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Significance

Immune checkpoint inhibitors are 
used in HCC treatment, but overall 
response rates for single-agent 
PD-1/PD-L1 blockers have 
remained stubbornly low. Using a 
mouse model of NASH-driven 
HCC, we show that cotreatment 
with the safe and inexpensive 
angiotensin II receptor inhibitor 
losartan substantially enhanced 
anti-PD-1-triggered HCC 
regression. Although losartan did 
not potentiate the reinvigoration 
of exhausted CD8+ T cells, it 
considerably enhanced their 
intratumoral invasion, which we 
postulated to be compromised by 
peritumoral fibrosis. Indeed, the 
beneficial effect of losartan 
correlated with inhibition of TGF-β 
signaling and collagen deposition, 
and depletion of immunosup
pressive fibroblasts. Losartan 
should be evaluated for its 
adjuvant activity in HCC patients 
undergoing PD-1/PD-L1 blocking 
therapy.
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IMMUNOLOGY AND INFLAMMATION

Angiotensin II receptor inhibition ameliorates liver fibrosis 
and enhances hepatocellular carcinoma infiltration by effector 
T cells
Li Gua,1, Yahui Zhub,1, Maiya Leea, Albert Nguyena,c, Nicolas T. Ryujinc, Jian Yu Huanga, Shusil K. Pandita, Shadi Chamseddined, Lianchun Xiaoe, 
Yehia I. Mohamedd, Ahmed O. Kasebd, Michael Karina,2 , and Shabnam Shalapourc,2

Contributed by Michael Karin; received January 18, 2023; accepted April 2, 2023; reviewed by Erwin F. Wagner and Weiping Zou

Although viral hepatocellular carcinoma (HCC) is declining, nonviral HCC, which 
often is the end stage of nonalcoholic or alcoholic steatohepatitis (NASH, ASH), is on an 
upward trajectory. Immune checkpoint inhibitors (ICIs) that block the T cell inhibitory 
receptor PD-1 were approved for treatment of all HCC types. However, only a minority 
of HCC patients show a robust and sustained response to PD-1 blockade, calling for 
improved understanding of factors that negatively impact response rate and duration 
and the discovery of new adjuvant treatments that enhance ICI responsiveness. Using a 
mouse model of NASH-driven HCC, we identified peritumoral fibrosis as a potential 
obstacle to T cell–mediated tumor regression and postulated that antifibrotic medications 
may increase ICI responsiveness. We now show that the angiotensin II receptor inhib-
itor losartan, a commonly prescribed and safe antihypertensive drug, reduced liver and 
peritumoral fibrosis and substantially enhanced anti-PD-1-induced tumor regression. 
Although losartan did not potentiate T cell reinvigoration, it substantially enhanced 
HCC infiltration by effector CD8+ T cells compared to PD-1 blockade alone. The 
beneficial effects of losartan correlated with blunted TGF-β receptor signaling, reduced 
collagen deposition, and depletion of immunosuppressive fibroblasts.

