manifestations vary widely. Some patients present with massive cavitation and pneumonia, some 
enter a chronic state, others spontaneously heal. Early symptoms include night sweats from 
spiking fever, weight loss, anorexia, and weakness. Cough develops in 90% of patients, 
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sometimes leading to a productive cough with blood.  Most will respond to treatment within a 
few weeks. 
 
Having active disease is associated with a three to four-fold risk of progressing to active disease 
upon reinfection (38,39). 

Extrapulmonary TB 
Once TB has access to the systemic circulation, it is able to disseminate itself to various organs 
of the host. It is more common in HIV-associated TB (40,41). Common sites of colonization 
include: lymph nodes, pleura, upper airways, genitourinary system, skeletal system (including 
the vertebrae – so-called Pott’s disease), the CNS, and gastrointestinal system, among others.  

Miliary TB 
A specific type of extrapulmonary TB is characterized by widespread infection into many organs 
and small (1-5mm) granulomas. It occurs in less than 2% of TB cases, but accounts of up to 20% 
of extrapulmonary cases (42). 

Drug resistance 
Particular concerning is the continued development of resistant strains by tuberculosis bacilli. 
Two commonly-used medications, isoniazid and rifampicin have lost effectiveness against 
strains of bacilli, referred to as isoniazid-resistant TB (IR-TB) and rifampicin-resistant TB (RR-
TB). Strains that have developed resistance to both of these medications are referred to as multi-
drugs resistant TB (MDR-TB), and if resistant to an additional second-line therapy referred to as 
extensively drug-resistant TB (XDR-TB) (1). 

Transmission 
Transmissibility has been noted to be high in patients whose sputum contains AFB visible by 
microscopy. Patients with extrapulmonary disease without concomitant pulmonary TB  have 
much lower rates of transmissibility, as pulmonary TB is needed to produced aerosolized 
disease. The highest category of infectious patients are those with cavitary pulmonary TB and 
laryngeal TB, whose sputum contain 105-107 AFB/mL. Smear-negative/culture-positive TB 
patients have lower risk of transmission.  
 

Screening, prevention, and treatment of TB 

Prevention 
 
Bacille-Calmette-Guerin (BCG) vaccine contains live organisms, and confers an approximately 
50% prevention against TB (43). Obviously, prevention can also entail reducing indoor contact 
between infected and susceptible individuals. 
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Screening 
 
For latent TB, purified protein derivative (PPD) is used to test for exposure. A small sample of 
tuberculin protein is inserted into the epidermis, and will trigger a type IV hypersensitivity 
reaction if an individual has been previously exposed. There are different grades for different 
risk levels. This test confirms exposure, not active disease (16). Screening for latent TB is 
appropriate depending on risk group, and is completed with PPD and/or interferon-gamma 
release assay (44). 
 
For active TB, sputum microscopy and drug-susceptibility testing are standardly used to 
diagnose active TB, as well as Interferon-gamma release assays. Additionally, histopathological 
inspection of a biopsy, radiography, and PCR methods can be used to assist in diagnosis. Xpert 
MTB/RIF is a new diagnostic tool that utilizes DNA amplification techniques to test for the 
presence of M. tuberculosis, as well as drug resistance to rifampicin. 

Treatment 
 
Latent infections are treated with isoniazid for 9 months. Patients with HIV in nations with high 
TB prevalence may be treated for longer. Prophylactic treatment is 6-9 months of isoniazid, 
which can prevent TB in persons with infection but no clinical symptoms. 
 
Active disease is treated differently. Standard treatment for uncomplicated pulmonary TB 
generally includes a combination therapy of isoniazid, rifampin, and pyrazinamide for two 
months, followed by four months of isoniazid and rifampin. For areas where MDR-TB is more 
common (>4%), ethambutol or streptomycin can be added.  
 

Epidemiology & economics in South Africa 
 
The WHO estimated that were 9.4 million (8.9–9.9 million) new cases of TB in 2009, 95% in 
developing nations. Additionally, the WHO estimated there were 1.7 million deaths (1.5–1.9 
million) due to TB, 96% of which are from developing nations (16). Overall, TB incidence has 
been falling at less than 1% per year since 2004 (45). 
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In South Africa, it is estimated that there are 500,000 active TB cases per year, representing 1% 
of the general population. This number has increased five-fold from 1990 to 2011, and continues 
to rise, according to the WHO (46). Currently, SA has the highest number of incident TB cases 
per capita and highest TB prevalence of all 22 nations with high TB burdens (45). This continual 
rise can be largely attributed to the high burden of HIV/AIDS, a large risk factor for TB in SA 
(47). Indeed, SA has the highest number of HIV-associated cases of TB worldwide, and the 
second-highest number of diagnosed MDR-TB cases (45). 
 
Beyond being driven by the HIV/AIDS epidemic, economic and social conditions in SA, largely 
created by years of apartheid, have predisposed many individuals to TB (21). Additionally, the 
large workforce in extractive industries such as mining have exposed many workers to risk 
factors, such as overcrowding, air pollution, and poor nutition (21). However, in 1996, two years 
after the formation of the current South African government, the National TB Control Program 
was created, utilizing a directly-observed therapy (DOTS) approach. In 2011, SA developed the 
integrated Nation Strategic Plan for HIV, STIs, and TB (2012-2016), which aims to halve TB 
incidence and mortality by 2016, as well as reduce the number of incident TB cases and deaths to 
zero by 2032 (48). 

Previous TB and HIV modeling attempts 
 
Although attempts to model more than two diseases are sparse, HIV and TB have been modeled 
together extensively, as it is difficult to model TB alone in a setting of high HIV prevalence. A 
review by Houben et al identified 69 different manuscripts published before September 2012 
which describe attempts to model TB epidemics (49). They argue that TB models so far have 
contributed to scientific understanding in four general areas: the natural history of TB in a high 
HIV prevalence setting, antiretroviral therapy and isoniazid preventive therapy, impact of 
additional interventions for TB-HIV, and implementations of interventions for TB. These models 
have used a variety of methodologies, as reviewed by Houben. Methodologies utilized included: 
population-based compartmental models with a dynamic transmission consideration, population-
based models without the dynamic transmission component, cost-effectiveness decision tree 
models, Markov chain simulations, and compartmental models that evaluate intra-host disease 
dynamics.  Some investigations have mixed methods, such as decision trees and Markov chains.  
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Regardless of the exact model type, most of the past models have developed compartments to 
represent the various states of disease, pathogenesis, and transmission. In order to better 
understand these commonly-used methods for TB, we will review a series of investigations. 
 
In 2014, Denkinger and colleagues created a compartmental model with a dynamic 
transmissibility to evaluate the usefulness in detection of isoniazid-resistant strains of TB (50). 
The model evaluated 100,000 individuals distributed into a total of 20 states. One state 
represented uninfected susceptible individuals, one represented all-cause mortality, and there 
were 6 states representing disease: latent TB infection, new active TB – No access to diagnostics, 
new active TB – access to diagnostics, failure, treated/cured, and previously treated active TB – 
no access to diagnostics. These six disease states were then tripled, representing three drug 
sensitivity types: sensitive, isoniazid-resistant, and MDR. When susceptible individuals are 
infected, they were moved to a latent of active TB state. Latent states incorporated the risk of re-
activation to active TB.  The risk of becoming infected was based on the number of infectious 
individuals and the infectivity of their strain.  Individuals were then moved into a “diagnosed” 
state at a rate of diagnostic events. Once in active disease, individuals were categorized into three 
clinical categories: cured/recovered, active, and failed. If an individual is re-infected, they move 
to a state of active TB that was previously treated. All states had a baseline mortality, and active 
TB states included a TB mortality. HIV or DM status was not evaluated. 
 

