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ABSTRACT

Olympic systems are collections of small ring polymers whose aggregate properties
are largely characterized by the extent (or absence) of topological linking in contrast
with the topological entanglement arising from physical movement constraints associated
with excluded volume contacts or arising from chemical bonds. First, discussed by de
Gennes, they have been of interest ever since due to their particular properties and
their occurrence in natural organisms, for example, as intermediates in the replication of
circular DNA in the mitochondria of malignant cells or in the kinetoplast DNA networks
of trypanosomes. Here, we study systems that have an intrinsic one, two, or three-
dimensional character and consist of large collections of ring polymers modeled using
periodic boundary conditions. We identify and discuss the evolution of the dimensional
character of the large scale topological linking as a function of density. We identify
the critical densities at which infinite linked subsystems, the onset of percolation, arise
in the periodic boundary condition systems. These provide insight into the nature of
entanglement occurring in such course grained models. This entanglement is measured
using Gauss linking number, a measure well adapted to such models. We show that, with
increasing density, the topological entanglement of these systems increases in complexity,
dimension, and probability.

Keywords: Linking; entanglement; Olympic gel; percolation; periodic boundary condi-
tion.

Mathematics Subject Classification 2010: 57M25, 92C05, 92C40

1. Introduction

Olympic systems, see Fig. 1, are collections of small ring polymers modeled in one,
two, or three-dimensional systems of large spatial extent. In our study, we char-
acterize such systems having filamentary, laminal, and three-dimensional spatial
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Fig. 1. Olympic rings.

structures. In addition to their spatial dimension, these structures have aggregate
properties that are characterized by the topological linking that exists between
pairs (or larger subcollections) of rings. Although, there are alternative strategies
to quantify the extent of entanglement, particularly, in dense systems of polymers,
we focus on the Gauss linking number [9], in contrast with the topological entangle-
ment arising from physical movement constraints associated to excluded volume or
that arising from chemical bonds. The study of the knotting and, most especially,
the linking of polymers was discussed by de Gennes [5] in the context of polymer
gels. These Olympic gels have been of interest ever since due to their particular
properties and their occurrence in natural organisms, e.g. as intermediates in the
replication of circular DNA in the mitochondria of malignant cells, in the kineto-
plast DNA networks of trypanosomes [2, 4, 6–8, 12, 13], or in chromosome struc-
tural organization or segregation into identifiable territories or domains [3]. These
are arenas of substantial contemporary research as they remain quite mysterious
despite their fundamental significance and the significant effort dedicated to illumi-
nating structure and function. In this research, we study a course grained model in
which the constituent individual unknotted circular chains in our simulation model
of polymeric rings empolys the so-called θ-conditions, whereby the individual rings
are disjoint but neither attract nor repel each other [5]. As a consequence, excluded
volume effects due to an intrinsic thickness of the rings are not taken into account
despite the relatively dense character of this system in contrast to the dilute solu-
tion associated to θ-conditions. One expects that an excluded volume would affect
the detail of the physical scale, but would not change the qualitative behavior
that is identified here. We note that Kuhn [11] proposed, for entropic reasons, that
the shape of random polymer chains at thermodynamic equilibrium should have
the shape of a prolate ellipsoid. This has been numerically confirmed [14, 16] and
experimentally. One consequence of this molecular asymmetry is the spatial com-
plexity encountered in the study of linking within Olympic systems consisting of
such ring molecules independent of excluded volume considerations.

Here, we study model systems which have an intrinsic one, two, or three-
dimensional character and consist of such large collections of ring polymers that
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Fig. 2. 1D PBC systems: Unlinked and saturated.

they can be well modeled using systems with periodic boundary conditions. For
the one-dimensional, filamentary, case, we impose boundary symmetry on the two
faces of the fundamental cell that are perpendicular to the “x” axis, Fig. 2. We
characterize the dimensional nature of the large scale topological entanglement and
the critical densities at which these first arise by employing periodic boundary con-
dition systems to give a course grained model. The entanglement is measured using
the Gauss linking number [9], a measure well adapted to systems employing peri-
odic boundary conditions. In a two-dimensional system, it may occur that there are
“parallel” one-dimensional infinite subsystems that are unlinked pairwise but, indi-
vidually, are linked in a manner that aligns along a single linear subspace, Fig. 3. In
other cases, the entire two-dimensional system forms a saturated system, an irre-
ducible linked body, Fig. 3. Similarly, in three dimensions, one may have parallel
one-dimensional filamentary linked subsystems, parallel two-dimensional laminal
irreducibly linked subsystems, and irreducible infinite three-dimensional linked sys-
tems. We show that, with increasing density, the topological entanglement of these
systems increases in complexity, dimension, and probability. We identify the critical
densities at which these phase changes occur.

