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ABSTRACT OF THE DISSERTATION 

 

Improved Accuracy of Dynamic Susceptibility Contrast Magnetic Resonance Imaging  

Estimates of Relative Cerebral Blood Volume in Human Gliomas by Accounting for 

Bidirectional Contrast Agent Exchange 

 

by 

Kevin Leu 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2017 

Professor Benjamin M. Ellingson, Co-Chair 

Professor Daniel B. Ennis, Co-Chair 

 

Magnetic resonance imaging (MRI) plays an integral role in the diagnosis and 

monitoring of gliomas.  One means by which MRI has been used to assess treatment 

efficacy has been measuring the volumes of contrast-enhancing lesions on post-contrast 

T1-weighted images.  Clinically, an increase of the lesion volume by a certain percentage 

compared to a previous baseline scan warrants a change in treatment.  However, this type 

of imaging has its limitations, as exemplified by false positive radiographic determination 

of tumor progression (“pseudoprogression”) and false positive radiographic 

determination of treatment response (“pseudoresponse”). 



	 iii	

 Given the vascular nature of gliomas, perfusion-weighted dynamic susceptibility 

contrast (DSC)-MRI has been studied in efforts to improve the detection, 

characterization, and monitoring of gliomas after treatment.  However, applying DSC-

MRI biomarkers is not necessarily straightforward.  One of the biggest problems with the 

calculation of relative cerebral blood volume (rCBV) is that it is compromised by 

artifacts created by the extravasation of contrast agent from the vasculature.  This can be 

a particular challenge in the neuro-oncology field since blood brain barrier disruption is a 

common feature of gliomas. 

This work attempts to improve estimates of rCBV in gliomas by incorporating a two-

compartment pharmacokinetic model into the indicator dilution theory, which we term 

the “bidirectional” leakage correction.  In Chapter II, we use simulation methods to 

demonstrate improved accuracy gained by the bidirectional leakage correction, as 

compared to a current, popular leakage correction (“unidirectional” leakage correction). 

In Chapter III, we demonstrate that the bidirectional model-generated permeability curves 

have better correlation with DCE-MRI permeability curves than those generated by the 

unidirectional model.  We also demonstrate that the rCBV is more similar for the 

bidirectional model between two separate pre-treatment scans from the same patient.  In 

Chapter IV, we demonstrate that the change in bidirectional rCBV can stratify 

glioblastoma patients treated with bevacizumab according to long- or short-term survival. 

In all, the above works demonstrate that the new technique better combats leakage 

effects, thereby improving the clinical utility of rCBV for human gliomas. 
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Chapter I. Introduction 

 
i. Gliomas and MRI 

Of the more than 26,000 malignant brain tumors diagnosed in the United States 

each year, gliomas comprise approximately 80%1.  The most common type of gliomas is 

glioblastomas, which are a devastating, biologically aggressive class of tumors that 

present several unique treatment challenges.  Due to their heterogeneous and 

topographically diffuse nature, both within and across tumors, glioblastomas carry a poor 

prognosis of 14 months with the standard of care – maximal safe tumor resection, 

followed by radiotherapy with concurrent and adjuvant temozolomide2-4.   

One of the pathologic hallmarks of gliomas is angiogenesis, the formation of new 

blood vessels from existing ones5.  Because glioma cells require that oxygen and 

nutrients continually be delivered, new vessels must be formed in order for the tumors to 

grow. One of the mechanisms by which angiogenesis occurs is the hypoxia inducible 

factor-1 (HIF-1) and the vascular endothelial growth factor (VEGF) pathways, which 

lead to the recruitment and proliferation of endothelial cells6. The end result of this 

aberrant pro-angiogenic signaling is a dense network of vessels that are immature, 

tortuous, and permeable7.  Overall, increased VEGF expression predicts glioma 

aggressiveness and denotes poorer outcomes8. 

Currently, magnetic resonance imaging (MRI) is the mainstay for the diagnosis 

and therapeutic monitoring of gliomas.  Conventionally, T1-weighted anatomical MRI 

scans are used for the evaluation of gliomas, and an exogenous gadolinium-based 

contrast agent is used to better visualize the tumors on T1-weighted images.  If the 
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vasculature is permeable due to blood-brain barrier disruption, the contrast agent will 

leak into the extravascular space, causing a shortening of the T1 of the tissue, which will 

appear bright on T1-weighted images (Fig 1.1).  It is the volume of this pathological 

contrast enhancement on T1-weighted images, which has been used for decades as a 

surrogate for overall survival9.  For example, with the Response Assessment of Neuro-

oncology (RANO) critiera9 established in 2010, a 25% or greater increase in the contrast-

enhancing two-dimensional measurements from a baseline scan would indicate 

progression of the disease and therefore would warrant a change in therapy.   

 

 

 

 

 

 

  

 

 

 

Fig. 1.1. Low grade gliomas (grade II) generally demonstrate hypo-intense T1 

lesions.  The glioblastoma (grade IV) T1-weighted image demonstrates a necrotic 

core with rim-like enhancement.  The above example of the grade III is not 

hyperintense on post-contrast T1-weighted imaging, though the dark tumor lesion 

is bigger than the grade II lesion.  The volume of contrast enhancement is a 

conventional biomarker used to monitor tumor burden. 
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However, using the pathological contrast enhancing measurements on anatomical 

MRI has its limitations.  For example, in “pseudoprogression”, high-grade tumors may 

appear to enlarge on contrast enhancement without any accompanying clinical 

deterioration after treatment10.  This phenomenon is attributed to an increase in the 

permeability of the vasculature, as opposed to actual tumor growth11, 12.  On the other 

hand, in “pseudoresponse”, the tumor rapidly shrinks on imaging after anti-angiogenic 

treatment11. However, overall survival increases due to these drugs are modest13. This 

phenomenon has been attributed to a decrease in vascular permeability, as opposed to a 

true tumor response event14.  Both pseudoprogression and pseudoresponse demonstrate 

that contrast enhancement alone cannot be a sufficient biomarker for measuring 

therapeutic response.  Furthermore, anatomical MRI gives limited information about the 

vascular characteristics of the tumor tissue.  Therefore, other MRI modalities should be 

examined to determine if other imaging biomarkers can serve as surrogates for survival in 

determining treatment response for both present and future therapies.  In particular, given 

that malignant gliomas are highly vascular, perfusion-weighted MRI is one advanced 

MRI modality that may prove particularly useful in assessing gliomas. 

 

ii. Perfusion and the Indicator Dilution Theory 

Perfusion is the passage of fluid through a circulatory system, e.g. the delivery of 

blood to tissue through a vascular network. A system with unknown volume, such as the 

blood vasculature, can be assessed by adding a known quantity of indicator, such as 

gadolinium15, assuming certain fundamental properties.  Namely, the system must have 

only one inlet and outlet for the fluid, flow and volume must be constant for every 
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measurement, the intravenous contrast agent must mix thoroughly in the fluid, and the 

contrast agent must leave the system only through the outlet.  By monitoring the behavior 

of the indicator, we can compute blood volume, blood flow, and mean transit time16, 17.   

In order to describe the characteristics governing the unknown fluid system, we 

first begin by describing the behavior of the contrast agent.  After an instantaneous 

injection of bolus, the incremental amount of contrast agent, Δm, leaving the system 

between times t and t+Δt is the concentration of contrast agent, C(t), multiplied by 

constant flow, F. 

(Eq. 1.1)                                                 Δ𝑚 = 𝐶 𝑡 ∙ 𝐹 ∙ Δ𝑡 

As it is assumed that all contrast agent must eventually leave the vascular network, the 

total amount of contrast agent leaving the system is the sum of Δm over time: 

(Eq. 1.2)                                               𝑚 = 𝐹 𝐶 𝑡 𝑑𝑡!
!  

Here, we define a function that describes the fraction of contrast agent leaving the system 

per unit time: 

(Eq. 1.3)                                                ℎ 𝑡 = !∙!(!)
!

 

Note that integrating the distribution function over all time would be a re-arrangement of 

the terms in Eq. 1.2 and is thus equal to unity. 

To relate the contrast agent behavior to the volume of fluid in the system, we first 

consider all of the particles in the fluid to have a distribution of transit times.  Transit 

times are the time that it takes to for a particle to travel from the beginning to the end of 

the system.  The rate at which fluid particles leave the system is F, and the rate at which 

particles are leaving the system between t and t+Δt is given by F∙h(t) ∙Δt.  At time t, the 

indicator particles that we can visualize have transit times between t and t+Δt.  However, 
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the volume element of the fluid particles at time t is comprised of those particles that 

have transit times between t and t+Δt and entered the vascular network between t units 

before 0 and time 0.  That is, any fluid particle that entered between t units before 0 and 

time 0 will be in the system at the time that the indicator particles are detected.  Thus, the 

volume element of fluid at time t is t units of fluid multiplied by F∙h(t) ∙ ∆t: 

(Eq. 1.4)                                              ∆𝑉 = 𝑡 ∙ 𝐹 ∙ ℎ 𝑡 ∙ ∆𝑡 

Summing over all of the small volumes, ∆V, yields 

(Eq. 1.5)                                            𝑉 = 𝐹 𝑡 ∙ ℎ 𝑡 𝑑𝑡!
!  

We can further define the mean circulation time as 

(Eq. 1.6)                                             𝑡 = 𝑡 ∙ ℎ 𝑡 𝑑𝑡!
!  

Thus, blood volume is equal to flow times mean circulation time, the fundamental 

equation of the indicator dilution theory: 

(Eq. 1.7)                                                    𝑉 = 𝐹 ∙ 𝑡 

In practice, a tissue voxel is comprised of not just the plasma (P), but also the 

intracellular (I) and extravascular, extracellular (E) space 

(Eq. 1.8)                                             𝑓 =  !!
!!!!!!!!

 

The average concentration of contrast material is smaller than the intravascular 

concentration by that fraction f 18: 

(Eq. 1.9)                                                 𝑐! = 𝑓 ∙ 𝑐! 

Per the assumptions of the indicator dilution theory, the total amount of contrast entering 

the system must be equal to the amount leaving; thus, 

(Eq. 1.10)                            𝑚 = 𝐹 ∙ 𝐶! 𝑡 = !
!

!
! 𝐹 ∙ 𝐶!(𝑡)

!
!  
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Rearranging the terms in Eq. 1.10, we obtain 

(Eq. 1.11)                                        𝑓 =
!! ! !"

!
!
!! ! !"!

!
 

which is equivalent to the fractional vascular volume in that voxel.  In perfusion imaging, 

the fractional vascular volume is referred to as the blood volume (BV): 

(Eq. 1.12)                                        𝐵𝑉 =
!! ! !"

!
!
!! ! !"!

!
 

 
 

iii. DSC-MRI and the Indicator Dilution Theory  

In MRI, the behavior of an indicator like exogenous gadolinium contrast can be 

monitored over time to study the vascular network.  This modality is called the dynamic 

susceptibility contrast (DSC)-MRI.  In this technique, the first pass of the bolus of 

contrast agent is monitored through a series of T2*-weighted (or T2-weighted) MR 

images. In DSC-MRI, gadolinium acts as a “negative enhancing agent” in that it causes 

signal loss, as opposed to an increase in signal.  This signal loss is modeled as being 

proportional to the concentration of contrast agent and can be used to calculate blood 

volume with the indicator dilution theory after a few post-processing steps from the raw 

DSC-MRI data. 

The DSC-MRI signal intensity data is originally given in arbitrary units and must 

be converted into units that reflect the effects of the passage of contrast agent through the 

vasculature. The MRI signal information can be converted into a time curve that reflects 

the susceptibility difference caused by the passage of the contrast agent bolus at each 

voxel using the gradient echo signal equation. This susceptibility difference is assumed to 

be proportional to the contrast agent concentration:  
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(Eq. 1.13)                                ∆𝑅!∗(𝑡) = − !
!"
∙ ln ! !

!!
= 𝑟!∗ ∙ 𝐶(𝑡), 

where TE refers to the echo time, S(t) is the signal intensity from the DSC-MRI, S0
  

represents the baseline signal intensity before the bolus of contrast agent, r2* is the T2* 

relaxivity of gadolinium, and C(t) is the concentration of contrast agent in the vasculature 

over time.  

If the arterial input function (AIF) is known or estimated, the integration of 

contrast agent concentration in a voxel divided by the area under the curve for the AIF 

would then allow for the derivation of parametric maps of blood volume by plugging into 

Eq. 1.12: 

(Eq. 1.14)                                       𝐵𝑉!"#!!"# =
∆!!,!

∗ (!)!"!
!
∆!!,!"#

∗ ! !"!
!

, 

where the numerator represents the area under the curve of the relaxation-time curve in 

the voxel and the denominator represents the area under the curve for the AIF.  In 

practice, however, AIF is difficult to estimate.  Several manual and automatic approaches 

have been taken, usually to calculate a global AIF from the large arteries19-22.  That is, an 

input function that is assumed to be the same throughout the tumor.  However, the brain, 

in reality, has multiple, more local inputs from many smaller arteries23.  Differences 

between the global AIF and the local input in reality would cause errors in blood volume 

calculations, and currently, no standards exist as to how to calculate either the global or 

local AIFs.  One way to avoid the problems with AIF estimation has been computing the 

relative cerebral blood volume (rCBV)24.  The term “relative” refers to the fact that the 

AIF is not being measured, as described in the following equation: 

(Eq. 1.15)                                      𝑟𝐶𝐵𝑉 =  ∆𝑅!,!∗ (𝑡)𝑑𝑡
!
!  
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Often in neuro-oncology, the rCBV is computed relative to the contralateral normal 

appearing white matter.  An example of an rCBV map is shown in Fig 1.3.   
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Fig. 1.2. (A) Arbitrary units of MRI signal intensity are first converted to (B) a 

relaxivity-time curve.  The integration of the relaxivity-time curve yields relative 

cerebral blood volume. 

	

Fig. 1.3. Resultant rCBV map normalized to white matter.  (Left) Anatomical T1-

weighted post-contrast image demonstrating large glioma in the right hemisphere.  

(Right) The tumor has a much higher blood volume than the rest of the brain, with 

only the vasculature demonstrating similar levels of blood volume. 
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iv. Modeling DSC-MRI in the Presence of Contrast Agent Extravasation 

However, an extra complication exists in gliomas in that the gadolinium-based 

contrast agents used will leak into the extravascular space.  This is a violation of the 

assumption in the indicator dilution theory that the contrast agent must only leave the 

system through the outlet.  By integrating the area under the curve in the presence of 

leakage, we would arrive at an inaccurate rCBV estimate.  To model how the DSC-MRI 

signal arises in the event of gadolinium extravasation, we start with the gradient echo 

signal equation: 

(Eq. 1.16)                                   𝑆 𝑡 = !!∙(!!!
!!"!!)∙!

!!"
!!
∗

!!!
!!"!! ∙!"# (!)