 
 
In 2014, Pretorius et al used three different epidemiological models to predict the effects of HIV 
treatment policies on tuberculosis in South Africa: (1) the Menzies model, a specific and detailed 
HIV-TB model (51) (2) the PopART model, a individual-based model which includes a patient 
history of infections and (3) the Goals model, which used another model (Spectrum) to produce 
HIV estimates, and used these estimates to form a regression model. For HIV, all of the models 
defined a CD4 count for individuals; the Menzies uses a continuous variable, while the other two 
used categories.  
 
Modeling of TB varied between the two models (Menzies and PopART) with detailed modeling. 
In the Menzies, there were eight states of TB: susceptible, latent/recovered, Active smear-
positive untreated, Active smear-negative untreated, Active smear-positive DOTS, Active smear-
negative DOTS, Active smear-positive non-DOTS treatment, Active smear-negative non-DOTS 
treatment. Subdivisions were created for the different resistance: (1) sensitive (2) isoniazid 
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resistant (INH) (3) rifampicin resistant (RIF), (4) isoniazid and rifampicin resistant (MDR), and 
(5) resistance to isoniazid and rifampicin plus one other drug (XDR). These subcategories, 
combined with HIV statuses, produced a total of 580 potential states. The PopART model 
simplified the TB modeling by excluding drug resistance, and having only one level of treatment. 
Therefore only susceptible, latent, active smear negative treated and active smear positive 
untreated were modeled. In both of the models, transition to active was possible through primary 
progressive disease, re-activation of latent disease, or re-infection. Recovery was possible 
through self-cure or treatment. Diagnostics were handled wither through a detailed algorithm 
(Menzies) or a simplified case-detection variable (PopART and Goals). Treatment was 
approximately DOTS in all three models, and non-DOTS in one (Menzies). Collectively, risk 
factors for TB included infection history, treatment history, HIV status, CD4 count, and ART 
status.   
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INTERACTIONS 
 
HIV-related and ARV-related diabetes 
 
The incidence of onset diabetes in HIV patients has been contested. Many of the large, multi-
center trials (mostly in European, or European-descendant populations) earlier in the epidemic 
pointed to an increasing likelihood of becoming diabetic with comorbid HIV infection. For 
example, the Multicenter AIDS Cohort Study found a more than 4-fold increases in DM 
incidence in HIV patients. However, other studies have found no association, (52,53) or even a 
reduction in risk (54). 
 
In a 2014 article, Nix and Tien argue that much of this heterogeneity can be attributed to the 
metabolic toxicity of older-generation protease inhibitors and thymidine analogs. These older 
drugs have a well-documented effect on insulin resistance, and are rarely used in ART today. 
They also suggest that some of the older findings from large-cohort studies would not be valid 
using a newer definition of diabetes (55). 
 
Additionally, a systematic review of HIV metabolic issues in sub-Saharan Africa found no 
association between HIV and DM (56). They attributed this to either differences in sub-Saharan 
population from those studied in the large multi-center cohorts, or from small study size in 
African studies. 
 
Regardless of the direct effect of ART on DM incidence, ART promotes an extended lifespan – 
putting individuals at risk of developing diabetes. One modeling exercise in South Africa, by 
Levitt and Bradshaw, looked at this relationship (57). 
 
HIV- and ART-related vascular disease 
 
HIV is associated with a large shift in immunological function. One of the emerging discoveries 
is the amount of inflammation patients with HIV experience. This so-called HIV-associated 
inflammation has been observed in association with metabolic derangements, such as metabolic 
syndrome, lipodystrophy, and atherosclerosis.  
 
Metabolic syndrome has been of particular interest. Unfortunately, the evidence is unclear 
whether HIV is associated with metabolic syndrome – many studies, particularly in Latin 
America or those with patients on the older generation of ART, suggest a strong association. 
Other large cohort studies have shown a decreased incidence, according to Nix and Tien (55). 
 
Regardless of the relationship with metabolic syndrome, it does appear that HIV is associated 
with an increased risk of cardiovascular disease and stroke, likely through poorly-understood 
inflammatory pathways.  One prospective study of 23,468 patients with HIV infection found a 
26% increase in risk of myocardial infarction for each year of exposure to ART (58). A 2012 
meta-analysis found a relative risk of 1.61 for CVD in HIV-infected, untreated individuals 
compared to HIV-negative individuals, and a 2-fold increase risk of CVD for HIV-infected, 
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treated individuals compared to HIV-negative indivudals (59). Though there have been some 
criticism of this study not taking into account potential confounders and inadequate controls (60). 
A 2013 meta-analysis of African HIV-related CVD predictors found an elevated level of CVD 
risk factors compared to the uninfected population, but did not provide relative risk estimates for 
specific health outcomes or events (56). 
 
TB in HIV patients 
 
Low CD4 counts have been associated with a higher susceptibility to TB. In a 1997 study in 
South African miners, HIV prevalence was associated with a 2.9 increased relative-risk (2.5–3.4) 
of TB seroconversion for untreated individuals in their first year of infection, and an RR of 2.0 
(1.4–3.1) afterward. A study in Mwanza, Tanzania found a 8.3 RR (6.4-11.0) (61). 
 
Similarly to HIV-negative individuals, HIV-positive patients are more likely to have symptoms 
of pulmonary tuberculosis that extra-pulmonary TB. They present with similar signs and 
symptoms, but have more severe disease as their CD4 count decreases. One notable exception is 
the cavitations formed by the tissue-damaging response; in patients with extremely low CD4 
counts, cavitations are more rare (because there is no immune function able to destroy the lung 
tissue via the tissue-damaging response).   
 
That being said, extra-pulmonary TB is much more common in HIV-infected individuals. A 
2013 meta-analysis found an RR of 1.3 (1.05-1.6) (62). This extra-pulmonary TB is more likely 
to be concomitant pulmonary TB as well (63). 
 
HIV is associated with a more severe TB progression (64–66). Additionally, HIV has been 
shown to cause and increased likelihood of death due to TB (46,67,68). A twelve-year study in 
San Francisco found a 2-fold difference in TB mortality between HIV-positive and HIV-negative 
groups. A 1995 study in Côte d'Ivoire found an increasing risk of TB mortality associated with 
declining CD4 counts, resulting in risks of death 12-28 times higher than HIV-negative 
populations (69). This association goes both ways – HIV-positive individuals infected with TB 
are at a higher risk of death than HIV-positive individuals with no TB. A 2010 meta-analysis 
found a RR of 1.8 (1.4-2.3) (70). though there were noted methodological concerns with the 
meta-analysis (71). 
 
People living with HIV are also at a higher risk of recurrence, either through re-activation or re-
infection (72). However, there is evidence that people living with HIV are no more intrinsically 
infectious than those without HIV (73). 
 