In the next section, we will describe periodic boundary condition models and
how they are employed in our study of Olympic gels. Next, we describe the linking
analysis for periodic boundary condition models via the Gauss linking number.
These allow us to identify entangled subsystems, important for the analysis of
Olympic systems in the fourth section. In the fifth section, we discuss our summary
conclusions.

Fig. 3. 2D PBC systems: Unlinked, filamental, and saturated.
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2. Olympic Systems via Periodic Boundary Condition (PBC)
Models

A one-dimensional system is an array of polymer rings confined to lie in an infinite
tube of constant cross-section, see Fig. 2. At low densities, the average character
of the one-dimensional PBC system is totally disconnected as individual rings are
not linked to any others. A one-dimensional system is modeled with one periodic
boundary condition by which the basic cell, with symmetric boundary structure, is
repeated infinitely, so as to determine an infinite tube with constant cross-section,
see Fig. 2. With increasing density, one observes a critical point at which the sys-
tem becomes a single connected infinite body as there is a chain of linked rings
connecting any ring to any other ring. As a function of the density, we determine
the average proportion of infinite connected chains.

A two-dimensional system is an array of polymer rings in a two-dimensional PBC
system confined to lie between two infinite parallel planes, see Fig. 3. At low den-
sities, one again observes a totally disconnected system of individual rings. As the
density increases, one observes the increasing likelihood of a one-dimensional infi-
nite connected chain and, with still more density, the presence of a two-dimensional
infinite connected, or saturated, system of linked rings in which there is a chain
of linked rings connecting any ring to any other ring, Fig. 3. By employing two-
dimensional PBC systems of closed rings, one has course grained systems that
illustrate the complexity that one may encounter. As a function of the density,
we quantify and characterize the dimensionality of the linked components of the
system.

A three-dimensional system is an array of polymer rings filling a region of, if
not the entire, three-dimensional space given by a three-dimensional PBC system,
see Fig. 4. Again, at low densities, one observes a totally disconnected system of
individual unlinked rings. As the density increases, one first observes the increasing
presence of one-dimensional parallel infinite filamental connected systems, then
the increasing presence of a two-dimensional parallel laminal infinite connected
systems, and then, finally, the presence of a three-dimensional infinite connected

Fig. 4. Unlinked and linked 3D systems: A two layer perspective.
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Fig. 5. 1 PBC low density and high systems achieved with fixed random polygon by changing
the cell size.

saturated system. Again, as a function of the density, we quantify and characterize
the dimensionality of the linked components of the system.

2.1. Simulation of Olympic gel systems

In order to simulate an Olympic gel, we first create an unknotted random 125
edge equilateral polygon using the crankshaft algorithm [1]. The resulting polygon
is randomly placed in the interior of a generating cell and extended to a system
with 1, 2, or 3 PBC. In order to study the entanglement of the system in different
concentrations, we vary the size of the cubic cell in relation to the unchanged
polygon by adjusting the distances between the centers of gravity of each image,
see Fig. 5. More precisely, we begin with a cubic cell whose edge length is 25 units
giving a minimum system density of 0.04 and we vary the density of the system
by increments of 0.04 density units. For systems with 1 PBC, oriented along the
x-axis, we increase this density scale up to a maximum density of 1.00, therein
decreasing both the distances between centers of gravity and the edges parallel to
the x-axis from 25 units to 1. For systems with 2 PBC (3 PBC respectively), in the
x, y-axes (x, y, z-axes respectively), we achieve a maximum density of 0.72, giving
a minimum distance of approximately 1.39 between centers of gravity.

The edge length in each of these systems is proportional to the reciprocal of the
varying density, l = 1

ρ , as the number of vertices in the basic cell will always equal
the number of vertices in the polygon but the three-dimensional volume of the cell
varies proportionally with the 1, 2, or 3 changing edge lengths, l, for the 1, 2, or 3
periodic boundary condition, respectfully.

3. Linking Entanglement in Olympic Gels Modeled using Periodic
Boundary Conditions

In this section, we will discuss the basic ideas that form the theoretical foundation
for this study of entanglement in PBC systems as described by Panagiotou [15].

