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Non-Homogeneous Markov Chain for Estimating the Cumulative 
Risk of Multiple False Positive Screening Tests

Marzieh K Golmakani1,*, Rebecca A Hubbard2,**, Diana L Miglioretti3,***

1Pfizer Inc., San Diego, CA

2Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, 
University of Pennsylvania, Philadelphia, PA

3Department of Public Health Sciences, University of California at Davis, Davis, CA

Summary:

Screening tests are widely recommended for the early detection of disease among asymptomatic 

individuals. While detecting disease at an earlier stage has the potential to improve outcomes, 

screening also has negative consequences, including false positive results which may lead to 

anxiety, unnecessary diagnostic procedures and increased healthcare costs. In addition, multiple 

false positive results could discourage participating at subsequent screening rounds. Screening 

guidelines typically recommend repeated screening over a period of many years, but little 

prior research has investigated how often individuals receive multiple false positive test results. 

Estimating the cumulative risk of multiple false positive results over the course of multiple 

rounds of screening is challenging due to the presence of censoring and competing risks, 

which may depend on false positive risk, screening round and number of prior false positive 

results. To address the general challenge of estimating the cumulative risk of multiple false 

positive test results, we propose a non-homogeneous multi-state model to describe the screening 

process including competing events. We developed alternative approaches for estimating the 

cumulative risk of multiple false positive results using this multi-state model based on existing 

estimators for cumulative risk of a single false positive. We compared the performance of 

the newly proposed models through simulation studies and illustrate model performance using 

data on screening mammography from the Breast Cancer Surveillance Consortium. Across most 

simulation scenarios, the multi-state extension of a censoring bias model demonstrated lower bias 

compared to other approaches. In the context of screening mammography, we found that the 

cumulative risk of multiple false positive results is high. For instance, based on the censoring 

bias model, for a high risk individual, the cumulative probability of at least two false positive 

mammography results after 10 rounds of annual screening is 40.4

* kgolmakani@ucdavis.edu . ** rhubb@pennmedicine.upenn.edu . *** dmiglioretti@ucdavis.edu . 
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1 Introduction

The goal of a screening test is to identify the presence of undiagnosed disease among 

asymptomatic individuals and advance the time of diagnosis. While the benefit of early 

disease detection can be substantial if treatments are more effective for early compared to 

advanced stage disease , this benefit is offset, in part, by negative consequences of screening 

including adverse effects of the test itself, such as radiation exposure from imaging tests, 

overdiagnosis, overtreatment and false positive test results. An ideal screening test would 

result in a positive result if and only if the individual actually had the disease and a negative 

if and only if the individual did not have the disease; however, screening tests typically 

fall short of this ideal. For most screening tests, the most common harms are false positive 

results, which occur when the screening test erroneously indicates that the disease is present 

and may lead to anxiety, additional testing and associated medical costs, and invasive 

diagnostic procedures. When screening tests are used to diagnose a rare disease such as 

cancer, even a very specific test can result in many more false positive results than true 

positive results. For example, for screening mammography, the false positive rate is 110 per 

1000 screens while the true positive rate is 5.1 per 1000 screens (Lehman et al. (2016)).

Screening tests are typically repeated many times over the course of an individual’s lifetime. 

For example, the American Cancer Society recommends that women between 45 and 54 

years old with an average risk of breast cancer undergo annual screening mammography 

and women 55 years and older either transition to biennial screening or continue screening 

annually, depending on preferences, until a life expectancy of less than 10 years (Oeffinger 

et al. (2015)). In addition, they recommend that women age 40 - 44 years should have the 

choice to start annual screening based on their personal preferences. A woman who complies 

with these recommendations and is breast cancer free through age 79 would undergo up 

to 40 screening mammograms. Given false positive results are common for screening 

mammography, women may experience multiple false positive results over the course 

of repeated screens which could discourage continued screening (Klompenhouwer et al. 

(2014). Multiple false positive screening mammograms also increase unnecessary radiation 

exposure from diagnostic imaging and risk of radiation-induced cancers (Miglioretti et al. 

(2016)). Examining the impact of repeat screening is thus important in order to quantify 

the cumulative benefits and burdens of different recommended screening regimens based 

on screening interval, starting age, and stopping age. Estimation of the cumulative risk 

of multiple false positive results using observational data is complicated because most 

individuals will be censored before completing all recommended screening rounds and due 

to possible dependence of false positive risk and competing risks, such as diagnosis of 

the disease of interest and death, on censoring time and the number of prior false positive 

results.
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Existing estimators of cumulative risk of a single false positive result include a discrete 

survival model (Gelfand and Wang (2000)), a population average model (Xu et al. (2004) 

and Hubbard et al. (2010)) and a censoring bias model (Hubbard and Miglioretti (2013)). 

The discrete survival model is limited by an assumption of independence of event and 

censoring time, which is often violated in the case of medical screening test for several 

reasons. For example, individuals receiving a false positive may be more or less likely 

to return for additional screening (Burman et al. (1999)). In the context of screening 

mammography, women at higher breast cancer risk might be more likely to return for 

additional screening and might have a different probability of a false positive result 

than a lower risk women. Also, individuals who are screened more frequently will have 

more observed screening exams during the study period by definition, and for screening 

mammography, the false positive probability decreases as the screening interval decreases 

(Hubbard et al. (2010)). Proposed population average approaches relax the assumption 

of independent censoring but are limited by parametric assumptions about variation in 

risk across screening rounds (Hubbard et al. (2010) and Xu et al. (2004)). Population 

average models estimate the total false positive risk associated with the screening program 

if all eligible individuals were to participate in all recommended rounds of screening 

rather than assuming uncensored individuals are representative of censored individuals. 