ARVs in HIV + TB patients 
A 2012 meta-analysis suggested that ARVs were effective in reducing the rate at which patients 
progressed to active TB disease. Suthar et al found a reduction in TB incidence of 16% (7-36%) 
in individuals with CD4 counts below 200 cells/ml, 34% (19-60%) for between 200 to 350 
cells/ml, and 43% (30-63%) for those with greater than 350 cells/ml (74). Modelers, particularly 
Williams BG, have used this data to predict that ART would have positive effects on reducing 
overall TB incidence (75,76). However, model estimates have varied widely – from predicting a 
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98% reduction in HIV-associated TB, to relatively minor impacts in other models (77–79). One 
key parameter is the acute phase of infection, where HIV infectiousness is highest although 
relatively few individuals will be on treatment. 
 

Immune reconstitution inflammatory syndrome 
Immune reconstitution inflammatory syndrome (IRIS) is a condition whereby a patient with 
immunosuppression, such as an individual with HIV/AIDS, is unable to fight off a opportunistic 
infection (commonly Cryptococcus neoformans or M. tuberculosis). Without immune system, 
there are no symptoms. When individuals are started on ARVs, however, their infections become 
symptomatic.  
 
A 2010 meta-analysis found that 16.7% (2.3-50.7) of individuals with TB starting ART 
experienced IRIS, and 3.2% (0.7-9.2%) died from the condition. They additionally found a 
relationship between CD4-count and IRIS; individuals with lower CD4 counts upon ART 
initiation were more at risk of developing IRIS (80).  
 
In this way, ART may decrease overall TB transmission or risk of acquisition, but may 
accelerate active TB disease. Other related condition names include unmasking tuberculosis-
associated IRIS, ART-associated tuberculosis, and tuberculosis-associated IRIS. 
 

DM-related tuberculosis 

Increased susceptibility 
 
Much of the DM epidemic is happening in quickly-developing countries, where TB is endemic. 
A 2010 systematic review of 18 studies on screening for DM in patients with TB found a 1.9% to 
35% prevalence of DM in patients with TB (81). 
 
A 2008 meta-analysis found a 3-fold increase in TB cases in DM patients (RR = 3.11, 95% CI 
2.27–4.26) compare to non-diabetic individuals (2). They also found that the RR increased in 
nations with higher TB incidence and young people were particularly at risk. It has been well-
established that HIV/AIDS constitutes a large risk at an individual level, but the emerging DM 
epidemic may be more of a risk-factor than HIV at a population level (2). 
 
In HIV-infected individuals, it is unclear whether having comorbid DM increases the chance of 
TB. In one study of Asian men on ART, blood glucose was associated with risk of TB (82). 
However, one study in Tanzania found no additional risk of TB from co-morbid DM (83). Only 
one other study has evaluated individuals with the “triple burden” of HIV, TB and DM (84). 
 
There are various potential physiological explanations for increased susceptibility. There are a 
few specific phagocytic cells that are responsible for controlling our response to TB, mainly 
alveolar macrophages. Diabetes is known to affect chemotaxis, macrophage activation, 
phagocytosis, and antigen presentation in these cells (85). Another potential explanation 
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concerns diabetic derangement of interferon-gamma production in T-cells, which is a cytokine 
essential to cell-mediated immunity (85,86). 
 
Other studies have indicated that glucose control is one of the important predictors of TB 
susceptibility.  

New diagnosis 
Type 2 DM is commonly not diagnosed in patients with TB. A study Indonesia found diabetes is 
newly-diagnosed in 61% of TB patients (87). 

Primary vs reactivated 
Some have hypothesized that there is a unique presentation of TB associated with diabetes – 
such as an association with primary or reactivation TB. However, a study in Mexico by Ponce-
de-Leon et al in 2004 suggests that this association cannot be found (88). 

Sputum-smear 
There is conflicting evidence that DM is associated with smear-positive or smear-negative 
tuberculosis (89). 

Radiologic findings 
Studies about radiological findings of tuberculosis in diabetes patients have found conflicting 
results (89). 

Extra-pulmonary TB 
Extra-pulmonary TB is less common in DM patients than in those without DM (89). This was 
confirmed by two studies in India, which showed that DM increased risk of pulmonary TB but 
not extra-pulmonary TB, in contrast with HIV where extra-pulmonary effects are more common 
(84, 90). 

Body weight and age 
Overall, TB patients with DM are more likely to be older, obese, have a sedentary lifestyle, and a 
previous family history of diabetes, all of which are related to DM (91). 

Culture conversion 
There is conflicting evidence about the impact of DM on time of TB culture conversion (89). 
Overall, evidence suggests that sputum conversion takes a modestly longer time but is similar to 
non-diabetics by 2-3 months of treatment (85). 

TB bacterial treatment outcomes 
There is conflicting evidence about the impact of DM on TB treatment outcomes from a 
bacteriology standpoint (89). 
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TB treatment failure and death 
Evidence points to an increased risk of treatment failure and mortality among TB patients with 
diabetes, but it is unclear whether this is due to a more aggressive DM-related tuberculosis or 
comorbidities related to diabetes alone (85). A 2011 meta-analysis found a RR of 1.69  (1.36 – 
2.12) for the combined outcome of treatment failure or death, and an RR of 3.89 (2.43-6.23) for 
relapse (3). Potential reasons for higher death include: adherence issues, higher MDR-TB, and 
lower plasma concentration of TB drugs.  

MDR TB 
There is conflicting evidence that DM is associated more with MDR-TB (89). 

Pre-diabetes and TB 
There is evidence that pre-diabetes is also associated with TB. One study in India found that 
24.5% of TB patients had prediabetes by the WHO criteria – but it is unclear whether TB was a 
cause or an effect of prediabetes in these patients (90). 

Severity of DM linked to TB 
Screening patients with TB for DM could improve detection and improve the timeliness of 
treatment, and may play a role in preventing DM (28).  Screening is currently not standard 
practice in some settings, and finding ideal cost-effective strategy has not been studied. In a 2010 
systematic review of twelve studies on screening for TB in people with DM, researchers found a 
1.7% to 36% prevalence of TB in DM patients (81).  Prophylactic TB medication for patients 
with DM was reported in two studies cited in the 2010 systematic review; unfortunately neither 
study was methodologically rigorous enough to warrant a recommendation for prophylaxis.  

Other concerns 
One additional interaction between the three diseases is a concern about sepsis, which is a 
potential complication of HIV and DM. Unfortunately, the evidence seems inconclusive (92). 
 
HIV replication is increased by tuberculosis infections, resulting in an increased mortality. TB 
patients are therefore placed on ARV medication earlier than TB-negative HIV patients (44). 
Tuberculosis infection leads to higher HIV-related deaths, as noted above. 
 

TB effects on DM 
 
Tuberculosis can cause transient hyperglycemia, potentially increasing the risk of acute diabetic 
complications (93). 
 

TB medication effects on DM 
 
Tuberculosis and tuberculosis drugs disrupt glycemic control (89). 
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Rifampicin 
Rifampicin, a common bactericidal antibiotic used to treat TB, interacts with many of the anti-
diabetic medications through P450-related inhibitions and inductions, such as the sulfonylureas, 
glinides, and thiazolidinediones (89). 

