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On the correlation betweenmaterial structure and seismic
attenuation anisotropy in porous media
Y. J. Masson1 and S. R. Pride2

1Institut de Physique du Globe de Paris, Paris, France, 2Earth Sciences Division, Lawrence Berkeley National Laboratory,
Berkeley, California, USA

Abstract Through numerical experiments and analytical analysis, we show that a strong correlation
exists between anisotropy in the material structure (i.e., the elongation of inclusions present within rocks
in the different directions of space) and anisotropy in seismic attenuation (i.e., the values of the inverse
quality factors associated with the anisotropic moduli that control wave propagation). This is especially true
for weakly anisotropic materials where a power law is shown to relate the aspect ratios of the inclusions
(i.e., the ratios of the lengths of the inclusions in the different spatial directions) to the peak attenuation
ratios (i.e., the ratios of the maximum values of the quality factors describing wave attenuation in the
different spatial directions). Analytical results show that small deviations from this simple power law
relation are to be expected for general anisotropic materials. For axisymmetric spheroidal inclusions, a
perfectly bijective analytical relation is obtained between aspect ratios of the inclusions and attenuation
ratios. This relation is not a power law in general but may be considered to reduce to one as aspect ratios
approach 1 (a perfect sphere).

1. Introduction

The aim of this paper is to establish a relation between anisotropy in seismic attenuation and the structure
of porous materials over mesoscopic scales defined here as those larger than grain sizes but smaller than
wavelengths. The mechanism of seismic attenuation treated here is that involving wave-induced fluid flow
in porous composites (i.e., rocks). As a wave stresses a material with patches of mesoscale heterogeneity, the
various patches each respond with a different fluid pressure which results in mesoscale flow of the viscous
fluid and associated loss.

Typical heterogeneities encountered in natural rocks include fractures, stratification, and, in the case of par-
tial saturation, immiscible fluid patches. Many analytical models exist for modeling the induced fluid flow
and associated dispersion and attenuation for the various types of heterogeneity. For example, Pride and
Berryman [2003a, 2003b] and Pride et al. [2004] model lithological heterogeneities;White [1975], Knight et al.
[1998], Johnson [2001], and Pride et al. [2004] model immiscible fluid patches;White et al. [1975], Norris
[1993], and Gurevich and Lopatnikov [1995] model layered media; andMavko and Nur [1979], Dvorkin et al.
[1995], and Pride et al. [2004] model grain-scale cracks. Only for the case of macroscopic aligned fractures in
porous materials have the effects of seismically induced fluid flow been incorporated into anisotropic atten-
uation models [e.g., Chapman, 2003; Maultzsch et al., 2003; Chichinina et al., 2009; Baird et al., 2013]. Our
goal in this paper is to explore and understand how attenuation anisotropy is related to the orientation and
anisotropy of mesoscale heterogeneity in the porous material properties.

In what follows, we treat the problem of anisotropic attenuation in poroelastic materials both numeri-
cally and analytically.Masson and Pride [2007] introduce a computationally efficient method to determine
attenuation and dispersion in porous materials that contain an arbitrary amount of mesoscopic-scale het-
erogeneity. After a brief overview of anisotropy in poroelastic media in section 2, we present our numerical
approach for calculating the attenuation associated with the different elastic moduli of an anisotropic
porous material in section 3. In section 4, numerical results are given for the dispersion and attenuation
associated with porous materials that are locally isotropic but macroscopically anisotropic due to the
mesoscale structure. In section 5, an approximate analytical model for the relative attenuations associated
with the different elastic moduli is obtained and our main result for the ratio of peak attenuation for different
deformation modes presented.
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2. Anisotropic Poroelasticity

For the general case of a fully anisotropic poroelastic material, the stress-strain relations can be written [e.g.,
Biot, 1955]

!ij = Cijkl"kl − #ij$ , (1)

−p = #ij"ij −M$ , (2)

where !ij is the overall stress tensor acting on each sample of the porous material, "ij is the overall strain
tensor, p is the spatially averaged fluid pressure in the pores, and $ is the so-called “increment in fluid con-
tent” (the net volume of fluid entering a sample of porous material divided by sample volume). The elastic
moduli are the “undrained” stiffnesses Cijkl (defined under conditions where $ = 0), the coupling moduli #ij ,
and the fluid-storage coefficientM. Berryman and Nakagawa [2010] discuss many aspects of the nature of
the anisotropic poroelastic moduli for orthotropic symmetries.

In the numerical experiments of this paper, we focus on determining the undrained moduli Cijkl since they
are the moduli normally of interest across the seismic band of frequencies. As demonstrated by Pride [2005],
for circular frequencies % satisfying %&f k /'≪1, where &f is fluid density, ' is fluid viscosity, and k is the
largest principal value of the permeability tensor, no significant volume of fluid enters or leaves each sample
being stressed by a seismic wave, and the material acts as if it is undrained (as if each sample of porous
material is effectively sealed from its surroundings so that $ ≈ 0). For water in the pores and for rock perme-
abilities less than 10 Darcy, this condition is satisfied for all frequencies less than 104 Hz. Although fluid may
not be entering or leaving a sample on average in an undrained seismic-band response, there can be fluid
redistributions within a sample (mesoscale flow) that result in the undrained moduli Cijkl being complex and
frequency dependent in the frequency domain.

In general, all of the poroelastic constants Cijkl , #ij , andM depend on the bulk modulus Kf of the fluid in the
pores. In the limit of very low frequencies (% → 0), where the pressure throughout the pores of each sample
is uniform, and under conditions where the framework of grains is made of a single isotropic mineral having
bulk modulus Ks, Gassmann [1951] derived how the undrained stiffnesses Cijkl are related to the drained
stiffnesses CDijkl , the fluid and solid bulk moduli Kf and Ks, and the porosity. That relation is given and used in
section 3 in the development of the analytical model.

3. NumericalMethod

We thus focus on undrained experiments ($ = 0) with Hooke’s law given by

!ij = Cijkl"kl. (3)

Due to the symmetry of the stress, strain, and stiffness tensors, only 21 elastic constants are independent in
the most general triclinic case. For simplicity, we limit our study to the case of orthotropic materials, i.e., to
materials for which the elastic properties differ in only the orthogonal directions of space. For orthotropic
materials, equation (3) can be written in the matrix form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

!xx
!yy
!zz
!yz
!zx
!xy

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
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M11 M12 M13

M21 M22 M23

M31 M32 M33

G1

G2

G3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

"xx
"yy
"zz
"yz
"zx
"xy

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(4)

withMii = Ciiii,Mij = Ciijj , and Gi = 2Cjkjk (no sum on i, j, and k, and i ≠ j ≠ k). There are only nine elastic
constants that are independent in an orthotropic material becauseMij = Mji. Note that we have elected here
to put the factor of 2 on the shear moduli Gi instead of on the shear strains "ij with i ≠ j.

To numerically determine the undrained elastic moduli Mij and Gi of a sample of orthotropic poroelastic
material, our approach is to use the finite-difference modeling code and protocol developed by Masson
and Pride [2007] in which the Biot equations of poroelasticity are solved locally throughout a sample being
subjected to either stress or displacement (strain) boundary conditions. TheMasson and Pride [2007] code
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assumes that within the sample being modeled, the poroelastic material is locally isotropic. An overall
anisotropic sample is created by having mesoscopic-scale heterogeneity in how the isotropic poroelastic
moduli are distributed throughout the sample.

For a rectangular cuboid sample with faces perpendicular to the x, y, and z directions of space, the moduli
M11,M21, andM31 can be computed by applying a time-varying strain "xx(t) (or displacement after multiply-
ing the imposed strain by the sample dimension) on the faces perpendicular to the x axis while imposing
zero strain in the direction perpendicular to the other faces (i.e., "yy(t) = 0 on the faces perpendicular to
the y axis, and "zz(t) = 0 on the faces perpendicular to the z axis). In the numerical simulations, the stress
fields are zero outside the cuboid sample and a sealed boundary condition is applied to all faces of the sam-
ple (i.e., no fluid is allowed to enter or escape the sample). The moduli so determined are thus undrained
as desired.