3.1. PBC systems

We study a system consisting of a collection of polygonal chains of length n (i.e. of
n edges), by dividing the space into a family of rectilinear cuboids of volume abc,
where a, b, and c are the side lengths of the cuboid. The structure of the melt in

1650081-5
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Fig. 6. Two adjacent cells in a 1 PBC model.

each cuboid is identical, i.e. we impose PBC on the system [17]. Specifically, we
make the following definition:

Definition 3.1. A cell consists of a cuboid with embedded arcs (i.e. parts of
curves) whose endpoints lie only in the interior of the cuboid or on the interior of
one of its faces, but not on an edge or corner, and those arcs which meet a face
satisfy the PBC requirement. That is, to each ending point corresponds a starting
point at exactly the same position on the opposite face of the cuboid. See Fig. 6
for an illustrative example of two adjacent cells.

A cell generates a one, two, or three-dimensional periodic system in space by
tiling the space with the cuboids, so that they fill the space and only intersect on
their faces. This allows an arc in one cuboid to be continued across a face into an
adjacent cuboid and so on. Notice that the resulting chains may be closed, open
or infinite. For a one-dimensional periodic boundary condition system, we require
that the chain only intersects the interior of the two opposite faces perpendicular
to the x-axis. This allows one to fill a one-dimensional solid tube with rectangular
cross-section, a filamentous structure. For a two-dimensional periodic system, we
require that the chain only intersects the interior of the two faces perpendicular to
the x-axis or the interior of the two faces perpendicular to the y-axis. This allows
one to fill a thickened plane, a laminar structure. Finally, for a three-dimensional
periodic system, the chain can intersect the interiors of any of the faces but must
respect the periodicity constraint. This allows one to fill three space with these
cuboids creating a three-dimensional periodic system.

Without loss of generality, we select a cell of the periodic system to be designated
as the generating cell. A generating chain is the union of all the arcs inside the
cell, the translations of which define the connected components of the periodic
system. For each arc of a generating chain, we choose an orientation such that the
translations of all the arcs define a coherently oriented chain in the periodic system.
For each generating chain, we choose without loss of generality an arc and a point
on it to be its base point in the generating cell. An unfolding of a generating chain is
a connected arc in the periodic system composed by exactly one translation of each

1650081-6
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arc of the generating chain. Thus, an unfolding contains exactly one translation
and a designated image of a base point of the generating chain. A generating chain
is said to be closed (respectively open) when its unfolding is a closed (respectively
open) chain. The smallest union of the copies of the cell needed for one unfolding
of a generating chain is called the minimal unfolding.

The collection of all translations of the same generating chain i is called a free
chain and is denoted I. A free chain is a union of connected components, each of
which is equivalent to any other component under translation. An image of a free
chain is any arc of a free chain that is the unfolding of a generating chain. The
minimal unfolding of I containing an image Iu of I, will be denoted mu(Iu). For
example, in Fig. 6, the blue in the generating cell together with the adjacent red
curves determine the closed free chain I that forms mu(I0). The image of I whose
base point lies in the generating cell is called the parent image and denoted I0. Any
other image of I can be defined as a translation of I0 by a vector v⃗ from the base
point to the base point of the parent image. That is:

Iv = I0 + v⃗. (3.1)

3.2. The linking number in PBC systems

As described, each of the periodic systems consists of an infinite number of chains.
So, describing or quantifying the linking number of the chains in the system would
appear to require an infinite calculation. Due to the periodicity, however, infinitely
many chains have the same conformation, thus their linking is the same. As a con-
sequence, we need only to compute the linking number of all the truly distinct
conformations. As we know that the periodic system is generated by one cell, con-
taining only a finite number of generating chains, these can only give rise to a finite
number of distinct free chains in the periodic system. We define the linking number
at the level of free chains. We notice that an image of a free chain may be entangled
with other images of itself, see Fig. 6 for an illustrative example. Thus a measure
of entanglement of a free chain must, in general, capture this information as well as
the linking with other distinct free chains. In this study, we will generate a single
chain and consider its liking with all of its translates arising from the PBC. As a
consequence, we give the following, limited, definition of linking for chains in the
PBC model employed here. For the general case, we refer to Panagiotou [15]:

Definition 3.2. The Gauss linking number of two disjoint (closed or open) oriented
curves l1 and l2, whose arc-length parametrizations are γ1(t), γ2(s) respectively, is
defined as a double integral over l1 and l2 [9]:

L(l1, l2) =
1
4π

∫

[0,1]

∫

[0,1]

(γ̇1(t), γ̇2(s), γ1(t) − γ2(s))
∥γ1(t) − γ2(s)∥3

dtds, (3.2)

where (γ̇1(t), γ̇2(s), γ1(t) − γ2(s)) is the triple product of γ̇1(t), γ̇2(s) and γ1(t) −
γ2(s).