Other first-line TB dugs 
Other first-line medication is unlikely to interact (89). 

Other potential interacting drugs 
There is no evidence that insulin or metformin interact with Rifampicin, and might be good 
choices for less-developed settings. 
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INTRODUCTION 
 
Tuberculosis (TB) remains an imminent threat to global public health, killing 1.2 million 
individuals in 2014 (1). The World Health Organization’s post-2015 global TB strategy aims to 
reduce the number of deaths due to TB by 95% and the incidence of TB by 90% by 2035 as 
compared to 2015 (2).  
 
Although the majority of TB cases occur in high-burden nations, global goals may be 
compromised by a plateau in TB prevention and treatment in low-burden nations. Therefore, the 
WHO has published a framework to guide TB control in low-incidence nations. The framework 
outlines two ambitious goals. Firstly, they mandate that pre-elimination (less than 10 cases per 
million) should be met in low-incidence nations by 2035. Secondly, elimination (less than 1 case 
per million) should be reached by 2050 (2). 
 
In the low-incidence nation of the United States, the State of California has the largest share of 
TB cases, comprising 23% of the US TB burden in 2014 (3). In 2014, there were 2,147 cases of 
active TB, or a rate of 55 annual cases per million population (4). California has a unique TB 
epidemiology. Of the 2,147 cases in 2014, 1,667 (78%) occurred in foreign-born (FB) as 
opposed to the US-born (USB) individuals. Immigrants from Mexico (446 cases), the Philippines 
(354), Vietnam (205), China (145), and India (96) comprised 58% of all cases. High-risk groups 
include the undocumented (396) and the unhoused (102) (4). Of all cases, 7.5% occurred within 
one year of immigration and presumably represent imported active cases. Seventeen percent are 
estimated to be recent infections that were transmitted within California (5). The remaining 
75.5% are thought to be from reactivation of latent TB infection (LTBI).  
 
Given that most cases were due to LTBI reactivation, the epidemiology of TB in California is 
highly sensitive to medical risk factors for progression from LTBI to active disease, including 
cigarette smoking, diabetes, HIV, uw3 or tumor necrosis factor (TNF)-alpha inhibitor or post-
transplant immunosuppressive drugs, and end-stage renal disease (ESRD). Individuals with any 
of these medical risk factors accounted for 1,031 cases in 2014 (4).  
 
In light of goals proposed by the WHO, the California Department of Public Health (CDPH) has 
set a goal of TB pre-elimination by 2035 and elimination by 2050. Between 2001 and 2014, there 
was a decline in the cases of TB by 44% and 33% in the US- and foreign-born, respectively. 
Although this represents a 3.1% overall decline per year (4% in USB and 2.8% in FB), it is 
insufficient to achieve elimination by 2050 (5). 
 
Past models of TB in the US suggest that preventive therapy (treating those with LTBI) can play 
a crucial role in reducing active disease (6). However, given the heterogeneity of TB risk in 
California, and the cost of LTBI programs, testing and treating every individual in California is 
impractical. Targeted testing and treatment of LTBI  (TTT) in particular at-risk groups offers a 
more cost-effective option (7). Yet no study to date has assessed the impact, costs, and cost-
effectiveness of different TTT strategies in California, including which test choice, treatment 
choice, or the different at-risk groups to target. In addition, the effect that TTT strategies would 
have on the prospects of elimination is unknown. Thus, in this paper, we evaluate the costs, 
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impact, and cost-effectiveness of scaling-up TTT in California and assess the likelihood that 
these strategies would reach elimination targets. 
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METHODS 
 
Overview 
Our investigation contained three major steps, in which we determined: (1) the most cost-
effective combination of specific technical options for testing and treating LTBI, (2) the most 
cost-effective at-risk groups to target, and (3) the likelihood of elimination by scaling-up the use 
of TTT in these subpopulations. 
 
Testing and treatment options 
We assessed three testing options and four treatment options, for a total of 12 testing/treatment 
combinations. Testing options included: tuberculin skin test (TST) and the two CDC-approved 
interferon-gamma release assays (IGRA), QuantiFERON-TB Gold (QFT) and TSPOT-TB. LTBI 
treatment options included: nine months of isoniazid (9H), six months of isoniazid (6H), four 
months of rifampin (4R), and three months of isoniazid and rifapentine (3HP). 
 Costs, sensitivity, and specificity of the tests were estimated from empirical data (Table 1, Table 
2). TST and QFT/TSPOT sensitivity was estimated to be 0.83 (0.71-0.87) and 0.85 (0.7-0.97), 
respectively, for both US-born and foreign-born. Specificity of QFT was estimated at 0.99 0.98 
1.00 in both the US-born and foreign-born. Specificity of TST was estimated at 0.95 (0.82-0.99) 
in the US-born and 0.82 (0.47-0.9) in the foreign-born, respectively. This lower TST specificity 
in the FB population due to the Bacillus Calmette–Guérin (BCG) vaccine, and that the 
immunosuppressive effects of HIV and ESRD had a negative impact on both TST and IGRA test 
performance. We used the ERSD test performance for individuals with both HIV and ESRD. We 
assumed no effect on test performance for the other medical risk factors modeled. Testing costs 
included the test reagents and labor. LTBI treatment costs included drugs, physician fees, and a 
diagnostic x-ray, for a total cost of $38.91 and $65.53 for TST and QFT/TSPOT, respectively. 
Scales of economy were not considered. 
 
Model development 
We developed an individual-based, discrete-time model of 300,000 individuals, representing the 
population and demographics of California. We modeled only those 15 years of age or older, 
which comprise more than 90% of TB cases in California (4). A one-month time step was 
utilized, and simulations were run from 2001 to 2085. The model was implemented as a 
stochastic locally-interacting Markov chain structure, with TB and each medical and 
demographic factor represented with a separate chain. Each individual progresses through chains 
in parallel. State transitions are based on specified probabilities, with a stochastic determination 
at each cycle (random walk). The chains interact as suggested by empirical data, similarly to the 
CORE diabetes model (8). One chain accounts for LTBI acquisition within the last three years 
(recent), and thus heightened risk of progression to active disease. An additional chain accounted 
for natural deaths not due to TB or the medical risk factors, using life expectancies from the 2011 
US Social Security Actuarial Life Tables (9). Costs were assessed from a societal perspective in 
2014 dollars.  
 
Demographic information was obtained for the State of California for 2001-2014 from the 
American Community Survey via the IPUMS database (10). Relevant variables included: sex, 
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race/ethnicity, age, years in the US, citizenship status, and birthplace. Ethnicities included Asian, 
Black/African-American, Hispanic, non-Hispanic white, and other. Age was grouped by 5-year 
intervals starting at 15 and capped at 80 or older. Birthplace information was consolidated to 
include only the United States, Mexico, Central America, and the WHO 22 high burden 
countries in 2014 (11). The remaining birthplaces were grouped by their WHO region.  
 
At the beginning of the simulation, a random sample of 300,000 individuals was selected from 
the 2001 demographics dataset. For each subsequent time step, the cohort was updated with a 
sample of individuals representing those maturing into age range and those immigrating to 
California. For each year from 2001-2014, these incoming individuals were sampled from their 
respective ACS sample. For each year after 2014, we sampled from the 2014 dataset. We 
assumed no change in the birthrate or immigration rate from 2014 forward. 
 