The model proposed by Xu et al. (2004) assumes constant risk across screening rounds 

after censoring which is unrealistic in most screening contexts. For example, false positive 

risk is substantially higher at the first screening mammogram compared to subsequent 

mammograms because comparison images are not available for assessing change (Hubbard 

and Miglioretti (2013)). Hubbard et al. (2010) relaxed the assumption of constant risk by 

modeling risk as a function of screening round, but this assumption is unverifiable for 

unobserved screening rounds. The censoring bias model is a more flexible semi-parametric 

approach that relaxes the strong assumptions required by other models. It allows for 

dependent censoring without imposing a fixed functional form for variation in risk across 

screening rounds. However, all existing models can only estimate the cumulative risk of a 

single false positive screening test. Although the stochastic model developed by Miglioretti 

et al. (2016) estimated the probability of false positive screening results followed by 

additional imaging or biopsy, it did not account for dependent censoring and the number of 

prior false positive results. Thus, appropriate methods are needed to estimate the cumulative 

probability of experiencing multiple false positives.

In this paper, we propose a non-homogeneous Markov chain for modeling repeat screening 

test results and use this model to develop estimators of the cumulative risk of receiving 

multiple false positive results across a recommended program of repeat screening that 

addresses dependent censoring and competing risks. We compare the performance of these 

estimators under eight scenarios for variation in risk as a function of screening round, 

censoring time and number of prior false positive results. We also illustrate the performance 

of these models for estimating the cumulative risk of multiple false positive results using 

data collected by six breast imaging registries in the U.S. Breast cancer Surveillance 

Consortium (BCSC). We conclude with a summary and discussion of our approach and 

findings.
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2 Definitions and notation

For ease of notation, we suppress the index for the subject throughout. Let S represent the 

censoring time, defined as the total number of screening rounds observed for each subject, 

and Wℓ represent the event time, defined as the screening round at which each subject 

receives the ℓth false positive result. Let Yj represent the outcome of the jth screen for each 

subject, taking values 0 if a true negative result (TN), 1 if a false positive result (FP), and 2 

if the disease of interest is diagnosed (DD). Let Yj = (Y1,…,Yj) represent the vector of all 

screening outcomes up to round j. We assume subjects are observed for a maximum of M 
rounds. In addition, we assume that subjects who do not receive ℓ false positive results by 

round M would receive them at arbitrary rounds after M. The cumulative risk of receiving ℓ 
false positive results over the course of k rounds of screening is defined as P(Wℓ ⩽ k).

3 A multi-state model for repeat screening

In this section, we propose a non-homogeneous Markov chain to describe transition across 

states defined by the results of a repeated screening test. Let Yj, the possible outcomes of a 

screening test at round j (0 = TN, 1 = FP, 2 = DD), represent the states of a Markov chain. 

Disease diagnosis (DD) is treated as a competing event for false positive results and can be 

considered an absorbing state. We define transition across these states over multiple rounds 

of screening using a first order Markov chain.

First, we define the baseline model which describes the probability of receiving a false 

positive, a true negative or disease diagnosis at the first screening round. This baseline 

model depends on whether or not an individual is censored at the first round.

Let py0 be the probability of receiving an outcome y0 at the first screening round, j = 1, 

for an individual censored at round S ⩾ 2. Since follow-up ends once an individual is 

diagnosed with the disease, we need to define py0 for individuals with S ⩾ 2 only for y0 = 

0 or 1; then we have p1 = expit(β0(1) + β1(1)S) and p0 = 1 – p1, where expit(x) = exp(x)
1 + exp(x) . 

We also define the probability of receiving a false positive (y0 = 1) or disease diagnosis 

(y0 = 2) at the first screening round for an individual censored at round S = 1 as 

py0′ =
exp(β0(y0))

1 + ∑y0 = 1
2 exp(β0(y0))

; Then, the probability of receiving a true negative (y0 = 0) is 

written as p0′ = 1
1 + ∑y0 = 1

2 exp(β0(y0))
. In order to provide an estimation of personalized risks, 

subject characteristics can also be incorporated into the baseline probability models.

Next, we describe the transition probabilities for round j = 2…,S conditional on the state of 

the prior round. Let py1y2 = P(Yj = y2∣Yj–1 = y1) where ∑y2 = 0
2 py1y2 = 1 for y1 = 0, 1, 2 and 

first order Markov property holds; that is,

P(Y j = yj ∣ Y1 = y1, …Y j − 1 = yj − 1) = P(Y j = yj ∣ Y j − 1 = yj − 1) .
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Since disease diagnosis is considered as an absorbing state, we have p20 = p21 = 0 and p22 

= 1. In order to accommodate variation in transition probabilities across screening rounds 

and allow for different transition probabilities for patients with varying censoring times, we 

introduce two transition probability matrices with elements dependent on screening round 

and censoring time, one for all transitions prior to the final observed transition and one for 

the final transition. Because disease diagnosis is an absorbing state, it is known a priori that 

the probability of transition to this state prior to the last observed screening round is 0. Thus, 

for transition probabilities at round j for an individual censored at round S where 2 ⩽ j < S, 

we define the transition probability matrix P =
1 − p01 p01 0
1 − p11 p11 0

0 0 1
. The transition probabilities in 

this matrix are defined as functions of screening round and censoring time, such that for y1 = 

0, 1 and y2 = 1 we have py1y2 = expit(β0(y1y2) + β1(y1y2)S + β2(y1y2)j + β3(y1y2)Sj).