1650081-7
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In our PBC model, each chain is translated to give an infinite collection copies
of itself. As a consequence, we count the number of times a chain, l0, has a nonzero
Gauss linking number with each of the infinitely many translation copies of itself. In
an Olympic PBC system, each chain is a compact closed ring and, as a consequence,
is contained within finitely many cells. Rings that do not intersect the union of these
finitely many cells must have a zero linking number with the ring. Since, only finitely
many rings can intersect a cell and there are only finitely many cells containing the
chain, there are only finitely many rings that can have a nonzero linking number
with it. The valence of a ring is the number of rings with which it has a nonzero
linking number. Therefore, in our case of Olympic systems, the valence of each chain
is finite. While there are situations in which rings can be topologically linked, e.g.
the Whitehead link or the Borromean rings, without having a nonzero Gauss linking
number these structures have not been observed in our data and are expected to
be quite rare in random pairs and triples of random rings. As a consequence, the
Gauss linking number is likely a statistically robust detector of linking in Olympic
systems.

3.3. Subsystems and entanglement

Definition 3.3 (Definitions for one, two, and three dimensions). Percola-
tion in one dimension means that the chains organized in one direction are linked
to form an infinite connected chain. In such a system, we can imagine the chains
form an infinitely long tube containing the connected chains. If such a filamentous
tube is contained in a two or three-dimensional system, they form an infinite family
of tubes that are disconnected from each other.

Percolation in two dimensions means that the chains along two independent
dimensions are linked to form an infinite connected set. In such a system, we can
imagine the chains as forming laminar (planar) structures of connected chains.
However, these layers are disconnected from each other in a three-dimensional
system.

Percolation in three dimensions means that the chains along three independent
dimensions are linked to form an entire global infinite connected set.

Definition 3.4 (Percolation cluster, saturated network). An infinite con-
nected component in 1 dimension (1 or 2 dimensions respectively) in a 2 PBC
system (3-PBC respectively) respectively, is called a percolation cluster. A 1, 2,
or 3 dimensional connected component in a 1, 2, or 3 PBC system respectively is
called a saturation network in 1, 2, or 3 dimensions respectively.

Notice that, in a system generated by one chain in 3 PBC, the existence of
a 1-dim (respectively 2-dim) percolation cluster implies the existence of infinitely
many 1-dim (respectively 2-dim) percolation clusters and that there are no finite
connected components in the system. In a system generated by one chain, the

1650081-8
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existence of percolation in 3-dim implies that all the chains are connected to each
other, forming a saturation network.

Definition 3.5. Let I0 denote a chain in a three PBC system generated by a
cubic cell and let V be the set of vectors, v⃗ ∈ lZ3 such that L(I0, I0 + v⃗) ̸= 0. We
define the valence of a chain to be the cardinality of V , denoted |V |. Thus, the
valence of I0 is the number of images with which the chain has a nonzero linking
number.

Remark 3.6. (i) Notice that, due to the periodicity of the system, |V | is indepen-
dent of the image of I that is used to define it.

(ii) Notice that the valence of a system generated by one chain in 1, 2, or 3 PBC
respectively, can be at least 2, 4, or 6 respectively.

(iii) Let M denote the matrix whose columns are the vectors in V , then the system
has percolation in k dimensions iff rank(M) = k.

(iv) If one has a cuboid PBC system, instead of a cubic PBC system, one has an
analogous set of definitions and results.

4. Analysis of Olympic Systems

In one, two, and three-dimensional Olympic gel systems there is a critical density
required for an infinite entangled collection of rings to occur at all. Beyond this
critical density, one can determine the probability with which an infinite entangled
collection of rings occurs. Such infinite collections can have an intrinsic dimension-
ality that is lower than that of the entire system. For example, one can have an
infinite linear sequence of linked or entangled chain of rings much like that of a neck-
lace. While this is the most complex structure that can arise in a 1 PBC system, we
will show that these arise in two and three-dimensional systems creating an infinite
fibrous substructure having special structural consequences. In three dimensions,
we will show that infinite laminar two-dimensional systems can arise that create a
distinctly different structure with distinctly different consequences.

We focus on chains of length N = 125. For self avoiding linear rings, the mean
square radius of gyration is given by: ⟨R2

g⟩1/2 =
√

N+1
12 ≈ 3.24 in chains of this

length. It is known that the linear dimensions (span) along the three principle axes
of rotation of the cumulative shapes of unknotted polygons using the SBA method,
for N = 125, λ1 = 5.97, λ2 = 4.09, λ3 = 2.90 [14, 16]. Note that the ellipsoidal
reference frame actually has a random orthogonal spatial orientation unaligned
with the coordinate axes of the PBC system. The ellipsoidal character of the chains
explains, for example, the presence of a filamental structure in an Olympic gel for a
range of densities followed by, for another range of densities, of a laminar structure
until the dominating three-dimensional saturation of the system. The former are,
therefore, likely not aligned with the PBC axes.