Medical risk factors 
We assessed six medical risk factors for progression from LTBI to active disease: cigarette 
smoking, diabetes, HIV, TNF-alpha inhibitor use, post-transplant immunosuppressive drugs, and 
ESRD. We estimated the prevalence of each risk factor in California using California-specific 
data if possible, and national-level estimates otherwise (Table 3). No data source was available 
for TNF-alpha use, so we estimated its use from the prevalence of the use of these drugs in 
rheumatoid arthritis and IBD (Table 3). Since we used an individual-based simulation, 
individuals could have more than one risk factor. Thus, prevalence of each medical risk factor 
was stratified by sex, age, race/ethnicity and nativity where available. To estimate the relative 
risk (RR) of progression to active disease, we conducted a literature review and arrived at expert 
consensus among team members as to which estimates were most suitable for the at-risk 
Californian population (Table 3).  Each medical risk factor’s independent risk of mortality was 
incorporated as a standardized mortality ratio, which yielded a life expectancy once the 
conditions were distributed within the population (Table 3). 
 
 
LTBI prevalence 
To estimate LTBI prevalence, we derived estimates of LTBI prevalence stratified by sex, age, 
race/ethnicity, and nativity (FB and USB) from the 2011-2012 NHANES TST results, using 10 
mm of induration as our preliminary indicator of TST positivity (see below). The 1999-2000 data 
set, although a more appropriate timeframe, was not used because this survey lacked appropriate 
Hispanic and Asian designations; additionally, there have been no significant differences noted 
in the older and more recent survey results (12).  TST positivity was adjusted to estimate true 
LTBI prevalence with a method described previously (13).  To estimate differences in LTBI 
prevalence by foreign birthplaces, we adjusted using LTBI prevalence estimates in the country of 
origin or WHO region (14) while holding nativity- and race-specific estimates constant (Table 
4). LTBI prevalence in FB was assumed to decline by 1.9% annually as an approximation of 
global TB control efforts (15). Approximately 25% of LTBI from USB and FB was assumed to 
be from recent transmission (5).  
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TB chain structure 
Individuals were placed into a state in the chain based on the presence of LTBI, treatment, or 
active disease. Risk of progression from LTBI to active disease was set at a static base level, and 
was increased by the presence of a recent infection (Table 1) or medical risk factor (Table 3). We 
assumed no decline in LTBI progression rate apart from the drop-off after the initial three years. 
Relative risks for progression were assumed to be multiplicative.  
 
The cost of case-finding was not included. Treatment costs, efficacy, and dropout-rates were 
estimated from available data (Table 1). We assumed that individuals completing treatment 
achieved lifetime protection, were not susceptible to reinfection, and would not undergo future 
testing or treatment; those dropping out before treatment completion garnered no benefit. 
Dropout rates were assumed to be constant throughout treatment. We assumed that 1.5% of 
individuals found to have LTBI had completed prior treatment, as suggested by the most recent 
NHANES (12). We assumed the treatment was daily self-administered isoniazid 300 mg for 9 
months (9H). The effects of multidrug-resistant TB were not incorporated, since rare in the U.S. 
Costs were discounted 3% (1-5%) per year as suggested by the U.S. Panel on Cost-effectiveness 
in Health and Medicine (16). 
 
Transmission of TB infection was captured using a semi-random mixing model. Each case of 
active TB was assumed to propagate additional cases of LTBI, with 80% of that risk accounted 
for within an individual’s race/ethnicity and birthplace group, and 20% within the general 
population (Table 1). This is consistent with evidence that recent transmission occurs more 
commonly within race/ethnic minority and immigrant populations within California (17). We 
included active case finding, assuming that each active case investigation identified 2.5 
infections, 75% of which were recent transmissions (5). 
 
Interventions and Cost-Effectiveness 
We created a base-case scenario that represents current testing and treatment, with 4.5% of 
individuals tested annually, as supported by internal California (5) and national data (18).  We 
assumed 50% of those tested were with QFT and 50% with TST and that individuals electing 
treatment would undergo therapy with 9H. 
 
We assessed potential strategies for TB elimination by increasing the rate of testing in specific 
populations by 2-fold, 4-fold, and 10-fold. The populations are: (1) FB Californians, (2) 
Californians with medical risk factors, (3) FB Californians with medical risk factors and (4) all 
Californians. 
 
We evaluated the cost-effectiveness of interventions with two methods. First, with the goal of TB 
elimination, we evaluated the cost per TB case averted. Secondly, with the goal of maximizing 
overall health utility, we used a traditional cost-utility analysis framework and evaluated the cost 
per added quality-adjusted life-year (QALY), using standard methods described elsewhere (19).  
 
Health State Utilities 
QALYs lost per active case of TB was estimated at 1.4 QALYs from a cohort analysis of cases 
in Texas (20). Acute and chronic morbidity accounted for 0.046 and 0.96 QALYs, respectively, 
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while mortality accounted for 0.22 QALYs (20).  Utilities were discounted 3% (1-5%) per year 
as suggested by the US Preventive Health Task Force (16).  
 
Calibration 
To calibrate the model, we employed a step-wise, non-algorithmic approach. We first adjusted 
the death rate to match known populations from the ACS from 2001-2014. Secondly, we 
calibrated the risk factors to match known trends in their prevalence from 2001 to 2014 by 
adjusting the initial prevalence and/or incidence. We calibrated HIV prevalence from 2008 to 
2012 from CDC data (21).  Diabetes and smoking prevalence were derived from CDC’s 
Behavioral Risk Factor Surveillance System from 2001 to 2014 (22). ESRD prevalence in the 
years 2001-2014 was estimated from the United States Renal Data System (23). Estimates for the 
California prevalence of transplant recipients or TNF-alpha inhibitor users was not available, so 
we calibrated them to remain constant as a proportion of the population using incidences 
gathered from the literature (Table 2). TNF-alpha usage was calibrated to fall within the 95% 
confidence interval of TNF-alpha usage in four waves of NHANES data reported by Yeats et al. 
(24). 
 
Lastly, we matched our estimates of active TB cases from 2001-2014 with reported cases, 
assuming a 100% case detection rate. We obtained data from the CDPH Report of Verified Case 
of Tuberculosis (RVCT) database from 2001 to 2014, stratified by sex, nativity, race/ethnicity, 
and medical risk factors. To calibrate, we first adjusted the respective relative risks of 
reactivation associated with each risk factor to match the reported number of cases in those with 
a medical risk factor (Table 2). As noted elsewhere, there is a significant amount of unexplained 
heterogeneity in risks of reactivation amongst race and nativity groups, presumably due to 
unmeasured risk factors (25). To account for this difference, we assigned race- and nativity-
specific risks of reactivation.  US-born Asians, Blacks, Hispanics, Whites, and individuals of 
other ethnicities required a 1.2, 2.2, 1.5, 2.0 and 0.5 relative increase in risk of progression rates, 
respectively. FB Asians, Blacks, Hispanics, Whites, and individuals of other ethnicities required 
a 1.48, 1.5, 0.83, 0.5, and 2.0 relative adjustment. 
 