∙ sin 𝛼 , 

where S0 is the proton density, TR is repetition time, TE is the echo time, α is the flip 

angle, T1 is the tissue’s longitudinal relaxation rate time constant, and T2* is the tissue’s 

transverse relaxation time constant in the presence of magnetic field inhomogeneities. In 

the presence of contrast agent, the tissue T1 is shortened in the following manner:   

(Eq. 1.17)   𝑅! 𝑡 = 𝑟! ∙ 𝐶! 𝑡 + 𝑅!" 

where R1(t) is the reciprocal of the T1 time constant over time, r1 is the relaxivity of the 

contrast agent, CT is the concentration of contrast agent in the tissue, and R10 is the 

reciprocal of the intrinsic tissue T1.  The T2* effects are a result of the combination of T2 

shortening in the vasculature plus the differences in the concentration of gadolinium 

between compartments25: 

(Eq. 1.18)            𝑅!∗ 𝑡 = 𝑟!(𝐶! 𝑡 + 𝐶! 𝑡 )+  𝑎 ∙ 𝐶! 𝑡 − 𝐶! 𝑡 +  𝑏 ∙ 𝐶! 𝑡 − 𝐶! 𝑡  

+ 𝑐 ∙ 𝐶! 𝑡 − 𝐶! 𝑡 + 𝑅!"∗ , 
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where r2 is the contrast agent’s T2 relaxivity, C is the concentration of contrast agent, E is 

the extravascular, extracellular compartment, P is the blood plasma compartment, I is the 

intracellular compartment, a/b/c are the multipliers for the gradients induced between 

compartments, which are dependent on the size of the respective compartments as well as 

the vascular geometry, and R20
* is the reciprocal of the intrinsic tissue T2*.  Substituting 

Eqs. 1.17 and 1.18 into Eq. 1.16 results in the following form for the gradient echo DSC-

MRI signal intensity: 

(Eq. 1.19)                    𝑆 𝑡 = !! !!!!!"∙(!!∙!! ! !!!")

!!!!!"∙(!!∙!! ! !!!")∙!"# (!)
∙ 𝑒!!"∙!!∗(!) ∙ sin 𝛼 ,  

In gliomas, the resulting relaxivity-time curve will be affected by either T1-weighted or 

T2*-weighted leakage effects, as exemplified by Fig 1.4.  Integration of either the red or 

blue curves would lead to an inaccurate result compared to the ground truth in black. 
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Fig. 1.4. Example of the effects of the contrast agent extravasation on the DSC-MRI 

curve.  The ground truth is in black, which has a tail that returns approximately to 

zero.  The blue line represents a DSC-MRI curve with T1-weighted artifact due to 

leakage.  Integration of this curve would lead to an underestimation of rCBV and can 

even lead to a negative rCBV in real tumor cases.  The red line represents a DSC-MRI 

curve with T2*-weighted artifact from leakage and would lead to an overestimation of 

rCBV. 
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v. Previous Efforts to Minimize the Effects of Contrast Agent Leakage 

The biggest potential confound of relative cerebral blood volume calculation is the 

leakage of contrast agent, and a few strategies have been proposed to combat this. One 

commonly used method to mitigate those effects is preload, where an injection of contrast 

agent dosage is used prior to the one used for the DSC-MRI experiment.  This shortens 

the tissue T1, thereby decreasing the T1 effects of leakage26.  Another technique to 

mitigate T1 effects has been to use flip angles of 35 degrees or lower27, 28.  Nevertheless, 

with both of the aforementioned methods, there may still be T2 and/or T2* leakage 

effects, which can result in overestimations of the rCBV.   

One popular method that can correct either T1 or T2/T2*-weighted leakage effects is 

using a post-hoc model-based DSC-MRI leakage correction method proposed by 

Weisskoff and Boxerman29-31.  This method uses the whole brain average (WBA) to 

correct rCBV for each voxel.  The WBA not only serves as a reference function, but also 

an input function that allows for the computation of contrast agent extravasation into the 

tissue.  The latter calculation makes the WBA similar in nature to the arterial input 

function (AIF).  Using different combinations of the aforementioned techniques rCBV32 

has been used for grading gliomas29, 33, predicting low-grade to high-grade 

transformation34, 35, distinguishing recurrent tumor from pseudoprogression36, 37, 

differentiating tumor regression from pseudoresponse38, and assessing overall treatment 

response39, 40.  

 
vi. Proposed Bidirectional Leakage Correction Theory 

As mentioned in previous sections, the exchange of contrast agent between the 

intravascular and the extravascular, extracellular space contaminates the desired DSC-
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MRI signal, depending on pulse sequence parameters and underlying tumor biology.25 A 

potentially limiting assumption of the previously mentioned post-hoc leakage correction 

approach is that contrast agent reflux from the interstitial space back to blood plasma is 

negligible within the time frame of DSC-MRI signal acquisition (~2 minutes). However, 

standard models quantifying contrast agent exchange between blood plasma and 

interstitium, such as that observed in the T1-weighted perfusion-weighted sequence 

dynamic contrast enhanced (DCE)-MRI, use two-compartment pharmacokinetics to 

account for bidirectional transport of contrast agent.  The reason that two compartments 

are used is because the contrast agent is assumed to only be present in the vasculature and 

the extravascular space.  None is assumed to be present inside the cells, nor is any 

assumed to be metabolized or created by the system.   

Here, we derive the equation for the bidirectional leakage correction.  Following Eq. 

A6 of Boxerman et al.31, the leakage-contaminated DSC-MRI relaxation rate-time curve, 

𝛥𝑅!∗ 𝑡 , equals intravascular contrast-driven transverse relaxation rate change, ∆𝑅!∗ 𝑡 , 

plus ∆𝑅!,!∗ 𝑡 , a tissue leakage term describing the simultaneous T1 and T2* relaxation 

effects resulting from gadolinium extravasation: 

(Eq. 1.20) ∆R!* t = ∆R!* t + ∆R!,!* t = ∆R!* t + r!,!* - !"
!"
∙ !!

!-!!
∙ r! ∙ C! t  

where 𝐸! = 𝑒!!" !!! , T10 is the pre-contrast tissue T1, r1 is the T1 relaxivity of 

gadolinium, CE(t) is the concentration of gadolinium in the extravascular, extracellular 

space, and 𝑟!,!∗  represents the T2* relaxation effects of gadolinium extravasation, as 

described by Quarles25 and Schmiedeskamp.41
  From the original Tofts model describing 

bidirectional contrast agent flux between the intravascular and extravascular 

compartments,42 
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(Eq. 1.21) 𝐶! 𝑡 = 𝐾!"#$% ∙ 𝐶! 𝑡 ∗ 𝑒!!!"!  

where Ktrans and kep are the transfer coefficients for intra- to extravascular and extra- to 

intravascular contrast flux, respectively, and Cp(t) is the plasma contrast concentration. 

Cp(t) and ΔR2*(t) can be defined as scaled versions of the whole-brain average relaxation 

rate in non-enhancing voxels, Δ𝑅!∗ 𝑡 :31 

(Eq. 1.22) 𝐶! 𝑡 = 𝑘 ∙ ∆𝑅!∗ 𝑡  

(Eq 1.23) ∆𝑅!∗ 𝑡 = 𝐾! ∙ ∆𝑅!∗ 𝑡  

Combining Eqs. 1.20–1.23 yields: 

(Eq. 1.24) ∆𝑅!∗ 𝑡 = 𝐾! ∙ ∆𝑅!∗ 𝑡 − 𝐾! Δ𝑅!∗
!
! 𝜏 ∙ 𝑒!!!" !!! 𝑑𝜏 

where 

(Eq. 1.25) 𝐾! = 𝑟!,!∗ − !"
!"
∙ !!

!!!!
∙ 𝑟! ∙ 𝐾!"#$% ∙ 𝑘. 

K1, K2, and kep (units of sec-1) are the free parameters of Eq. 1.25. In general, K1 depends 

on CBV, vessel size, and other physiologic factors, while K2/kep are related to vascular 

permeability. Substituting kep = 0, which occurs with no backflow of extravasated contrast 

agent, yields the original Weisskoff-Boxerman leakage correction algorithm, where K1 

and K2 are solved by linear least squares fit to ∆𝑅!∗ 𝑡 .31 For the Bidir-model correction 

method, a linear least squares fit to K1, K2, and kep can be employed using the 

methodology of Murase43, as described by the following equation: 

(Eq. 1.26)   ∆𝑅!∗ 𝑡 = (𝐾! + 𝑘!" ∙ 𝐾!) ∆𝑅!∗ 𝜏 𝑑𝜏
!!
! − 𝑘!" ∙ ∆𝑅!∗ 𝜏

!!
! 𝑑𝜏 + 𝐾! ∙ ∆𝑅!∗ 𝑡  

Integrating the corrected relaxation rate-time curve yields leakage-corrected rCBV: 

(Eq. 1.27) 𝑟𝐶𝐵𝑉!"## = 𝑟𝐶𝐵𝑉 + 𝐾! Δ𝑅!∗
!
!

!
! 𝜏 ∙ 𝑒!!!" !!! 𝑑𝜏𝑑𝑡 
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The incorporation of the two-compartment pharmacokinetic model into the DSC-

MRI theory results in an equation (Eq. 1.25) of the same form as the extended Tofts 

model44, which could potentially unify the two perfusion-weighted modalities.  The main 

difference in its application to the two perfusion-weighted MRI modalities is that in 

DCE-MRI, the extended Tofts model is used to calculate the surface area product (K2), 

while K1 is used to correct for the small T2* contribution.  Meanwhile for DSC-MRI, the 

main calculation involves K1 while K2 and kep are used as correction factors. 

For Chapters II to IV of this work, we hypothesized that incorporating 

bidirectional contrast agent transport into the original DSC-MRI signal model improves 

rCBV estimates in brain tumors. We begin with a simulation, examine how the model 

fares in acquired data, and finally transition to clinical applications, testing the 

bidirectional model against the unidirectional model.  
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Chapter II. Estimating the Improvements in CBV Accuracy with the 

Bidirectional Leakage Correction through an MR Physics Simulation  

 
Preface 

Section ii of this chapter, “Estimation of CBV Accuracy at 3.0 Tesla”, is based on the 

following publication: 

Leu K, Boxerman JL, Ellingson BM. Effects of MRI Protocol Parameters, Preload 

Injection Dose, Fractionation Strategies, and Leakage Correction Algorithms on the 

Fidelity of Dynamic-Susceptibility Contrast MRI Estimates of Relative Cerebral Blood 

Volume in Gliomas. AJNR. Am J Neuroradiol. 2016; In Press. 

 
i. Introduction 

 The leakage effects due to a disrupted blood brain barrier highly depend upon the 

protocol used for DSC-MRI signal acquisition45. To address these problems, certain 

strategies have been proposed for reducing the influence of contrast agent leakage, many 

of which focus on T1-weighted artifact reduction.  These include the use of low flip 

angles32, dual-echo acquisitions46-48, preload administration49, and/or post-processing 

leakage-correction algorithms31, 50-52.   These studies have employed a combination of 

these strategies to reduce extravasation-induced error of CBV estimates; however, these 

approaches have primarily been evaluated empirically.  

In this section, we present a simulation that tests a wide range of feasible 

combinations of flip angles, echo times, repetition times, preload administrations, and 

leakage correction schemes, and the second that specifically compares the performances 

of the uncorrected CBV, unidirectional model, and bidirectional model.  One reason for a 
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simulation is that the wide range of possible scan acquisition parameters would make 

testing in humans infeasible on a laboratory time scale.  Furthermore, the lack of an 

FDA-approved contrast agent that will not leak into the extravascular, extracellular space 

makes calculating the ground truth in human gliomas difficult.  On the other hand, the 

ability to generate a theoretical “ground truth” in simulation by setting the permeability 

parameter equal to zero allows us to examine the influence of scan acquisition protocols 

and leakage correction algorithms on CBV error.  

 
ii. Estimation of CBV Accuracy at 3.0 Tesla 

The goal of this first study is to systematically evaluate the effects of various leakage 

correction strategies on CBV estimation at 3.0 Tesla, the most powerful magnetic field 

that can be used in the clinical setting today.  Here, we utilize simulated DSC-MRI data 

derived from convolution theory17 and recent developments by Quarles et al.25. We 

hypothesized this approach could provide insights into the interaction of pulse sequence 

parameters, preload dosing, and leakage correction algorithms that are not readily 

determined experimentally.  

 
Simulation Procedure 
 

The following common DSC-MRI protocol variables were evaluated using 

simulations: pulse sequence parameters including flip angle, TE, and TR; preload dose 

and incubation time; truncation of the DSC-MRI dataset after first-pass to limit post-

bolus leakage contamination; and post-processing leakage correction algorithms. 

Simulated DSC-MRI signal curves for brain tumors were generated via: 1) selection of 

pulse sequence parameters; 2) construction of the DSC-MRI relaxivity-time series 
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without leakage for “ground truth rCBV”; 3) construction of the leakage-affected 

intravascular and extravascular, extracellular space (EES) contrast agent concentration-

time series based upon tumor characteristics; and 4) estimation of CBV using no leakage 

correction, unidirectional leakage correction (Unidir) as described by Boxerman et al.31, 

or bidirectional leakage correction (Bidir) accounting for bidirectional contrast agent flux 

between the vasculature and EES50, 51.  

 

Simulated DSC-MRI Relaxation Rate-Time Curve 

The simulated DSC-MRI relaxation rate-time curve is derived from the gradient echo 

signal equation, which has signal contributions from both T1 and T2.  When the MRI 

signal intensities, which have arbitrary units, are converted to ∆𝑅!∗ 𝑡 , in units of 1/s, 

these contributions are modeled for a single-shot gradient echo EPI acquisition as25:  

(Eq. 2.1) 

∆𝑅!∗ 𝑡 = 𝑟!,!∗ 𝑣!𝐶! 𝑡 + 𝑟!,!∗ 𝑣!𝐶! 𝑡  + 𝐾!𝑣!𝑣! 𝐶! − 𝐶! − !
!"
∙ ln !!!!∙!

!!"∙!!∙!! !

!!!!
−

ln !!!"#!∙!!∙!
!!"∙!!∙!! !

!!!"#!∙!!
       

whereαis the flip angle, E1=𝑒!!"/!!", E2
*=𝑒!!"/!!"∗ , subscripts E, I, and P represent the 

extravascular, intracellular, and plasma compartments, respectively; v represents volume 

fraction; K represents “calibration susceptibility factors”; C represents contrast agent 

concentration; and r1 and r2 are the T1 and T2 gadolinium relaxivities, respectively.  The 

first term, 𝑟!,!∗ 𝐶! 𝑡 , represents the T2* contribution of the plasma concentration of 

contrast agent, the second term, 𝑟!,!∗ 𝐶! 𝑡 , represents the extravascular, extracellular 

contrast agent contribution to T2*,  𝐾!𝑣!𝑣! 𝐶! − 𝐶! , represents the T2*-weighted 
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contribution owing to the difference in concentration of contrast agent between the 

vasculature and the EES, and − !
!"
∙ ln !!!!∙!

!!"∙!!∙!! !

!!!!
− ln !!!"#!∙!!∙!

!!"∙!!∙!! !

!!!"#!∙!!
, 

represents the T1 contribution of contrast agent in both the plasma and EES. 

 

Pulse Sequence Parameters 

All combinations of the following DSC-MRI parameters were tested: Flip angle=35°, 

60°, and 90°; TE=15, 25, 35, 45, and 55 ms; TR=1.0, 1.5, and 2.0 s; fractional preload + 

bolus dosage=¼ + ¾ (6 mM total, single dose), ½ + ½ (6 mM total, single dose), and 

1 + 1 (12 mM total, double dose), where a different value of peak AIF concentration 

would simply scale all relaxivity-time curves proportionally. 