The numerical experiments are performed in the time domain and the volume-averaged stress and strain
fields ⟨"xx⟩Ω (t), ⟨!xx⟩Ω (t),

⟨
!yy
⟩
Ω (t), and ⟨!zz⟩Ω (t) are recorded versus time. Here ⟨x⟩Ω denotes the spatial

average of the field x over the region Ω occupied by the sample. Finally, once the numerical experiment
is finished, the moduli M11, M21, and M31 can be computed as a function of frequency by taking a Fourier
transform (FT) of the volume-averaged fields recorded as a function of time and by computing the ratios

M11(%) =
FT
{⟨!xx⟩Ω (t)

}

FT
{⟨"xx⟩Ω (t)

} (5)

M21(%) =
FT
{⟨

!yy
⟩
Ω (t)
}

FT
{⟨"xx⟩Ω (t)

} (6)

M31(%) =
FT
{⟨!zz⟩Ω (t)

}

FT
{⟨"xx⟩Ω (t)

} . (7)

The moduli so obtained are complex in general with the negative imaginary parts controlling the amount of
energy dissipated by the movement of viscous fluid within the sample (see Appendix A).

The moduliM12,M22, andM32 can be obtained using the same procedure in a second experiment where a
time-varying strain "yy(t) is applied on the faces perpendicular to the y axis with zero strain applied to the
other faces. In this case, we have

M12(%) =
FT
{⟨!xx⟩Ω (t)

}

FT
{⟨

"yy
⟩
Ω (t)
} (8)

M22(%) =
FT
{⟨

!yy
⟩
Ω (t)
}

FT
{⟨

"yy
⟩
Ω (t)
} (9)

M32(%) =
FT
{⟨!zz⟩Ω (t)

}

FT
{⟨

"yy
⟩
Ω (t)
} . (10)

Similarly, in a third experiment, a time-varying strain "zz(t) is applied on the faces perpendicular to the z axis
with zero strain applied to the other faces which gives

M13(%) =
FT
{⟨!xx⟩Ω (t)

}

FT
{⟨"zz⟩Ω (t)

} (11)

M23(%) =
FT
{⟨

!yy
⟩
Ω (t)
}

FT
{⟨"zz⟩Ω (t)

} (12)

M33(%) =
FT
{⟨!zz⟩Ω (t)

}

FT
{⟨"zz⟩Ω (t)

} . (13)

In order to compute the remaining moduli G1, G2, and G3, we perform three additional experiments in which
a time-varying shear stress !ij(t) is applied as a traction on the faces of the sample with i ≠ j. The stresses
applied normal to the sample’s faces are zero, and a sealed boundary condition is again applied to all the

MASSON AND PRIDE ©2014. American Geophysical Union. All Rights Reserved. 2850



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010798

(a) (b)

Figure 1. Snapshots showing the fluid pressure recorded at early times (a) after a uniaxial compression is applied in the
z direction and (b) after a simple shear traction !yz (with all other stress components zero) is applied to the two faces in
the z direction and the two faces in the y direction. The sample consists of a homogeneous matrix containing a single
ellipsoidal heterogeneity. In Figure 1a, most of the fluid equilibration occurs between the inclusion and the matrix. In
Figure 1b, the fluid pressure equilibrates between the lobes of compression and dilatation induced in the matrix by the
heterogeneity. The material properties of the inclusion and matrix are given in Table 1. The horizontal slice in the top of
both columns in Figures 1a and 1b was taken a half a grid point below the plane of symmetry of the ellipsoid.

faces. In each experiment, the average strain
⟨
"ij
⟩
Ω (t) induced by the applied stress !ij(t) is recorded versus

time, and the complex Gi moduli are computed as

G1(%) =
FT
{⟨

!yz
⟩
Ω (t)
}

FT
{⟨

"yz
⟩
Ω (t)
} (14)

G2(%) =
FT
{⟨!zx⟩Ω (t)

}

FT
{⟨"zx⟩Ω (t)

} (15)

G3(%) =
FT
{⟨

!xy
⟩
Ω (t)
}

FT
{⟨

"xy
⟩
Ω (t)
} . (16)

Again, note that these complex shear moduli are related to the complex components of the stiffness tensor
as Gi = 2Cjkjk where i ≠ j ≠ k.

MASSON AND PRIDE ©2014. American Geophysical Union. All Rights Reserved. 2851



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010798

Figure 2. Real parts of the nine orthotropic moduli and their respective attenuations obtained for a single weak ellip-
soidal heterogeneity embedded within a stiffer homogeneous matrix. The dimensions of the sample are L1 = 31 mm,
L2 = 41 mm, and L3 = 21 mm; the dimensions of the ellipsoid are l1 = 10.3 mm, l2 = 27.3 mm, and l3 = 4.7 mm (see
Figure 3 for a definition of these parameters). The elastic properties of the matrix and the inclusions are given in Table 1.
In all graphs, the points represent numerical results, and solid lines represent results obtained using the analytical
expression that is developed in section 3.

Last, the attenuation associated with a given elastic modulus Cij (where each index runs from 1 to 6 in matrix
notation) can be evaluated by computing the inverse quality factor [Masson and Pride, 2007]

Q−1
Cij
(%) = −

Im{Cij(%)}
Re{Cij(%)}

, (17)

where the subscript on Q−1 refers to the modulus (specific stress and strain experiment) from which it has
been determined. In Appendix A, we derive in general terms that the ratio of the imaginary to real parts of
the elastic moduli is identical to a Q−1 physically defined as the ratio of energy irreversibly lost in each cycle
of stressing to the average energy reversibly stored in each cycle (and the result divided by 4π).

4. Numerical Results

In Figure 1, we show that the mesoscale fluid-pressure anomalies that drive the fluid flow can be created
in two different ways in fluid-saturated porous samples. On the one hand, when the sample is subject to a
global volume change, the fluid pressure response is heterogeneous and correlates with the heterogene-
ity of the incompressibility within the sample. On the other hand, when the sample is subject to a pure
shear stress, an anisotropically shaped mesoscale patch can create lobes of compression and dilation in the
material that surrounds it with associated fluid-pressure anomalies.

In Figure 1a, a uniaxial compressional displacement is applied in the z direction to the upper and lower
faces of a rectangular sample (cuboid) containing a single horizontally aligned ellipsoidal heterogeneity in
the frame moduli. No displacements are allowed to occur on the faces of the sample in the two horizontal
directions. The fluid-pressure response a short instance after the uniaxial deformation is applied is seen to
be larger inside the ellipsoid, which has a more compressible frame, than in the surrounding matrix, which
has a stiffer frame. The numerical results in this figure are generated using our time-domain poroelastic
finite-difference code first given byMasson et al. [2006]. As time proceeds, the pressure difference between
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(a)

(b)

Figure 3. An illustration of the two different types of sample geometries
used for the numerical experiments. (a) The sample consists of a single
ellipsoidal heterogeneity embedded within a homogeneous matrix. (b) The
sample is a random material having a different Gaussian correlation func-
tion in the three orthogonal directions of space. In both Figures 3a and
3b, L1, L2, and L3 are the sample dimensions in the x, y, and z directions,
respectively. In Figure 3a, l1, l2, and l3 are the main diameters of the ellip-
soid. In Figure 3b l1, l2, and l3 correspond to the correlation lengths in the
x, y, and z directions, respectively.

the ellipsoidal inclusion and the sur-
rounding matrix equilibrates by fluid
flow which dissipates energy. This
type of deformation-induced fluid
flow is the mechanism of attenuation
being considered in this study.

In Figure 1b, a tangential shear stress
!yz is applied as a traction to the four
sample faces in the z and y direc-
tions, while displacement is kept at
zero on the remaining two faces in
the x direction. In this pure shear
case, the overall volume of the sam-
ple and hence the average fluid
pressure remain constant during
the experiment; however, lobes of
fluid-pressure anomaly appear in
the surrounding material in the first
moments after the shear stress is
applied. With increasing time, the
fluid-pressure differences between
the lobes will equilibrate by fluid flow.
So pure shear can generate fluid flow
through this mechanism in samples
with anisotropic poroelastic structure
and thus dissipates energy.