NASH-driven HCC | anti-PD-1 | losartan | liver fibrosis

Hepatocellular carcinoma (HCC), one of the most common cancer types worldwide (1), 
is the end result of chronic liver injury and inflammation, often occurring in the context 
of hepatocyte cell death and liver fibrosis (2, 3). Whereas early and locoregional HCC 
are effectively treated by surgical resection, radiofrequency ablation, or chemoemboliza-
tion, the treatment of advanced HCC is limited by the compromised liver function 
accompanying the disease (1). The only approved targeted HCC therapies are pan-kinase 
inhibitors, such as sorafenib, which extend patient survival by several months, leaving 
the 5-y survival rates at 30% for patients with localized disease and an abysmal 2.5% for 
patients with advanced metastatic disease (4, 5). A considerable advance in HCC treat-
ment was the finding that immune checkpoint inhibitors (ICIs) targeting PD-1 or its 
ligand PD-L1 [hereafter PD-(L)1], whose association causes T cell exhaustion (6), can 
curtail HCC growth or induce tumor regression with objective response rates (ORRs) of 
15 to 20% (7–11). Although the effectiveness of PD-(L)1 blockade was recently improved 
by its combination with Vascular endothelial growth factor (VEGF) receptor inhibitors 
or CTLA4 checkpoint blockade (11), ORRs remain lower than 30% and suggested to 
be particularly low in nonalcoholic steatohepatitis (NASH)-related HCC (12–14). 
Although hepatosteatosis was postulated to account for the adverse effect of NASH on 
ICI responsiveness (12–14), it should be recognized that hepatosteatosis usually declines 
or disappears (“burnout NASH”) in advanced NASH, which is characterized by extensive 
fibrosis, which often precedes HCC (15). Moreover, hepatosteatosis is not required for 
induction of liver damage and fibrosis in NASH-afflicted mice (16). Based on our studies 
of NASH-related HCC in the MUP-uPA mouse model (17–19), we reasoned that liver 
fibrosis is more likely to account for the adverse effect of NASH on ICI outcome than 
hepatosteatosis. Although NASH is driven by metabolic inflammation, it is also accom-
panied by marked changes in the hepatic immune system, including the accumulation 
of immunosuppressive IgA-expressing plasma cells, which dismantle immunosurveillance 
by HCC-directed T cells (19, 20). The immunosuppressive activity of IgA+ plasma cells 
is IL-10 and PD-L1 dependent, and either PD-L1 or IL-10 blockade, or ablation, restore 
anti-HCC immunity to high fat diet (HFD)-fed MUP-uPA mice (19), which develop 
NASH and robustly progress to HCC (17, 18). While most NASH-induced liver tumors 
in MUP-uPA mice were effectively eliminated by PD-L1 blockade, tumors with extensive 
peritumoral fibrosis were treatment refractory (19).D
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Liver fibrosis or excessive collagen fiber deposition is triggered by 
chronic liver injury, which induces production of transforming 
growth factor-beta (TGF-β) and other profibrogenic cytokines by 
activated immune cells, mainly macrophages (21, 22). TGF-β acti-
vates collagen-producing hepatic stellate cells (HSC) that express 
α-smooth muscle actin (α-SMA) and glial fibrillary acidic pro-
tein (23) and gives rise to cancer-associated fibroblasts (CAF) during 
HCC emergence (24, 25). TGF-β activates HSC by binding to its 
type II receptor (TGFBR2) which heterodimerizes with the type I 
receptor (TGFBR1), triggering activation and nuclear translocation 
of SMAD2, 3, and 4 transcription factors (26). TGFBR signaling 
is potentiated by angiotensin II (Ang II) acting via its type 1 receptor 
(AngIIR1) (27, 28). Although no TGFBR inhibitors or other tar-
geted therapeutics were approved for the treatment of liver fibrosis 
(29), the commonly used AngIIR1 inhibitor and antihypertensive 
drug losartan can reduce liver fibrosis in humans (30, 31) and 
rodents (32, 33). Other studies carried out by Rakesh Jain’s group 
have shown that losartan enhances anticancer drug delivery (34) and 
down-regulates immunosuppression-associated genes in ovarian and 
pancreatic cancers when combined with chemo- or radio-therapy 
(35, 36) and reduced ICI-induced edema in glioblastoma mouse 
model (37). Inspired by these findings, we investigated whether 
losartan improves ICI-induced HCC regression and if so, whether 
this correlates with its antifibrogenic activity. We now show that 
losartan potentiates the therapeutic response to a suboptimal PD-1 
antagonistic antibody in the MUP-uPA model and that this effect 
correlates with improved intratumoral invasion by reinvigorated 
CD8+ cytotoxic T cells, diminished collagen type I (Col I) produc-
tion, and down-regulated TGF-β signaling.

