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Abstract

Despite the growing number of atomic-resolution membrane protein structures, direct structural 

information about proteins in their native membrane environment is scarce. This problem is 

particularly relevant in the case of the highly-charged S1–S4 voltage-sensing domains responsible 

for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-

activated potassium channels. Here we use neutron diffraction, solid-state nuclear magnetic 

resonance spectroscopy, and molecular dynamics simulations to investigate the structure and 

hydration of bilayer membranes containing S1–S4 voltage-sensing domains. Our results show that 

voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding 
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lipid bilayer, and that water molecules intimately interact with the protein within the membrane. 

These structural findings reveal that voltage sensors have evolved to interact with the lipid 

membrane while keeping the energetic and structural perturbations to a minimum, and that water 

penetrates into the membrane to hydrate charged residues and shape the transmembrane electric 

field.

Membrane-embedded S1–S4 voltage-sensing domains are used by membrane proteins to 

sense and react to changes in membrane voltage (Fig 1a). In the voltage-activated potassium 

(Kv), sodium and calcium channels, these S1–S4 domains drive opening and closing of an 

associated ion conducting pore domain (Fig 1a) to generate electrical signals1. In the Ciona 

intestinalis voltage-sensitive phosphatase, an S1–S4 domain controls the hydrolysis of 

phospholipids by an associated phosphatase2, and in voltage-activated proton channels the 

S1–S4 domain contains the permeation pathway for protons3. X-ray structures of S1–S4 

domains show that the protein domain is comprised of four transmembrane α-helices (Fig 

1a) and that its structure is well-conserved from archaebacteria to mammals1,4,5. A 

fundamental feature of S1–S4 domains is that they contain basic and acidic residues that 

enable the protein to change conformation in response to rapid fluctuations in membrane 

voltage1,6,7. In these voltage sensors, interactions with the surrounding lipid membrane 

play crucial roles. The S3b-S4 paddle motif within S1–S4 domains, for example, moves at 

the protein-lipid interface 5,8–13 and alterations in the composition of the lipid membrane 

alter voltage sensor activation14–17. The polar nature of voltage sensors and their intimate 

interactions with the bilayer, raise the possibility that these domains perturb the structure of 

the surrounding lipid bilayer. In addition, while spectroscopic and functional studies suggest 

that the electric field is focused across voltage sensors18–21, the structural basis for 

focusing is unclear. Might deformations of the membrane contribute to focusing the electric 

field, or is the shape and chemistry of the protein largely responsible? Crevices observed in 

X-ray structures of S1–S4 domains would be expected to reshape the electric field, but only 

if they persist and are filled with water when the domain is embedded in a lipid membrane. 

Although water penetration into the membrane has been inferred from accessibility 

studies9,13,19,22–26 and simulations12,27–29, hydration of voltage sensors has not been 

measured.

Structure and hydration of membranes containing voltage sensors

To address these fundamental questions, we developed a homogeneous preparation of 

voltage-sensing domains incorporated into lipid membranes for use with neutron 

diffraction30–33. The neutron scattering length gives the relative amplitude of the de 

Broglie wave scattered from a nucleus and is analogous to the X-ray scattering length of an 

electron. We focused our efforts on the S1–S4 domain of KvAP, an archaebacterial channel 

from Aeropyrum pernix that can be robustly expressed, stably purified, and reconstituted 

into lipid membranes4,9,10,13,34. Following expression and purification of the S1–S4 

domain of KvAP (see Methods), circular dichroism (CD) spectroscopy reveals that the 

domain has high α-helical content in detergent micelles or reconstituted into liposomes (Fig 

1b), consistent with the X-ray structure of the domain4 and electron paramagnetic resonance 

studies 9,13,34. To investigate the topology of the S1–S4 domain in liposomes, we 
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measured the fluorescence of the single Trp70 near the middle of the S2 helix. The emission 

spectrum of Trp70 is shifted towards shorter wavelengths compared to free Trp in aqueous 

solution (Fig 1c), indicating that Trp70 resides in a non-polar environment35. Moreover, its 

fluorescence is efficiently quenched by bromine atoms covalently bound to lipid 

hydrocarbon tails36 , but not by the aqueous quencher acrylamide (Fig 1c,d,e), consistent 

with a transmembrane topology of the S2 helix (see below).