The number of active cases reported in FB diabetics was 1.6-fold higher in historical data than 
estimated by our model (26). We thus included a FB diabetes-specific reactivation rate to 
account for this difference. After matching the 2001 cases by risk group, nativity, and ethnicity, 
our results did not align with the historical decline in the following 15 years. Only after a 
reduction of the transmission coefficient by 33% did the results fit the historical trend. The 
resulting predictions aligned well with historical data (Figure 1).  
 
Sensitivity analysis 
Sensitivity analyses were used to account for uncertainty in results.  One-way sensitivity analysis 
was conducted to isolate highest impact inputs while probabilistic sensitivity analysis (PSA) was 
used to determine uncertainty and range for outputs. A triangular distribution was utilized for all 
PSA parameters. 
 
Technical specifications 
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The model was encoded using Python (Python Software Foundation, Beaverton, OR) and Go 
(Google Inc, Mountain View, CA). Go is a fast, compiled, statically-typed language designed for 
concurrency, and has been used previously in computational biology (27). To our knowledge, 
this is the first published use of Go in public health research. The model’s source code is 
available online (28) and is entirely reproducible using a Virtual Machine (29), in accordance 
with the best practices of reproducible informatics research (30). 
 

RESULTS 
 
 
Cost-effectiveness of TTT interventions 
Of the 12 testing and treatment options assessed for LTBI, the combination of QFT testing with 
three months of once-weekly rifapentine plus isoniazid (3HP) treatment was most cost-effective 
in both the USB and the FB (Figure 2, Table 4). It was estimated to cost $17,000 per QALY and 
$24,000 per active case averted in FB, and $110,000 per QALY and $152,000 per active case 
averted in USB. TST with 9H was found to be the least cost-effective approach for both USB 
and FB populations, with a cost-per-QALY over $50,000 in FB and USB.  TST performed 
poorly largely because of its low specificity in the FB population: 0.82 compared to QFT’s 0.99. 
This means that significant costs were incurred treating false-positive individuals. 
 
The cost per case averted varied based on the target risk group (Figure 3). The groups with the 
most favorable cost-effectiveness measures were foreign-born individuals from India, identifying 
as Black or Asian, smokers, and those who have recently arrived. The least favorable group to 
target was USB with ESRD, where averting one case of active TB cost $350,000. These results 
are a function of LTBI prevalence, risk of progression, test performance, and life expectancy. 
Groups with lower life expectancies (such as those with ESRD) and those conditions which 
negatively effect test performance (HIV and ESRD) suffered a loss in cost-effectiveness.  
 
To illustrate this, the model predicts that in 1000 randomly-selected Asian foreign-born 
individuals, there would be 238 individuals with LTBI; 10 of whom would develop active 
disease within their lifetime. If they were all screened, a QFT would identify 172 of those 
individuals for a cost of $67,000. Offered 3HP, 117 LTBI-positive individuals and 4 false-
positives would complete therapy, costing $133,000. This would reduce the risk of reactivation 
in those treated by 92%, averting 5.3 cases of active TB on average. Averting these cases would 
save $167,887 in active TB treatment costs, and would gain 7.2 QALYs, with an ICER of $6,030 
per QALY gained. Conversely, in the white USB, in 1000 individuals, we would expect 14 
individuals with LTBI. Screening with QFT would identify 11 of those individuals for $67,000; 
9 LTBI-positive people would complete treatment, as well as 4 false-positives for a cost of 
$11,000. Without LTBI therapy, less than one individual (0.4) would have an active case of TB. 
Preventive therapy would halve that risk, gaining 0.3 QALYs with an ICER of $433,088. 
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Sensitivity analysis 
Using the ranges specified in table 1, the cost-effectiveness of TTT with the QFT 3HP 
combination was most sensitive to the risk of progression to active disease, according to the one-
way sensitivity analysis (Fig 3). A base-case risk of progression of 6.09 per 100,000 person-
years was used; if the risk of progression is assumed to be 3.0 or 9.1 per 100,000 person-years, 
the cost per case averted becomes $11,000 or $94,700, respectively.  
 
Elimination 
 
The results of the elimination model suggested that scaling-up testing and treatment rates averts 
significant number of infections by targeting FB and those with medical risk factors (Figure 4). 
However, elimination was not met by 2050 even with 10-fold increases in testing and treating in 
the overall population. Increasing the rate of testing for the entire state of California lead to a 
total of 64 cases per year in 2050, whereas elimination would be classified as under 59 cases per 
year. Sensitivity analysis was not completed for the elimination projections. 
 
 

DISCUSSION 
 
Tuberculosis remains a significant challenge for California health policy makers. In order to 
determine the likelihood of reaching elimination, we built a comprehensive transmission model 
that assessed the cost-effectiveness of varied testing, treatment, and subpopulation options. We 
found that targeting foreign-born individuals and certain US-born individuals with medical risk 
factors for LTBI screening with QFT and 3HP is cost-effective below the threshold of $50,000 
per QALY, but that reaching TB elimination by 2050 would only occur with an unprecedented 
scale-up of testing and treatment services within the general population. 
 
Calibrating the model revealed that there is significant heterogeneity in the risk of progression to 
active disease among race and nativity groups in California. This is consistent with past 
evidence. Shea et al., comparing 1999/2000 NHANES TST data to CDC reported cases of active 
disease, found that rates of reactivation in varied by as much as 8.8-fold (USB whites compared 
to FB blacks). They found that rates of reactivation were higher amongst foreign-born 
individuals, attributing this to unmeasured risk factors (25). Interestingly, our calibration 
revealed the opposite finding in California: rates of reactivation were higher amongst USB, with 
the exception of whites, who had a lower risk of progression. This may be due to different levels 
of recently transmitted disease which we could not explicitly account for, or may reflect a 
different risk landscape for Californian immigrants. 
 
The calibration process also confirmed a poorly-understood phenomenon of high levels of active 
TB in foreign-born diabetics in California (31). To account for this difference, we adjusted the 
risk of progression by 1.6-fold. There are a few potential explanations for this finding. First, 
Yeats suggests that diabetes is not only a risk factor for active disease, but LTBI (24), as it serves 
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as a proxy for social status. This seems less likely in our population since US-born diabetics did 
not require an increased risk of progression beyond that supported in the evidence. The 
alternative explanation, offered by Demlow et al. is that FB in California, particularly those from 
South East Asia, are prone to type 2 diabetes without being overweight, which may put them at 
additional risk of TB since overweight seems to confer a protective effect (ref).   
 
Once the model was calibrated, we assessed the best strategies to target, test and treat those with 
LTBI. We found that the use of QFT in combination with the 3HP regimen was the most cost-
effective testing and treatment option. Testing and treating FB was cost-effective below the level 
of $50,000 per QALY, while testing and treating USB was only cost-effective below $50,000 per 
QALY for certain risk groups. This suggests a risk assessment considering multiple factors 
would ensure the most efficient use of public health resources.  
 
The model also suggests a rapid decline in the number of annual cases; this is due largely to the 
all-cause mortality of individuals with LTBI, the entrance of individuals into the model with a 
lower LTBI prevalence, and the baseline level of preventive LTBI therapy. Although the decline 
is rapid, the model suggests that elimination is impossible before 2050 without an unprecedented 
level of screening.  
 