Results

Losartan Potentiates Anti-PD-1-Induced HCC Regression. NASH-
driven HCC in MUP-uPA mice was the model chosen for the present 
study as its pathogenic mechanisms, transcriptome, and mutational 
signature resemble human HCC and are also responsive to PD-(L)1 
blockade (17, 19). We first determined the optimal losartan dose 
and treatment regimen. We found that losartan in drinking water 
was well tolerated at 30 mg/kg, with no significant weight loss when 
the mice were treated for ~2 mo (SI Appendix, Fig. S1 A and B). 
However, when the treatment period exceeded 2 mo and the dose 
was raised to 50 mg/kg, HFD-fed mice no longer gained weight and 
a tendency to develop smaller tumors (SI Appendix, Fig. S1 A–D). We 
next examined whether losartan can potentiate anti-PD-1-induced 
HCC regression. We placed 6-wk-old MUP-uPA mice on HFD 
for 6 mo to induce NASH and HCC and allocated HCC-bearing 
mice into four treatment groups (SI Appendix, Fig. S1E): control 
(ctrl) IgG, anti-PD-1, losartan+ctrl IgG, and losartan+anti-PD-1. 
Treatments lasted 8 wk while the mice were kept on HFD. Under 
these conditions, body weight gain was identical across all groups 
and no organ injury was observed (SI Appendix, Fig. S1 F and G). 
Notably, the combination of losartan with anti-PD-1 resulted in 
lower liver/body weight ratio, tumor multiplicity, and tumor volume 
compared to ctrl IgG, anti-PD-1 alone, or ctrl IgG plus losartan 
(Fig. 1 A–D). Importantly, losartan addition augmented anti-PD-1-
induced tumor regression. However, anti-PD-1 single treatment also 
caused a moderate decrease in hepatosteatosis, liver triglyceride (TG) 
accumulation, and serum TG amounts, effects that were slightly 
affected by losartan addition (SI Appendix, Fig. S1 H–J). Losartan 
without or with anti-PD-1 reduced liver damage marked by the 
presence of liver enzymes in the circulation (SI Appendix, Fig. S1K).

Losartan Enhances HCC Infiltration with Anti-PD-1-
Induced T Effector Cells. To identify how losartan enhanced 

anti-PD-1-induced HCC regression, immune cell numbers and 
effector functions were analyzed by flow cytometry (FC). Both CD8+  
T cell number and fraction were increased in the livers of anti-PD-
1-treated mice, with the majority of CD8+ T cells secreting TNF 
and IFNγ (Fig. 2A and SI Appendix, Fig. S2 A–C). Additionally, 
there was a decline in the percentage of CD8+ T cells that express 
the inhibitory collagen receptor LAIR1 (38) after anti-PD-1 
treatment; however, the LAIR1 expressing in liver monocytes 
barely changed (SI Appendix, Fig. S2 D and E). Losartan had no 
effect on total CD8+ T cell number, their effector function, or 
expression of LAIR1 (SI Appendix, Fig. S2 A–E). Nonetheless, the 
combination of losartan with anti-PD-1 increased the number and 
percentage of CD8+ T cells associated with lower tumor number 
and volume in comparison to anti-PD-1 alone (Fig.  2 A–C).  
Anti-PD-1 without or with losartan enhanced the expression 
of mRNAs coding for Ccl8, Ccl5, Ccl19, Ccl2, Cxcl9, and 
Cxcl10, which are chemokines that promote T cell recruitment 
and activation (SI Appendix, Fig. S2 F–H). Losartan cotreatment 
tended to further increase chemokine expression, but the effect 
was not statistically significant. FC and immunochemistry (IHC) 
revealed that while losartan in combination with anti-PD-1 did 
not exert a significant effect on anti-PD-1-induced CD8+ T cell 
reinvigoration or CD8+ T cell activation markers, it increased 
tumor infiltration by CD8+CD3+ T cells, CD3+CD8− helper  
T cells (CD4+), CD3−CD8+ plasmacytoid dendritic (pDC) cells, 
and CD45+ immune cells compared to anti-PD-1 alone (Fig. 2 
D–G and SI Appendix, Fig. S2 I–K). These results show that the 
main effect of losartan on anti-HCC immunity was to increase 
tumor infiltration with reinvigorated T cells and pDC. Losartan 
cotreatment, however, did not enhance the anti-PD-1-induced 
expression of MHC-I related genes, which present antigens to 
CD8+ T cells (39), such as Nlrc5, Psm9, and Tap1, neither did 
it affect Cd274 or Il1b messenger RNA (mRNA) expression 
(SI Appendix, Fig. S2 L–P).