Figure 1 clearly emphasizes the fact
that the way the fluid-pressure equi-
librates within the sample strongly
depends on how the sample is
deformed or stressed relative to the
orientation of the heterogeneity.
Consequently, the attenuation levels
associated with the different elastic
moduli will not necessarily be equal
in anisotropic materials.

In Figure 2, we show the real parts
of the nine orthotropic moduli and
their associated attenuations numeri-
cally measured in a sample consisting
of a single ellipsoidal inclusion sur-
rounded by a homogeneous matrix as

shown in Figure 3a. The analytical results shown as solid lines in the figure will be developed in section 3 and
will not be discussed until then. All relaxation and dispersion observed in Figure 2 is due to the mesoscale
equilibration of heterogeneity-induced fluid pressure anomalies and has nothing to do with the develop-
ment of viscous boundary layers in the pores (which is the Biot mechanism of relaxation that occurs at much
higher frequencies). The material properties of the matrix and inclusion are given in Table 1.

The attenuation curves presented in the three top panels exhibit some similarities: at low enough frequen-
cies, the attenuation increases linearly with increasing frequency; then, a peak of attenuation is observed;
and at high enough frequencies, the attenuation decreases with increasing frequency. Although the shapes
of the different attenuation curves are similar, their amplitudes differ. Many studies [see for exampleWhite,
1975; Pride et al., 2004] have shown that, for regularly spaced heterogeneities of equal size, attenuation is
maximum as a function of frequency when the fluid pressure has just enough time to equilibrate between

MASSON AND PRIDE ©2014. American Geophysical Union. All Rights Reserved. 2853
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Table 1. Material Properties Used in the
Numerical Examples

Property Phase 1

Matrix
Grain Bulk modulus (Ks) 36.0 GPa
Grain density (&s) 2650 kg/m3

Bulk modulus (Kd) 6.21 GPa
Shear modulus ()) 4.55 GPa
Porosity (*) 0.33
Permeability (k) 310−14 m2

Ellipsoid
Grain Bulk modulus (Ks) 36.0 GPa
Grain density (&s) 2650 kg/m3

Bulk modulus (Kd) 62.1 MPa
Shear modulus ()) 45.5 MPa
Porosity (*) 0.33
Permeability (k) 310−14 m2

Fluid
Bulk modulus (Kf ) 2.25 GPa
Density (&f ) 103 kg/m3

Viscosity (') 10−3 N s m−2

the heterogeneities and the matrix in each wave period.
In this case, the relaxation frequency %p at which the
attenuation is maximum is the standard diffusion relation

%p =
D
L2

∝
k0
L2
, (18)

where L is the characteristic size of the heterogeneities
(a diffusion length) and is explicitly defined for porous
patches in Appendix C, k0 is the permeability, and D is the
fluid-pressure diffusivity. The formal definition of D is given
by Pride et al. [2004] or Pride [2005], but a simple approxi-
mate expression D = k0Kf∕('*) is sufficient for estimating
the timing of diffusion where Kf is the fluid bulk modulus, '
is the fluid viscosity and * is porosity. The numerical results
show that all the attenuation curves associated with the
Mij moduli reach their maximum at the same frequency.
As theMij moduli are obtained using uniaxial compression
experiments, pressure equilibration is dominated by the
fluid exchange between the heterogeneity and the matrix,
and equation (18) gives a good estimate of the frequency at
which the maximum attenuation is observed.

The situation is different when the fluid-pressure equilibration occurs between the compressional and
dilatational lobes induced in the matrix by stress applied tangentially to the faces of the cuboid. In this case,
the position of the attenuation peak depends on the distance between the compressed and the dilated
regions and on the permeabilities of both the ellipsoid and the matrix. Thus, the attenuation peaks associ-
ated with the Gi will not necessarily be observed at the same frequency depending on the direction of the
applied shear stress and on the elongation of the ellipsoid in the different directions. In the rest of this paper,
for well-localized inclusions (i.e., inclusions that are not very elongated or flattened ), we consider that the
differences between the relaxation frequencies associated with the three Gi are small.

When both the matrix and heterogeneities are made of homogeneous, isotropic, porous materials, the only
way to have anisotropy in the macroscopic moduli of the sample is to have some anisotropy in the shape
of the heterogeneity. As we have seen in the previous paragraph, when the inclusion-shape anisotropy is
small, similar elastic moduli have about the same relaxation frequency. In this case, it is pertinent to com-
pare their maximum attenuations. In Figure 2, we see that the attenuation observed at the attenuation peak
varies greatly depending on the orientation of the ellipsoidal inclusion relative to the direction that strain is
applied. Further, the peak attenuation as a function of frequency max

[
Q−1
Mii
(%)
]
associated with the modulus

Mii increases as the ellipsoid’s smallest diameter li becomes less than its largest diameter.

In order to evaluate how the attenuation levels relate to the aspect ratios of the heterogeneities, we perform
two series of numerical experiments. The results of these experiments are presented in Figure 4. The first
series involves samples containing a single ellipsoidal inclusion embedded in a homogeneous matrix as
shown in Figure 3a. The physical properties of the inclusion and the matrix are again given in Table 1. We
generate 10 different samples with dimensions

L1 = L2 = L3 = 4 cm (19)

for which the values of the principal diameters of the ellipsoid l1, l2, and l3 are chosen randomly under the
conditions that the volume of the ellipsoid is constant

v1 =
4
3
πl1l2l3 = 837mm3 (20)

and that the ellipsoid fits within the sample

max [l1, l2, l3] < Li. (21)
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For each of the 10 samples, we compute the nine orthotropic moduli in equation (4) and their respective
attenuations. We then measure the maximum attenuation associated with each modulus and compute the
following ratios:

max [Q−1
Mii
(%)]

max
[
Q−1
Mjj
(%)
]∀i, j ∈ [1, 2, 3] and i ≠ j (22)

max
[
Q−1
Mik

(%)
]

max
[
Q−1
Mjk

(%)
]∀i, j, k ∈ [1, 2, 3] and i ≠ j ≠ k (23)

max
[
Q−1
Gi
(%)
]

max
[
Q−1
Gj
(%)
]∀i, j ∈ [1, 2, 3] and i ≠ j. (24)

In Figure 4 (left column), we plot the three possible attenuation ratios (i = 1, j = 2), (i = 1, j = 3), and
(i = 2, j = 3) associated with each of equations (22)–(24) for each of the 10 samples. There are thus 30 points
plotted in each panel. We plot them as a function of the aspect ratio li∕lj making sure to use the appropriate
index i and j corresponding to equations (22)–(24).

The second series of experiments given in Figure 4 (right column) is performed in the same way but using
the random property model of Figure 3b. In this case, l1, l2, and l3 denote the correlation lengths of the
poroelastic heterogeneity in the x, y, and z directions, respectively. The poroelastic properties used in the
samples are similar to those of the matrix in Table 1 except for the drained bulk and shear moduli. An exam-
ple of the drained bulk modulus distribution is given by the color scale in Figure 3, and the corresponding
distribution for the shear modulus is obtained using )(x, y, z) = 3

4
Kd(x, y, z). This choice for the shear mod-

ulus corresponds to a dry-frame Poisson ratio of 0.2. For dry sandstones, the Poisson ratio as measured in
the laboratory is often close to 0.1 [e.g., Castagna et al., 1985]; however, values in sands and sandstones are
sometimes greater than 0.2 and are always greater than 0.2 in carbonate rocks. We feel that choosing 0.2 is a
reasonable compromise for representing a range of porous rocks.