 

Construction of Blood Plasma and EES Concentration 

A generic AIF, which models the input of contrast agent into the tissue vasculature, 

was generated using the following gamma-variate-like approximation: 

(Eq. 2.2)                   𝐶! 𝑡 =  𝐴 𝑡/𝑡!! 𝑒!!/!! + 𝐵(−𝑒!!/!!),      

where A=200 mM·s, B=1.75 mM, and tp=2 s (from53) and the peak concentration was 6.0 

mM for the full dose and scaled appropriately for the preload dosages and post-preload 

bolus injections.  For preload simulations, the composite AIF was constructed as the 

superposition of the preload injection AIF and the bolus AIF delayed by the specified 

incubation time.  

The blood plasma contrast agent concentration was computed by convolving the AIF 

with an exponential residue function, where the residue function describes the tracer 

retention, the convolution is used to describe the AIF as a series of narrow, instantaneous 
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boluses of contrast agent, and the CBF factor accounts for the proportionality of the 

concentration in the vasculature to the delivered blood17: 

(Eq. 2.3)                    𝐶! 𝑡 =  !
!!
∙ 𝐶𝐵𝐹 ∙ 𝐶!(𝜏) ∙ 𝑒

! !!!
!""

!
! 𝑑𝜏,     

where ρ is the density of brain tissue (1.04 g/mL), kH is the hematocrit difference between 

capillaries and large vessels (0.73)41, and MTT is the mean transit time. 

The EES contrast agent concentration was computed using a two-compartment 

pharmacokinetic model as follows: 

(Eq. 2.4)                 𝐶! 𝑡 =  𝐾!"#$% ∙ 𝐶! 𝜏 ∙ 𝑒!
!!"#$%

!!
∙ !!!!

! 𝑑𝜏,     

where Ktrans describes the efflux rate of contrast agent from the vaculature, often equated 

with permeability, and Ktrans/ve describes the rate of contrast agent influx back into the 

vasculature. 

The relaxivity-time curves were obtained from Eq. 2.1.  For each relaxivity-time 

curve, S(0) was computed as the median of the first 30 s “baseline” signal. 

 

Tissue, Contrast Agent, and Noise Characteristics 

Specific tumor characteristics were estimated based on previous data from 

Schmiedeskamp et al.41 including CBV=5 mL/100g, CBF=60 mL/100 g/min, and 

T20*=0.05 s. The blood volume fraction, vp, was set equal to ρ/kH∙CBV. Relaxivity values 

for gadolinium (Gadavist®; Bayer AG, Leverkusen, Germany) were assumed to be 

r1=3.6 mM-1s-1 54, r2,P*=87 mM-1s-1 55, and r2,E*=30 mM-1s-1 47.  Monte Carlo simulations 

were performed using the following values: Ktrans=0.214 ± 0.04 min-1 (range: 0.114 – 

0.318), ve=0.722 ± 0.17 (range: 0.259 - 0.985), T10=1.59 ± 0.40 s (range: 0.84 – 2.87), 

r2,P*=87.0 ± 17.4 mM-1s-1 (range: 42.4 – 132),  and r2,E*=30 ± 6 mM-1s-1 (range: 14.4 – 
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45.5).  ve was limited to a maximum of 1 and T10 was limited to a minimum of white 

matter (832 ms)56.   

 Ktrans and ve were chosen by using the average values and standard deviations from 

Zhang et al.57.  T10 was estimated from variable flip angle mapping from 25 

glioblastomas (five pre-contrast T1 flip angle maps were acquired for each patient (2°, 5°, 

10°, 15°, 30°) and fitted using a Levenberg-Marquardt non-linear approach to the 

gradient-echo signal equation. The variance for r2,P* and r2,E* are, to the best of our 

knowledge, not well-defined in the literature and were chosen to be 20% to 

approximately match the standard deviations of the other parameters.  Kp, the 

susceptibility calibration factor, was chosen to generate a 40% peak signal drop in gray 

matter, for which CBF=60 mL/100 g/min and CBV=4 mL/100g were chosen58.   The 

whole brain average was selected as the average of 1,000 white matter voxels (including 

noise), with CBF=25 mL/100 g/min and CBV=2 mL/100 g. 

CNR was first measured in a sample of 25 human glioblastomas (flip angle of 35°, 

TE=32 ms, and TR=1.8 s), which had a CNR of 40.5.  To model noise added by TE and 

TR used, the CNR was scaled by 𝐶 ∙
!"# (!)∙!

!!�
!!
∗
!!!

!!"
!!

!"# (!"°)∙!
!!.!"#

!!
∗
!!!

!!.!
!!

, where the numerator 

incorporates the new protocol’s dose (C), TE, TR, and flip angle and the denominator 

scales the CNR according to the parameters used in acquiring the human data.   

The CNR, which is defined with the following equation, was used to calculate 

standard deviation22, 59: 

(Eq. 2.5)                                                             𝐶𝑁𝑅 =  ∆!!,!"#
∗

!
, 
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where ΔR2,max
*

 is the maximum value of ΔR2* and σ is the standard deviation of the 

Gaussian noise added to each time point.  Gaussian noise was added with mean 0 and 

standard deviation σ. 

 

Leakage Correction Algorithms 

Uncorrected CBV was computed by integrating ΔR2*(t), while leakage-corrected 

CBV was obtained using either Unidir31 or Bidir50, 51 leakage correction algorithms. The 

“ground truth” (ΔR2*(t)gt) estimate of CBV was calculated under conditions of no noise 

with Ktrans=0.  Percentage error from ground truth was calculated for uncorrected and 

leakage corrected CBV estimates with added noise.  

 

Effects of Preload Incubation Time and Truncation of the DSC Time Series  

To estimate the effects of preload incubation time, we compared estimates of CBV 

with delays of 5-10 minutes between preload and bolus injection.  To estimate the effects 

of truncating ΔR2*(t) on CBV estimates, we compared CBV estimates using the first 0.5, 

1.0, 1.5, or 2.0 minutes of the post-baseline ΔR2*(t) as well as the entire 2.5 minute data.   

 

Monte-Carlo Simulations to Estimate CBV Confidence Intervals 

For each set of pulse sequence parameters, Gaussian noise was added to each time 

point with normal distribution (zero mean, standard deviation equal to maximum signal 

scaled by CNR), and tumor characteristics were generated according to the normal 

distributions described previously. A Monte Carlo simulation was conducted using 250 

randomly chosen tumors, with random noise, for each set of pulse sequence parameters.  
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Percentage error was calculated using the computed CBV and the “ground truth” CBV.  

The 95% confidence intervals of percentage error were subsequently generated for the 

uncorrected CBV and each of the leakage correction algorithms and are shown in each of 

the figures.  For Fig. 2.1-2.6, one particular protocol (60° flip angle, TE=35 ms, TR=1.0s, 

¼ preload dose + ¾ DSC-MRI, waiting time=5 min) was chosen as the template based on 

ASFNR recommendations60, with variations to only one of the parameters shown for 

each sub-figure.  For Fig. 2.7-2.8, all combinations of flip angle, TR, TE, and preload 

dosage were evaluated.  For all figures, integration of the relaxivity-time curve was 

performed from the injection time point to the end (2.5 min), unless otherwise noted. 

 

DSC-MRI Scan Acquisition Protocol and Leakage Correction Simulation Results 
 

Without preload, there is reduced T1-weighting and increased T2*-weighting with 

smaller flip angles as manifested by higher ΔR2*(t), best seen in the “tail” (Fig 2.1A).  

Preload administration increases T2*-weighting of the signal (Fig 2.1B).  In this case, 

without preload, the 35° relaxivity-time curve is closest to “ground truth” (ΔR2*(t)gt), 

while the 60° and 35° curves are equally close to the truth curve after preload (¼ dose + 

¾ dose DSC-MRI).  Based on the formula used for CNR, the 35° flip angle also yields 

the most noise, as exemplified in the preload DSC-MRI curve. For both non-preload and 

preload administration, Unidir-corrected ΔR2*(t) varied greater from ΔR2*(t)gt across all 

tested flip angles as compared to Bidir-corrected ΔR2*(t), particularly right after the first 

pass of the bolus (Fig 2.1C-F).  Fig 2.2A-B illustrates the percentage errors for 

uncorrected, Unidir, and Bidir CBV estimates, as compared to ΔR2*(t)gt, for different flip 

angles. With this particular combination of TR/TE/preload dosage, the 35° flip angle has 
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the lowest error.  Furthermore, error after both Unidir and Bidir leakage corrections 

tracked with error in the uncorrected CBV, i.e., the lower error in uncorrected CBV 

corresponded with lower error after leakage correction.  For all tested flip angles, 

uncorrected CBV estimates have the highest error, followed by the Unidir and then the 

Bidir estimates.   
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Fig. 2.1. Effect of flip angle on ΔR2*(t) (TE=35 ms/TR=1.0 s).  A) ΔR2*(t) generated 

using different flip angles with noise along with ΔR2*(t)gt.  B) ΔR2*(t) using ¼ dose of 

preload and ¾ dose for DSC-MRI bolus, which increases T2*-weighting for all flip 

angles.  C) Corrected ΔR2*(t) using Unidir without preload.  D) Corrected ΔR2*(t) 

using Unidir after preload. E) Corrected ΔR2*(t) using Bidir without preload. F) 

Corrected ΔR2*(t) using Bidir after preload. Unidir=unidirectional leakage correction 

algorithm. Bidir=bidirectional leakage correction algorithm. 
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Fig. 2.2.  Effect of flip angle on recovery of CBV (TE=35 ms/TR=1.0 s). A) 

Percentage error (with 95% CI) of the estimated CBV for different flip angles and 

leakage correction strategies, without use of preload, compared to “ground truth” 

CBV. B) Percentage error (with 95% CI) of the estimated CBV for different flip 

angles and leakage correction strategies, with use of ¼ dose preload, compared to 

“ground truth” CBV. Unidir=unidirectional leakage correction algorithm. 

Bidir=bidirectional leakage correction algorithm. 
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Results indicate longer TEs increase the T2*-weighting of ΔR2*(t) (2.3A-B; 2.4A-B 

60° flip angle, TR=1.0 s).  Without preload (Fig 2.4A), TE=55 ms yielded the most 

accurate ΔR2*(t) for all three correction strategies using all leakage correction strategies.  

With ¼ dose preload (Fig 2.4B), TE=45-55 ms performed more similarly, though the 55 

ms performed slightly better.  Post-hoc leakage correction error tracked with uncorrected 

error in these examples.  Results also suggest increased T2*-weighting (or decreased T1-

weighting) with longer TR (Fig 2.3C-D). Independent of preload, TR ≥ 1.5 s yielded 

ΔR2*(t) with less error compared with ΔR2*(t)gt for 60° flip (Fig 2.4C-D) for the chosen 

flip angle, TE, and preload dosage.  In general, CBV errors using the three methods were 

linearly correlated. 

Preload primarily increases T2*-weighting and reduces T1-weighting in ΔR2*(t) (Fig 

2.5A; 60° flip angle, TE=35 ms, TR=1.5 s). For these parameters, 1 preload + 1 bolus 

dosing yielded higher ΔR2*(t) fidelity compared to “ground truth” ΔR2*(t) than the ¼ + 

¾ and ½ + ½ dosing schemes (Fig 2.6A).  Even though the ½ + ½ and 1 + 1 dosing 

schemes had approximately the same uncorrected CBV percent error, the post-hoc 

leakage correction algorithms benefited from the higher CNR that the full DSC-MRI dose 

provides.  Results also suggest that preload does not act by decreasing the concentration-

dependent rate of contrast agent efflux, but rather by decreasing baseline tissue T1 prior 

to bolus injection, as well as increasing T2*-weighting, as evidenced by identical wash-in 

rates and concentration-dependent reductions in baseline T1 (Fig 2.5B,C).   

Using incubation times of 5–10 minutes, the change in CBV error is virtually similar, 

with a slight, gradual decrease in error from 5 min to 10 min (Fig 2.6B).  Next, because 

CBV is computed from the integration of ΔR2*(t), one strategy for mitigating leakage 
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effects is truncating ΔR2*(t) after the first pass.  As expected, the fewer data points used 

for computing CBV, the lower the percent error for uncorrected CBV.  For Unidir CBV, 

mean percent error is lowest when 30 s is used and gradually increases over time.  For 

Bidir CBV, percentage error was approximately the same for all cutoff times (Fig. 2.6C).   

Overall, the protocol with the lowest overall mean percentage error utilized a 60° flip 

angle, TE/TR=35/1000 ms with 1 dose preload, using the bidirectional correction; 

however, there were multiple protocols whose 95% CIs overlapped (Table 2.1), 

suggesting there are several strategies that could be used to get similar CBV estimates. In 

general, the best performing strategies (dark red areas in Fig 2.7) were those that 

balanced both T1- and T2*-weighting secondary to contrast agent extravasation, with 

mean uncorrected CBV error < 70% for all of the “optimal” strategies with 1 total dose of 

contrast and < 80% for those with 2 total doses of contrast agent, as opposed to much 

larger error for other protocols. Standard deviation of the percent errors are included in 

Fig. 2.8. Preload did not necessarily depress percent error, as evidenced by the 35° flip 

angle, in which higher preload dosages could “overshoot” the “ground truth”.  The 

acquisition strategies with lowest mean error in this simulation (flip angle/TE/TR) for 

each preload dosing were the following: 1) with no preload and full dose for DSC-MRI: 

35°/35 ms/1.5 s, 2) with ¼ dose preload and ¾ dose bolus: 35°/25 ms/1.5 s, 3) with ½ 

dose preload and ½ dose bolus: 60°/35 ms/2.0 s, and 4) with 1 dose preload and 1 dose 

bolus: 60°/35 ms/1.0 s.  The 90° flip angle only appeared as an optimal strategy with 1 

dose preload and 1 dose bolus. 
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Fig. 2.3. Effect of TE and TR on DSC relaxation rate-time curves with flip angle=60°. 