Finally, if S ⩾ 2 and j = S we define the following transition matrix

P′ =
1 − (p01′ + p02′ ) p01′ p02′

1 − (p11′ + p12′ ) p11′ p12′
0 0 1

.

For y1 = 0, 1 and y2 = 1, 2 the transition probability in the matrix 

above is defined as py1y2′ =
exp(βy1y2

T U)

1 + ∑y2 = 1
2 exp(βy1y2

T U)
, where UT = (1, S, j, Sj) and 

βy1y2
T = (β0(y1y2), β1(y1y2), β2(y1y2), β3(y1y2)).

Let py1y2
(ℎ, j) represent the probability that state y1 is followed by y2 in round j when the total 

number of screening rounds attended is S = h. py1y2
(ℎ, j) constitutes the elements of matrices P 

and P′. We define

py1y2
(i, j) =

py0 1 = j < ℎ
py0′ j = ℎ = 1
py1y2 2 ⩽ j < ℎ
py1y2′ 2 ⩽ j = ℎ

(1)

Further, assume that ny1y2
(ℎ, j) is the number of observations when state y1 is followed by y2 in 

round j when the censoring time is S = h. Then, the likelihood function can be written as

L = ∏
ℎ = 1

M
∏

y1 = 0

2
∏

y2 = 0

2
{P(S = ℎ)∑j = 1

ℎ ny1y2
(ℎ, j) ∏

j = 1

M
py1y2

(ℎ, j)ny1y2
(ℎ, j)

} . (2)
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The estimates of P(S = h) and py1y2
(ℎ, j) can be calculated by maximizing L 

subject to the constraint ∑ℎ = 1
M p(S = ℎ) = 1 and ∑y2 = 0

2 py1y2
(ℎ, j) = 1; thus, we have 

P(S = ℎ) =
∑y1 = 0

2 ∑y2 = 0
2 ∑j = 1

ℎ ny1y2
(ℎ, j)

∑ℎ = 1
M ∑y1 = 0

2 ∑y2 = 0
2 ∑j = 1

ℎ ny1y2
(ℎ, j)  and py1y2

(ℎ, j) =
ny1y2
(ℎ, j)

∑y2 = 0
2 ny1y2

(ℎ, j) . When j ⩽ h, this 

estimate can be directly calculated from the data.

For More detailed estimation procedure please see Web Appendix A.

4 Using the Markov model to estimate cumulative risk of multiple FPs

Several methods have been used to estimate the cumulative false positive risk associated 

with repeat screening tests. The cumulative risk of a single false positive result can be 

considered the cumulative incidence function in a discrete survival model. The event time 

is the screening round at which the first false positive test result occurs and the censoring 

time is the number of screening rounds observed for a participant. In this section, we use the 

proposed stochastic process formulation to develop alternative estimators for the cumulative 

risk of multiple false positive test results, following the approaches to handling dependence 

of false positive risk on screening round and censoring time previously proposed for the 

case of a single false positive test result. The cumulative risk of experiencing at least ℓ false 

positive results in k screens (ℓ ⩽ k) can be written as

P(W ℓ ⩽ k) = ∑
ℎ = 1

M
∑

j = ℓ

k
P(W ℓ = j ∣ S = ℎ)P(S = ℎ)

= ∑
ℎ = 1

M
∑

j = ℓ

k
∑
Cℓj

pi1
(ℎ, 1) ∏

m = 2

j
pi(m − 1)im

(ℎ, m) P(S = ℎ)
(3)

where Cℓj represents the set of all possible combinations of states i1,…,ij such that ij = 1 

(means a false positive) and exactly ℓ of them are equal to 1. For example, if h = 1, ℓ = 2 and 

j = 3 then, Cℓj has two tuples (i1 = 1, i2 = 0, i3 = 1) and (i1 = 0, i2 = 1, i3 = 1). Thus, the 

summand only includes these cases for the states.

Multi-state extensions of “discrete time survival model” and “population average model” are 

described in Web Appendix B.

4.1 Censoring bias model

The semi-parametric censoring bias model was first proposed for discrete time-to-event data 

under dependent censoring by Scharfstein et al. (2001) and was later adapted to the context 

of modeling risk of a single false positive screening test result by Hubbard and Miglioretti 

(2013), who showed that this model has greater flexibility compared to the other existing 

models as it allows for both dependent censoring and changes in false positive risk across 

screening rounds without requiring parametric assumptions about variation in risk across 

screening rounds following censoring. In this model, false positive risk is assumed to vary 

across screening rounds in the same way for subjects with S = h rounds as for subjects with 

S > h rounds of screening. However, variation in risk is not constrained to follow a specific 
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functional form (Hubbard and Miglioretti (2013)). Under this model, the cumulative risk of 

at least ℓ false positive test results can be written as

P(W ℓ ⩽ k) = ∑
ℎ = 1

M
∑

j = ℓ

k
P∗(W ℓ = j ∣ S = ℎ)P(S = ℎ) . (4)

To fully identify this model, we assume that

if j ⩽ h, then P∗(W ℓ = j ∣ S = ℎ) = ∑Cℓj pi1
(ℎ, 1)∏m = 2

j pi(m − 1)im
(ℎ, m) ;

if j > h, then P∗(W ℓ = j ∣ S = ℎ) = ∑r = 0
min{ℓ − 1, ℎ}P(W ℓ = j ∣ S = ℎ, nℎ = r)P(nℎ = r ∣ S = ℎ).