For both series of experiments, the numerical results plotted as circles in Figure 4 show a strong linear cor-
relation on the log-log plots which suggests a power law correlation between the attenuation ratios in
equations (22)–(24) and the aspect ratios li∕lj . The simple expressions

max
[
Q−1
Mii
(%)
]

max
[
Q−1
Mjj
(%)
] ≈
(
li
lj

)+1
, (25)

max
[
Q−1
Mik

(%)
]

max
[
Q−1
Mjk

(%)
] ≈
(
li
lj

)+2
, (26)

max
[
Q−1
Gi
(%)
]

max
[
Q−1
Gj
(%)
] ≈
(
li
lj

)+3
(27)

are plotted as solid lines on Figure 4 and fit the numerical data quite well. The proportionality constants in
these power laws is 1 because when the aspect ratios are all 1 there is perfect isotropy and the attenuation
ratios become 1 as well. We will show in the next section that the discrepancy between the numerical data
and equations (25)–(27) is not due to numerical measurement errors, and that the exponents +i depend on
many parameters.
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5. Analytical Solution for Peak Attenuation Ratios

The main objective in what follows is to develop an analytical model capable of explaining the attenuation
ratios as plotted in Figure 4. Additionally, we will develop an approximate analytical model for the complex
frequency-dependent undrained elastic constants of the composite that we now explicitly denote with a
subscript U; Cijkl(%) = CUijkl(%). For both tasks, we will need to first obtain models for the real constants
CDijkl of the dry (no fluid in the pores) composite (these are also the drained moduli of the composite in
the low-frequency limit where the fluid pressure everywhere is unchanged by the deformation), the real
constants CUijkl(∞) for the undrained moduli at sufficiently high frequencies that no fluid transfer between
inclusion and matrix is possible, and the real constants CUijkl(0) for the undrained moduli at sufficiently
low frequencies that the fluid pressure throughout both the inclusion and matrix is uniform (these latter
constants are the so-called Gassmann [1951] moduli).

The problem of a mismatched elastic ellipsoid (the inclusion) embedded within an infinite elastic medium
(the matrix) subject to remote stress was first solved by Eshelby [1957]. His principal result has been
extended to the poroelastic case by Berryman [1997]. Many authors have used Eshelby’s results to derive
expressions for the effective anisotropic elastic moduli of elastic composites [see for example Mori and
Tanaka, 1973; Benveniste, 1987;Maewal, 1987]. Following theMori and Tanaka [1973] method, Pan and Weng
[1995] derive explicit expressions for the elastic moduli of heterogenous elastic composites containing
ellipsoidal inclusions and elliptic cracks. Their model for an elastic composite containing aligned ellip-
soidal inclusions can be used to estimate the elastic moduli of a dry porous material containing ellipsoidal
heterogeneities. We have

!−1
D =

(
" + v(1)#∗

D

)
∶
(
!(0)

D

)−1
, (28)

where !D is the fourth-order stiffness tensor of the dry porous composite we are modeling (so !−1
D is the

compliance tensor of the composite), !(0)
D is the stiffness tensor of the dry porous matrix surrounding the

ellipsoid (superscript 0 is used to denote matrix and 1 to denote inclusion), #∗
D is the fourth-order “strain

concentration tensor” introduced by Pan and Weng [1995], v(1) is the volume fraction occupied by the ellip-
soid, and " is the fourth-order symmetric identity tensor defined as " = (1∕2)(,ik,jl + ,il,jk)$̂i$̂j$̂k$̂l . For the
present case of a dry porous material containing aligned ellipsoidal heterogeneities,#∗

D has the expression

#∗
D =
[(

!(1)
D − !(0)

D

)
∶
(
v(1)" + v(0)%

)
+ !(0)

D

]−1
∶
(
!(1)

D − !(0)
D

)
(29)

where !(1)
D is the stiffness tensor of the dry ellipsoidal inclusion, % is the fourth-order Eshelby tensor (the

components of the Eshelby tensor for ellipsoidal inclusions can be found in Appendix D), and v(0) = 1 − v(1)

is the volume fraction occupied by the matrix. Due to symmetry of an ellipsoid, the composite’s dry elastic
stiffness tensor !D possesses orthotropic symmetry (nine stiffness components).Walpole [1981] provides
a methodology for determining the inverse of fourth-order tensors that possess orthotropic symmetry.
Pan and Weng [1995] perform this considerable algebraic task and give analytical expressions for the nine
stiffness components of !D given by equation (28).

In the case where both the ellipsoidal inclusion and the matrix consist of an isotropic porous material, the
tensors !(0)

D and !(1)
D can be expressed in the matrix form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

.(n)D + 2)(n) .(n)D .(n)D 0 0 0
.(n)D .(n)D + 2)(n) .(n)D 0 0 0
.(n)D .(n)D .(n)D + 2)(n) 0 0 0
0 0 0 2)(n) 0 0
0 0 0 0 2)(n) 0
0 0 0 0 0 2)(n)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

(30)

where .(n)D = K (n)
D − 2

3
)(n) and where K (n)

D and )(n) denote the drained bulk moduli and the shear moduli of
the porous material composing either the ellipsoids (n = 1) or the matrix (n = 0).

When the porous composite is saturated with a single fluid and no fluid exchange occurs between the
ellipsoids and the matrix (which corresponds to the high-frequency response of the undrained sample), a
relation similar to equation (28) can be derived. In this case, we have

!−1
U (∞) =

(
" + v(1)#∗

U

)
∶
(
!(0)

U

)−1
(31)
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Figure 4. Ratios of the maximum attenuations plotted as a function of geometrical aspect ratios. (left column) The
results corresponding to 10 different samples containing a single ellipsoidal heterogeneity of different aspect ratios at a
fixed inclusion volume fraction of 1.3% (Figure 3a model). The 30 data points seen in each plot correspond to plotting
the ratios using the three combinations (i = 1, j = 2), (i = 1, j = 3), and (i = 2, j = 3). (right column) The correspond-
ing results for 10 different realizations of the random Gaussian model (Figure 3b model). The circles correspond to the
numerical measurements, and the pluses are the theoretical estimates given by equations (37)–(39).

where !U(∞) is the high-frequency undrained stiffness tensor of the porous composite, !(0)
U is the

undrained stiffness tensor of the matrix, and the undrained eigenstrain concentration tensor #∗
U is given

by the same expression as equation (29) but with subscript D (drained or dry) replaced everywhere with U
(undrained or sealed). In such an expression for #∗

U, !
(1)
U denotes the undrained stiffness tensor of the ellip-

soid. If, as we assume, both the inclusions and matrix are locally modeled as being isotropic, the tensors !(n)
U

with n = 0, 1 can again be written in the matrix form of equation (30) after substituting subscript D every-
where with subscript U. In this case, the undrained bulk modulus K (n)

U within each phase is related to the
drained modulus of that phase K (n)

D by the Gassmann [1951] relation given by equation (B9) of Appendix B.

Next, the other famous result of Gassmann [1951] is used to obtain the low-frequency (uniform fluid pres-
sure) undrained fourth-order stiffness tensor!U(0) of the composite. Assuming that the framework of grains
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Figure 5. Attenuation ratio
(
max [Q−1

M11
]∕max [Q−1

M22
]
)
computed

using equation (37) and plotted as a function of the aspect ratio l1∕l2
for spheroidal inclusions where l1 ≠ l2 = l3. The properties of the matrix
and the ellipsoid are given in Table 1; the black curve corresponds
to ellipsoids occupying 10% of the sample’s volume, and the dashed
curve corresponds to ellipsoids occupying 50% of the sample’s volume.
We see that when the shape of the inclusion is close to a sphere, the
attenuation ratios can be related to the aspect ratios by a power law.
When l1 becomes large, the attenuation ratio reaches a limit corre-
sponding to an infinite cylinder (or needle shape). When l1 is small, the
attenuation ratio reaches a limit corresponding to an infinite flat slab
(or penny shape).

within the composite is again made of
a single isotropic material characterized
by the bulk modulus Ks and with the
dry frame of the composite having the
already determined stiffness tensor !D,
Gassmann [1951] obtained

CUijkl(0) = CDijkl +
c

[1 + c∕(3Ks)]
bijbkl

(b11 + b22 + b33)
(32)

where the bij are defined

bij = ,ij +
CD11ij + CD22ij + CD33ij

3Ks
(33)

with ,ij the Kronecker delta function and
with c an auxiliary stiffness given by

1
c
= *
(

1
Kf

− 1
Ks

)
(34)

with Kf the fluid bulk modulus and Ks
the solid bulk modulus that is assumed
here to be the same in both inclusion
and matrix.