Losartan Inhibits Liver Fibrosis. We next explored likely 
mechanisms through which losartan stimulates HCC infiltration 
by T cells. Losartan alone or together with anti-PD-1 largely 
reduced liver fibrosis, assessed by Sirius Red staining, which was 
slightly increased by anti-PD-1 alone (Fig. 3 A and B). The major 
extracellular matrix (ECM) protein collagen type I a1 chain 
(Col1a1) and the activated  HSC marker α-SMA also declined 
after losartan alone or losartan+anti-PD-1 (Fig.  3 A and C–G). 
Losartan, however, had a modest effect on fibroblast-specific protein 
1 (FSP1)-expressing fibroblasts (Fig. 3 E and H). Unlike α-SMA+ 
HSC, FSP1+ fibroblasts support the response to immunotherapy 
by producing chemokines (40). Of note, losartan cotreatment 
increased the number of lymphoid-dense areas (tertiary lymphoid 
follicle-like structures), which contained FSP1+ fibroblasts next to 
B220+ B cells and CD8+ T cells (SI Appendix, Fig. S3 A–C) and 
shown to predict better prognosis (41). COX2+α-SMA+ fibroblasts 
and COX2+FSP1+ fibroblasts, which have immunosuppressive 
properties (42), were lower after losartan treatment (SI Appendix, 
Fig. S3 D–G). Altogether, losartan treatment reduced liver fibrosis, 
inhibited Col1a1 deposition, and blunted the generation of 
immunosuppressive CAF.

Losartan Inhibits TGF-β Signaling. Next, we examined the effect of 
losartan on TGF-β signaling. IHC showed that losartan inhibited 
ERK1/2 phosphorylation in hepatocytes and stellate cells, as well as 
TGF-β1 expression (Fig. 4 A and B). Immunoblotting (IB) confirmed 
the decrease in ERK1/2 phosphorylation and showed that losartan 
also inhibited SMAD2 and 3 phosphorylation (Fig. 4C). Quantitative 
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Real-Time PCR (qRT-PCR) showed that losartan also blunted 
Tgfbr1, Tgfbr2, Vegf, Pdgfb, Pdgfrα, Pdgfrβ, Ctnnb1 (β-Catenin), and 
Fgf2 mRNA expression (SI Appendix, Fig. S4 A and B). Expression 
of the TGF-β target connective tissue growth factor (CTGF) also 
decreased after losartan without or with anti-PD-1 (SI Appendix, 
Fig. S4 A, C, and D). In agreement with a recent publication, anti-
PD-1 treatment increased IL-6 expression (Fig. 4D and SI Appendix, 
Fig. S4E), which supports ICI resistance (43). Losartan cotreatment, 
however, reversed this effect and reduced the number of IL6+ α-SMA+ 
fibroblasts (Fig. 4D and SI Appendix, Fig. S4E). Consistent with the 
ability of PD-1 blockade to improve senescence surveillance (44), 
anti-PD-1 treatment reduced p21 and p16 expression, an effect 
that was modestly enhanced by losartan cotreatment (Fig. 4 E–G). 
Anti-PD-1 increased the expression of hexosamine pathway (HBP) 
genes (SI Appendix, Fig.  S4 F–J), including glutamine-fructose-6-
phosphate transaminase 1 (Gfpt1), O-linked N-acetylglucosamine 
(GlcNAc) transferase (Ogt), phosphoglucomutase 3 (Pgm3), UDP-N-
acetylglucosamine pyrophosphorylase 1 (Uap1), and the EGFR ligand 
amphiregulin (Areg), which promotes ECM hyaluronan synthesis 
(45). The addition of losartan, however, reduced the expression of 
these genes (SI  Appendix, Fig.  S4 F–J). Collectively, these results 
demonstrate that losartan has a profound effect on the ECM and 
the tumor stroma, effects which are consistent with the inhibition of 