Where nh is the number of false positives at or before round h. In order to identify the 

cumulative probability of Wℓ, this model assumes a relationship between the non-identified 

and identifiable components of equation (4). In other words, for j > h, this model identifies 

P(Wℓ = j∣S = h, nh = r) by using information from all subjects with more than h screening 

rounds and the same number of false positives at or before round h. For h = 1,⋯,M – 1 and j 
> h we define

P(W ℓ = j ∣ S = ℎ, nℎ = r) = P(W ℓ = j ∣ S > ℎ, nℎ = r) exp(gℎj(αℓ − r))
∑i = ℓ

M + 1 exp(gℎi(αℓ − r))P(W ℓ = i ∣ S > ℎ, nℎ = r) (5)

where P(Wℓ = M + 1∣S = h, nh = r) is defined to be P(Wℓ > M∣S = h, nh = r). αℓ–r is called the 

censoring bias parameter and ghi(αℓ–r) is called the censoring bias function which can be any 

positive valued function. The censoring bias function specifies the relationship between the 

false positive risk among subjects with S = h and those with S > h. Scharfstein et al. (2001) 

showed that the followings hold for the censoring bias function, ghi(αℓ–r):

1. Specification of ghi(αℓ–r) identifies the distribution of Wℓ.

2. In equation (4), ghi(αℓ–r) is not identified because all choices of ghi(αℓ–r) are 

compatible with the law of observed data. Hence, no statistical test can reject any 

specific choice of censoring bias function.

3. In addition, by specifying ghi(αℓ–r) we do not place any restrictions on the law of 

the observed data.

In our analysis, we use ghi(αℓ–r) = αℓ–r(i – (h + 1)). Parameter αℓ–r in the censoring bias 

function can facilitate sensitivity analysis and is interpreted as the conditional log odds ratio 

of dropping out between time h and h + 1 per one round increase in i for subjects who 

received r < ℓ false positive results at or before round h. Since in the case of screening tests, 

S is always observed, αℓ–r is estimable. In our analysis, we use αℓ–r = (ℓ –r)α. We estimate α 
directly from the data. Using (5) and Bayes’ rule we have

logit (P(S = ℎ ∣ S ⩾ ℎ, wℓ = j, nℎ = r)) = gℎj(αℓ − r) + Cℎ (6)

where Ch is a constant. Note that when j ⩽ k we have
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P(W ℓ = j ∣ S = k, nℎ = r) = ∑
Cℓj

pi1
(k, 1, r) ∏

m = 2

j
pi(m − 1)im
(k, m, r)

where py1y2
(k, m, r) = P(ym = y2 ∣ ym − 1 = y1, S = k, nℎ = r).

All three models discussed in this section and Web Appendix B can easily be extended to 

allow for estimation of the predicted cumulative probability of multiple false positive results 

individualized for a given set of patient characteristics by including patient covariates in 

the regression model for py1y2
(ℎ, j). Hubbard et al. (2010), Xu et al. (2004) and Hubbard and 

Miglioretti (2013) provided variance estimators in the case of at least one false positive 

result in discrete survival, population average and censoring bias models, respectively. For 

the case of multiple false positive screening tests, variance estimates can be derived via 

the delta method. In simulations below, delta method standard errors were used. Since 

the analytic variance formulas are only available for models without covariates, in our 

application to BCSC data, bootstrap standard errors were used.

5 Simulation study

We conducted simulations to evaluate the performance of our three proposed models for 

cumulative risk of multiple false positive screening tests under a variety of scenarios for the 

relationship between false positive risk, screening round, censoring time, and the number of 

prior false positive test results. We considered 10 different scenarios that include potential 

deviations from the multi-state model assumptions. The target of inference is the cumulative 

probability of at least two false positive results after 10 and 5 rounds of screening, that is 

P(W2 ⩽ 10) and P(W2 ⩽ 5) respectively. The small sample properties of these models are 

important to understand because, even in a large sample, the number of subjects observed 

across many rounds may be small. For the censoring bias model we estimated a using 

equation (6). We compared bias and efficiency of these models for cumulative risk of 

multiple false positives under 10 scenarios. The 10 simulation scenarios are described in 

Table 1.

In scenarios 3 - 6 and 9 the assumptions of all three models are violated. Table 2 provides 

a summary of the dependence relationships assumed by the 10 simulation scenarios and 

whether the data generating mechanism satisfies the modeling assumptions.

We selected values for transition probabilities and other parameters of the data generating 

model based on values estimated from real data on repeat screening mammography provided 

by the BCSC. Please see Web Appendix C for detailed description of transition probabilities 

and parameter values used for each simulation scenario. In all simulation scenarios we 

generated a cohort of 50,000 subjects. Estimates for our simulation study are based on 

5000 simulated data sets for each scenario. For each simulation scenario we calculated bias 

relative to the true cumulative probability of two false positives after 10 and 5 rounds of 

screening, theoretical standard errors, and empirical standard errors computed across the 

5000 simulation iterations.
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5.1 Simulation Study Results

Simulation study results for cumulative risk of two false positive results after 10 rounds of 

screening are presented in Table 3. We first considered scenarios where false positive risk 

was independent of censoring. When false positive risk was also independent of number 

of prior false positives and was constant across screening rounds (Scenario 1), all three 

models were unbiased. With variable false positive risk across screening rounds but false 

positive risk independent of the number of prior false positives (Scenario 2), the discrete 

survival model and censoring bias model exhibited lower bias than the population average 

model. When false positive risk was constant across screening rounds but false positive risk 

depended on the number of prior false positive results (Scenario 3), the population average 

model had low bias while the other two models had moderate bias under both moderate 

and strong dependency. With variable risk across screening rounds and false positive risk 

dependent on the number of prior false positives (Scenario 4) the censoring bias model was 

unbiased while the discrete survival model showed moderate bias and the population average 

model demonstrated higher bias. We next considered scenarios with dependent censoring. 