A) ΔR2*(t) for various TEs using TR=1.0 s without preload and B) with ¼ dose preload, 

as compared to ΔR2*(t)gt.  C) ΔR2*(t) for various TRs with a 60° flip angle and TE=35 

ms with no preload and D) with ¼ dose preload.  
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Fig. 2.4. Effect of TE and TR on CBV accuracy with flip angle=60°. A) Percentage 

error in CBV estimation for different TEs using TR=1.0 s without preload. B) 

Percentage error in CBV estimation for different TEs using TR=1.0 s with ¼ dose 

preload. C) Percentage error in CBV estimation for different TRs with a 60° flip 

angle and TE=35 ms with no preload. D) Percentage error in CBV estimation for 

different TRs with a 60° flip angle and TE=35 ms with ¼ dose preload. 
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Fig. 2.5. Effects of preload dosage, incubation time, and truncation of corrected ΔR2*(t) 

on CBV fidelity.  A) ΔR2*(t) with three different preload strategies. B) Concentration of 

contrast agent in the EES before and after preload.  C) Change in T1 of the tumor tissue 

following administration of various doses of preload.  
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  Fig. 2.6.  Effects of preload dosage, incubation time, and truncation of corrected 

ΔR2*(t) on CBV fidelity.  A) Percent errors in CBV for each preload dosage with 

95% CI. B) Effects of preload incubation time on CBV estimation when using 

preload. C) Effects of truncation of the ΔR2*(t) curves and leakage correction 

strategies on CBV estimation when using a 1 dose preload.  
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Fig. 2.7. Heat map diagrams depicting percent error in CBV estimation for 

combinations of acquisition protocols when using Bidir at 3.0T. Each quadrant within 

each subfigure represents a different preload dose. Each subfigure represents a different 

flip angle: A) 90°, B) 60°, and C) 35°. Optimal	areas	are	in	the	dark	red	regions.		
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Fig. 2.8.  Heat map diagrams depicting standard deviation of percent error in CBV 

estimation for combinations of acquisition protocols when using Bidir. Each quadrant 

within each subfigure represents a different preload dose. Each subfigure represents a 

different flip angle: A) 90°, B) 60°, and C) 35°.  
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Table 2.1.  Best performing protocols with overlapping 95% confidence intervals with 

the overall best performing protocol (n = 250 tumors) using the bidirectional leakage 

correction.  Protocols that fall within ASFNR recommendations60 (TE = 25-35 ms, TR = 

1.0-1.5 s) are underlined and italicized. The shaded box represents the protocols that use 

a total of two doses of gadolinium, whereas the un-shaded areas represent the use of only 

one dose of gadolinium. 

 
Flip Angle 
(degrees) 

TE 
(ms) 

TR 
(s) 

Preload 
Dosage 

Mean 
Uncorr. 
Error (%) 

Mean 
Bidir. Error 
(%) 

35 35 1.5 None 67.4 2.47 
35 25 1.5 ¼ 63.3 2.25 
60 45 2.0 ¼ 49.7 2.25 
60 55 1.5 ¼ 44.4 2.32 
35 15 2.0 ¼ 56.3 2.45 
35 35 1.0 ¼ 56.9 2.46 
60 35 2.0 ½ 64.6 2.32 
60 45 1.5 ½ 56.7 2.44 
35 15 2.0 ½ 56.3 2.45 
60 35 1.0 1 55.2 2.01 
35 15 1.0 1 60.1 2.06 
90 55 1.0 1 47.8 2.08 
90 45 1.5 1 64.5 2.08 
60 25 1.5 1 66.9 2.12 
60 15 2 1 67.5 2.26 
60 45 1 1 71.3 2.29 
90 35 1.5 1 49.7 2.30 
90 25 2 1 59.3 2.37 
90 35 2 1 77.7 2.38 
90 55 1.5 1 76.6 2.38 
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iii.  Estimation of CBV Accuracy at 1.5 Tesla 

While it is more ideal to use a 3.0 Tesla scanner for DSC-MRI due to the 

increased signal-to-noise ratio (SNR), the 1.5 Tesla scanners are still commonly used 

today.  Tumor and gadolinium properties change at 1.5 Tesla; therefore, we examine the 

effects of scan-acquisition protocol and leakage correction at this magnetic field strength.  

The methodology in this section is similar to the one presented in the last section.  

However, there were a few modifications that were made in order to simulate the effects 

of scan-acquisition protocol and leakage correction algorithm on CBV estimation 

accuracy. 

 
Modifications for 1.5 Tesla Simulation 
 

A slightly different set of TEs and TRs were tested: TE = 15, 20, 25, 30, 35, 40, 

45, 50, and 55 ms and TR = 500, 1,000, 1,500, and 2,000 ms.  Tumor tissue T10 values 

are lower at 1.5 T and were simulated with the following distribution and range:  T10 =  

0.919 ± 0.096 s (range: 0.74 – 1.23) 61.  The T1 relaxivity (r1) of gadolinium is higher at 

1.5T, while the T2* relaxivity (r2*) is lower.  Because the r2* values are difficult to 

estimate from the literature, the standard deviation was set at 20% of the mean:  r1 = 4.7 

mM-1s-1 54, r2,P* = 44 ± 8.7 mM-1s-1 55 (range: 21.2 – 66.0), and r2,E* = 18 mM-1s-1 ± 3.6 

(range: 8.7 – 27.3) 47 at 1.5T.  Contrast-to-noise ratio (CNR) was halved for the 1.5T 

simulations as compared to the 3T simulations. 

 
Results 
 

At 1.5T, we again see that the bidirectional leakage correction outperforms the 

unidirectional (Fig. 2.8).  In Fig 2.9, we display the rCBV error across the wide range of 
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scan-acquisition parameters.  Owing to the diminished CNR and lower tissue T10, few of 

the protocols at the low flip angle (35°) performed well.  Instead, many of the optimal 

protocols are observed at 60° with varying preload dosages and 90° with full preload dose.  

Overall, the “best” protocol with the lowest overall mean percentage error utilized a 60° 

flip angle, TE/TR = 25/1500 ms with 1 dose preload at 1.5T, though the protocols with 

overlapping 95% CIs are shown in Table 2.2. 

  



	 39	

 

	  

 
 

 
 
 

 

Fig. 2.8. Percentage errors in rCBV after A) no leakage correction, B) unidirectional 

leakage correction, and C) bidirectional leakage correction. The lowest errors (dark red 

regions) are observed using the bidirectional leakage correction.   
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Fig. 2.9. Heat map diagrams depicting percent error in CBV estimation for 

combinations of acquisition protocols when using Bidir at 1.5T. Each quadrant within 

each subfigure represents a different preload dose. Each subfigure represents a different 

flip angle: A) 90°, B) 60°, and C) 35°. Optimal	areas	are	in	the	dark	red	regions.	
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Table 2.2.  Best performing DSC-MRI protocols at 1.5T with overlapping 95% 

confidence intervals with the overall best performing protocol (n = 250 tumors) using the 

bidirectional leakage correction.  Protocols that fall within ASFNR recommendations60 

(TE = 40-45 ms, TR = 1.0-1.5 s) are underlined and italicized. 

 
Flip Angle 
(degrees) 

TE 
(ms) 

TR 
(ms) 

Preload 
Dosage 

90 55 2,000 None 
90 40 2,000 ¼ 
90 45 2,000 ¼ 
90 30 2,000 ½  
90 25 1,500 1 
90 30 1,500 1 
90 45 1,000 1 
90 50 1,000 1 
60 30 2,000 None 
60 35 2,000 None 
60 40 1,500 None 
60 45 1,500 None 
60 50 1,500 None 
60 20 2,000 ¼  
60 25 2,000 ¼  
60 30 1,500 ¼  
60 35 1,500 ¼  
60 15 2,000 ½  
60 15 1,500 1 
60 25 1,000 1 
60 30 1,000 1 
35 20 1,500 None 
35 15 1,500 ¼  
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 iv. Discussion 

The purpose of this study was to evaluate the influence of various DSC-MRI 

acquisition strategies and post-hoc leakage correction algorithms on the fidelity of CBV 

estimation. In general, the performance of both leakage correction algorithms improves 

as the leakage contaminated ΔR2*(t) curve more closely approximates ΔR2*(t)gt. In both 

simulations, better performances were found at 60 degrees since the flip angle is less T1-

weighted than the 90 degree flip angle with the bidirectional leakage correction.  

Furthermore, a much more “homogeneous” performance is seen for the double dose 

contrast, as many more protocols were “optimal” with the double dose. This would seem 

to imply that this scheme is less sensitive to the physiologic variations that would impact 

the estimates of ΔR2*(t).   

As has been established previously, increased T2*-weighted leakage results from 

lower flip angle, longer TR, longer TE, and higher preload dosage25, 62.  Given that the 

errors before and after leakage correction are generally correlated, the optimal strategies 

minimize errors in uncorrected CBV, which can be accomplished by balancing T1- and 

T2*-weighted leakage effects.  Therefore, the optimal protocols balance these two 

opposing effects so that the DSC-MRI curves do not deviate too much from the “ground 

truth”.  For example, a TR of 1.0 s, which is relatively T1-weighted, can be offset by 

using a full dose of preload, which is quite T2*-weighted.  Some of the optimal protocols, 

on the other hand, take a middle-of-the-road approach (i.e. 60° flip angle or TE = 35 ms) 

such that none of the parameters cause the DSC-MRI curves to be overly affected by T1-

weighted or T2*-weighted leakage effects. 
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Our results also suggest that the mechanism by which preload increases CBV fidelity 

is by increasing T2* weighting and decreasing T1 weighting of the ΔR2*(t) curves rather 

than by decreasing flux of contrast agent diffusion into the EES.  While preload and post-

processing leakage correction algorithms have been shown to work synergistically in 

many cases, including intermediate-to-high flip angle acquisitions49, it is also possible for 

preload to over compensate and worsen the deviation of the leakage-contaminated 

ΔR2*(t) curve compared with the “ground truth,” which agrees with the conclusion 

drawn by Hu et al26.   Furthermore, sufficient preload correction was found between 6-10 

minutes, which agrees with Hu et al.26 and Kassner et al63. 

The bidirectional leakage correction accounts for backward flux of contrast agent and 

was shown to reduce CBV error compared to the unidirectional leakage, with the 

exception of one protocol.  Both leakage correction algorithms work by first performing a 

least squares fit of the model-generated corrected ΔR2*(t) curve plus the leakage term, 

and then subtracting the original ΔR2*(t) curve by the calculated leakage term.  As such, 

if the computed leakage term does not include the back flux of contrast agent, it can 

cause the corrected ΔR2*(t) curve to adopt a shape noticeably different than Cp (Eq. 2.3), 

thereby overestimating and underestimating the “ground truth” curve immediately 

following the first pass of the bolus.  This results in CBV estimates obtained using the 

unidirectional algorithm having approximately twice the error compared to estimates  

These studies have several notable limitations.  In the first simulation, we did not 

account for errors arising from either variations in MTT (including bolus dispersion) or 

bolus delay, both of which would serve to increase the percent error for the leakage 

correction algorithms presented in the study due to MTT-sensitivity. Therefore, the 
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percentage errors are meant to be relative, with many of the optimal protocols providing a 

balance between T1 and T2* leakage effects over the population of tumors. Another 

limitation is the lack of more sophisticated integration of all of the effects of 

microvascular and microcellular morphologies on DSC-MRI data, including but not 

limited to the arbitrary geometry of the underlying vessels 64, 65.  Furthermore, the noise 

modeled does not take into account potential sources, such as coil quality, slice thickness, 

and the use of a global AIF.  Much of the population data used for these tumors were 

acquired in small cohorts, and a study in a larger population would be required for more 

accurate modeling of the tumor population characteristics, particularly r2*.  Finally, the 

results in the simulation warrant validation in real patients.  Testing every combination of 

MRI protocols is infeasible in real patients.  Furthermore, it is currently impossible to 

ascertain the ground truth rCBV; however, these results could be validated in real brain 

tumors using an extension of the Paulson et al.45 methodology, in which the top 

performing protocols are tested against each other for variability between scans.   

The current studies demonstrate that the choice of image acquisition and preload 

dosing and/or fractionation have a tremendous impact on the fidelity of CBV estimation.  

In particular, the unidirectional method is much more sensitive to the differences in scan-

acquisition protocol than the bidirectional method.  With the bidirectional model, results 

suggest a variety of acquisition strategies can be used to obtain similar accuracy of CBV 

estimation. To compute the most accurate CBV, efforts should be focused on 

standardizing a DSC-MRI acquisition strategy that minimizes errors in the underlying 

leakage-contaminated ΔR2*(t) curve by balancing T1 and T2* contamination effects over 
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the tumor population, which will in turn reduce the residual errors in CBV estimation 

following leakage correction.  

 
  



	 46	

Chapter III. Verifying Improved Accuracy and Technical Performance of 

Bidirectional rCBV Estimation in Human Gliomas  

 

Preface 

Section ii of this chapter, “Verifying Improvement in Bidirectional Leakage-Correction 

Modeling via the AIC and Correlation with DCE-MRI”, is based on the following 

publication: 

Leu K, Boxerman JL, Cloughesy TF, Lai A, Nghiemphu PL, Liau LM, Pope WB, 

Ellingson BM.  Improved Leakage Correction for Single-Echo Dynamic Susceptibility 

Contrast (DSC) Perfusion MRI Estimates of Relative Cerebral Blood Volume (rCBV) in 

High-grade Gliomas by Accounting for Bidirectional Contrast Agent Exchange. 

AJNR. Am J Neuroradiol. 2016; 37:1440-6. 

 
i. Introduction 

 In this chapter, we examine how well the bidirectional model fits acquired data 

versus the unidirectional.  More specifically, we focus on technical aspects of model 

fitting, beginning with examining whether the bidirectional model, with its extra free 

parameter, overfits the data.   We also compare the permeability curves generated by the 

leakage correction algorithms to independently acquired dynamic contrast enhanced 

(DCE)-MRI data.  In brief, DCE-MRI42 is a T1-weighted perfusion MRI technique in 

which the leakage of contrast agent is monitored over time.  We therefore hypothesize 

that the leakage curves from the leakage correction algorithms and the DCE-MRI would 

be similar. Finally, we examine whether the rCBV differences the unidirectional and 
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bidirectional are potentially meaningful by studying the similarity of rCBV between 

different scans in the same patient and echoes of the same multi-echo scan. 

 
 
ii. Verifying Improvement in Bidirectional Leakage-Correction Modeling via the 

AIC and Correlation with DCE-MRI 

This section focuses on model fitting, examining whether the bidirectional 

leakage correction matches our expectations for a combined indicator dilution theory and 

leakage model.  We begin by showing that the DSC-MRI curve allows for more 

flexibility from a modeling perspective with the incorporation of backflow.  We then 

compare how the bidirectional leakage correction and the unidirectional leakage 

correction perform when fitting raw DSC-MRI data using the Akaike Information 

Criterion (AIC), a measure that rewards models for minimizing the sum of square errors 

and penalizes for extra parameters.  Both the unidirectional and bidirectional leakage 

correction algorithms can also be broken down into the sum of two parts.  The first term 

in Eq. 1.26, which describes the contribution of signal from the contrast agent within the 

blood plasma, and the last two terms in Eq. 1.26, which describe the total T1/T2* 

contribution from the leakage of contrast agent.  We compare the contribution of leakage 

of contrast agent with that of DCE-MRI, a T1-weighted modality that measures the 

leakage of contrast agent into the extravascular, extracellular space. We hypothesized that 

incorporating bidirectional contrast agent transport into the original DSC-MRI signal 

model improves model fitting and thereby rCBV estimates in brain tumors. To test this 

hypothesis, we compared model-based DSC-MRI leakage correction methods with and 
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without consideration of bidirectional transport using DSC-MRI and DCE-MRI data in 

high-grade gliomas. 

 

Patient Population 

A total of 24 sequential GBM patients with histologically proven GBM treated with 

maximal surgical resection followed by radiotherapy and concurrent temozolomide and 

both DSC-MRI and DCE-MRI performed at initial tumor progression were studied. Of 

these patients, two patients illustrated no bolus of contrast during DSC acquisition and 

one DSC dataset was corrupted by significant motion.  Thus, a total of 21 patients (15 

men; mean age 54 years, range 30-73) were included in the final cohort. Progression was 

defined prospectively by the treating neuro-oncologists if subsequent scans showed more 

than 2 sequential months of increasing contrast enhancement and worsening mass effect 

or evidence of neurologic decline. Specifically, progression was defined as ≥ 25% 

increase in the sum of enhancing lesion volumes, new enhancing lesions > 1 cm 

maximum dimension, an unequivocal qualitative increase in non-enhancing tumor, or an 

unequivocal new area of non-contrast enhancing tumor. Additionally, progression must 

have occurred more than 3 months following completion of radiation therapy. All 

participants gave informed written consent to have both DSC-MRI and DCE-MRI data 

collected. All procedures complied with the principles of the Declaration of Helsinki and 

were approved by the Institutional Review Board at our institution.  