To summarize, we have so far obtained
models of the undrained elastic moduli
in the limits of very low frequencies (uni-

form fluid pressure for which Gassmann’s theory applies) and very high frequencies (no exchange of fluid
between inclusion and matrix).

Using the above results, we next want to construct a model for the complex frequency-dependent
undrained bulk modulus!U(%) over the full range of frequencies. Unfortunately, analytical modeling of how
the deformation-induced fluid pressures equilibrate around anisotropically shaped inclusions is a difficult
problem that will not be rigorously treated in this paper. We instead make a simple approximation. In the
case where the fluid pressure equilibration between the inclusions and the matrix is dominant, and not fluid
equilibration between lobes in the matrix surrounding an anisotropically shaped inclusion, it is reasonable
to assume that the double porosity theory of Pride et al. [2004] captures much of the frequency dependence
in the undrained anisotropic moduli. As an approximation, we therefore propose to force the double poros-
ity theory to match the high!U(∞) and low!U(0) frequency limits of the anisotropic moduli derived above.
This can be achieved using the simple formula

CUijkl(%) = CUijkl(0) +
CUijkl(∞) − CUijkl(0)
KU(∞) − KU(0)

[
KU(%) − KU(0)

]
(35)

where KU(%) is the frequency-dependent undrained modulus of the sample computed using the double
porosity theory, and KU(∞) and KU(0) are its high- and low-frequency limits. Expressions for KU(∞), KU(0),
and KU(%) can be found in Appendices B and C.

The estimates of the frequency-dependent undrained elastic moduli CUijkl(%) (using equation (35)) are pre-
sented as the solid lines in Figure 2. We see that this rough derivation of the elastic moduli versus frequency
is in reasonable agreement with much of the numerical data. Note that the fit is better for theMij moduli,
which is due to the fact that the fluid equilibrates mostly between the inclusions and the matrix in this case
which is what the double-porosity theory allows for. When looking at the attenuation peaks, we see that the
theoretical attenuation levels are in very good agreement with the numerical experiments. The frequency
dependence in the attenuation is less accurate due to the assumption that a homogeneous compression (as
opposed to an anisotropic applied deformation) is driving the pressure changes and subsequent fluid flow.
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Figure 6. The three power law exponents of equations (25)–(27)
determined for ellipsoids over the range of aspect ratios
0.3< li / lj <3 at different volume fractions. There is a defi-
nite functional dependence between the exponents and the
volume fraction.

Our next task is to compute the
peak-attenuation ratios given earlier in Figure 4.
Because the attenuation as measured by Q−1

rises linearly to a peak value then falls to zero
as frequency increases, the peak attenuation
value associated with a given elastic modulus C
will be proportional to the difference between
the high C(∞) and low C(0) frequency limits of
that modulus, i.e.,

max [Q−1
C (%)] = A [C(∞) − C(0)] (36)

where A is a model-dependent proportion-
ality constant which depends on how the
fluid pressure equilibrates within the sample.
If we assume that A is constant for a given
group of elastic moduli such as the Mii, the
Mij , or the Gi , then the attenuation ratios in
equations (22)–(24) can be computed using

max [Q−1
Mii
(%)]

max
[
Q−1
Mjj
(%)
] = CUiiii(∞) − CUiiii(0)

CUjjjj(∞) − CUjjjj(0)
(37)

max
[
Q−1
Mik

(%)
]

max
[
Q−1
Mjk

(%)
] = CUiikk(∞) − CUiikk(0)

CUjjkk(∞) − CUjjkk(0)
(38)

max
[
Q−1
Gi
(%)
]

max
[
Q−1
Gj
(%)
] =

CUjkjk(∞) − CUjkjk(0)
CUikik(∞) − CUikik(0)

(39)

which is independent of the approximate frequency dependence given by equation (35). Models of !U(∞)
and !U(0) were given above as equations (31) and (32). In Figure 4, the attenuation ratios computed using
equations (37)–(39) are represented by pluses and correlate very well with the ratios computed numer-
ically by finite differences (the circles). We see that the differences between the computed data and the
power laws of equations (25)–(27) are not due to numerical errors and can actually be predicted using
equations (37)–(39).

Other series of experiments have shown that the power laws of equations (25)–(27) fit the data well only
when the anisotropy in the shape of the ellipsoidal inclusion is weak (say, when 0.3< li / lj<3). In Figure 5, we
use equation (37) to plot the attenuation ratio for compressional waves over a wide range of aspect ratios.
A smooth bijective relation between the attenuation ratio and the aspect ratio is observed for spheroidal
inclusions (i.e., when two of the three ellipsoid radii are equal). When the anisotropy is weak, a straight-line
slope is observed near l1∕l2 = 1 which can be taken as the exponent of a power law for a small (weak
anisotropy) range of aspect ratios. The exponent of this power law depends, among other things, on the
volume fraction occupied by the ellipsoid (as seen in Figure 5).

The reason the curve in Figure 5 for the spheroid is smooth, while similar results plotted as pluses in Figure 4
for ellipsoids slightly deviate from a smooth power law, is that a spheroid has only one aspect ratio while
an ellipsoid has three. So if we are plotting, for example, max [Q−1

11 ]∕max [Q−1
22 ] as a function of l1∕l2 for an

ellipsoid, although the dominate dependence is with l1∕l2, the other two aspect ratios l1∕l3 and l2∕l3 have
a minor influence as well which is largely responsible for the deviations from the smooth power laws seen
in Figure 4.

To conclude, we again use equations (37)–(39) to compute the peak attenuation ratios for 30 realizations
of ellipsoidal inclusions all corresponding to the same volume fraction but with aspect ratios distributed
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in the range of 0.3< li / lj<3. The elastic moduli of the inclusion and host are again those of Table 1. The
attenuation ratios so determined, when plotted on a log-log plot as a function of aspect ratio, look very
much like Figure 4. The power law exponents of equations (25)–(27) are then determined and plotted in
Figure 6 as a function of volume fraction of the inclusion where a nearly linear trend with volume fraction
is observed. In addition to the volume fraction, the power law exponents also depend on the elastic moduli
of the inclusion and host. So the exponents are far from universal. At this time, we have not attempted to
algebraically analyze the Eshelby tensor given in Appendix D in order to extract an analytical understanding
for how the power law exponents implicitly contained within equations (37)–(39) at aspect ratios near 1
depend on material properties.

6. Conclusions

For the special class of porous materials consisting of aligned ellipsoidal inclusions within a homogeneous
matrix, it is possible to relate the poroelastic attenuation associated with the different anisotropic moduli
(different modes of deformation) to the geometry of the heterogeneities responsible for this attenuation.
We showed this can be achieved without solving the difficult problem of dynamic fluid flow induced when
the material is subject to a nonuniform stress or strain. The analytical expressions in our principal result of
equations (37)–(39) may perhaps be further developed, in the limit of weak anisotropy, to obtain explicit
relations between the attenuation ratios and the aspect ratios of the ellipsoidal inclusions embedded within
the Eshelby tensor, but we have not performed that extensive algebraic exercise here. In the special case of
weak anisotropy, we have numerically shown that the attenuation ratios are approximately related to the
aspect ratios of the ellipsoid by power laws having proportionality constants of 1. The exponents in these
power laws do not appear to be universal constants and are observed to vary nearly linearly with the volume
fraction of the ellipsoidal inclusions.