When false positive risk was also dependent on number of prior false positives with variable 

risk across screening rounds (Scenario 5), the censoring bias model had very little bias under 

both moderate and strong dependency, compared to the other two models. With constant risk 

across screening rounds but with false positive risk dependent on the number of prior false 

positives (Scenario 6), the discrete survival model performed poorly while the population 

average model and censoring bias model had very little bias and both performed better under 

moderate dependency. In Scenario 7, when false positive risk was constant across screening 

rounds but depended on the number of prior false positives, the population average model 

and censoring bias model demonstrated significantly lower bias compared to the discrete 

survival model. Under strong dependency, the population average model and censoring 

bias model performed similarly. However, under moderate dependency, the censoring bias 

model performed significantly better. Under variable risk across screening rounds with false 

positive risk independent of number of prior false positives (Scenario 8), the censoring bias 

model demonstrated reasonably low bias compared to the other models especially when the 

dependency was strong. In scenario 9, when false positive risk was constant across screening 

round but censoring time depended on the number prior false positive results, all three 

models exhibited low bias. Finally, in scenario 10, when we generated the data assuming 

second order Markov model but fitted the models assuming a first order Markov model, 

censoring bias model had lower bias compared to the other two models.

In summary, the discrete survival and population average models performed well when their 

assumptions were satisfied but poorly when their assumptions were violated. In comparison, 

the censoring bias model performed well across all scenarios. In all scenarios, theoretical 

standard errors tended to underestimate empirical standard errors. This is likely due to the 

fact that all estimates rely heavily on the false positive risk among subjects who are observed 

across all screening rounds (Hubbard and Miglioretti (2013)). This group will be small if 

the proportion censored at each screening round is large. The censoring bias model was 

also generally less efficient than the other models, although this difference was small for 

most scenarios. In almost all scenarios, the censoring bias model demonstrated low bias. 
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Simulation study results for cumulative risk of two false positive results after 5 rounds of 

screening which are shown in Web Table 3 suggest similar conclusions as Table 3.

The goodness of fit assessment of the multi-state models are provided in Web Appendix D.

6 Application to the BCSC

We illustrate the performance of our methods using data collected by six breast imaging 

registries in the BCSC: (1) The North Carolina Mammography Registry, (2) the New 

Hampshire Mammography Network, (3) the San Francisco Mammography Registry, (4) 

Kaiser Permanente Washington Registry, (5) the Vermont Breast Cancer Surveillance 

System, (6) the Metro Chicago Breast Cancer Registry. These registries link information 

on women who receive a mammogram at a participating facility to state cancer registries 

and pathology databases to determine breast cancer outcomes. We included women who had 

their first screening mammogram between the ages of 40 and 74 years at a participating 

BCSC facility. We included this first screening mammogram along with subsequent 

screening mammograms meeting inclusion criteria performed from 2000 to the most recent 

year with complete breast cancer capture, which varied from 2010 - 2014 across the 

six mammography registries. Mammograms were classified as positive or negative using 

standard BCSC definitions (BCSC (2018)) based on the initial Breast Imaging Reporting 

and Data Systems (BI-RADS) assessment and recommendations assigned by the radiologist. 

A positive mammogram was considered to be false positive if the woman was not diagnosed 

with breast cancer within 1 year after the index mammogram and prior to the next screening 

mammogram. A negative mammogram was considered to be true negative if the woman 

was not diagnosed with breast cancer within 1 year after the index mammogram and prior 

to the next screening mammogram. This negative mammogram would be considered a true 

negative and any subsequent mammogram for a women with true negative would also be 

included in the analysis. The interval between screening mammograms was categorized as 

9 – 18 months (approximately annual), 19 – 30 months (approximately biennial), or no 

prior mammogram within 30 months. Breast cancer diagnoses, including invasive carcinoma 

or ductal carcinoma in situ, were treated as competing events given we are interested in 

evaluating breast cancer screening in women without a history of breast cancer.

6.1 Summary of observed multiple false positive rates

We included 168,716 women who each received between 1 and 10 screening mammograms 

over the study period for a total of 359,842 mammograms. Across the six mammography 

registries, the number of women received screening mammograms varied from 7,420 - 

66,835 and the total number of screening mammograms varied from 19,247 - 123,031. 

Some characteristics of this cohort such as the distribution of baseline age, race/ethnicity, 

family history of breast cancer and breast density and number of observed rounds of 

screening along with the proportion of women within each category with a false positive 

mammography result at their first mammogram are presented in Table 4. A summary of 

these characteristic across the six mammography registries is provided in Web Table 4. 

The majority of women were observed for one or two rounds of screening (73.8%) while 

only 10.9% were observed to receive five or more mammograms. The number of women 
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observed to receive five or more mammograms varied from 8,289 - 39,439 across the six 

registries. The probability of receiving a false positive result at the first screening round 

was somewhat lower for women with five or more screening rounds compared to women 

with fewer screening rounds. This was also the case for receiving false positive results at 

subsequent screens. Table 4 shows that black women had a higher probability of receiving 

false positive results at their first and subsequent screenings. The probability of receiving a 

false positive at the first screen was also higher for women with a family history of breast 

cancer and women with heterogeneously dense breasts at baseline. For each woman in the 

study we identified the reason study follow-up had ended. Follow-up ended due to loss 

to follow-up (no further screening) (93.5%), end of study (3.3%), breast cancer diagnosis 

(2.2%) or death (1.0%).