 

DSC-MRI and DCE-MRI 
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We retrospectively reviewed DSC-MRI and DCE-MRI scans (3T, Siemens Trio or 

Skyra, Siemens Healthcare, Erlangen, Germany) acquired in the same scan session in all 

21 patients. T1 maps were generated from 5 pre-contrast T1–weighted images (flip 

angle=5°, 10°, 15°, 20°, 30°) prior to DCE-MRI (3D spoiled gradient echo sequence, 16 

slices, 130 time points, 5 s time resolution, TE/TR=1.87/5ms, 250 flip angle, 3 mm slice 

thickness, 256x192 matrix, 24 cm FOV). The DCE-MRI was acquired for ~10 minutes, 

which is the waiting time between preload and DSC contrast injections for this study.  

Contrast agent bolus (0.1 mmol/kg) (Magnevist, Bayer HealthCare) was injected after 10-

13 baseline images, serving as pre-load45 for DSC-MRI (gradient echo EPI, 

TE/TR=32/1840ms, 350 flip angle, 120 time points, bolus injection after 20-25 baseline 

images, 9-20 slices, 5 mm slice thickness, 128x128 matrix size, 24 cm FOV). The same 

amount of contrast agent was used for the DSC-MRI studies.  Conventional post-contrast 

T1-weighted imaging was subsequently performed.  Patients were excluded if DCE-MRI 

or DSC-MRI was corrupted by motion or technical error. 

 

Image Registration and ROI Selection 

All conventional and DCE-MRI images for each subject were registered to baseline 

DSC-MRI images using 12-degree of freedom affine transformation with a mutual 

information cost function (FSL; http://www.fmrib.ox.ac.uk/fsl). If required, manual 

alignment was subsequently performed (tkregister2, Freesurfer; 

surfer.nmr.mgh.harvard.edu). Contrast enhancing tumor regions of interest (ROIs) were 

defined in three dimensions using custom scripts (AFNI; http://afni.nimh.nih.gov/afni), 

excluding hemorrhage, large vessels, and central necrosis, followed by manual editing to 
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exclude non-lesion voxels.66 Tumor sizes ranged from 2.8 to 106.6 mL, with an average 

enhancing volume of 40.1 ± 28.4 mL (s.d.). Spherical ROIs of 1.6 mL were also selected 

in normal-appearing, contralateral white matter for rCBV normalization.  

 

Computation of DSC-MRI rCBV 

All simulations and calculations were performed in MATLAB using custom scripts. 

Uncorrected rCBV was calculated from trapezoidal integration of the original DSC-MRI 

relaxation rate-time curve, Δ𝑅!∗ 𝑡 . The whole-brain average relaxation rate for non-

enhancing voxels (Eqs. 1.8–1.9 in “Bidirectional Leakage Correction Theory” section of 

Chapter I) was used for both the original Boxerman-Weisskoff model31 (Unidir-model) 

and the new bidirectional exchange model (Bidir-model). Linear least squares 

optimization was used to determine the free parameters for both the Bidir-model (via Eq. 

1.26) and the Unidir-model (Eq. 1.24, with kep = 0) algorithms, and corrected rCBV was 

computed from Eq. 1.27.  The average runtime per patient in MATLAB was 19.5±6.7s 

for the Bidir-model and 18.3±6.2s for the Unidir-model (3.2 GHz Intel Core i5, 32 GB 

RAM).  Tumor rCBV for each method was subsequently normalized to median rCBV 

within the normal appearing white matter ROI. 

 

Simulation of DSC-MRI rCBV 

Whole-brain average relaxation rate, Δ𝑅!∗ 𝑡 , was chosen from a sample patient and 

corresponds to the curve with K1=1, K2=0, and kep=0. K2=0.05 (adding T1-dominant 

leakage), with kep=0 was set to simulate the Unidir-model.  A nonzero kep (0.002 or 



	 51	

0.005) was used to simulate the Bidir-model of ∆𝑅!∗ 𝑡 . For kep=0.1, the simulation is 

reflective of the correction of relaxation rate curves at “artery-like” voxels. 

 

Goodness of Fit Analysis 

For each enhancing tumor voxel for all patients, we computed the Akaike Information 

Criterion (AIC) between leakage-contaminated relaxation rate ∆𝑅!∗ 𝑡  (Eq. 1.20) and its 

model fit for the Unidir-model and Bidir-model: 

  𝐴𝐼𝐶 = 𝑛 ∙ ln 𝑅𝑆𝑆 𝑛 + 2 𝑝 + 1 , 

where n is the number of fitted time points (injection to end of DSC-MRI acquisition), 

RSS is the sum of the squared residuals, and p is the number of free parameters (2 for the 

Unidir-model, 3 for the Bidir-model).67 Differences in the Unidir-model and Bidir-model 

AIC were calculated for all voxels where kep>0.  

We also computed Euclidean distance (square root of the sum of the squared 

differences) between the interstitial leakage relaxation rate curves, ∆𝑅!,!∗ 𝑡 , generated by 

the Unidir-model and Bidir-model corrections and DCE-MRI signal, where the DCE-

MRI signal was up-sampled from a 5-second resolution to a 1.8-second resolution to 

match that of the DSC-MRI data via linear interpolation using the MATLAB function 

“resample”. Because interstitial leakage relaxation rate curves and DCE-MRI signal have 

units of 1/sec and mM, respectively, both were standardized to an area under the curve 

equal to unity and vectorized for computation of Euclidean distance. Higher AIC and ED 

imply worse fits. Two-sample t-tests were used to compare whether the AIC and ED 

measurements were significantly different between the two leakage correction methods. 
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Post-processing of DCE-MRI 

DCE-MRI imaging biomarkers – kep and Ktrans – were derived via a fit to the Tofts 

model42. As described above, the temporal resolution of the DCE-MRI data was up-

sampled to match the DSC-MRI data.  For the DCE-MRI analysis, the “whole brain 

average” served as the arterial input function (AIF) for the DCE model fit.  This was 

done to mirror the DSC Bidir-model analysis, in which the “whole brain average” 

effectively serves as the AIF Voxels with highly fluctuating time courses in either the 

DSC or DCE images were eliminated from the analysis. 

 

Correlation between DSC- and DCE-derived Imaging Biomarkers 

 DSC-MRI imaging biomarkers – kep and rCBV – were derived as described in the 

“Bidirectional Leakage Correction Theory” section in Chapter I. Voxel-wise Pearson 

correlation coefficients between the DSC- and DCE-derived parameters were performed 

in MATLAB within contrast-enhancing tumor only for each patient independently.   In 

this study, we report means and standard deviations of the correlation coefficients from 

all 21 patients. 

 
 
Results  
 
Simulation of the Bidir-model 
 

Fig. 3.1 compares simulated total leakage contaminated relaxation rate, ∆𝑅!∗ 𝑡 , 

(Fig. 3.1A) and the component from interstitial leakage, ∆𝑅!,!∗ 𝑡 , (Fig. 3.1B) for various 

conditions according to the Tofts model42 assuming T1-dominant leakage-associated 

relaxation enhancement. For the Unidir-model, ∆𝑅!,!∗ 𝑡  rises over time in the absence of 
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washout. For nonzero kep, there is less rise in ∆𝑅!,!∗ 𝑡  and closer approximation of the 

tail of ∆𝑅!∗ 𝑡  to Δ𝑅!∗ 𝑡 , reflecting tumors with different contrast agent 

pharmacokinetics. For kep=0.1, the tail of ∆𝑅!,!∗ 𝑡  approaches zero, but because the first-

pass of ∆𝑅!∗ 𝑡  differs from that of Δ𝑅!∗ 𝑡 , correction of relaxation rate curves at “artery-

like” voxels using K1 and K2 is still required to achieve accurate rCBV estimates. 

Fig. 3.1C plots sample ∆𝑅!∗ 𝑡 , with T2*-dominant leakage-associated relaxation 

enhancement for a representative patient, with superimposed Unidir-model and Bidir-

model fit relaxation rate curves. In this example, the Unidir-model overestimates the first-

pass curve, underestimates the second and third passes, and overestimates the tail. The 

Bidir-model better approximates ∆𝑅!∗ 𝑡  over all time points, visually, and has 

substantially improved AIC, quantitating an improved fit to the total leakage 

contaminated relaxation rate curve. 

Fig. 3.1D plots standardized DCE-MRI signal for the tumor voxel used in Fig. 3.1C, 

with superimposed standardized interstitial leakage relaxation rate curves, ∆𝑅!,!∗ 𝑡 , from 

the Unidir-model and Bidir-model. The standardized interstitial leakage relaxation rate 

continually rises over time for the Unidir-model, whereas it better tracks standardized 

DCE-MRI for Bidir-model with substantially improved Euclidean distance. 

 

Goodness of Fit Analysis 

Fig. 3.2 plots the percentage of voxels where the Bidir-model outperformed Unidir-

model for AIC and Euclidean distance metrics in whole brain and tumor for the 21 GBM 

patients. The Bidir-model had better AIC performance than Unidir-model in greater than 

50% of whole-brain (mean±standard deviation = 71%±6%, p<0.0001) and tumor 
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(77%±9%, p<0.0001) voxels in all patients, and better Euclidean distance performance in 

greater than 50% of whole-brain voxels (80%±9%, p<0.0001) for all patients, and tumor 

voxels (62%±17%, p=0.0041) for 17 of the 21 patients.  All were statistically significant 

for a one-sample t-test with null hypothesis of 50%.   

Correlation between DSC-derived and DCE-derived imaging biomarkers 

We then performed a voxel-wise correlation between the DSC-derived imaging 

biomarkers from the bidirectional leakage correction algorithm (kep and rCBV) with the 

DCE-derived imaging biomarkers (kep and Ktrans).  Across the 21 patients, the Pearson 

correlation coefficient between the two kep measurements was 0.74±0.13 across the 21 

patients, with a weak correlation between the Pearson’s correlation coefficient and tumor 

size (r = 0.11).  Fig. 3.3 demonstrates an example of the correlation between DSC- and 

DCE-derived kep.  A correlation test was performed between the bidirectional model-

derived rCBV and DCE-derived Ktrans, with a moderate correlation of 0.49±0.22.  A 

moderate correlation was also found between rCBV and vp at 0.54±0.12.  Finally, the 

correlation between the same rCBV and kep
 was r = 0.29±0.26.  The average Ktrans value 

was 0.0015±0.0018 s-1 (0.09±0.11 min-1), DCE-kep was 0.0050±0.0023 s-1 (0.30±0.14 

min-1), DSC-kep was 0.0057±0.0042 s-1 (0.34±0.25 min-1), vp was 0.01±0.01, and rCBV 

was 1.98±1.24. 

 

Difference in rCBV between the Bidir-model and Unidir-model 

Fig. 3.4 compares rCBV maps processed without leakage correction, and with the 

Unidir-model or Bidir-model, in two different GBM patients, one with T1-dominant 

leakage (K2>0) on average in contrast enhancing tumor voxels and the other with T2*-
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dominant leakage (K2<0).  For all patients, average uncorrected rCBV was 1.98±1.24, 

average Unidir-model corrected rCBV was 1.59 ± 0.89, and average Bidir-model 

corrected rCBV was 1.35±0.80. The average difference between Unidir-model corrected 

and Bidir-model corrected rCBV was 16.6±14.0%.  A closer inspection of the T2*-

dominant versus T1-dominant voxels (as defined by a negative or positive K2, 

respectively) revealed that the difference between the two correction methods in T2*-

dominant voxels was 37.7±42.6%, while the same metric for T1-dominant voxels was 

5.8±3.4%. 
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Fig. 3.1.  Sample simulated model results for all GBM patients. (A) Total leakage 

contaminated relaxation rate and the component from interstitial leakage (B) for T1-

dominant leakage-associated relaxation enhancement. Whole-brain average 

relaxation rate (WBA) is simulated with K2=0 and kep=0. Kep=0 with non-zero K2 

simulates the Unidir-model. Inclusion of a washout term (non-zero kep) in the Bidir-

model yields less rise in ∆𝑅!,!∗ (𝑡) and closer approximation of the tail of ∆𝑅!!∗(𝑡) to 

the WBA. (C) The Bidir-model fit to sample leakage-contaminated relaxation rate 

curve has substantially improved AIC compared to Unidir-model for T2*-dominant 

leakage-associated relaxation enhancement in a GBM patient. (D) Standardized 

interstitial leakage relaxation rate from the Bidir-model better tracks standardized 

DCE-MRI signal than the Unidir-model for the tumor voxel used in (C) with 

substantially improved Euclidean distance. 
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Fig. 3.2. Percentage of voxels (with mean and standard deviation) where the Bidir-

model outperformed Unidir-model on Akaike Information Criterion (AIC) and 

Euclidean distance (ED) metrics within whole brain and tumor for all 21 GBM 

patients. The gray line represents the group mean percentage of voxels. 
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Fig. 3.3. Comparison between DSC- and DCE-derived kep measurements within tumor. 

A) Example of anatomical MRI of a patient with recurrent glioblastoma.  B) DSC-

derived kep measurements within tumor. C) Corresponding DCE-derived kep 

measurements.  D) Scatter plot between (B) and (C) demonstrate high correlation (r = 

0.92) for this tumor. Note that areas of low kep are similar in both DSC- and DCE-

derived maps. 
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Fig. 3.4. Comparison of uncorrected, Unidir-model corrected, and Bidir-model corrected 

rCBV in a GBM with T1-dominant leakage on average in contrast enhancing voxels 

(first row) and a GBM with T2*-dominant leakage (second row). For T1-dominant 

leakage, mean tumor rCBV is underestimated using the Unidir-model compared with the 

Bidir-model, with the converse true for T2*-dominant leakage. Arrows depict regions of 

the tumor with large changes in estimated rCBV between leakage correction models.  
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iii. Verifying Improvement in Estimated rCBV via Inter-scan Reproducibility 

In the last section, we established that the difference in rCBV between the 

bidirectional and unidirectional leakage correction algorithms is ~16.6%.  We thus 

examine if that difference can be clinically meaningful.  More specifically, if an 

algorithm can more reliably calculate the rCBV, we would expect that the rCBV would 

be more closely reproduced between two scans of the same patient collected within a few 

days of each other, provided that no treatment was given in the interim.  In this study, we 

examine the rCBV in patients who had two scans prior to treatment separated by 3-7 days 

(Figure 3.5).  More specifically, we use the coefficient of variation between the median 

rCBV in the two tumors as our metric to determine rCBV reproducibility.  We 

hypothesized that the bidirectional correction method would have more similar rCBV 

between scans than either the unidirectional or the uncorrected. 