1650081-9
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4.1. Analysis of linking

In this section, we analyze the mean absolute linking of two polygons in a perco-
lated system. In the following, the mean absolute linking number in fact denotes
two averages: First, for each configuration, it is the average absolute linking num-
ber between a polygon and all its translations and, second, the average over all
configurations at the same density.

4.1.1. Analysis of the mean absolute linking number for 1 PBC systems

The mean absolute linking number in saturated systems in 1 PBC becomes greater
than zero at density ρ ≈ 0.08, when the mean valence and the probability of perco-
lation become nonzero, as expected, see Fig. 7. It is interesting to notice that the
mean absolute linking number exceeds one, showing that, even though the polygons
are not knotted and are just close enough to link, there exist polygons with absolute
linking greater than one. At the critical density, the mean absolute linking becomes
1.3, indicating the presence of many pairs of polygons with absolute linking num-
ber greater than one. The mean absolute linking number continues to increase with
density, approaching the value 2. This suggests that at high densities unknotted
polygons can have high linking numbers. This is supported by the growth of the
total absolute linking as a function of the density.

4.1.2. Analysis of the mean absolute linking number for 2 PBC systems

The mean absolute linking number in saturated systems in 2 PBC becomes greater
than zero at density ρ ≈ 0.12, when the mean valence and the probability of satu-
ration become nonzero, see Fig. 8. It is interesting to notice that the mean absolute
linking number exceeds one, showing that, even though the polygons are not knotted
and are just close enough to link, there exist polygons with absolute linking greater
than one. At the critical density, the mean absolute linking becomes 1.4, indicat-
ing the presence of many pairs of polygons with absolute linking number greater

Fig. 7. The mean absolute linking of two chains and the mean total absolute linking per chain
as a function of density for 1 PBC saturated systems.

1650081-10
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Fig. 8. The mean absolute linking of two chains and the mean total absolute linking per chain
as a function of density for 2 PBC saturated systems.

than one. The mean absolute linking number continues to increase with density,
approaching the value 2. This suggests that at high densities unknotted polygons
can have high linking numbers. This is supported by the growth of the total abso-
lute linking as a function of the density. For ρ < 0.32, the mean absolute linking
number of one-dimensional percolated systems is greater than the mean absolute
linking number of saturated systems, while for ρ > 0.52, the opposite holds.

4.1.3. Analysis of the mean absolute linking number for 3 PBC systems

Figure 9 shows the mean absolute linking number between two components in a
percolated system in 1, 2, or 3 dimensions in a system with 3 PBC. The mean abso-
lute linking number of polygons in one-dimensional percolated systems in 3 PBC,
becomes nonzero at ρ ≈ 0.12. As observed in the 1 and 2 PBC systems, it immedi-
ately attains values greater than 1, indicating the existence of polygons with linking
greater than one. The mean absolute linking number of the saturated systems at the
critical saturation density is 1.3. For ρ ≤ 0.24, the mean absolute linking number is
greater for one-dimensional percolated systems than for two-dimensional percolated
systems and saturated systems. For 0.24 < ρ < 0.3, the mean absolute linking num-
ber of the one-dimensional percolated systems is greater than that of the saturated
systems. For ρ ≤ 0.36, the mean absolute linking number of the two-dimensional
percolated system is greater than that of the saturated systems.

4.2. Percolation analysis

For our PBC systems, we propose the following relationship between the probability
of total saturation as a function of the density of the system:

p(ρ) =
1

1 + ρ−αe−kρ

as inspired by the logistic equation, where ρ is the density, α = n + 1
2 , n is the

dimension of the PBC system, and k is a constant. A polygon can link with one
of its translations when the size of the simulation box is similar to the size of the

1650081-11
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Fig. 9. Mean absolute linking per two chains as a function of density for 3 PBC percolated
systems of different dimensions and for all percolated systems.

1650081-12
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Fig. 10. Probability of saturation in a one-dimensional PBC system as a function of density
plotted against its fitting curve p(ρ).

chain. On average, a polygon will link with its own image when the length of the
simulation cell is l ≈ 2⟨R2

g⟩1/2 ≈ 2 · 3.23 = 9.12, which corresponds to a density
of ρ = 1

6.45 = 0.15 for rings. More precisely, in a system with one, two, or three
PBC, when the length of the cell is l < 2λn. This implies that, we should expect
filamental linking to occur when l ≤ 2λ1, laminar percolation to occur when l ≤ 2λ2

and network percolation to occur, where l ≤ 2λ3. These give critical densities of:
ρC1 > 1

11.94 = 0.0837521, ρC2 > 1
8.18 = 0.122249, and ρC3 > 1

5.8 = 0.172414.