TGF-β signaling and that are likely to contribute to enhancement of 
tumor invasion by CD8+ Teff cells.

Discussion

Our results show that losartan, a safe, inexpensive, and widely 
used AngIIR1 antagonist, significantly potentiates HCC regres-
sion in response to PD-(L)1 blockade. Of note, losartan had no 
effect on the activation state of hepatic T cells and their expression 
of the inhibitory collagen receptor LAIR1, on its own or together 
with anti-PD-1. The only obvious effect of losartan cotreatment 
on anti-HCC immunity was the enhancement of HCC infiltra-
tion by CD8+ T cells that were reinvigorated by PD-1 blockade, 
as well as by pDC. Without added losartan, anti-PD-1 treatment 
resulted in the expected increase in Teff cells, but the reinvigorated 
CD8+ T cells mainly remained at the tumor margin with very few 
of them detected within the tumor proper. Consistent with pre-
vious publications (32, 33), losartan treatment alone or in com-
bination with anti-PD-1 ameliorated liver and peritumoral 
fibrosis, an effect that was likely due to inhibition of TGFBR1, 
TGFBR2, and CTGF expression and SMAD and ERK phospho-
rylation, as well as diminished Col I production due to inhibition 
of HSC activation, all of which reflect the inhibition of TGF-β 
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not significant (unpaired two-tailed t test and Mann–Whitney U test).
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signaling. Indeed, the effects of losartan closely resemble the anti-
PD-L1 potentiating effect of TGF-β1 blockade in a mouse model 
of colorectal cancer (46). These results are consistent with our 

previous finding that HCCs that were surrounded by more exten-
sive peri-tumoral fibrosis were refractory to PD-L1 blockade com-
pared to HCC nodules lacking a fibrotic envelope (19). Although 
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it was already reported that losartan inhibits Col I production 
and improves blood vessel perfusion, leading to improved drug 
delivery and enhanced chemotherapy and radiation effectiveness 

(34, 47, 48), here losartan was shown to increase ICI responsive-
ness. Our results were obtained in a mouse model of NASH-
driven HCC that shares many features with the equivalent human 
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disease, including a highly similar transcriptome and mutational 
signature (17). Nonetheless, it is important to conduct retrograde 
analysis of human clinical data and determine whether HCC 
patients who received losartan or other AngIIR1 inhibitors exhibit 
an improved ORR when subjected to PD-(L)1 blockade. 
Moreover, it needs to be tested whether losartan can potentiate 
the response to PD-(L)1 blockade in other cancers associated with 
peritumoral fibrosis and desmoplasia, such as pancreatic cancer 
and intrahepatic cholangiocarcinoma, which so far have been 
refractory to ICI. As losartan only slightly affect hepatosteatosis, 
our results suggest that liver fibrosis maybe a more relevant expla-
nation of the modest response of NASH-induced HCC to 
PD-(L)1 blockers (12–14).