There is a practical implication to the fact that the attenuation ratios are correlated to the geometrical aspect
ratios of the inclusions or to the correlation lengths of random heterogeneity. By measuring the amplitude
ratios of compressional and/or shear waves traveling in different directions, one can imagine deducing the
shape and the orientation of the mesoscale heterogeneities present in the propagation medium, i.e., in
principal, the lengths l1, l2, and l3 (either inclusion diameters or correlation lengths), as well as the orienta-
tion of the anisotropic structure relative to the coordinate axes, could be inverted for from the attenuation
ratios using, for example, equations (37)–(39) under the assumption that either the elastic constants of the
inclusion and host are known or under the assumption of weak anisotropy.

The ratio of peak compressional wave attenuation to peak shear wave attenuation was not a focus in the
present model of ellipsoidal inclusions because these peak attenuations typically occur at different frequen-
cies. For the models presented in this paper, the peak compressional-wave attenuation is typically 3 to 4
times larger than the peak shear-wave attenuation. This is because fluid-pressure equilibration between
the ellipsoid and the matrix (compressional waves) produces more attenuation than equilibration between
the lobes surrounding the ellipsoid (shear waves). Using an ultrasonic pulse transmission method (frequen-
cies near 1 MHz), Toksöz et al. [1979] observe that for a range of sandstones, the shear attenuation is slightly
larger than the compressional attenuation. For a transversely isotropic saturated Colorado shale,Wong et al.
[2008] perform ultrasonic pulse-transmission experiments using compressional and shear waves in various
directions and observe that the highest-frequency shear waves are greatly attenuated compared to the
compressional waves. Using a resonant bar technique (frequencies near 1 kHz), it can be inferred (after con-
verting the extensional and shear response of a cylindrical sample to the compressional and shear response)
thatMurphy [1982a, 1982b] also observes shear attenuation to be slightly larger than compressional atten-
uation for Massilon sandstone. So our mechanism of mesoscale fluid flow between lobes of shear-induced
fluid pressure change seems to underestimate the shear loss observed in these experiments. The rock sam-
ples in these studies likely had fractures in them and shear can create movement of the fluid in the fractures
that we have not modeled with our ellipsoidal inclusions.

In numerical results not shown in this paper, we determine the anisotropy in both the attenuation and
the moduli for patchy saturation models in which the framework of grains is everywhere uniform, and the
immiscible fluid patches are either an ellipsoid, a plane layer, or an invasion cluster created by the Invasion
Percolation model [cf.Wilkinson and Willemson, 1983;Masson and Pride, 2014]. In all these cases, no signifi-
cant anisotropy was observed across the seismic band of frequencies (1 to 104 Hz) despite anisotropy being
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present in the fluid patch shapes. Only in the limit of very high frequencies, where the fluid remains in the
patches and does not have time to equilibrate, is any anisotropy in the patchy saturation model observed
and at such high frequencies there is not much mesoscopic-scale flow and associated attenuation. So the
anisotropy in fluid patch shape in patchy saturation models does not lead to significant anisotropy in either
the elastic moduli or the associated attenuation.

Appendix A: Definition ofQ−1

O’Connell and Budiansky [1978] explore a range of definitions of Q−1 that have been used over the years.
They obtain the particular result that we derive below as equations (A18) and (A20) but, in doing so, they
assume the material to be modeled as a network of springs and dashpots. Our goal here is to derive this
result for Q−1 in a way that is applicable to any linear-response system.

Consider some response r(t) generated by some force f (t). In the present paper, r(t) would be a particular
component of stress and f (t) a particular component of strain, but we do not need to know that here. For
linear-response, we have

r(t) = ∫
t

−∞
d/ M(t − /)f (/) (A1)

where the modulus functionM(t − /) is telling us how the force at times past is creating a response at the
present time. The chosen limits in the integration is a statement of causality; namely, that response at the
present time can only be created by forces at present or past times. By substituting u = t − / , this can also
be written

r(t) = ∫
∞

0
duM(u)f (t − u). (A2)

We next identify r̃(%) and f̃ (%) as the Fourier transforms of r(t) and f (t)

r̃(%) = ∫
∞

−∞
r(t)ei%t dt (A3)

f̃ (%) = ∫
∞

−∞
f (t)ei%t dt. (A4)

We then write inverse Fourier transforms as

r(t) = 1
2π ∫

∞

−∞
r̃(%)e−i%t d% (A5)

f (t − u) = 1
2π ∫

∞

−∞
f̃ (%)e−i%(t−u) d% (A6)

and use them in the convolution of equation (A2) to obtain

∫
∞

−∞
d% r̃(%)e−i%t = ∫

∞

−∞
d%
[
∫

∞

0
duM(u)ei%u

]
f̃ (%)e−i%t. (A7)

We thus have the convolution theorem result that

r̃(%) = M̃(%)f̃ (%) (A8)

where the complex modulus M̃(%) is defined

M̃(%) = ∫
∞

0
duM(u)ei%u. (A9)

The fact that the integral is only over positive times is again the statement of causality. As an aside, a
straightforward and standard application of Cauchy’s theorem that uses the causal form of equation (A9)
yields the Kramers-Kronig relations that relate the real and imaginary parts of M̃(%) as Hilbert transform pairs
[e.g., Landau and Lifshitz, 1980].
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The linear-response system is now assumed to be driven by a sinusoidal force at a frequency % so that

f (t) = Re
{
foe

−i%t} = 1
2

[
foe

−i%t + f ∗o e
i%t] (A10)

r(t) = Re
{
M̃(%)foe−i%t

}
= 1

2

[
M̃(%)foe−i%t + M̃(%)∗f ∗o e

i%t] . (A11)

Focus is put on the stored energy E(t) of the response defined as

E(t) = r(t)f (t) (A12)

= 1
4

[
2M̃Rfof

∗
o + M̃f 2o e

−2i%t + M̃∗f ∗o
2e2i%t

]
(A13)

where we have written M̃ = M̃R + iM̃I so that M̃+ M̃∗ = 2M̃R. The rate at which energy is changing is given by

dE(t)
dt

= dr(t)
dt

f (t) + r(t)df (t)
dt

(A14)

= %M̃Ifof
∗
o − i%

2
M̃f 2o e

−2i%t + i%
2
M̃∗f ∗o

2e2i%t (A15)

where we have used that M̃ − M̃∗ = 2iM̃I.

Next, the total energy dissipated over one period T = 2π∕% is determined

D = ∫
T

0
dt

dE(t)
dt

= 2πM̃Ifof
∗
o (A16)

where the integrals involving e±2i%t are zero over [0, T]. Thus, the net energy change added up over each
period is controlled entirely by M̃I. The energy change given by D will always be negative because stored
energy is lost to heat which means that M̃I is negative. The average energy reversibly stored in each cycle is
given by

Eave =
1
T ∫

T

0
dt E(t) =

M̃R

2
fof

∗
o (A17)

where again the integrals involving e±2i%t are zero. The average energy stored during each cycle is controlled
entirely by M̃R and is always positive.

A convenient measure of loss is therefore the dimensionless quality factor Q(%) defined as

1
Q(%) =

energy dissipated over one cycle
(4π)(average energy stored in each cycle) (A18)

= −D
4πEave

(A19)

= −
M̃I(%)
M̃R(%)

. (A20)

Other definitions of Q(%) exist for defining loss, but the above seems to be the most useful and convenient.

Appendix B: The BiotModel

Biot [1962] equations are used to model the local response within a heterogeneous porous sample that is
being stressed in a time-varying manner. As demonstrated byMasson et al. [2006], at low enough applied
frequencies where %≪' / (&f Fk) so that viscous boundary layers do not develop in the pores, Biot [1962]
equations in the time domain may be written

&1'
1t

= ∇ ⋅ ( − &f
1)
1t

(B1)

&f (1 +Φ)F 1)
1t

+ '
k0

) = −∇p − &f
1'
1t

. (B2)

1(
1t

=
(
.U∇ ⋅ ' + +M∇ ⋅ )

)
" + )

[
∇' + (∇')T

]
(B3)
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− 1p
1t

= M (+∇ ⋅ ' + ∇ ⋅ )) . (B4)

In sedimentary rocks, these equations can be considered as valid across the seismic band (1 to 104 Hz).
The various coefficients are all real. Here & is the local bulk density of the material, &f is the fluid density
which is taken to be spatially uniform throughout each sample, and F is the electrical formation factor
that is modeled here using the Archie [1942] law *−1.75, where * is local porosity and Φ is a dimensionless
pore-topology parameter defined and discussed byMasson et al. [2006] that is bounded as Φ > 1∕4 and
will simply be set to 1 in the present article. Over the seismic band of frequencies, the inertial term in the
generalized Darcy law of equation (B2) has a magnitude |&f (1+Φ)F1)∕1t| that is always negligible in ampli-
tude relative to the viscous resistance |('∕ko))|; however, the inertial term is entirely responsible for the
finite-difference scheme to be stable [cf.Masson et al., 2006] and thus cannot be discarded.