To determine the profile structure of bilayers containing S1–S4 domains, oriented lipid 

multilayers were produced by deposition of proteoliposomes or neat liposomes on glass 

substrates. When these multilayers were hydrated (86 or 93% relative humidity) and 

mounted in a cold neutron beam37, strong lamellar diffraction patterns with Bragg spacing 

(d) were observed (Supplementary Fig 1a,b). One dimensional, absolute-scale, scattering-

length density profiles along the normal of the lipid bilayer plane were then computed from 

the observed structure factors (Fig 2a). The constructed neutron scattering-length density 

profiles for neat lipid bilayers show the distribution of lipid (black dashed line), with 

positive densities for the headgroup region, a trough for the hydrocarbon tails, and negative 

densities near the terminal methyl groups (Fig 2a). The scattering lengths for most of the 

relevant nuclear species (carbon, nitrogen, oxygen and phosphorous) have similarly positive 

values, with the notable exception of hydrogen, which has a negative scattering length. The 

average scattering-length density of the bilayer hydrocarbon core is close to zero because the 

scattering length of carbon is positive and that for hydrogen is negative. The headgroup 

peaks appear closer together than they would in an equivalent X-ray experiment33 because 

X-rays scatter most strongly from headgroup phosphates, while neutrons scatter most 

strongly from the carbonyl groups due to their relative lack of hydrogens. The overall 

scattering length density of the bilayer increases in the presence of the protein (solid black 

line), consistent with a transmembrane topology of the S1–S4 domain (see below). 

Comparison of the lipid bilayer profiles with and without S1–S4 domains reveals how the 

structure of the bilayer is influenced by the protein (Fig 2a). Although the S1–S4 domain 

does not radically alter the structure of the lipid bilayer, examination of the profiles shows 

that the voltage sensors produce a detectable thinning of the bilayer, as revealed by a 

decrease in d (Fig 2b). The thickness decrease depends upon the concentration of the protein 

in the membrane, with a maximal decrease of about 3 Å at protein to lipid ratios (molar) 

above 1 to 100 (Fig 2b). These results indicate that lipid molecules in the membrane 

maintain a bilayer-like arrangement around voltage sensors, consistent with the lipids 

resolved in the recent crystal structure of the Kv1.2/2.1 paddle chimaera5.

Next we performed experiments to determine the distribution of water and to quantify the 

number of water molecules per lipid using contrast variation between water (1H2O) and 

deuterium oxide (2H2O), and comparing with lipids containing four deuterium atoms in the 

headgroup region (D4 lipids, Fig 2c, see Methods). This approach takes advantage of the 

fact that deuterated nuclei have a positive scattering length compared to a negative one for 

hydrogen, so that selective substitution of deuterium for hydrogen allows the deuterium 

atoms to be easily detected against the low scattering-length density of hydrocarbon core. 

Although the water distributions show that thinning of the bilayer brings water on the two 

sides of the bilayer closer together (Fig 2a; blue lines), we could not detect a change in the 
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shape of the water distribution or the total water content. At 86% relative humidity, the unit 

cell of the membrane contains 8.1 ± 0.7 waters per lipid for neat lipid bilayers compared to 

8.5 ± 0.5 in the presence of 0.77 mol% protein. At 93% relative humidity, water content per 

lipid was 10.6 ± 0.2 and 11.0 ± 0.2 in the absence and presence of 0.77 mol% protein 

(Supplementary Fig 2).

Distributions of S1–S4 voltage-sensing domains and water across 

membranes

To investigate the membrane topology and hydration of S1–S4 domains directly, we 

determined the protein distribution using contrast variation between protonated and 

deuterated S1–S4 domains. The S1–S4 domain of KvAP was uniformly deuterated to 74% 

(Fig 3a) and multilayers were formed with either protonated or deuterated protein at the 

same protein:lipid ratio and lipid composition. The two types of samples display similar 

diffraction patterns with the same number of observed diffraction orders and repeat spacing 

(Supplementary Fig 3). Subtraction of scaled profiles to obtain the protein density 

distribution reveals the distribution of the protein across the bilayer (Fig 3b; red line). 

Maxima in the density distribution are observed in the headgroup region of the bilayer and 

minima in the inter-bilayer space. This finding firmly establishes that S1–S4 domains adopt 

a transmembrane topology when embedded in a lipid membrane, with the four helices 

oriented roughly normal to the membrane plane. The significant protein density found in the 

interbilayer space is not surprising given that the dimensions of the S1–S4 helices4,5 are 

similar to the thickness of the bilayer (and may protrude somewhat outside the membrane).

Having determined the distribution of protein in the bilayer (Fig 3b; red), we then compared 

it to that of water (Fig 3b; blue) to ascertain whether S1–S4 domains are hydrated. 