Materials and Methods

Animals. MUP-uPA mice were previously described and kindly provided by 
E.P. Sandgren, University of Wisconsin-Madison (49). The mice were main-
tained in filter-topped cages on autoclaved food and water with a 12 h light (6 
am-6 pm)/dark (6 pm-6 am) cycle. To induce NASH and HCC, male mice were 
placed on HFD (Bio-Serv S3282) at 6 to 8 wk of age. After 6 mo, the mice were 
administered control IgG [25AUW, mouse [HEXON-Ad] mAb (TC31.27F11.C2) 
IgG1 D265A/Kappa] (20 mg/kg, i.p.) or anti-PD-1 [03AHF, mouse-modified 
PD-1 mAb (DX400 D265A LPD2127/LPD2128) mIgG1/Kappa], two to three 
times weekly (20 mg/kg, i.p.) without or with losartan (30 mg/kg in drinking 
water) (SI Appendix, Fig. S1E). For dose-finding studies, 30 mg/kg and 50 mg/
kg losartan were used in drinking water, as indicted (SI  Appendix, Fig.  S1 
A–D). The mice were monitored daily during treatment and were provided 
with soft bedding and nesting as well as access to food and water ad libitum. 
Body weight gain and food consumption were calculated every 2 wk. After 
8 wk, the mice were killed, and tumors and livers were analyzed. Tumor vol-
ume was calculated as: L × W × H/2 (L, length, W, width, and H, height). All 
experiments were performed according to University of California San Diego 
(UCSD) Institutional Animal Care and Use Committee and NIH guidelines 
and regulations. Karin’s Animal protocol S00218 was approved by the UCSD 
Institutional Animal Care and Use Committee.

FC. Single-cell suspensions were prepared from livers and spleens. For liver 
lymphocyte isolation, 0.5 g of tissue was cut into small pieces and incubated 
in dissociation solution (DMEM medium supplemented with 5% FBS), col-
lagenase type I (200 U/mL), collagenase type IV (200 U/mL), and DNase I 
(100  μg/mL) for 40  min at 37 °C. Next, the cell suspensions were passed 
through a 40-μm cell strainer and washed twice. The isolated cells were incu-
bated with labeled antibodies in Cell Staining Buffer (BioLegend). Dead cells 
were excluded based on staining with Live/Dead Fixable Viability Dye (FVD-
eFluor780, ThermoFisher Scientific/eBioscience). For intracellular cytokine 
staining, cells were restimulated with cell stimulation cocktail (ThermoFisher 
Scientific/eBioscience; containing PMA and ionomycin), in the presence of 
a protein transport inhibitor cocktail (ThermoFisher Scientific/eBioscience; 
containing brefeldin A and monensin). After 4-h incubation at 37 °C, cells 
were fixed and permeabilized with BD™ Perm/Wash buffer (BD Biosciences). 
After fixation/permeabilization, cells were stained with labeled antibodies of 
interest. The cells were analyzed on a Beckman Coulter Cyan ADP flow cytom-
eter. Data were analyzed using FlowJo software (Treestar). Absolute numbers 
of specific immune cells (e.g., CD8+ cells) in spleens were calculated by mul-
tiplying the total cell numbers from one spleen by the percentage of the cell 
type in question among total CD45+ immune cells. Absolute immune cell 
numbers in livers were calculated by multiplying total cell number in one liver 
fragment by the percentages of the corresponding cell type among all total 
liver cells divided by the weight of the analyzed liver fragment (cell number 
per gram of liver). Antibodies were purchased from BD Biosciences, BioLegend, 
and ThermoFisher Scientific.

Histology. Livers were removed, and portions of liver tissue were fixed in 4% 
paraformaldehyde and embedded in paraffin. Thick sections (5 μm) were stained 
with hematoxylin and eosin (H&E) (Leica, 3801615, 3801571) and Sirius Red 
(ab246832) and processed for IHC. For frozen block preparations, liver tissue 