The local poroelastic constants used here are the undrained Lamé modulus .U, the shear modulus ) (the
same for both drained and undrained conditions), the so-called Biot and Willis [1957] constant +, and the
fluid-storage coefficientM. For any porous material, these constants are related to the undrained bulk mod-
ulus KU, the drained bulk modulus KD and Skempton’s [1954] undrained fluid-pressure to confining-pressure
ratio B as

.U = KU − 2)∕3 = KD + +2M − 2)∕3 (B5)

+ = (1 − KD∕KU)∕B (B6)

M = BKU∕+. (B7)

In the special case considered by Gassmann [1951], in which the solid frame is composed of a single
isotropic mineral characterized by a bulk modulus Ks, we have as well the so-called “fluid-substitution”
relations given by

B =
1∕KD − 1∕Ks

1∕KD − 1∕Ks + *(1∕Kf − 1∕Ks)
(B8)

KU =
KD

1 − B(1 − KD∕Ks)
(B9)

where Kf is the fluid bulk modulus and * is the porosity. From these, one further obtains + = 1 − KD∕Ks. We
use the Gassmann expressions to model the local poroelastic constants in all the numerical experiments.

Appendix C: TheDouble PorosityModel

In the special case where the sample is a composite of two distinct porous materials saturated by a sin-
gle fluid and when the heterogeneity has a single dominant length scale, the double-porosity theory of
Pride and Berryman [2003a, 2003b] is applicable and predicts that the undrained bulk modulus Ku(%) of the
porous composite is complex (due to the mesoscale fluid equilibration) and given by

1
Kd(%)

= a11 −
a213

a33 − #∕i% , (C1)

B(%) =
−a12(a33 − #∕i%) + a13(a23 + #∕i%)

(a22 − #∕i%)(a33 − #∕i%) − (a23 + #∕i%)2
, (C2)

1
Ku(%)

= 1
Kd(%)

+ B(%)
(
a12 −

a13(a23 + #∕i%)
a33 − #∕i%

)
. (C3)

Here Kd(%) is the complex drained bulk modulus of the composite (drained in this context means that the
average fluid pressure in a sample does not change, which in no way prevents mesoflow from occurring),
and B(%) is the complex Skempton’s coefficient. The Skempton’s coefficient is the ratio of the average fluid
pressure in the composite to an applied confining pressure for a sealed sample and is frequency dependent
in the double-porosity model due to mesoflow associated with the heterogeneity in the sample. The aij
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are real elastic compliances that depend on the elastic moduli of the two porous constituents, while # is a
complex function of frequency given by

#(%) = #o
√

1 − i %
%o

(C4)

that controls the degree of mesoflow between the two phases. Expressions for the real parameters #o and
%o, as well as for the high-frequency elastic compliances aij , have been derived by Pride and Berryman
[2003a, 2003b] and are also given by Pride et al. [2004]. The aij are given by

a11 = 1∕Kd(0) (C5)

a22 =
v1+1
K1

(
1
B1

−
+1(1 − Q1)
1 − K1∕K2

)
(C6)

a33 =
v2+2
K2

(
1
B2

−
+2(1 − Q2)
1 − K2∕K1

)
(C7)

a12 = −v1Q1+1∕K1 (C8)

a13 = −v2Q2+2∕K2 (C9)

a23 = −
+1+2K1∕K2
(1 − K1∕K2)2

(
1

Kd(0)
−

v1
K1

−
v2
K2

)
(C10)

where

v1Q1 =
1 − K2∕Kd(0)
1 − K2∕K1

and v2Q2 =
1 − K1∕Kd(0)
1 − K1∕K2

. (C11)

Here vi is the volume-fraction of phase i in each sample (v1 + v2 = 1), Ki is the drained frame modulus of
phase i, Bi is the Skempton’s coefficient of phase i, and +i is the Biot-Willis constant of phase i.

The one parameter in these aij that has not yet been modeled is the overall static drained modulus Kd(0) =
1∕a11 of the two-phase composite. It is through Kd(0) that all dependence on the mesoscopic geometry of
the two phases occurs. Although many mixture models for Kd(0) exist, none are exact for arbitrary geometry
of the inclusions. In the present paper, we numerically calculate Kd(0) using our finite-difference scheme in
the long-time limit and use this measured drained bulk modulus in the above double-porosity expressions
for all “theoretical” predictions.

The low-frequency and high-frequency limits of Ku(%) are determined from equation (C4) to be

Ku(0) = a11 −
(a12 + a13)2

a22 + 2a23 + a33
(C12)

Ku(∞) = a11 −
a213
a33

−
(a12a33 − a13a23)2

a33(a22a33 − a223)
. (C13)

At peak attenuation defined when % = %p one can approximate that Ku(%p) ≈ [Ku(0) + Ku(∞)]∕2.

If phase 2 is defined to be more permeable than phase 1, the low-frequency limit of the internal transport
coefficient #o is given by

#o = −
k1K

d
1

'L21

(
a12 + Bo(a22 + a33)

R1 − Bo∕B1

)[
1 + O(k1∕k2)

]
, (C14)

where the parameters Bo, R1, and L1 are now defined. The dimensionless number Bo = B(0) is the static
Skempton’s coefficient for the composite and is exactly

Bo = −
(a12 + a13)

a22 + 2a23 + a33
. (C15)

The dimensionless number R1 is the ratio of the average static confining pressure in the host phase 1 of a
sealed sample divided by the confining pressure applied to the sample and is exactly

R1 = Q1 +
+1(1 − Q1)Bo
1 − Kd

1∕K
d
2

−
v2
v1

+2(1 − Q2)Bo
1 − Kd

2∕K
d
1

(C16)
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where the Qi are given by equation (C11). Last, the length L1 is the distance over which the fluid-pressure
gradient still exists in phase 1 in the final approach to fluid-pressure equilibrium and is formally defined as

L21 =
1
V1 ∫Ω1

Φ1 dV (C17)

where Ω1 is the region of an averaging volume occupied by phase 1 and having a volume measure V1. The
potentialΦ1 has units of length squared and is a solution of an elliptic boundary-value problem that under
conditions where the permeability ratio k1∕k2 can be considered small, reduces to

∇2Φ1 = −1 inΩ1, (C18)

* ⋅ ∇Φ1 = 0 on 1E1, (C19)

Φ1 = 0 on 1Ω12 (C20)

where 1Ω12 is the surface separating the two phases within a sample of composite and 1E1 is the external
surface of the sample that is coincident with phase 1.

In all the examples of the present paper, the boundary-value problem for Φ1 is solved numerically by
finite-differences. To do so, we add a diffusion term −1Φ1∕1t to the left-hand side of equation (C18) and
replace 1 by a step function on the right-hand side, then solve the resulting diffusion equation using explicit
time stepping. The long-time steady state response to the imposed step-function source term is the solution
of equation (C18). We then determine numerically the length L1 using equation (C17).

Last, the transition frequency %o corresponds to the onset of a high-frequency regime in which the
fluid-pressure-diffusion penetration distance becomes small relative to the scale of the mesoscopic
heterogeneity and is given by

%o =
'B1K1
k1+1

(
#o
V
S

)2 ⎛⎜
⎜⎝
1 +

√
k1B2K2+1
k2B1K1+2

⎞
⎟
⎟⎠

2

(C21)

where S is the surface area of the interface between the two phases in each volume V of composite.