All thirty patients (recurrent glioblastoma, WHO grade IV) provided informed 

consent to be included in this study.  Standard and perfusion-weighted imaging data were 

acquired on 3T MRI systems (Siemens) at three total time points: 1) 3-7 days before first 

treatment of cediranib (average of 5.7 days), 2) one day before treatment and 3) one day 

after treatment.  Three patients did not have imaging at time point 1, and one patient did 

not have imaging at time point 2.  Data was acquired between January 2006 and February 

2007.   

Standard anatomic imaging consisted of an axial T1-weighted fast spin-echo.  

Perfusion-weighted imaging was obtained via a dual-echo combined spin-and-gradient 

echo echoplanar sequence.  Flip angle was 90°, echo times (TE) were 34/104 ms, 

repetition time (TR) was 1.33 s, with matrix size 128 x 128, slice thickness 5 mm with 
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2.5 mm interslice gap, and total voxel size 1.7 x 1.7 x 5 mm.  A total of 120 time points 

were acquired.  Prior to the start of DSC-MR imaging, 0.1 mMol/kg of contrast agent 

(gadopentate dimeglumine) was injected as preload.  A second bolus of contrast agent 

(0.2 mMol/kg) was injected after 85 s of baseline scanning. A post-contrast axial T1-

weighted fast spin echo that was acquired following the DSC-MRI scan.   

Tumor regions of interest were defined by subtracting a normalized T1-weighted 

image from the normalized post-contrast T1 image to generate a T1 subtraction map.  A 

semi-automated thresholding technique for segmenting tumors was used followed by 

manual adjustment of the contour68.  

Coefficient of variation, standard deviation divided by the mean (σ/µ), was 

computed between the two pre-treatment time points within the tumor lesion.  Tumors 

whose volumes grew more than 40% were eliminated from this analysis.  A non-

parametric Friedman test was performed among the three different leakage models using 

the coefficient of variation values generated per patient. 

In Fig. 3.6, we compare, the median rCBV between the two pre-treatment time 

points of recurrent GBMs using the three leakage models.  Overall, the non-parametric 

Friedman test was statistically significant (p = 0.0064), with the most significant finding 

occurring between the uncorrected rCBV and the Bidir rCBV (p = 0.0046).  Comparisons 

between the other pairings were not found to be statistically significant after multiple 

comparisons correction.  
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Fig. 3.5. Patients had two pre-treatment scans acquired a few days apart.  The 

coefficient of variation (CV) was taken between the median rCBV within the tumor 

from the two scans.  The lower the CV, the closer the rCBV was between the two scans.  

From left to right, the rCBV maps correspond to the uncorrected, Unidir, and Bidir 

leakage corrections.  The Bidir had the lowest coefficient of variation, followed by the 

uncorrected and Unidir, respectively. 
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Fig 3.6. Reproducibility comparisons of the coefficient of variation between the 

leakage correction models:  A) uncorrected versus Unidir-model, B) uncorrected 

versus Bidir-model, and C) Unidir-model and Bidir-model.  The Unidir-model was not 

found to have superior performance than the uncorrected rCBV (p = 0.2113), whereas 

the Bidir-model did (p = 0.0046).   
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iv. Verifying Improvement in Estimated rCBV via Intra-scan Reproducibility 

Instead of examining the reproducibility of rCBV between scans, we study the 

rCBV reproducibility between echoes of the same multi-echo sequence.  The technique 

by which we can simultaneously acquire two gradient echo DSC-MRI scans is introduced 

in Fig. 3.7.  In brief, this multi-echo DSC-MRI sequence allows us to simultaneously 

acquire two different gradient echo DSC-MRI scans (echo 1 and echo 2) that are different 

impacted by leakage (Figure 3.8).  More specifically, the echo with a TE = 14 ms has a 

much more T1-weighted leakage artifact than the echo with a TE = 34 ms in every voxel.  

Given that the curves acquired were from the same patient at the same time, we would 

expect the rCBV to be virtually identical. In this study, we hypothesize that the 

bidirectional leakage correction will produce more similar rCBV between the two 

different echo times than the unidirectional or uncorrected rCBV. 

All thirty-eight patients with varying grades (seven grade II, ten grade III, and 

twenty-one grade IV) provided informed consent to be included in this research study.  

Perfusion-weighted imaging data were acquired on 3.0T MRI systems (Siemens) using a 

quadruple echo spin-and-gradient echo sequence.   

Standard anatomic imaging consisted of an axial T1-weighted fast spin-echo and a 

T2-weighted fluid attenuated inversion recovery (FLAIR).  Perfusion-weighted imaging 

was obtained via a quadruple-echo combined spin-and-gradient echo echoplanar 

sequence, consisting of two gradient echoes, an asymmetric spin echo, and a spin echo.  

Flip angle was 90°, echo times (TE) were 14.1/34.0 ms, repetition time (TR) was 2 s, 

with matrix size 128 x 128, slice thickness 5 mm with no interslice gap, and total voxel 

size 1.875 x 1.875 x 5 mm.  A total of 120 time points were acquired.  Prior to the start of 



	 65	

DSC-MR imaging, a quarter dose of contrast agent (gadopentate dimeglumine) was 

injected as preload.  A second bolus of contrast agent (three-quarter dose) was injected 

after 30 s of baseline scanning. The total injection dosage was 0.1 mM/kg.  A post-

contrast axial T1-weighted fast spin echo that was acquired following the DSC-MRI 

scan.   

Tumor ROIs were defined by abnormal hyperintensity on T1-weighted post-

contrast images and T2-weighted FLAIR images using semi-automated segmentation 

techniques, followed by manual inspection and adjustment of the resulting contour as 

described previously66. All DSC-MRI studies completely covered the spatial extent of 

contrast enhancing tumor.  DSC-MRI images were motion-corrected on the scanner and 

processed via in-house custom scripts in MATLAB (Natick, MA).   

Relative cerebral blood volumes were calculated using the Unidir-model and 

Bidir-model for the two gradient echoes using the whole brain average from the second 

echo because the first echo yielded negative values, a physical impossibility.  Coefficient 

of variation (CV), standard deviation divided by the mean (σ/µ), was computed for each 

voxel between the two echoes.  The smaller CV between the Unidir-model and Bidir-

model was considered to be superior, and the percentage of voxels in which the Bidir-

model outperformed the Unidir-model was recorded in each T1-weighted post-contrast 

and T2-weighted lesion.   

Fig. 3.9 shows an example plot of two curves from the same voxel.  The higher-

valued curve comes from the second echo (TE = 34.0 ms) and the lower-valued curve 

comes from the first echo.  Fig. 3.10 demonstrates the parametric relative cerebral blood 

volume maps for the uncorrected, Unidir-model, and Bidir-model.  The uncorrected 
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rCBV yields negative values within tumor for both echoes of this grade IV tumor, a 

physical impossibility.  Echo 1 even yields negative values for much of the normal 

appearing white matter; thus, normalization with the white matter causes the rCBV 

values to be artificially high.  The Unidir-model yields negative rCBV values for the 

tumor in echo 1, but not in echo 2.  Finally, the Bidir-model yielded positive values for 

rCBV. The Bidir-model outperformed the Unidir-model in 75.4% of the voxels within the 

T1-weighted post-contrast lesion (Fig. 3.10).  For all tumors, the percentage of voxels 

within the T1-weighted and T2-weighted lesions where the bidirectional had a lower CV 

than the unidirectional was calculated for each tumor and is plotted in Fig. 3.11.   
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Fig. 3.7. Quadruple echo, spin-and-gradient echo pulse sequence diagram.  Modified 

from a spin echo pulse sequence, this sequence features an excitation pulse, a refocusing 

pulse, and four EPI trains.  The echo times  (TE) used are 14.1, 34.0, 58.0, and 92.4 ms, 

respectively, and the repetition time (TR) was 2.0s.  

Fig. 3.8.  Example of the DSC-MRI curves from two echoes in the same voxel.  The 

14 ms echo has more T1-weighting due to contrast agent leakage than the 34 ms echo.  

In theory, the rCBV derived from both echoes should be the same since the echoes are 

from the same scan acquisition.   
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Fig. 3.9.  Parametric rCBV maps from the two different echoes of a multiecho 

sequence, normalized to the normal appearing white matter.  (Left Column) The 

uncorrected maps have negative rCBV within tumor for both echoes.  (Center 

Column) The unidirectional rCBV parametric map still contains many negative rCBV 

values within tumor (white voxels) for echo 1, as compared to the rCBV in echo 2.  

(Right Column) The rCBV using the bidirectional method are positive and appear to 

be much closer in value to each other as compared to the Unidir rCBV.   
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Fig. 3.10.  Comparison of coefficient of variation (CV) between Bidir and Unidir 

between two echoes from the same sequence within T1-weighted and T2-weighted 

lesions.  Points above 0.5 indicate that in greater than 50% of the voxels within the 

tumor lesion, the Bidir had a lower CV between the two echoes than the Unidir.  

Among the 21 tumors that had post-contrast enhancing T1-weighted lesions, the 

Bidir model performed better in 16 (>50% of the voxels had smaller CV).  Among 

all 38 tumors, contoured using the T2-weighted image, 32 favored the Bidir model. 
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v. Discussion 

By incorporating the Tofts model into the single-echo DSC-MRI relaxation rate 

equation, we developed an improved post-processing leakage correction method 

accounting for bidirectional contrast agent transport between the intravascular and 

interstitial spaces that commonly occurs in angiogenic high-grade gliomas. Our results 

demonstrate the importance of considering the interstitial washout term, even when 

modeling the relaxation rate changes during short image acquisitions.  For instance, in the 

simulation, we observed differences between the Bidir-model and Unidir-model model 

fits to relaxation rate data in high-grade gliomas in the first-pass curve (as early as 10-20 

seconds after injection).  Furthermore, by including a washout term, the Bidir-model 

alleviates the error in relaxation rate estimates for arteries and normal brain introduced by 

conventional models constrained to increasing contrast agent concentration over time in 

all tissues. 

Our results suggest that the conventional Unidir-model undercorrects rCBV, with 

insufficiently increased and decreased rCBV compared to uncorrected rCBV in T1-

dominant and T2*-dominant leakage scenarios, respectively. Furthermore, since the low 

flip angle DSC-MRI protocol was largely T2*-dominant, and the largest discrepancies 

between Bidir-model and Unidir-model estimates of rCBV existed for T2* dominant 

voxels, our results suggest that the Bidir-model may be particularly advantageous over 

the Unidir-model for correcting the residual T2* effects frequently encountered in dual-

echo gradient-echo acquisitions.   

Results also suggest that the comparative undercorrection of rCBV by the Unidir-

model, also made the Unidir-model’s performance weaker than that of the Bidir-model 
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with respect to the rCBV reproducibility experiments.  In the interscan replication study, 

the Unidir-model was not significantly better than the uncorrected rCBV while the 

bidirectional was.  Furthermore, the Unidir-model was not able to adequately correct for 

the heavily T1-weighted echo of the intrascan experiment, corroborating the simulation 

findings that the Unidir-model was influenced more heavily by scan acquisition protocol 

than the Bidir-model.  On the other hand, the Bidir-model outperformed the uncorrected 

rCBV in the interscan study, and significantly outperformed the Unidir-model when 

comparing rCBV similarity within the voxels of the intrascan study. 

Overall, it is important to note that this algorithm can be performed without a 

substantial increase in post-processing computation time over the unidirectional model; 

therefore, the bidirectional model can simply replace the previous model in routine 

clinical work as well as for evaluating tumor grade, distinguishing pseudoprogression 

from true progression, and evaluating treatment response. 

Several post-processing leakage correction techniques have previously been 

proposed.41, 69 The method by Weisskoff and Boxerman29-31 (Unidir-model), which 

linearly fits measured Δ𝑅!∗ 𝑡  to two constant functions derived from average relaxation 

rate in non-enhancing tissue, can be applied quickly to conventional single-echo (spin 

echo or gradient echo) acquisitions and contrast agent injection schemes. Improved 

correlation of rCBV with glioma grade compared to uncorrected rCBV31 provides 

anecdotal evidence of the benefit of the Unidir-model, which has also been shown to 

improve correlation of gadolinium-based rCBV measures to those obtained using 

intravascular MION agent as a gold standard.49   
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Bjornerud et al.52 proposed a method that reduces the sensitivity of rCBV correction 

to mean transit time that could be combined with the Bidir-model scheme.  Interestingly, 

Schmiedeskamp et al.41 employed a multi-echo gradient echo and spin echo acquisition 

scheme to correct for T1 and T2* leakage using a backflow term; however, results were 

highly dependent on literature values for 𝑟!,!∗  and 𝑟!,!∗ , the T2* relaxation effects of 

gadolinium in the extravascular space and plasma, respectively, which can vary quite 

substantially depending on the literature source. Additionally, Quarles et al.25 suggested 

these values could vary from tumor to tumor, depending on physiologic factors such as 

interstitial, vascular, and cell volume fractions and vessel and cell size. An advantage of 

the Bidir-model correction method is the lack of assumptions for 𝑟!,!∗  and 𝑟!,!∗ .  It is also 

important to note that all of these leakage correction algorithms aim to isolate the 

relaxation rate due to the residual intravascular contrast agent by eliminating the T1- and 

T2*-related contributions to relaxation rate from the extravasated contrast agent. They do 

not “add back” T2* relaxation that would have been realized had the extravasated contrast 

agent not left the plasma space, and so “corrected rCBV” may still differ from that 

computed for a tumor with no vascular permeability, all other parameters (including true 

blood volume) being equal.   

One potential limitation to this study is its retrospective design, which may have 

yielded a selection bias in the sample.  Specifically, all patients were chosen because they 

failed standard therapy.  Another potential limitation is the lack of correlation with a gold 

standard, such as histology or with CBV estimates using intravascular agents such as iron 

oxide contrast agents.  Moreover, AIC is a unitless quantity that can compare relative 

goodness of fit between models, but does not have a direct test to determine if one model 
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is significantly better than the other. For interscan reproducibility, one limitation is that 

the true cerebral blood volume may have changed in the few days between the scans, 

though care was taken to eliminate the tumors that grew substantially.  For intrascan 

reproducibility, the whole brain average was derived from only the second echo since the 

first echo had negative blood volume, even in the white matter, owing to its extremely 

T1-weighted nature.   

In summary, the results suggest that the Bidir-model more accurately corrects for the 

T1 or T2* enhancement arising from contrast agent extravasation due to blood-brain 

barrier disruption in high-grade gliomas by incorporating interstitial washout rates into 

the DSC-MRI relaxation rate model. This, in turn, allows for better rCBV reproducibility 

between scans and between echoes of the same scan.  To this end, the Bidir-model may 

potentially improve patient diagnosis and evaluation of treatment response by more 

accurately estimating rCBV in DSC-MRI. 

 
 
  



	 74	

Chapter IV. Clinical Validation of Improved rCBV Estimation in Human 

Gliomas 

 
Preface 

Section iv of this chapter, “Survival Analysis in Bevacizumab-Treated Patients” was 

based on the following publication: 

Leu K, Boxerman JL, Lai A, Nghiemphu PL, Pope WB, Cloughesy TF, Ellingson BM.  