fragments were embedded in Tissue-Tek OCT compound (Sakura Finetek), sec-
tioned, and stained with Oil Red O (ORO). Image J was used for image quan-
tification as descried (19). Briefly, for Sirius Red, areas of at least 1 mm3 were 
quantitated with Image J and normalized for vascularization and lipid accumula-
tion using corresponding H&E-stained areas. For ORO analysis, multiple images 
(3 to 4) were quantitated and averaged using Image J. IHC was performed as 
follows: after xylene deparaffinization and rehydration with ethanol series, 
antigen retrieval was conducted for 15 min at 100 °C with 0.1% sodium citrate 
buffer. After quenching of endogenous peroxidases with 3% H2O2 and blocking 
with 5% bovine serum albumin (BSA), sections were incubated with indicated 
antibodies (SI Appendix, Table  S1) overnight at 4 °C followed by incubation 
with biotinylated secondary antibodies (1:200) for 30 min and Streptavidin-HRP 
(1:500) for 30 min. Bound peroxidase was visualized by 1 to 10 min incuba-
tion in 3, 30-diaminobenzidine (DAB) solution (Vector Laboratories, SK-4100). 
Images were captured on an upright light/fluorescent Image A2 microscope with 
AxioVision Release 4.5 Software (Zeiss).

IB Analysis. Livers were homogenized in a Dounce homogenizer (Thomas 
Scientific) with 30 strokes in RIPA buffer (50  mM Tris-HCl, pH 7.4, 150  mM 
NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 1  mM 
Ethylenediaminetetraacetic acid (EDTA)) with complete protease and phos-
phatase inhibitor cocktail. Lysates were sonicated, centrifuged, and boiled in 
4× loading buffer. The samples were separated by Sodium dodecyl-sulfate pol-
yacrylamide gel electrophoresis (SDS-PAGE) and transferred to Polyvinylidene 
fluoride (PVDF) membranes, blocked in 5% nonfat milk, and incubated with 
the indicated primary antibodies overnight. Secondary antibodies were added 
for another 1  h. and detected with Clarity Western ECL Substrate (Biorad). 
Immunoreactive bands were exposed in an automatic X-ray film processor. 
Antibodies are listed in SI Appendix, Table S1.

Immunostaining. Tissues were embedded in Tissue Tek OCT (Sakura 
Finetek) and snap frozen. Tissue sections were fixed in cold acetone/meth-
anol for 10  min and washed with Phosphate-buffered saline (PBS). Slides 
were blocked with PBS/1% normal donkey serum for 30 min. Sections were 
incubated with primary antibodies overnight at 4 °C. After washing with PBS, 
secondary antibodies and DAPI were added for 1 h at room temperature. Slides 
were washed with PBS and covered with FluorSave Reagent (EMD Millipore, 
345789). Images were captured on a TCS SPE Leica confocal microscope. The 
results were quantified by counting dots/calculating intensity for each field 
of view (four to five areas for each slide) with Image J.

Metabolic Measurements. Liver and serum TG were measured with TG 
Colorimetric Assay Kit (Cayman Chemical #10010303) according to manufac-
turer’s protocol. Circulating ALT was measured with ALT(GPT) Reagent (Thermo 
Scientific™, TR71121) according to manufacturer’s protocol.

RNA Isolation and qRT-PCR. Total liver RNA was extracted with RNeasy 
Plus Mini kit (Qiagen #74134) and complementary DNA (cDNA) was synthe-
sized with SuperScript™ VILO™ cDNA Synthesis Kit (ThermoFisher Scientific, 
11754050). mRNA amounts were determined on a CFX96 thermal cycler 
(Biorad). Data were presented as arbitrary units and calculated by the com-
parative CT method [2Ct(18s rRNA–gene of interest)]. Primers are listed in SI Appendix, 
Table S2.

Quantification and Statistical Analysis. Data were presented as mean ± SEM. 
Differences between mean values were analyzed by two-tailed Student’s t test 
and Mann–Whitney U test with GraphPad Prism software. P value < 0.05 was con-
sidered as significant (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

Data, Materials, and Software Availability. All study data are included in 
the article and/or SI Appendix.
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