4.2.1. Analysis of one-dimensional systems

In a one-dimensional PBC system, see Fig. 10, we notice that the probability of
saturation becomes greater than 0 at ρ ≈ 0.12, in agreement with our analysis.
In a one-dimensional PBC system, more than half of the conformations are fully
saturated once the density has exceeded 0.28. Using Matlab’s nonlinear fitting, we
find k = 7.032 with an R2 = 0.9918, see Fig. 10.

This suggests that the probability of linking between two translations of a poly-
gon as a function of density is:

p(ρ) =
1

1 + ρ−1.5e−7.032ρ

to be compared with the probability of linking between two random unknotted
polygons provided in [10].

4.2.2. Analysis of two-dimensional systems

In the two-dimensional PBC system, one observes the presence of one-dimensional
filamental subsystems and, with increased density, the dominating presence of two-
dimensional fully saturated systems. The probability of one-dimensional percolation
becomes greater than zero at ρ ≈ 0.12 and the probability of saturation becomes

1650081-13
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Fig. 11. Probability of one-dimensional and two-dimensional percolation in a two-dimensional
PBC system as a function of density.

greater than zero at about ρ ≈ 0.16, in agreement with our analysis. The probability
of one-dimensional percolated subsystems reaches a maximum of ρ ≈ 0.47, when
the density is ≈ 0.26, see Fig. 11. It is interesting to notice that this is the saturation
density of 1 PBC systems. At ρ ≈ 0.27, we notice that the probability of one and
two-dimensional percolation (saturation), thus the probability of percolation and
saturation, is the same, about 0.4.

In a two-dimensional PBC system, more than half of the conformations are fully
saturated once the density has exceeded ρ ≈ 0.28. Applying Matlab’s nonlinear
fitting with α = 2.5, we find k = 10.23 with an R2 = 0.9962, Fig. 12.

Fig. 12. Probability of saturation in a two-dimensional PBC system as a function of density
plotted against its fitting curve p(ρ).

1650081-14
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Fig. 13. Probability of one, two and three-dimensional percolation in a three-dimensional PBC
system as a function of density.

4.2.3. Analysis of three-dimensional systems

In the three-dimensional PBC system, one observes the presence of one, then two-
dimensional percolated systems and, later, the three-dimensional fully saturated
systems. The probability of filamental and laminar percolation becomes nonzero
at ρ ≈ 0.12 and ρ ≈ 0.16, respectively, and the probability of saturation (three-
dimensional percolation) becomes statistically significant at ρ ≈ 0.20; all of which
are in agreement with the analysis for ρn PBC

C . The probability of both one and two-
dimensional percolation reach their maxima of approximately 0.4, when the density
is 0.18 and 0.26, respectively. Between these maxima, at ρ = 0.225, the probability of
one and two-dimensional percolation is the same, equal to 0.35. At density ρ ≈ 0.26,
the probability of two and three-dimensional percolation (i.e. saturation) is the
same, equal to 0.4 and, after that, the proportion of three-dimensional saturated
systems dominates, see Fig. 13.

In a three-dimensional PBC system, more than half of the conformations are
fully saturated once the density has exceeded 0.28. Using Matlab’s nonlinear fitting
with α = 3.5, we find k = 15.41 with an R2 = 0.9982, see Fig. 14.

4.2.4. Comparison of systems across dimensions

Our numerical results confirm that the percolation probabilities become nonzero
when the dimensions of the cell becomes less than twice the average principal axes
of the characteristic ellipsoid, respectively, for a polygon of 125 edges. In each
dimension, one observes the characteristic saturation density threshold of ρ ≈ 0.28
at which there is a rapid increase to full saturation. Let us denote the saturation
density in 1, 2 and 3 PBC systems as ρ1 PBC

s , ρ2PBC
s , ρ3PBC

s , respectively. Then
ρ1PBC

s ≈ ρ2 PBC
s ≈ ρ3 PBC

s ≈ 0.28. In both 2 and 3 dimensions, one observes
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Fig. 14. Probability of saturation in a three-dimensional PBC system as a function of density
plotted against its fitting curve p(ρ).

the distinctive initial appearance of lower-dimensional filamental systems whose
existence is quickly overwhelmed by the higher-dimensional laminar systems. Let
us denote (ρ2PBC

1d )max, (ρ3PBC
1d )max, (ρ3PBC

2d )max the densities at which the 1-dim
(1 and 2-dim, respectively) percolation is maximum in a 2 PBC (respectively,
3 PBC) system. We saw that (ρ2PBC

1d )max ≈ (ρ3PBC
2d )max ≈ ρ1PBC

s ≈ 0.26 and
(ρ3 PBC

1d )max ≈ 1
λ3

≈ 0.17. These peaks are less than 0.5 for 2 and 3 PBC systems.
At ρ = 0.27, the probability of second-order percolation is equal to the probability
of saturation in both 2 and 3 PBC.