The relationship between false positive risk, screening round, and censoring time is 

illustrated in Figure 1. Risk decreases substantially between the first and second screening 

rounds, regardless of the number of observations available per subject. At any individual 

screening round, false positive risk appears lower for women with more observed screening 

rounds and higher for women with fewer observed rounds.

Web Figure 2 (a) and (b) show the observed probability of multiple false positive results 

across screening round, P(Wℓ = i∣S ⩾ i), and the empirical cumulative probability of multiple 

false positive test results, P(Wℓ ⩽ i∣S ⩾ i) respectively. The probabilities of first and second 

false positive results were highest at the first (24.6%) and second (3.6%) screening round 

respectively and decreased at subsequent screens.

Adjusted odds ratios for baseline characteristics are provided in Web Appendix E.

We applied each of the three estimators for cumulative risk of multiple false positive results 

to the BCSC cohort to estimate cumulative risk after 10 rounds of annual and 5 rounds 

of biennial screening. To illustrate how covariates can be incorporated into each model, 

we provide personalized risk estimates. Similar to the simulation studies, we used different 

transition matrices for the first and subsequent screening rounds. However, in the analysis of 

BCSC, we also incorporate patients characteristics into the transitional matrices.

We modeled false positive risk conditional on baseline age, family history of breast 

cancer, breast density, race/ethnicity and interval between screening mammograms. We also 

assumed false positive risk depends on the number of prior false positive exams. Under 

the same settings, we also utilized the three proposed models to calculate the probability 

of receiving at least two consecutive false positive results after 10 rounds of annual and 5 

rounds of biennial screening. Table 5 shows the estimated cumulative probability of multiple 

false positive mammography results and bootstrap confidence intervals after 10 rounds of 

annual screens and 5 rounds of biennial screens for groups at high and low risk of a false 

positive result. We defined the high risk group for receiving a false positive result as 40 year 

old, non-Hispanic black women with a family history of breast cancer and heterogeneously 

dense breasts. The low risk group for receiving a a false positive result was defined as 

50 year old, Asian women with no baseline family history of breast cancer and almost 

entirely fat breasts. For the censoring bias model, a was estimated for each number of 
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false positive results using equation (6). For the cumulative risk of one false positive, the 

estimated risk was lowest using the discrete survival model whereas estimated risk based on 

the population average model was the highest, with the censoring bias model intermediate 

between the two. However, the pattern was different for estimates of multiple false positive 

results. For estimates of the cumulative probability of multiple false positive results, a large 

proportion of the sample is censored and this proportion increases as the target number of 

false positives increases. In addition, the probability of receiving a greater number of false 

positives increases with greater number of screening rounds. As a result, estimates of the 

cumulative probability of four and five false positives are larger based on the censoring bias 

model compared to the population average model due to its assumption of constant risk 

following censoring.

Web Table 7 shows the estimated risk of receiving at least two consecutive false positive 

mammography results and bootstrap confidence intervals after 10 rounds of annual and 5 

rounds of biennial screenings for the defined low and high risk group. The estimated risk 

of receiving at least two consecutive false positives was lowest using the discrete survival 

model whereas the estimated risk based on the population average model was the highest, 

with the censoring bias model intermediate between the two.

7 Discussion

We proposed a non-homogeneous Markov chain to represent the process of repeat screening 

and used this framework to develop three models for estimating the cumulative risk of 

multiple false positive screening tests. We compared the performance of these three models 

using simulations under 10 different scenarios varying our assumptions about the censoring 

mechanism, variation in risk across screening rounds and dependence of false positive risk 

on prior false positive results. In most scenarios, the censoring bias approach was nearly 

unbiased and had lower bias and best goodness of fit than other approaches. In particular, 

when false positive risk depends on censoring time and number of prior false positive 

results and varies across screening rounds (Scenario 5), the discrete survival and population 

average models both showed substantial bias while the censoring bias model eliminated 

most of the bias. In addition, when censoring time depends on false positive risk and risk 

varies across screening rounds, the censoring bias model is nearly unbiased while the other 

two models exhibit substantial bias especially under strong dependency. A strength of the 

Markov chain approach to describing the screening process is its straightforward ability to 

incorporate competing risks. By specifying an absorbing state, we can easily distinguish 

between patients who have been censored due to drop-out from screening, loss to follow-up, 

or the end of study follow-up and those who have ceased screening due to cancer diagnosis 

or death. In the context of breast cancer screening where relatively few women will be 

diagnosed with cancer compared to the number censored, accounting for competing risks 

has relatively little practical impact on estimates of cumulative false positive risk (Hubbard 

and Miglioretti (2013)). However, if applied in contexts where competing events have higher 

prevalence such as screening for high blood pressure, appropriately distinguishing between 

competing events and censoring is critical. It is also straightforward to incorporate subject 

characteristics into each estimator in order to provide personalized risk prediction. We 

applied this approach to the mammography setting by comparing estimates of cumulative 
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risk of multiple false positive results after 10 rounds of annual and 5 rounds of biennial 

exams with developing breast cancer as a competing risk. We reported cumulative false 

positive risks for women with high and low risk profiles. The estimated cumulative risk 

of a single false positive is lowest using the discrete survival model and highest using the 

population average model. The discrete survival model is likely to underestimate risk since 

it assumes that women observed over more screening rounds are representative of those 

censored earlier. In contrast, the population average model assumes that risk is constant 

across screening rounds which is unlikely to be true in the mammography setting. However, 

for the cumulative risk of a larger number of false positives, the population average model 

tends to underestimate risk, especially when the proportion of censored individuals is 

significantly higher than uncensored. In addition, for the cumulative risk of a larger number 

of false positives, the risk among biennial screeners becomes significantly smaller and the 

relative risk in biennial compared to annual screeners decreases significantly.