Bidirectional Contrast Agent Leakage Correction of DSC-MRI Improves Cerebral Blood 

Volume Estimation and Survival Prediction in Recurrent Glioblastoma Treated with 

Bevacizumab. J Magn Reson Imaging. 2016; 44:1229-1237. 

 
i.  Introduction 

In this chapter, we extend the bidirectional and unidirectional leakage correction 

algorithm comparison to correlation with clinical biomarkers.  More specifically, we 

correlate tumor grade with rCBV, correlate rCBV with a histological assessment of 

angiogenesis, and perform a survival analysis in patients treated with bevacizumab to 

examine the potential use of the bidirectional-corrected rCBV as a clinical imaging 

biomarker in gliomas. 

 

ii. Correlation with Tumor Grade 

 The unidirectional leakage correction algorithm results have previously been 

correlated with tumor grade31, where it was demonstrated that the uncorrected rCBV was 

not correlated with tumor grade, but the unidirectional was.  Owing to the highly T1-

weighted protocol used, i.e. high flip angle, short TE, and short TR, several of the tumors 
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had a negative rCBV when uncorrected.  In this study, we use a T2*-weighted protocol, 

i.e. one that has a low flip angle that would theoretically minimize rCBV errors according 

to the results Chapter II.  We examine the performance of the uncorrected, unidirectional, 

and bidirectional algorithms with respect to tumor grade and hypothesize that accounting 

for the backflow of contrast agent would yield the highest tumor grade correlation. 

In this study, perfusion-weighted imaging was performed on a single-echo 

gradient echo echoplanar sequence (TR/TE = 1650/25 ms, flip angle = 35°, matrix size = 

128 x 128, slice thickness = 5 mm, slice gap = 0 mm, a total of 90 time points were 

acquired, 1.5 Tesla, Siemens).  For DSC-MRI, a total of 0.1 mmol/kg dose of 

gadopentate dimeglumine (Gd-DTPA; Magnevist, Bayer Schering Pharma, Leverkusen, 

Germany) was administered, one-quarter for pre-load dosage to reduce T1-based leakage 

contamination70 and the remaining three-quarters for dynamic bolus administration.  A 

two-minute gap was placed between the pre-load dose and the start of baseline imaging 

of the DSC-MRI.  Standard anatomic imaging consisted of a post-contrast T1-weighted 

image.  All twenty-three patients with varying grades (seven grade II, eight grade III, and 

eight grade IV) provided informed consent to be included in this study.  

As grade II gliomas typically do not enhance, tumor ROIs were defined by 

abnormal hyperintensity on T2-weighted post-contrast images using semi-automated 

segmentation techniques, followed by manual inspection and adjustment of the resulting 

contour as described previously66. All DSC-MRI studies completely covered the spatial 

extent of contrast enhancing tumor.  DSC-MRI images were motion-corrected on the 

scanner and processed via in-house custom scripts in MATLAB (Natick, MA).  A 

Spearman correlation was performed between rCBV and tumor grades. 
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In Fig. 4.1, we show the box-and-whisker plots for rCBV within each tumor 

grade.  For the uncorrected rCBV, there is very little correlation (r = 0.06, p = 0.7811). 

Both the Unidir and Bidir rCBV significantly correlate with tumor grade (r = 0.55/p = 

0.0063 and r = 0.56/p = 0.0056, respectively) and have approximately the same level of 

correlation.  All rCBV measures are positive due to the low flip angle used.   
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Fig 4.1.  Correlation between tumor grade and rCBV for a low-flip angle (35°) MRI 

protocol.  Note that for the uncorrected rCBV, the grade III gliomas have, on average, 

higher rCBV than the grade IV gliomas.  Across the spectrum of grade II to grade IV 

tumors, the Unidir-model and Bidir-model had similar performances. 
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iii. Correlation with CD-31 Chalkley Score 

Instead of looking at the median rCBV scores from entire tumors, we examine the 

relationship between rCBV and the CD-31 Chalkley scores from stereotactic biopsy.  

rCBV has previously been correlated with glucose uptake and tumor angiogenesis in 

human gliomas71.  Meanwhile, CD-31 stains endothelial cells and can be marker of 

angiogenesis in tumors72.  The Chalkley score, which consists of counting the number of 

dots on an eyepiece graticule that stain vessels, measures the degree of proliferation of 

blood vessel endothelium.  Even though the CD-31 Chalkley score is not a direct 

measurement of blood volume, it has been shown to be significantly correlated with 

vessel luminal area and microvessel number72, two factors that could comprise blood 

volume.  We therefore hypothesized that rCBV and the CD-31 Chalkley scores would be 

correlated better in bidirectional rCBV than the unidirectional or uncorrected rCBV. 

Stereotactic biopsies were performed in 7 glioma patients (two grade II, four 

grade III, and one grade IV glioma) with a total of 19 biopsies.  Each patient's post-

processed perfusion-weighted images were overlaid on the post-contrast T1-weighted 

image for localizing of targets. When no contrast-enhancing lesion was present, 

T2/FLAIR images were used for target localization.  The median of the MRI biomarker 

was calculated within each target and correlated with the histological score. 

To evaluate angiogenesis on histology, the Chalkley method was employed, 

where an eyepiece graticule with 25 randomly positioned dots are rotated until the 

maximum number of points hits vessels73.  The Chalkley count is the number of points 

that are on stained vessels, where the three highest values are used for each tumor 

section.  Two independent scores were given over each histological section, and the 
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average of the two was used as the Chalkley score.  Given the relatively small number of 

ROIs, a non-parametric Spearman correlation was performed between the MRI imaging 

biomarker in each biopsy ROI and its corresponding average Chalkley score so that 

outliers would not disproportionately affect the correlations. 

In Fig. 4.2, we show the correlation between CD-31 and the three different rCBV 

calculations.  The area with low rCBV corresponds with a histologic specimen with a 

small amount of CD-31 staining (Chalkley score: 2.67).  In this example, the uncorrected 

rCBV (1.13) was higher than either the Unidir (0.93) or Bidir rCBV (0.83).  On the other 

hand, the area of negative uncorrected rCBV (-0.14), but high Unidir (2.12) and high 

Bidir (2.15) rCBV corresponds with the endothelial hyperplasia observed on CD-31 

(Chalkley score: 18.17).  Overall, the uncorrected rCBV had little correlation with CD-31 

Chalkley score (r = 0.11, p = 0.62).  Both the Unidir and Bidir rCBV significantly 

correlate with tumor grade (r = 0.47/p = 0.04 and r = 0.48/p = 0.03, respectively) and 

have approximately the same level of correlation (Fig 4.3).   
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Fig. 4.2. Example of low and high angiogenic estimates on MRI with the three methods 

of rCBV calculation and the corresponding CD-31 stained histological specimens.  

(Top) The uncorrected rCBV is 1.13, as compared to lower estimates with the Unidir 

(0.93) and Bidir (0.83) estimates, which correspond with a CD-31 Chalkley score of 

2.67 .  (Bottom) A negative uncorrected rCBV estimate (-0.14), but high Unidir rCBV 

(2.12) and Bidir rCBV (2.15) estimates correspond with a high CD-31 Chalkley score 

(18.17).   
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Fig. 4.3.  Spearman correlation performed between median rCBV in the region of interest 

and the CD-31 Chalkley score with trendlines (solid line) and 95% confidence intervals 

(dotted lines).  The uncorrected rCBV did not achieve statistically significant correlation, 

while the Unidir and Bidir did.  The Unidir and Bidir had approximately the same 

performance.   
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iv. Survival Analysis in Bevacizumab-Treated Patients 

As described in Chapter I, the conventional biomarker for measuring the volume 

of contrast-enhancing lesions was not able to reliably reflect the true tumor burden in the 

setting of anti-angiogenic drugs.  The patients in this cohort were treated with 

bevacizumab, the only FDA-approved anti-angiogenic therapy for gliomas.  Here, we 

examine if using the change in rCBV after treatment can allow us to stratify 

bevacizumab-treated glioblastoma patients according to short-term and long-term 

survival.   The imaging biomarker used was rCBV, with the varying leakage corrections 

and the endpoint used was overall survival (OS). If the rCBV decreased after treatment, 

we expect that those patients would survive longer than those patients whose rCBV 

increased after treatment.  

More specifically, we aimed to determine the impact of accounting for 

bidirectional contrast agent exchange on rCBV estimates, as compared to unidirectional 

model-based rCBV estimates, and whether the association between early post-

bevacizumab changes in rCBV compared to pre-treatment baseline and OS significantly 

differed using the two models. We hypothesized that changes in post-treatment rCBV 

using the bidirectional leakage correction algorithm will better stratify GBM patients 

treated with bevacizumab therapy according to overall survival when compared with the 

unidirectional model. 

 
Patients 

All patients provided informed written consent to have their information stored in 

an IRB-approved neuro-oncology database for use in future investigations.  Forty-seven 
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sequential recurrent GBM (WHO grade IV) patients treated with bevacizumab who had 

DSC-MRI and outcome data available were retrospectively enrolled (35 men; mean age 

57 years, range 28-75).  Anatomic and DSC-MRI were acquired within 1 month before 

(4.1 ± 7.0 days) (mean ± standard deviation) and two months (28.2 ± 11.0 days) after the 

start of bevacizumab therapy (10 mg/kg IV every 2 weeks).  

 

Magnetic Resonance Imaging 

Studies were performed at either 1.5T (Siemens Avanto or Sonata, Erlangen, 

Germany) or 3T (Siemens Trio, Verio, or Skyra, Erlangen, Germany).  Pre-contrast 

standard anatomical images were acquired, including T1-weighted, T2-weighted, and 

FLAIR images.  For DSC-MRI, a total of 0.1 mmol/kg dose of gadopentate dimeglumine 

(Gd-DTPA; Magnevist, Bayer Schering Pharma, Leverkusen, Germany) was 

administered, 0.025 mmol/kg for pre-load dosage to mitigate T1-based leakage 

contamination70 and the remaining 0.075 mmol/kg for dynamic bolus administration.  A 

two-minute gap was placed between the pre-load dose and the start of baseline imaging 

of the DSC-MRI.  The range of DSC-MRI acquisition parameters included: TE/TR = 23–

41/1250–1400 ms, flip angle = 35°, matrix size = 80x96–128x128, slice thickness = 4–6 

mm with an interslice gap of 0–1 mm, number of slices = 6–25, number of baseline 

acquisitions before contrast agent injection = 10-25, and number of time points = 40-120. 

Conventional post-contrast T1-weighted images (T1+C) were subsequently acquired.   

 

Image Analysis 
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Tumor ROIs were defined by abnormal hyperintensity on T1-weighted post-

contrast images using semi-automated segmentation techniques, followed by manual 

inspection and adjustment of the resulting contour as described previously66. All DSC-

MRI studies completely covered the spatial extent of contrast enhancing tumor.  DSC-

MRI images were motion-corrected on the scanner and processed via in-house custom 

scripts in MATLAB (Natick, MA).  All simulations and calculations were performed in 

MATLAB using custom scripts. Uncorrected rCBV was calculated using trapezoidal 

integration of the original DSC-MRI relaxivity-time curve, Δ𝑅!∗ 𝑡 . The whole-brain 

average relaxivity, derived from the non-enhancing voxels, was used for both the original 

unidirectional “Boxerman-Weisskoff” model31 (Unidir-model) and the proposed 

bidirectional exchange model (Bidir-model). (Details regarding the Bidir-model are 

described in the “Bidirectional Leakage Correction Theory” section in Chapter I). Linear 

least squares optimization was used to determine the free parameters for both the Bidir-

model and the Unidir-model algorithms.  The rCBV maps were manually registered to the 

corresponding post-treatment T1+C images using tkregister2 (Freesurfer, 

surfer.nmr.mgh.harvard.edu; Massachusetts General Hospital, Harvard Medical School). 

 

Statistical Analysis 

Median rCBV was calculated from segmented tumor at baseline (pre-treatment) 

and 6-week post-treatment time-points for all patients.  All rCBV values were normalized 

to median rCBV within a circular ROI drawn in the contralateral normal-appearing white 

matter. Histograms of rCBV were generated via Graphpad Prism 6 (La Jolla, CA) with a 

bin width of 0.5.  We used the absolute value of percentage difference to compare the 
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leakage correction methods because rCBV tends to increase in the presence of T1 leakage 

(between correction methods) and decrease in the presence of T2* leakage.  The absolute 

difference between the two techniques was calculated as the absolute value of the 

difference between the two methods divided by the average of the two methods for each 

patient and each MRI scan. 

A multivariate Cox regression model was used to determine whether pre-

treatment rCBV, post-treatment rCBV, change in rCBV between pre- and post-treatment 

time points, age at time of diagnosis, tumor volume, KPS, and MR field strength 

stratified patients according to OS.  Nineteen of the 94 total pre- and post-treatment scans 

were acquired at 3.0T, and the remaining 75 were acquired at 1.5T, with 10 in the pre-

treatment group, and 9 in the post-treatment group.  No significant difference, using an 

unpaired two-tailed t-test, was found between the rCBV values computed using the 3.0T 

scanner data and the 1.5T scanner data in either the pre-treatment group (P = 0.63) or the 

post-treatment group (P = 0.14).  Nevertheless, to guard against potential biases with 

regard to field strength, the pre- and post-treatment field strength as separate covariates.   

 

Results 

Fig. 4.4 illustrates a case where the mean tumor rCBV increased following 

bevacizumab therapy. Individual tumor rCBV values notably increased when employing 

more accurate leakage correction strategies, exemplified by the progressive rightward 

shift of the uncorrected, Unidir-model and Bidir-model rCBV histograms. The 

uncorrected rCBV map contained a high percentage of negative rCBV values within 

tumor, averaging -0.09 pre-treatment and 0.29 post-treatment, highlighting the 
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inaccuracies of uncorrected rCBV estimates.  Mean tumor rCBV substantially increased 

when using the Unidir-model (1.72 pre-treatment and 2.33 post-treatment) and increased 

further when using the Bidir-model (2.24 pre-treatment and 2.69 post-treatment).  

Next, we evaluated whether change in rCBV from baseline to two months 

measured using the various leakage correction strategies could stratify the 47 recurrent 

GBM patients treated with bevacizumab according to OS. In particular, we tested 

whether patients with decreased rCBV following bevacizumab (ΔrCBV < 0) had 

significantly longer OS compared to patients with increased rCBV (ΔrCBV > 0) after 

accounting for age, KPS, enhancing tumor size, and MRI field strength. Fig. 4.5 

demonstrates that both uncorrected ΔrCBV and Unidir-model ΔrCBV did not stratify 

patients according to OS (Cox regression; P = 0.28 and 0.43, respectively) in a 

statistically significant manner, whereas the Bidir-model ΔrCBV significantly stratified 

patients into long and short OS based on the change in rCBV (P = 0.01). Median OS for 

the patients whose rCBV estimated with the Bidir-model decreased following 

bevacizumab treatment was 358 days, versus 183 days for those with increasing rCBV.  

Table 4.1 illustrates detailed results from the Cox proportional hazards model, including 

effects of age, change in tumor volume, field strength at the pre-treatment and post-

treatment time points, and KPS.  