4.3. Analysis of valence, |V |

In this section, we discuss the mean valence, |V |, of a polygon in a percolated
system, i.e. the average number of polygons with which an individual polygon may
link. Recalling that the typical enveloping ellipsoid has characteristic radii of λ1 =
5.97, λ2 = 4.09, and λ3 = 2.9, let us denote by I0 a random polygon of N unit
length edges in a system with n =1, 2, or 3 PBC and defined by its generating cell
of dimensions lx, ly, lz. We propose that I0 may link any of its own translations if the
enveloping ellipsoid of the translation intersects the enveloping ellipsoid of I0. To
obtain an estimate of the valence, we first consider the enveloping ellipsoid of I0 and
form a shell around it by adding a thickness proportional to the characteristic radii
in the nearest direction i.e. λn

⟨Rg2⟩1/2

λ1
. The respective radii defining this shell are

then (λ1 +λ1
⟨Rg2⟩1/2

λ1
), (λ2 +λ2

⟨Rg2⟩1/2

λ1
), (λ3 +λ3

⟨Rg2⟩1/2

λ1
). We estimate the valence

by counting the number of images whose center of gravity are contained within
this volume by dividing by the volume of the generating cell. Setting the static
dimensions of the generating cell equal to 2∗λn, we find the following estimates for
mean valence in an n-PBC system:

⟨|V |⟩n-PBC ≤
4
3πλ1λ2λ3(1 + ⟨Rg2⟩1/2

λ1
)ρn

(2λn+1)(3−n)
.
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Using the appropriate values of n, we bound the mean valence in each system
of PBC’s by:

⟨|V |⟩1PBC ≤ 16.28ρ

⟨|V |⟩2PBC ≤ 296.61ρ2

⟨|V |⟩3PBC ≤ 1089.03ρ3.

We expect these to be upper bound estimates, especially at higher densities, due
to the over counting of some portion of cells whose centers are not within the shell.
However, the combined volume of those on the boundary of the shell could add to
this count.

4.3.1. Analysis of valence in 1 PBC systems

The mean valence of a saturated system in 1 PBC becomes nonzero at 2 for ρ ≥ 0.12
corresponding with the critical density for filamental percolation ρC1 > 0.0836.
The mean valence continues to increase nonmonotonically thereafter, see Fig. 15.
Notice that, at the saturation density of ρ = 0.28, we have a mean valence of
approximately 2.53, indicating that at least a fourth of the linked polygons link
with their second-order neighbors. This saturation density corresponds to an edge
length of l ≈ 3.57 < 2λ1, which explains why the mean valence becomes greater
than two.

4.3.2. Analysis of valence in 2 PBC systems

The mean valence of a filamental subsystem in 2 PBC becomes nonzero at ρ = 0.12,
which corresponds to our analysis of ρC1 > 0.0836, where it is steady at 2 through
ρ ≈ 0.2 after which the mean valence begins to increase monotonically (with excep-
tions at ρ = 0.4 and 0.6 ≤ ρ ≤ 0.68). The mean valence of the two-dimensional
saturated system in 2 PBC becomes nonzero, obtaining a initial value of 4, at
ρ = 0.16, agreeing with the analysis of ρC2 > 0.1223, then increasing monotoni-
cally (with similar exceptions as discussed previously for filamental percolation).

Fig. 15. Mean valence of the total 1 PBC system superimposed with the analytical model. We
notice that ⟨|V |⟩1 PBC ≤ 16.28ρ, as expected.
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At the saturation density ρ = 0.28, the mean valence of the filamental and laminar
structures achieve values of approximately 3 and 5.8, respectively. This indicates
that, on average, approximately half of the chains in either situation link with
their second-order neighbors in some way. Note the difference between the average
valence associated to the one-dimensional structure and that of the two-dimensional
structure arising from the increased complexity of the entangled network of closed
chains, Fig. 16. Another striking feature is the paired decrease in the mean valence
of one and two-dimensional systems due to the transformation of one-dimensional
systems into two-dimensional systems at a density of ρ ≈ 0.64 which is where the
probability of filamental percolation is less than 0.01.