In this paper we reported the cumulative risk after 10 years of screening mammograms. 

Women who are breast cancer free through age 79 and comply with screening guidelines 

would undergo up to 40 screening mammograms. The proposed Markov model can 

be used to estimate the cumulative risk of multiple false positive results over longer 

screening periods. However, this would require either data observed over a longer period 

or extrapolation.

Understanding the risk of receiving multiple false positive test results has important 

implications evaluating effectiveness of regimens consisting of many rounds of repeat 

screening. Individuals who begin screening at younger ages are at risk for experiencing a 

greater total number of false positive test results due to the greater total number of screening 

tests they will be exposed to and possible dependence of false positive risk on the number 

of prior false positive results. This may cause individuals to become less interested in 

future screening, decreasing adherence to screening recommendations (Klompenhouwer et 

al. (2014)) and, consequently, reducing screening regimen effectiveness. Our new approach 

makes an important contribution to evaluating screening strategies by providing methods 

to estimate multiple false positive results as a function of screening round, censoring 

time, number of prior false positives and other women’s characteristics in the presence 

of competing risks.

It should be noted that, in the proposed approach transition probabilities are described 

conditional on the total number of rounds of screening that an individual participates in 

which is fundamentally future information.

Software in the form of R code scripts used to produce the results of this paper has been 

deposited to Github (Golmakani (2020)).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
False positive risk at screening rounds 1-10 by censoring time. This figure appears in color 

in the electronic version of this article, and any mention of color refers to that version.
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Table 1:

Descriptions of the simulation scenarios used to evaluate the performance of the three proposed models.

Scenario Description

1 False positive risk is independent of censoring time and number of prior false positive results and is constant across screening 
rounds. This scenario satisfies the assumptions of all three models.

2 False positive risk depends on screening round but is independent of censoring time and number of prior false positive results. This 
scenario violates the assumption of the population average model.

3 False positive risk depends on the number of prior false positive results but is independent of screening round and censoring time.

4 False positive risk depends on the number of prior false positive results and screening rounds but is independent of censoring time.

5 False positive risk depends on the number of prior false positive results, censoring time and screening round.

6 False positive risk depends on the number of prior false positive results and censoring time but is constant across screening rounds.

7 False positive risk depends on censoring time and is independent of screening round and number of prior false positive results. This 
scenario violates the assumptions of the discrete survival model.

8 False positive risk depends on censoring time and screening round but is independent of number of prior false positive results. This 
scenario violates the assumptions of the discrete survival model and population average model.

9 False positive risk depends on the censoring time and independent of screening round. Further, we assume that censoring time 
depends on the number of prior false positives.

10

Similar to the first scenario, false positive risk is independent of censoring time and number of prior false positive results and is 
constant across screening rounds. In this scenario, the data was generated assuming second order Markov chain which means the 
result of the current screen depends on the result of the prior two screens. However, we fitted the models assuming a first order 
Markov chain (first order Markov model assumption was violated).
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Table 2:

Data generating mechanism for the 10 simulation scenarios. For each scenario, models with assumptions 

satisfied by the data generating mechanism are listed under Model. Abbreviations: false positive (FP), discrete 

survival (DS), population average (PA), censoring bias (CB).

Scenario
FP risk depends on:

Model
censoring round prior FPs

1 X X X DS, PA, CB

2 X ✓ X DS, CB

3 X X ✓ ———

4 X ✓ ✓ ———

5 ✓ ✓ ✓ ———

6 ✓ X ✓ ———

7 ✓ X X PA, CB

8 ✓ ✓ X CB

9 ✓ X ✓ ———

10* X X X DS, PA, CB

*
First order Markov model assumption was violated for this scenario.
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Table 3:

Relative bias, theoretical standard errors (TSE), and empirical standard errors (ESE) for three estimators for 

cumulative risk of two false positive after ten rounds of screening for simulated data.