This study has limitations. First, our elimination projections are severely hampered by our lack 
of sensitivity analysis. As with any model, inputs are estimated, and are often triangulated from 
other data where directly measured data is not available. Without sufficient sensitivity analysis, 
we are unable to estimate the reliability of our forecasts.  
 
Second, we did not account for economy of scale in testing and treatment interventions. It would 
be reasonable to assume that with a 2- to 10-fold increase in the number of tests being 
administered, there may be economies of scale. Many of the clinics that target high-risk TB 
groups are state-run. A large scale up in testing may allow drugs to be purchased in greater bulk 
and for specialization to occur decreasing personnel costs. On the other hand, this large scale-up 
in testing and treatment may require additional overhead expenses (new clinics, buildings) that 
were not accounted for by the model, as well as higher costs to reach more populations. 
Additionally, we did not account for the overhead costs of testing or treatment, as well as the 
cost of liver-function test monitoring, or adverse events from the LTBI treatment.  
 
Third, we utilized a non-geographic transmission model, focusing on non-random mixing by 
nativity and race/ethnicity. Although there is evidence that these are important determining 
factors (17), we would expect transmission to be geographically clustered, and based on social 
and economic networks not captured by our representation. Improved understanding of the 
geography of TB in California may allow for the design of geographically-focused interventions.  
 
Additionally, our use of two different levels of reactivation rates (recent vs. remote transmission) 
is a simplification. It is thought that the rate of reactivation decays over time in a non-linear 
function (32), although the dynamics are poorly understood. 
 
Another limitation is the lack of explicit portrayal of undocumented immigrants or unhoused 
individuals. In 2014, 18% of TB cases in California were in undocumented immigrants. Since 
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our demographic data was sourced from the American Community Survey, these individuals are 
supposedly included in the sampling adjustments, however, there is no explicit field for 
documentation status. For this reason, we were unable to include them as a high-risk group to 
target. Undocumented  immigrants may be less likely to seek LTBI therapy, more likely to live 
in unhealthy housing, and be more at risk for TB from these and other social determinates of 
health (33). In addition, 5% of TB cases in 2014 were in unhoused individuals. This population 
is particularly at-risk because of intra-population transmission as well as a higher prevalence of 
risk factors, such as HIV and smoking. Other important risk factors for this population, such as 
injection drug use and alcohol abuse were not included, although there is evidence that these 
increase the risk of progression (34). It is difficult to imagine TB elimination occurring in 
California without a concerted effort to reach and treat the undocumented and unhoused 
populations. 
 
Additionally, we do not model children, since the natural history of pediatric TB is significantly 
different than that in adults (35). It would be expected that as incidence of active disease fell, 
transmission within California, and thus the risk to children, would become negligible.  
 
The changing demographics of California will affect the number of future TB cases. However, 
we did not account for changes in the number or types of immigrants, instead assuming that the 
recent California immigrants in the 2013 American Community Survey represent the next 50 
years of immigration. This is a gross simplification, and may have a large effect on the model. 
Unpredictable global economic shifts will impact the flow of immigrants and may hasten or 
retard California’s path to elimination. This is also true of TB control measures in countries of 
origin for California immigrants. 
 
Many of our estimates for the prevalence of risk factors were from national-level data. If there 
are significant differences in the levels of medical risk factors in California compared to the US 
as a whole, our results would be less credible. Additionally, there is no available estimate for the 
prevalence of TNF-alpha inhibitor use in the US. We estimated the prevalence of use based on 
the prevalence of rheumatoid arthritis and inflammatory bowel disease, and the prevalence of 
TNF-alpha inhibitors in these conditions. This may play a more important role that it has in the 
past as TNF-alpha inhibitors are being approved for more conditions are quickly becoming more 
widely used. Overall, this group should contribute few cases since testing for TB with an IGRA 
test is standard clinical practice.  
 
Our results differ from those found in other works. In 2015, Zamarchi et al. completed a 
systematic review of the cost-effectiveness of LTBI screening, and identified nine studies, eight 
of which found LTBI screening to be cost-effective (<$50,000 per QALY), three of which found 
it to be cost-saving (36).  The most thorough study of LTBI screening cost-effectiveness in 
various subgroups was completed by Linas et al. in 2011 (13).  In this study, they assessed the 
cost-effectiveness of IGRA and TST-based tests, assuming a 9H treatment option. They found 
vastly different cost-effectiveness ratios for different groups, from $23,700 to over $2 million per 
QALY.  Yeats et al. published a PhD dissertation assessing the cost-effectiveness of screening 
for LTBI in FB in the US, using QFT as the test and 4R as the treatment. They estimated that this 
would cost $58,334 per QALY, from a societal perspective (24) – this is higher than our finding 
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of $23,000, but within our 95% confidence interval (3,000 - 63,000). This study is one of the first 
evaluating 3HP.  
 
In summary, our analysis found that targeting foreign-born individuals and certain US-born 
individuals with medical risk factors for LTBI screening with QFT and 3HP is cost-effective 
below the threshold of $50,000 per QALY, but that reaching TB elimination by 2050 would 
require a heroic scale-up of testing and treatment services within the general population. These 
results suggest that while elimination is a noble goal, a strategy focused on scaling-up testing and 
treating in the FB and those with medical risk factors will avert more morbidity and mortality for 
a reasonable expenditure than a strategy focused on elimination alone.  
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TABLES 
 
Table 1. Estimated single parameters 
 
Name Base Low High Reference 
Proportion of individuals that enroll in treatment after a positive TST LTBI test 0.76 0.72 0.80 (37,38) 
Proportion of individuals that enroll in treatment after a positive QFT/TSPOT test 0.83 0.76 0.89 (37,38) 

Number of LTBI cases caused by one active case* 4.00 3.95 15.00 
Calibration, 
(39) 

Base risk of progression 0.0000609 0.00 0.00 
Calibration, 
(25) 

Proportion of LTBI treated 0.02 0.01 0.10 (12) 

Fast latent progression 0.0008097 0.00 0.00 
Derived, 
(26) 

QALYs gained averting one case of active TB 1.39 0.5 1.74 (20) 
Proportion of started who complete treatment     
9H 0.50 0.38 0.63 (43,44) 
6H 0.50 0.38 0.63 (43,44) 
4R 0.78 0.59 0.98 (43) 
3HP 0.82 0.62 1.00 (45) 
Total cost     
TST 38.91 29.18 48.64 (46) 
QFT 65.53 49.15 81.91 (46) 
TSPOT 65.53 49.15 81.91 Assumed 
TST+QFT 104.44 78.33 130.55 (46) 
TST+TSPOT 104.44 78.33 130.55 (46) 
Cost of active TB case 31400.00 13377.16 39250.00 (47) 
9H 592.50 444.38 740.63 (41,42) 
6H 431.47 323.60 539.34 (41,42) 
4R 542.32 406.74 677.90 (41,42) 
3HP 840.64 630.48 1050.80 (41,42) 
Efficacy of therapy     
9H 0.92 0.90 0.93 (40) 
6H 0.69 0.52 0.86 (40) 
4R 0.65 0.49 0.81 (40) 

3HP 0.92 0.69 1.00 
Set equal 
to 9H 

 
 