Appendix D: The Eshelby Tensor

The derivation of the Eshelby tensor in isotropic materials was initially performed by Eshelby [1957] and is
also presented byMura [1982]. For isotropic medium, the Eshelby tensor can be expressed in terms of elliptic
integrals. Assuming that a1 > a2 > a3 and that the semiaxis a1, a2, and a3 aligns with the coordinate x, y,
and z, respectively, then

S1111 =
3a21

8π(1 − 2) I11 +
1 − 22

8π(1 − 2) I1 (D1)

S1122 =
3a22

8π(1 − 2) I12 −
1 − 22

8π(1 − 2) I1 (D2)

S1133 =
3a23

8π(1 − 2) I13 −
1 − 22

8π(1 − 2) I1 (D3)

S1212 =
3
(
a21 + a22

)

16π(1 − 2) I12 +
1 − 22

16π(1 − 2) (I1 + I2) (D4)

S3333 =
3a23

8π(1 − 2) I33 +
1 − 22

8π(1 − 2) I3 (D5)

S3311 =
3a21

8π(1 − 2) I31 −
1 − 22

8π(1 − 2) I3 (D6)
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S3322 =
3a22

8π(1 − 2) I32 −
1 − 22

8π(1 − 2) I3 (D7)

S3131 =
3
(
a23 + a21

)

16π(1 − 2) I31 +
1 − 22

16π(1 − 2) (I3 + I1) (D8)

S2222 =
3a22

8π(1 − 2) I22 +
1 − 22

8π(1 − 2) I2 (D9)

S2233 =
3a23

8π(1 − 2) I23 −
1 − 22

8π(1 − 2) I2 (D10)

S2211 =
3a21

8π(1 − 2) I21 −
1 − 22

8π(1 − 2) I2 (D11)

S2323 =
3
(
a22 + a23

)

16π(1 − 2) I23 +
1 − 22

16π(1 − 2) (I2 + I3) (D12)

The rest of the terms are equal to zero. The Ii terms are defined in terms of standard elliptic integrals,

I1 =
4πa1a2a3

(
a21 − a22

)√
a21 − a23

(F − E) (D13)

I3 =
4πa1a2a3

(
a22 − a23

)√
a21 − a23

⎛
⎜
⎜
⎜⎝

a2
√

a21 − a23
a1a3

− E

⎞
⎟
⎟
⎟⎠

(D14)

I2 = 4π − I1 − I3 (D15)

where the Iij terms are

I12 =
I2 − I1

3
(
a21 − a22

) (D16)

I21 =
I1 − I2

3
(
a22 − a21

) (D17)

I13 =
I3 − I1

3
(
a21 − a23

) (D18)

I31 =
I1 − I3

3
(
a23 − a21

) (D19)

I23 =
I3 − I2

3
(
a22 − a23

) (D20)

I32 =
I2 − I3

3
(
a23 − a22

) (D21)

I11 =
4π
3a21

− I12 − I13 (D22)

I22 =
4π
3a22

− I23 − I21 (D23)

I33 =
4π
3a23

− I31 − I32 (D24)

and the standard elliptic integrals F(3, k) and E(3, k) have the following definition:

E(3, k) = ∫
3

0
(1 − k2 sin2 w)

1
2 dw (D25)

F(3, k) = ∫
3

0

dw

(1 − k2 sin2 w)
1
2

(D26)

MASSON AND PRIDE ©2014. American Geophysical Union. All Rights Reserved. 2866



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010798

where

3 = sin−1
⎛
⎜
⎜⎝

√
1 −

a23
a21

⎞
⎟
⎟⎠

(D27)

k =

√
a21 − a22
a21 − a23

. (D28)

In the special case of an oblate spheroid (a1 = a2 > a3), the Ii terms reduce to

I1 =
2πa1a2a3
(
a21 − a23

) 3
2

⎡
⎢
⎢⎣
cos−1

(
a3
a1

)
−

a3
a1

√
1 −

a23
a21

⎤
⎥
⎥⎦

(D29)

I2 = I1 (D30)

I3 =
4πa1a2a3

(
a22 − a23

)√
a21 − a23

⎛
⎜
⎜
⎜⎝

a2
√

a21 − a23
a1a3

− E

⎞
⎟
⎟
⎟⎠

(D31)

where

I13 =
I3 − I1

3
(
a21 − a23

) (D32)

I31 =
I1 − I3

3
(
a23 − a21

) (D33)

I23 =
I3 − I2

3
(
a22 − a23

) (D34)

I32 =
I2 − I3

3
(
a23 − a22

) (D35)

I12 =
π
3a21

−
I13
4

(D36)

I21 = I12 (D37)

I11 =
4π
3a21

− I12 − I13 (D38)

I22 =
4π
3a22

− I23 − I21 (D39)

I33 =
4π
3a23

− I31 − I32. (D40)

For a prolate spheroid (a1 > a2 = a3), the Ii terms reduce to

I1 =
4πa1a2a3

(
a21 − a22

)√
a21 − a23

(F − E) (D41)

I2 =
2πa1a2a3
(
a21 − a23

) 3
2

×
⎡
⎢
⎢⎣
a1
a3

√√√√
(
a21
a23

− 1

)
− cosh−1

(
a1
a3

)⎤
⎥
⎥⎦

(D42)

I3 = I2 (D43)

where

I12 =
I2 − I1

3
(
a21 − a22

) (D44)

I21 =
I1 − I2

3
(
a22 − a21

) (D45)
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I13 =
I3 − I1

3
(
a21 − a23

) (D46)

I31 =
I1 − I3

3
(
a23 − a21

) (D47)

I23 =
π
3a22

−
I21
4

(D48)

I32 = I23 (D49)

I11 =
4π
3a21

− I12 − I13 (D50)

I22 =
4π
3a22

− I23 − I21 (D51)

I33 =
4π
3a23

− I31 − I32. (D52)

For a spherical inclusion, the Eshelby tensor has the simple form

S1111 =
7 − 52

15(1 − 2) (D53)

S2222 = S1111 (D54)

S3333 = S1111 (D55)

S1212 =
4 − 52

15(1 − 2) (D56)

S2323 = S1212 (D57)

S3131 = S1212 (D58)

S1122 =
52 − 1

15(1 − 2) (D59)

S2233 = S1122 (D60)

S3311 = S1122 (D61)

S1133 = S1122 (D62)

S2211 = S1122 (D63)

S3322 = S1122, (D64)

while for an infinite cylinder (a3 → ∞), we have

S1111 =
1

2(1 − 2) ×
(
a22 + 2a1a2
(a1 + a2)2

+ (1 − 22)
a2

a1 + a2

)
(D65)

S2222 =
1

2(1 − 2) ×
(
a21 + 2a1a2
(a1 + a2)2

+ (1 − 22)
a1

a1 + a2

)
(D66)

S3333 = 0 (D67)

S1122 =
1

2(1 − 2) ×
(

a22
(a1 + a2)2

− (1 − 22)
a2

a1 + a2

)
(D68)

S2233 =
1

2(1 − 2)
22a1

a1 + a2
(D69)

S2211 =
1

2(1 − 2) ×
(

a21
(a1 + a2)2

− (1 − 22)
a1

a1 + a2

)
(D70)

S3311 = 0 (D71)
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S3322 = 0 (D72)

S1212 =
1

2(1 − 2)

(
a21 + a22

2(a1 + a2)2
+ 1 − 22

2

)
(D73)

S1133 =
1

2(1 − 2)
22a2

a1 + a2
(D74)

S2323 =
a1

2(a1 + a2)
(D75)

S3131 =
a2

2(a1 + a2)
. (D76)

Finally, the simplified matrix form Sij of the Eshelby tensor Sijkl is

Sij =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

S1111 S1122 S1133 0 0 0
S2211 S2222 S2233 0 0 0
S3311 S3322 S3333 0 0 0
0 0 0 2S1212 0 0
0 0 0 0 2S3131 0
0 0 0 0 0 2S2323

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

. (D77)
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