Models
Strong dependence Moderate dependence

Relative Bias TSE ESE Relative Bias TSE ESE

Scenario 1 *

Discrete survival −0.053 0.001 0.004

Population average −0.001 0.001 0.005

Censoring bias 0.003 0.004 0.005

Scenario 2

Discrete survival −0.057 0.001 0.003 −0.054 0.001 0.004

Population average 0.338 0.001 0.005 0.150 0.001 0.005

Censoring bias 0.039 0.003 0.004 0.017 0.004 0.004

Scenario 3

Discrete survival −0.037 0.001 0.004 −0.048 0.001 0.004

Population average −0.006 0.001 0.005 −0.006 0.001 0.005

Censoring bias 0.012 0.004 0.005 0.016 0.004 0.005

Scenario 4

Discrete survival −0.050 0.001 0.004 −0.049 0.001 0.004

Population average 0.165 0.001 0.005 0.082 0.001 0.005

Censoring bias 0.007 0.003 0.004 0.003 0.004 0.004

Scenario 5

Discrete survival −0.420 0.003 0.009 −0.335 0.004 0.010

Population average 0.152 0.001 0.007 0.063 0.001 0.007

Censoring bias 0.011 0.003 0.017 0.019 0.005 0.017

Scenario 6

Discrete survival −0.329 0.004 0.013 −0.244 0.005 0.017

Population average −0.095 0.001 0.007 −0.063 0.001 0.007

Censoring bias −0.044 0.006 0.017 0.029 0.007 0.019

Scenario 7

Discrete survival −0.333 0.004 0.014 −0.242 0.005 0.017

Population average −0.049 0.001 0.007 −0.039 0.001 0.007

Censoring bias −0.042 0.005 0.018 0.006 0.007 0.019

Scenario 8

Discrete survival −0.418 0.003 0.009 −0.333 0.004 0.013

Population average 0.149 0.001 0.007 0.060 0.001 0.007

Censoring bias −0.004 0.004 0.017 −0.009 0.006 0.018

Scenario 9

Discrete survival −0.005 0.001 0.004 −0.035 0.001 0.004

Population average 0.017 0.001 0.005 0.084 0.001 0.004

Censoring bias 0.041 0.004 0.008 0.018 0.003 0.008

Scenario 10 *
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Models
Strong dependence Moderate dependence

Relative Bias TSE ESE Relative Bias TSE ESE

Discrete survival −0.202 0.001 0.004

Population average −0.148 0.001 0.005

Censoring bias −0.069 0.004 0.009

*
There is no dependency for this scenario.
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Table 4:

The distribution of baseline age, race/ethnicity, family history of breast cancer, and breast density and number 

of observed rounds of screening for 168,716 women along with the proportion of women within each category 

with false positive mammography results at their first and subsequent mammograms.

Factor N % % FP at first screen % FP at subsequent screens

Baseline age

40 — 49 years 130,921 77.6 24.4 11.1

50 — 59 years 37,795 22.4 28.0 9.3

Race/ethnicity

White 88,390 52.4 25.6 11.0

Black 27,711 16.4 30.2 11.90

Asian/Pacific Islander 16,931 10.0 18.3 8.5

American Indian/Alaska Native 597 0.4 26.6 8.4

Hispanic 14,423 8.5 23.9 9.8

Mixed/other 20,664 12.2 23.1 11.1

Baseline family history of breast cancer

Yes 11,047 6.5 28.7 10.9

No 157669 93.4 24.9 10.8

Baseline BI-RADS breast density

Almost entirely fat 9,112 5.4 15.9 6.8

Scattered fibroglandular 59,492 35.3 25.6 10.1

Heterogen dense 82,147 48.7 27.7 11.8

Extremely dense 17,965 10.6 17.1 10.3

Screening round per woman

1 95,601 56.7 25.6

2 28,958 17.2 25.8 13.1

3 15,890 9.4 24.6 11.7

4 9,933 5.9 24.1 11.1

⩾ 5 18,334 10.9 23.2 9.7
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Table 5:

Estimated cumulative probability of multiple false positive mammography results after 10 rounds of annual 

screening and 5 rounds of biennial screening (95% confidence intervals) for high and low risk groups

Model
High risk group Low risk group

Annual Biennial Annual Biennial

One FP

Discrete survival 72.72 (72.07, 73.35) 59.85 (59.32, 60.39) 36.50 (35.82, 37.18) 27.34 (26.86, 27.81)

Population average 83.77 (83.43, 84.14) 66.98 (66.52, 67.43) 49.38 (48.68, 50.10) 31.76 (31.20, 32.32)

Censoring bias 75.02 (74.30, 75.77) 60.75 (60.19, 61.31) 38.15 (37.39, 38.92) 27.76 (27.25, 28.26)

Two FP

Discrete survival 39.73 (38.89, 40.57) 22.50 (21.99, 22.98) 8.63 (8.16, 9.11) 4.45 (4.21, 4.70)

Population average 51.99 (50.98, 52.99) 24.90 (24.22, 25.58) 13.61 (12.88, 14.30) 4.85 (4.56, 5.17)

Censoring bias 40.38 (39.61, 41.15) 23.94 (23.45, 24.44) 11.28 (10.38, 12.28) 5.47 (5.16, 5.79)

Three FP

Discrete survival 16.59 (15.90, 17.26) 5.61 (5.32, 5.91) 1.55 (1.33, 1.78) 0.50 (0.42, 0.59)

Population average 25.73 (24.81, 26.65) 6.07 (5.74, 6.41) 2.81 (2.52, 3.11) 0.47 (0.41, 0.54)

Censoring bias 20.96 (19.75, 22.17) 8.11 (7.30, 8.97) 3.28 (2.80, 3.73) 0.89 (0.70, 1.12)

Four FP

Discrete survival 5.82 (5.35, 6.28) 0.94 (0.82, 1.08) 0.25 (0.15, 0.35) 0.04 (0.02, 0.07)

Population average 9.91 (9.30, 10.51) 0.87 (0.77, 0.97) 0.43 (0.35, 0.51) 0.03 (0.02, 0.04)

Censoring bias 11.16 (10.24, 12.09) 1.97 (1.63, 2.38) 1.50 (1.23, 1.59) 0.14 (0.09, 0.21)

Five FP

Discrete survival 1.79 (1.52, 2.07) 0.09 (0.05, 0.13) 0.04 (0.02, 0.06) < 0.001

Population average 2.96 (2.67, 3.26) 0.06 (0.05, 0.07) 0.05 (0.04, 0.06) < 0.001

Censoring bias 6.04 (5.43, 6.73) 0.30 (0.20, 0.40) 0.80 (0.63, 1.02) < 0.001
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