 
  



 59 

Table 2. Estimates of test performance 

  

 Sensitivity Specificity 
Name Base Low High Reference Base Low High Reference 

USB TST  0.83 0.71 0.87 (48–61) 0.95 0.82 0.99 (48–61) 

USB QFT  0.85 0.70 0.97 (48–61) 0.99 0.98 1.00 (48–61) 
USB TSPOT  0.85 0.70 0.97 (48–61) 0.98 0.97 1.00 (48–61) 
FB TST  0.83 0.71 0.87 (48–61) 0.82 0.47 0.92 (48–61) 
FB QFT  0.85 0.70 0.97 (48–61) 0.99 0.98 1.00 (48–61) 
FB TSPOT  0.85 0.70 0.97 (48–61) 0.98 0.97 1.00 (48–61) 
HIV TST  0.75 0.68 0.83 (62) 0.64 0.58 0.70 Assumed 
HIV QFT  0.59 0.53 0.65 (62) 0.89 0.80 0.98 (62) 
HIV TSPOT  0.59 0.53 0.65 Assumed 0.89 0.80 0.98 Assumed 
ESRD TST  0.51 0.46 0.56 (63) 0.64 0.58 0.70 (63) 
ESRD QFT  0.53 0.48 0.58 (63) 0.69 0.62 0.76 (63) 
ESRD TSPOT  0.53 0.48 0.58 Assumed 0.69 0.62 0.76 Assumed 
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Table 3. RR for progression, prevalence, and life expectancies for medical risk factors 
 

  

R
isk group 

Stratified by 

M
odeled prevalence, 2014 

R
eference 

R
elative R

isk of Progression 
(pre- calibration) 

R
elative R

isk of Progression 
(post-calibration) 

R
eference 

Life Expectancy 

Diabetes 
Age, sex, 
race/ethnicity, 
nativity 

8.92% (64) 1.6 (1.3-
3.60) 

1.6 
(65) 16.05 

Smoking 
Age, sex, 
race/ethnicity, 
nativity 

12.70% (64) 2.5 (1-4) 
2.5 

(66) 24.84 

HIV Age, sex, 
race/ethnicity 0.41% CA Dept 

of AIDS 12 (2.9-22) 5.4 (67) 15.83 

TNF-alpha Age, sex 0.80% 

Expert 
opinion. 
Derived 

from  
(68–73) 

4.7 (2.5-
5.3) 

4.7 

(24) 24.81 

Solid-organ 
transplants Age, sex,  0.17% 

Organ 
Procure

ment 
and 

Transpla
ntation 

Network 

2.4 (1.7-18) 

2.4 

(74) 27.53 

ESRD 
Diabetes, age, 
sex, 
race/ethnicity 

0.30% (23) 11 (2-20) 
10.4 

(75) 3.74 
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Table 4. LTBI prevalence in selected demographic groups  

 US born FB 
Total 2.4% 19.4% 

   
Sex   
Male 3.1% 24.4% 
Female 1.7% 14.8% 

   
Race/Ethnicity  
Asian 5.1% 30.1% 
Hispanic 2.7% 13.8% 
Black 7.1% 21.7% 
White 1.4% 15.1% 
Other 2.2% 25.5% 

   
Age   
Age 15-19 0.4% 11.1% 
Age 20-24 0.7% 12.5% 
Age 25-29 3.3% 19.6% 
Age 30-34 3.2% 18.4% 
Age 35-39 2.9% 20.2% 
Age 40-44 2.1% 18.6% 
Age 45-49 4.4% 23.1% 
Age 50-54 3.6% 26.1% 
Age 55-59 3.7% 24.2% 
Age 60-64 3.7% 27.3% 
Age 65-69 1.7% 13.4% 
Age 70-74 0.5% 9.4% 
Age 75-79 0.8% 13.0% 
Age 80+ 1.5% 9.1% 
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Table 5. Cost effectiveness of testing and treatment combinations 

 
 
 
 
 
 
 
 
 
  

 Cost per case averted (2014 USD) Cost per QALY gained (2014 USD) 

Testing and 
treatment 
combination 

FB US FB USB 

QFT with 
3HP 

24,000 (9870 - 48,000) 152,000 (112,000 - 
187,000) 

17,000 (16,000 - 29,000) 110,000 (95,000 - 
145,000) 

QFT with 
6H 

26,000 (8840 - 55,000) 167,000 (105,000 - 
236,000) 

19,000 (13,000 - 36,000) 120,000 (97,000 - 
176,000) 

QFT with 
4R 

33,000 (25,000 - 43,000) 226,000 (112,000 - 
315,000) 

24,000 (7855 - 49,000) 162,000 (8776 - 
354,000) 

TSPOT with 
3HP 

35,000 (24,000 - 49,000) 239,000 (140,000 - 
325,000) 

25,000 (11,000 - 50,000) 172,000 (40,000 - 
350,000) 

QFT with 
9H 

37,000 (31,000 - 46,000) 249,000 (176,000 - 
292,000) 

27,000 (12,000 - 51,000) 179,000 (58,000 - 
330,000) 

TSPOT with 
6H 

39,000 (38,000 - 44,000) 263,000 (219,000 - 
289,000) 

28,000 (17,000 - 50,000) 189,000 (92,000 - 
326,000) 

TSPOT with 
4R 

48,000 (33,000 - 81,000) 161,000 (118,000 - 
228,000) 

35,000 (33,000 - 58,000) 116,000 (92,000 - 
185,000) 

TSPOT with 
9H 

48,000 (10,000 - 
107,000) 

333,000 (189,000 - 
512,000) 

35,000 (23,000 - 66,000) 239,000 (265,000 - 
287,000) 

TST with 
3HP 

50,000 (5869 - 120,000) 346,000 (161,000 - 
601,000) 

36,000 (16,000 - 79,000) 249,000 (198,000 - 
400,000) 

TST with 
6H 

52,000 (35,000 - 74,000) 338,000 (183,000 - 
557,000) 78,000 (60,000 - 98,000) 

243,000 (192,000 - 
314,000) 

TST with 
9H 

55,000 (46,000 - 72,000) 358,000 (152,000 - 
692,000) 

81,000 (43,000 - 
130,000) 

257,000 (165,000 - 
412,000) 

TST with 
4R 

61,000 (16,000 - 
140,000) 

413,000 (315,000 - 
725,000) 

85,000 (99,000 - 
111,000) 

297,000 (306,000 - 
409,000) 
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Figure 1. Results of calibration. Number of cases predicted by model and those 
reported to CDPH in the RVCT database by nativity, 2001-2014. CAPE represents our 
model, RVCT represents historical data. (A) Total (B) Asian (C) Black (D) Hispanic (E) 
Other ethnicity (F) White. 
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Figure 2. Net cost of averting one case of active tuberculosis in the foreign-born 
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Figure 3. Net cost of averting one case of active tuberculosis in various risk groups 
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Figure 4. Tornado diagram showing one-way sensitivity analysis of selected variables, 
QFT and 3HP.  
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Figure 5. Schematics showing annual active cases and effect of interventions projected 
from 2015-2055. (A) Scaling up TTT in FB (B) Scaling up TTT in those with medical risk 
factors (C) Scaling up TTT in overall population 
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