4.3.3. Analysis of valence in 3 PBC systems

While the 2 PBC system provides some evidence of the passage to full saturation
by passing through an intermediary (one dimensional) subsystem, the passages of

(a)

(b)

Fig. 16. (a) Mean valence separated by (1, 2-dimensional) subsystem as a function of density
for 2 PBC systems, respectively. (b) Mean valence of the total 2 PBC system bounded by the
analytical models. We notice that ⟨V ⟩2 PBC ≤ 296.61ρ2, as expected.
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(a)

(b)

Fig. 17. (a) Mean valence separated by (1, 2, 3-dimensional) subsystem as a function of density
for 3 PBC systems, respectively. (b) Mean valence of the total 3 PBC system superimposed with
the analytical model. We notice that ⟨V ⟩3 PBC ≤ 1089.03ρ3, as expected.

the 3 PBC system via one and two-dimensional intermediary subsystems before
reaching saturation are even more striking, see Fig. 17. First, we observe the ini-
tial filamental percolation beginning at density ρ = 0.12 > ρC1, the laminar per-
colation beginning at density ρ = 0.16 > ρC2, and the initial occurrence of a
statistically weak three-dimensional saturation (p(ρ) < 0.005) at ρ = 0.16, with
a significant probability of saturation beginning at ρ = 0.20 > ρC3. The initial
onset of infinite linked structures is briefly stabalized at 2, 4, 8, respectively. At
0.44, the one-dimensional structure becomes all but nonexistent and, at 0.64, the
two-dimensional structure vanishes completely. To be more precise, they are trans-
formed into a higher-dimensional structure(s). Note, as in the 2 PBC case, this
phase change causes a simultaneous drop in the average valence of the n+1 dimen-
sional structure into which it is transformed.

1650081-19



November 26, 2016 10:58 WSPC/S0218-2165 134-JKTR 1650081

S. Igram, K. C. Millett & E. Panagioutou

We see significant saturation of the three-dimensional systems beginning at ρ =
0.2 and a corresponding monotonic increase in the mean valence for saturated
systems (with exceptions at aforementioned transformation points of ρ ≈ 0.4 and
0.64 < ρ < 0.68). At the critical saturation density of ρ = 0.28, the mean valence
for each of the subsystems is greater than 5 and 9, respectively, indicating that
more than half the chains in the filamental subsystem are linking with their third
order neighbors and over a fourth of those in the laminar subsystems are doing the
same. The mean valence of the saturated systems is greater than 12 at this density,
suggesting that across all dimensions of percolation, we have at least half of all
entangled chains linking with their second-order neighbors or higher. Furthermore,
the total system has a mean valence greater than 10 giving even further evidence
supporting this statement.

5. Discussion and Conclusions

We have simulated one, two, and three-dimensional systems of deformed circles to
provide periodic boundary condition models for macromolecular systems consisting
of random unknotted polymer rings. Our study of the linking present in these molec-
ular systems, with varying density, has demonstrated an interesting topological evo-
lution of the infinite saturated subsystems exhibiting dimensional phase transitions
as a function of density. We have refined the one, two, and three-dimensional charac-
ter of these saturated subsystems and identified the fine structure of this transition
to saturation with increasing density in one-dimensional filamentous systems, in
two-dimensional laminal systems, and in the full three-dimensional systems. We pro-
pose that these are a consequence the typical ellipsoidal shape of such ring polymers.

The dimensional phase transitions of the topologically entangled subsystems
in our course grained periodic boundary condition model have consequences for
biological and physical systems consisting of macromolecular rings such as mito-
chondria of malignant cells, the kinetoplast DNA networks of trypanosomes, or in
chromosome structural organization or segregation into identifiable territories or
domains. As the ring macromolecules are unknotted, in these systems, it is fortu-
nate that the linking number is able to capture the entanglement that is present.
From an experimental perspective, one might ask if these phase transitions can be
observed in such biological systems and, if so, can one alter the density sufficiently
to attain beneficial pharmacological consequences? Similarly, are there artifacts
of these phase transitions observable in chromosome structure as a consequence of
varying density? These are quite fundamental structural questions whose resolution
could have important biological consequences. As a consequence, it will be impor-
tant to consider further research employing mathematical simulations with stronger
biophysical and biological features. An interesting first step would be to study a
periodic boundary condition model in which each chain is subjected to a random
perturbation of controlled magnitude thereby creating a textitquasi-periodic course
grained model. Much more challenging but of fundamental importance would be
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a model of this character that incorporates excluded volume constraints thereby
respecting this critical facet of the macromolecules biophysical properties.
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