Strikingly, the two distributions exhibit extensive overlap within the confines of the lipid 

membrane, in particular for the outer halves of the bilayer. Because the voltage sensor does 

not detectably alter the shape of the water distribution or water content, the hydration 

detected in these neutron diffraction experiments is largely from water that is already present 

in the bilayer. The voltage sensors may bring additional water molecules into the bilayer, but 

it is unlikely that we would detect those in the experiments thus far. For example, molecular 

dynamics simulations predict that 45 to 47 water molecules intimately associate with each 

voltage sensor (see below), which would not detectably alter the shape of the water 

distribution determined in neutron diffraction experiments because that represents less than 

4% of the water molecules in the system for each voltage sensor (at 0.77 mol% protein and 

93% humidity, the protein:lipid:water ratio is 1:130:1430).

Predicted distributions of water, lipid and protein with varying hydration

To explore whether the distributions of water, lipid and protein observed in neutron 

diffraction experiments are compatible with those predicted from molecular dynamics 

simulations, we calculated neutron diffraction structure factors from molecular dynamics 

simulation trajectories for S1–S4 domains of KvAP embedded in a lipid bilayer in a 

transmembrane orientation (see Methods). The resulting Bragg spacing is in excellent 

agreement with the experimental results, and the overall bilayer scattering length density 
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profile and water distributions, determined by applying the same procedures as in the 

experimental data reduction, are in good agreement with the experimental results (Fig 3c). 

Both the simulation and experiment show comparable overall protein density distributions in 

the membrane interior, as well as overlap between the distributions of protein and water, 

suggesting a similar disposition of protein and water in the lipid bilayer. The protein studied 

experimentally contains 18 additional residues on the N-terminus compared with that used 

for simulations (see Methods), precluding a quantitative comparison of the experimental and 

simulated protein profiles. Based on the location of the corresponding segment in the 

structure of the Kv1.2/2.1 paddle chimaera5, the excess scattering length density in the 

experimental data compared to the simulation near the membrane-water interface (|z| > 10 

Å) can be reasonably attributed to the 18-residue amphipathic segment absent in the 

simulation.

To explore whether hydration of the preparation influences these distributions, we compared 

a simulation with 11 waters per lipid (corresponding to 93 % relative humidity) to a 

previously reported simulation in a lipid bilayer in excess water 27 (Fig 3d). Similar 

scattering length density profiles are observed for simulations at 11 waters per lipid when 

compared to excess water (Supplementary Fig 4). The structure of the S1–S4 domain was 

also relatively insensitive to hydration level (Supplementary Fig 5), and in each case a 

similar number of water molecules (45–47 at 11 waters per lipid compared to 48–49 in 

excess water) are intimately associated with the protein domain within the hydrophobic core 

of the bilayer (Supplementary Fig 6). In addition, solvation of crucial S4 Arg residues by 

both phosphate headgroups and water is similarly observed at varying hydration levels 

(Supplementary Fig 7). Together, these observations suggest that the extent to which 

hydration of the preparation influences the structure of lipid membranes containing voltage 

sensors is minor, and would not be discernible in the neutron scattering profiles at the 

protein concentrations studied.

Interaction between water and S1–S4 voltage-sensing domains

While the neutron diffraction experiments indicate that the distribution of water and protein 

in the bilayer overlap, they do not directly address whether water is intimately associated 

with voltage sensors (Fig 4a). To explore this possibility, we used solid-state nuclear 

magnetic resonance (NMR) spectroscopy to measure magnetization transfer from water to 

lipid via intermolecular 1H dipole-dipole interactions in the presence of the voltage sensor. 

Well-resolved lipid resonances (Fig 4b; black spectra) were observed when rapidly spinning 

the sample (10 kHz) at the magic angle (54.7°) to the magnetic field (B0), a procedure that 

averages out anisotropic dipolar interactions that broaden resonance lines. We performed 

saturation transfer difference experiments 38,39 by comparing lipid spectra before (Fig 4b; 

black spectra) and after (Fig 4b; blue spectra) applying saturating radio frequency pulses at 

the 1H2O resonance frequency (4.79 ppm). Magnetization transfer to lipid would cause a 

decrease in lipid resonances, which can be quantified as an attenuation factor for different 

saturating field strengths (Fig 4c). Control experiments in which neat lipid membranes were 

studied show that magnetization transfer from 1H2O to lipid is inefficient when radio 

frequency pulses are applied to 1H2O (Fig 4c; blue triangles). In the presence of the protein, 

magnetization transfer is similar in 1H2O and 2H2O when radio frequency pulses are applied 
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directly to the protein amide resonance frequency (8.5 ppm; Fig 4c; red filled and open 

circles, respectively). In contrast, magnetization transfer from water to lipid is very efficient 

in membranes containing S1–S4 voltage-sensing domains in the presence of 1H2O (Fig 4c; 

blue filled circles). Much weaker transfer is observed when 1H2O is substituted with 2H2O 