The mean rCBV with the Bidir-model had a 13.9±10.3% absolute difference from 

the Unidir-model prior to therapy and a 16.0±17.6% absolute difference in rCBV after 

treatment over all 47 patients.  Over all 94 scan sessions, there was a 14.9±14.4% 

difference between mean leakage-corrected whole-tumor rCBV computed with the Bidir-

model and Unidir-model.  Interestingly, when ΔrCBV was used to characterize 
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“responders” (ΔrCBV < 0) and “non-responders” (ΔrCBV > 0), 11 of the 47 cases (23%) 

had different classifications using the two leakage correction algorithms.  We then 

characterize the “responders” and “non-responders” according to whether they had a 

survival time less than the median (222 days), “short-term survival”, or greater than the 

median, “long-term survival”.  We considered a “correct classification” to be either a 

non-responder with short-term survival or a responder with long-term survival.  Among 

the 4 “non-responders” classified by the Bidir-model, 3 had “short-term survival” (75%), 

and among the 7 “responders”, 5 had long-term survival (71%).  Fig. 4.6 illustrates one 

case where the bidirectional leakage correction algorithm demonstrated a decrease in 

rCBV in a long-term survivor, whereas the unidirectional and uncorrected rCBV did not. 

Post-treatment rCBV based on the uncorrected model more than doubles from pre-

treatment baseline, with equivalent pre- and post-treatment rCBV using the Unidir-

model. However, the Bidir-model yields a substantial decrease from pre-treatment to 

post-treatment rCBV, which is concordant with the long OS in this patient (1,149 days).  

The rightward shifts of the rCBV histograms illustrate that differences in mean tumor 

rCBV are not merely reflecting a large change for few voxels, but rather a global change 

over the entire tumor. 
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Figure 4.4.  (A) Sample rCBV maps for a recurrent GBM, both pre- and post-

bevacizumab treatment. Mean pre- and post-treatment tumor rCBV progressively 

increase when using the uncorrected, Unidir-model and Bidir-model post-processing 

strategies. (B) There is a progressive rightward shift of the uncorrected, Unidir-model 

and Bidir-model rCBV histograms, demonstrating that the increase in mean rCBV is 

due to increased rCBV in the entire population of voxels, not just a few, as expected in 

a T1-leakage scenario. 
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!
Variable Hazard Ratio Standard Error p-value 95% C.I. 
ΔrCBV > 0 (Uncorrected) 0.64 0.41 0.28     0.29, 1.42 
Age at recurrence 1.02 0.02 0.25      0.98, 1.06 
Change in tumor volume 1.00 0.01 0.98 0.97, 1.03 
Field Strength (Pre-tx) 0.65 0.33 0.19 0.34, 1.24 
Field Strength (Post-tx) 1.97 0.57 0.24 0.64, 3.02 
KPS 0.99 0.02 0.41 0.95, 1.02 

     ΔrCBV > 0 (Unidirectional) 1.33 0.36 0.43 0.66, 2.67 
Age at recurrence 1.02 0.02 0.28 0.98, 1.06 
Change in tumor volume 1.00 0.01 0.79 0.98, 1.03 
Field Strength (Pre-tx) 0.68 0.34 0.25 0.35, 1.31 
Field Strength (Post-tx) 1.66 0.36 0.16 0.82, 3.34 
KPS  0.99 0.02 0.55 0.95, 1.03 

     ΔrCBV > 0 (Bidirectional) 3.12 0.42 0.01* 1.37, 7.10 
Age at recurrence 1.01 0.02 0.65 0.97, 1.05 
Change in tumor volume 0.99 0.01 0.64 0.97, 1.02 
Field Strength (Pre-tx) 0.67 0.34 0.36 0.35, 1.30 
Field Strength (Post-tx) 2.43 0.38 0.02 1.14, 5.18 
KPS  0.98 0.02 0.36 0.95, 1.02 
     
     

Table 4.1. Cox regression model results with the following variables: ΔrCBV > 0 

(binary classification), age at recurrence, change in tumor volume, field strength (pre-

tx), field strength (post-tx), and KPS. 
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Fig. 4.5.  Kaplan-Meier survival plots for ΔrCBV, with patients stratified according to 

whether rCBV increased or decreased using (A) uncorrected rCBV, (B) Unidir-model 

rCBV, and (C) Bidir-model rCBV.   
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Fig. 4.6.  (A) Comparison of rCBV maps of recurrent GBM based on uncorrected, 

Unidir-model, and Bidir-model methodologies in a patient with long-term survival 

(1,149 days). Whereas the Bidir-model demonstrates a substantial decrease in rCBV 

post-treatment, in accordance with favorable OS, the uncorrected and Unidir-model 

estimates of increasing or stable rCBV misclassify the patient as having poor prognosis.  

(B) There is a leftward shift for the Bidir-model histogram, but rightward shifts for the 

uncorrected and Unidir-model. 
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v. Discussion 

Results from the studies in this section support the hypothesis that DSC-MRI 

leakage correction accounting for bidirectional contrast agent exchange may yield 

significantly different estimates of tumor rCBV compared with the standard “Boxerman-

Weisskoff” unidirectional model and the uncorrected model.  Furthermore, in clinical 

settings, the bidirectional will perform at least as well as the unidirectional in the various 

clinical applications presented.   With respect to the tumor grade and CD-31 Chalkley 

score correlations, the performance between the unidirectional and bidirectional leakage 

corrections were similar. As several of the tumors in these cohorts had no contrast-

enhancing lesion and thus no noticeable vascular permeability, it would be expected that 

the rCBV differences in the non-contrast enhancing tumors would be smaller than that 

observed in contrast-enhancing tumors. On the other hand, in the survival analysis, where 

only grade IV tumors were studied, we found that early changes in rCBV estimated using 

the Bidir-model better stratify bevacizumab-treated recurrent GBM patients according to 

OS as compared to estimates using the Unidir-model. In accordance with the notion that 

efficacious therapy works by reducing tumor vascularity, this supports the hypothesis that 

bidirectional contrast agent exchange using a two-compartment model similar to DCE-

MRI more accurately represents the contrast agent pharmacokinetics within the tumor 

vasculature.   

When introduced, the standard Unidir-model significantly improved rCBV 

estimates compared to those made without leakage correction31. Addition of a preload or 

incubation dose to Unidir-model post-processing leakage correction further reduced T1-

leakage effects by increasing EES contrast agent concentration prior to dynamic bolus 
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injection, yielding greater improvement in rCBV measurements obtained without leakage 

correction45, 74. However, the lack of a contrast agent backflow term may lead to an 

incomplete elimination of the T1 or T2* leakage artifact, especially in the presence of a 

preload because the total contrast agent concentration in the EES is no longer negligible 

(which ensures the concentration gradient is purely unidirectional), even with short DSC-

MRI acquisition times. This is likely a factor contributing to the observed 14.9% 

difference in rCBV in the survival analysis cohort between the different leakage 

correction algorithms since we used a preload in the current study. It is important to note 

that this magnitude of difference in rCBV between the Bidir-model and Unidir-model 

may be clinically meaningful and could potentially impact clinical decision-making.   

This study has certain notable limitations.  First, the correlation with histology 

was not between two blood volume measurements, but rather a surrogate histological 

marker of angiogenesis that correlates with luminal area and vessel numbers.  Also, with 

respect to tumor grade, gliomas have a substantial amount of rCBV intragrade variability 

and are assigned according to a multitude of factors outside of simple blood volume.75 

For the survival study, the DSC-MRI protocols had variable TEs and TRs, with a varying 

number of slices, slice thicknesses, and field strengths. Although this permitted 

generalization of our results across a variety of acquisition schemes and MRI platforms, it 

is unclear whether the same magnitude of differences between the leakage correction 

algorithms would be maintained in a trial with a single standardized acquisition protocol.  

Additionally, the time between the MR scans and treatments varied slightly between 

patients, which may have reduced our ability to assess treatment response.  In a clinical 

trial, these would ideally be more standardized throughout the patient cohort.  Given the 
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relatively small sample size and retrospective nature, which includes biases inherent to 

such retrospective studies, this investigation was exploratory and larger studies are 

needed to evaluate the potential impact of the leakage correction algorithms on clinical 

decision-making.  Furthermore, a scanning protocol might be useful to develop in order 

to provide a more standardized approach for DSC-MRI, even for clinical use in the 

future.   

These studies assume the use of a gadolinium-based contrast agent, which often 

leaks into the extravascular space when vascular permeability is disrupted.  Currently, 

pure intravascular contrast agents, such as ferumoxytol, are not approved for central 

nervous system (CNS) imaging, though it is approved for MR angiography. The main 

advantage of using intravascular contrast agents for perfusion imaging is the lack of 

extravasation into the extravascular space, eliminating the need for leakage correction 

algorithms or preload injection 76.  On the other hand, because it is a blood pool agent, the 

enhancement pattern of biological tissues may differ as compared with gadolinium-based 

contrast agents, with the possibility of susceptibility artifacts arising 77.  Moreover, there 

is potentially a requirement of two consecutive days of imaging to obtain relatively 

intracellular-weighted or interstitial-weighted images, the scans that would be more 

analogous to the gadolinium-based anatomical scans 78. 

The use of a bidirectional leakage correction model changed the estimated rCBV 

values in grade IV gliomas significantly compared to both the standard unidirectional 

leakage correction model and rCBV measured without leakage correction, despite 

relatively short DSC-MRI acquisition times.  Smaller changes are seen with tumors that 

are non-contrast enhancing, leading the tumor grade and CD-31 Chalkley score 
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correlations to be similar between the Unidir and Bidir models.  However, the large 

changes in grade IV allow for superior rCBV reproducibility and prediction of survival 

based on MRI findings.  
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Chapter V. Conclusion 

One of the standards for evaluating glioma therapies has been using MRI to 

monitor contrast-enhancing tumor volume over time.  However, with certain therapies, 

this has been shown to be insufficient for determining true tumor response.  Given that 

angiogenesis is one of the key features of gliomas, an MRI technique that gives insights 

into tissue perfusion would aid with the diagnosis and monitoring of treatment in patients, 

provided that such a biomarker can be shown to accurately reflect the true tumor burden.   

To this end, this work addresses some of the challenges presented by contrast 

agent leakage in DSC-MRI.  In Chapter II, we used a simulation method to demonstrate 

that the bidirectional correction is more robust to scan acquisition protocol than the 

unidirectional and determined that balancing the T1- and T2*-weighted leakage effects 

helps minimize errors in rCBV.  We also present results from an external, independent 

study in which the bidirectional leakage correction has been shown to be more robust to 

the scan acquisition protocol than the unidirectional leakage correction, which is 

important because different institutions employ different DSC-MRI scan acquisition 

protocols. 

In Chapter III, we demonstrate that the bidirectional model outperforms the 

unidirectional with respect to the modeling of vascular permeability.  The bidirectional 

leakage algorithm has a superior model fit to DSC-MRI data according to the Akaike 

Information Criterion.  The permeability curves generated by the bidirectional model 

have better correspondence with independently acquired DCE-MRI signal-time curves 

than the unidirectional model.   With respect to rCBV, the unidirectional leakage 

correction under-corrects the T1- or T2*- weighted leakage effects compared to the 
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bidirectional model by a substantial amount in grade IV tumors.  The bidirectional model 

reduces the intra-patient variability of rCBV between scans and echoes of the same multi-

echo sequence for the bidirectional model, yielding more accurate rCBV estimates. 

In Chapter IV, we also demonstrate the clinical utility of this technique. The 

bidirectional leakage correction better stratifies bevacizumab-treated patients according 

to short-term or long-term survival.  More specifically, an increase in rCBV after 

treatment corresponded with shorter survival, while a decrease after treatment 

corresponded with longer survival.  This potentially foreshadows one use of the 

bidirectional rCBV measurements clinically as a potential replacement for contrast-

enhancing volume when evaluating anti-angiogenic therapies.   

In total, we have demonstrated a new leakage correction that unifies the two 

contrast-based perfusion-weighted MRI modalities.  This is an important development as 

it indicates that no matter whether the weighting is T1 or T2/T2*, the bidirectional 

model/extended Tofts model can be used to compute the traditional perfusion imaging 

biomarkers.  This makes intuitive sense since we are monitoring the same contrast agent 

behavior, except with different types of MRI contrast.  The main difference, though, is 

that the focus of DSC-MRI is to calculate blood volume, with permeability-surface area 

serving as the correction factor, while the focus of the DCE-MRI is to calculate 

permeability-surface area, with blood volume serving as the correction factor. 

The goal of this study is to improve relative cerebral blood volume measurements 

for use in the clinic.  While further verification is still needed in larger trials, the 

difference in rCBV computed from the bidirectional leakage correction before and after 

treatment could potentially serve as a marker of angiogenesis in glioma treatment.  If this 
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could be used in lieu of the endpoint overall survival (OS) for glioma monitoring, this 

would make the clinical trial periods potentially shorter for future drug development.  

Furthermore, the fact that the bidirectional leakage correction is more resistant to 

differences in DSC-MRI protocols may help improve multi-center trials in the future 

since, to the best of our knowledge, there is little agreement in the literature as to which 

DSC-MRI protocol best minimizes errors in rCBV measurements. 

Significant hurdles to estimating rCBV accurately in DSC-MRI remain.  The most 

significant challenge is the determination of the arterial input function (AIF) and whole 

brain average (WBA). Differences between the global AIF/WBA and the local input 

would cause errors in blood volume calculations, and currently, no standards exist as to 

how to calculate either the global or local AIFs. Furthermore, a fundamental assumption 

behind the gradient echo DSC-MRI is that the relaxation rate is linearly proportional to 

the intravascular concentration of contrast agent.  However, the gradient echo signal is a 

non-linear sum of magnetic field gradients arising from the differences in concentration 

of contrast agent between compartments.  Technically, the non-proportionality between 

the relaxation-time curve and concentration would be a violation of the indicator dilution 

theory, where concentration is integrated to calculate blood volume. 

Both of these problems could potentially be addressed using the multi-echo spin-

and-gradient echo technique described in Chapter III, section iv, “Verifying Improvement 

in Estimated rCBV via Intra-scan Reproducibility”.  The spin-and-gradient echo 

technique allows us to acquire four differently weighted signals. In particular, we expect 

the blood volume to be the same between the first two echoes, the two gradient echoes, 

but with a different amount of leakage.  Therefore, we can separate the T1 and T2*-
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weighted effects from both the bolus and the extravasation of contrast agent.  Using the 

last two echoes, we can also extract the T1 and T2-weighted effects using similar 

reasoning.  The T1 and T2 relaxivity of contrast agent are known from the literature and 

we therefore can compute the concentration of contrast agent in the plasma and the 

extravascular space.  The former would obviate the need for a global AIF or whole brain 

average, solving the first problem.  Furthermore, the units of the signal-time curve in the 

plasma would be in terms of concentration of contrast agent.  Thus, the integration of this 

curve would be a direct application of the indicator dilution theory, solving the second 

problem. 

Nevertheless, this work has demonstrated that the bidirectional leakage correction 

allows for better estimation of relative cerebral blood volume.  The bidirectional leakage 

correction unifies the two perfusion-weighted MRI modalities, implying that the same 

model can be used to take into account both the bolus of contrast agent in the vasculature 

and vascular permeability, regardless of the MRI signal contrast.  It is also more robust to 

scan acquisition protocols, which is important for clinical trials in which different 

institutions may be using different acquisition protocols, and it has given insight into how 

change in rCBV can potentially be applied to the evaluation of glioma treatment efficacy.  

In total, our studies in this work have allowed us to gain a deeper understanding of the 

complexities of DSC-MRI with the objective of routinely using perfusion imaging in 

neuro-oncology clinics. 
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