(Fig 4c; blue open circles), demonstrating that most of the attenuation results from 

magnetization transfer originating from 1H2O rather than from aliphatic 1H which overlap 

4.79 ppm. (The attenuation observed in 2H2O at a saturating field >200 Hz likely originate 

from aliphatic 1H.) When considered together with the overlap in water and protein 

distributions observed in neutron diffraction experiments (Fig 3b), these NMR results 

indicate that water intimately associated with the protein within the bilayer.

Discussion

The objective of the present study was to investigate the structure and hydration of lipid 

membranes containing S1–S4 voltage-sensing domains. Previously, only computational 

approaches have been used to explore how different types of membrane proteins influence 

the structure of the bilayer 12,27–29,40,41. We adapted neutron diffraction techniques to 

determine how voltage sensors influence membrane structure; these protein domains are 

highly polar and exhibit important interactions with the lipid membrane, making them a 

particularly interesting test case. We succeeded in reconstructing the bilayer profile in the 

presence of the S1–S4 domain of KvAP, which shows that the structure of the lipid bilayer 

remains largely intact around the protein. The most notable change is that the protein causes 

a thinning of the bilayer by about 3 Å. Neutron diffraction measurements reflect changes in 

the structure of the bilayer, averaged over the entire membrane plane. Molecular dynamics 

simulations yielding a value of the Bragg spacing consistent with the diffraction 

experiments, predict that the distortion of the lipid bilayer by the protein is restricted to the 

lipids immediately surrounding the voltage sensors (Supplementary Fig 8). Taken together, 

the modest membrane-averaged thinning and local adaptation of the lipid bilayer to the 

presence of the voltage sensor suggest that the protein has evolved to interact with lipid 

molecules while minimizing the energetic and structural perturbations of the bilayer

Our neutron diffraction, solid-state NMR, and simulation results indicate that S1–S4 

voltage-sensing domains are hydrated in the bilayer and that water interacts intimately with 

the protein. The observed hydration can explain the accessibility of water-soluble reagents to 

residues in S1–S49,13,19,22–26 and suggests that the crevices seen in X-ray structures4,5, 

which house the Arg residues that carry gating charge6,7, actually contain water when the 

protein is embedded in a lipid membrane, as illustrated in Fig 3d. Hydration of these critical 

residues will raise the local dielectric within the bilayer, ensuring that the Arg residues 

remain charged and thereby move in response to changes in membrane voltage. 

Consideration of the observed average water distributions in the presence of S1–S4 domains 

indicates that the membrane electric field drops over a distance of no more than about 25Å, 

the hydrophobic thickness of the bilayer in the presence of the voltage-sensing domain. The 

water-filled crevices in the structure of the S1–S4 domain would be expected to focus the 

electric field further, which is in agreement with our simulations showing the 

transmembrane potential is contoured by the structure of the protein and drops over a 

distance of about 20Å (Fig 5). These simulations do show significant distortions of the lipid 
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bilayer in the local vicinity of the protein, but these do not have pronounced effects on the 

transmembrane voltage.

Although the effects of S1–S4 voltage-sensing domains on the physical thickness of the 

bilayer are rather modest, the bilayer thinning we observe indicates that the protein and 

bilayer do interact, thereby providing a basis for understanding how lipid modification can 

influence voltage sensor function14–17. For example, based on theoretical considerations 

and studies on gramicidin channels42–44, the thinning we observed would be expected to 

have profound effects on the mechanical properties of channels containing S1–S4 domains 

and may help to explain the sensitivity of voltage-activated ion channels to alterations in the 

mechanical properties of the lipid bilayer41,45–47.

The hydration and reshaping of the lipid membrane that we observe for voltage sensors will 

likely be relevant for other classes of membrane proteins. For example, the presence of 

binding sites for water soluble ligands deep within G protein-coupled receptors48 and 

transporters49, implies that these proteins are hydrated within the membrane. In the case of 

intramembrane enzymes, such as the rhomboid protease50, hydrolysis of the peptide bond 

requires the presence of water molecules in an active site located in the hydrophobic interior 

of the membrane. In each of these instances, little is known about the structure of the 

surrounding lipid membrane or whether adaptations may play important roles in the 

mechanism of the protein.

METHODS SUMMARY

The S1–S4 domain of KvAP was expressed and purified as previously described4 and 

reconstituted into a 1:1 mixture of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine) and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]) 

using rapid dilution. Lipid multilayer samples for neutron diffraction were prepared by 

deposition of aqueous dispersions of liposomes on glass slides. A solution containing ~4 mg 

of lipid was applied to the glass surface (15 mm diameter), dried under vacuum and 

rehydrated from water vapor in a sealed chamber containing saturated salt solutions. Three 

types of samples were prepared using: 1) protonated voltage-sensing domain and protonated 

lipid, 2) deuterated voltage-sensing domain and protonated lipid, and 3) protonated voltage-

sensing domain and headgroup deuterated POPC lipid (D4 lipid: (CH3)3-N-C2H2-C2H2-). 

Oriented multilayers (~ 10 µm thick, corresponding to 2000–3000 bilayers) were transferred 

into the sample chamber of the neutron diffractometer, and hydrated through the vapor 

phase at a temperature of 298K. Neutron diffraction measurements were performed at the 

Advanced Neutron Diffractometer/Reflectometer (AND/R)37, located at the NIST Center 

for Neutron Research. Monochromatic cold neutrons of wavelength λ=5 Å and a wavelength 

spread Δλ/λ=1% were diffracted by the sample and counted with a pencil-type 3He detector. 

Specular (Θ − 2Θ) scans were taken to assure that the momentum transfer (Qz; typically 0–

1.2 Å−1) between the incident and the diffracted neutron wavevector was always 

perpendicular to the multilayer plane, thus probing the bilayer normal (Supplementary Fig 

1). Solid-state NMR experiments were performed on proteoliposome pellets in 1H2O 

or 2H2O at a water:lipid ratio of 30:1. Lipid spectra were recorded on a 800 MHz Bruker 

AV800 spectrometer equipped with a 4 mm 1H/13C/2H CP-MAS probe (Bruker Biospin 
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Corp., Billerica, MA). All-atom MD simulations of the S1–S4 domain of KvAP were carried 

out in POPC bilayers hydrated with 9 and 11 water molecules/lipid (corresponding to 

experiments at 86% and 93% relative humidity). Each system consisted of two stacked lipid 

bilayers, each containing a single S1–S4 domain, arranged to form a single pseudo 

centrosymmetric unit cell. The simulations were run at a constant temperature of 295 K and 

a constant pressure of 1 bar.

Full Methods and any associated references are available in the online version of the paper 

at www.nature.com/nature.

METHODS

Voltage-sensing domain expression, solubilization and purification

The KvAP gene was amplified from Aeropyrum pernix genomic DNA using PCR and 

cloned into the pQE-60 vector (Qiagen). A pQE-60 plasmid containing the S1–S4 voltage-

sensing domain of KvAP (amino acid residues Met1-Lys147) was obtained by deletion of 

the C-terminal region of KvAP using PCR and its sequence was confirmed by DNA 

sequencing. The recombinant voltage-sensing domain was expressed in XL1-Blue strain of 

E.coli as previously described 4. The plasmid was transformed into the chemically 

competent E.coli cells (subcloning grade) (Stratagene). One colony was inoculated into 100 

ml LB broth supplemented with Ampicillin (100 µg/ml) and grown overnight at 37°C with 

continuous shaking at 200 rpm. One liter of LB/Ampicillin broth was inoculated with 10 ml 

of the starting culture and the protein expression was induced with 1 mM isopropyl-β-D-

thiogalactopyranoside (Calbiochem) when the optical density of the cells at 600 nm reached 

0.6. After 3 hours induction, cells were harvested by centrifugation at 5000xg for 20 min. 

Cells were re-suspended in 10 mM EDTA solution and collected by centrifugation, and then 

twice re-suspended in 20 mM Tris/HCl, 100 mM KCl, pH 7.8 and collected by 

centrifugation. Cells were then re-suspended in 40 ml of 20 mM Tris/HCl, 100 mM KCl, pH 

7.8 buffer, supplemented with 100 µL of protease inhibitor cocktail (Sigma) and 100 µL of 

26 mg/ml PMSF in isopropanol. Cells were sonicated for 5 minutes on ice, 50 µL of 

protease inhibitor cocktail was added, and the S1–S4 domain extracted by solubilization of 

the homogenate in 2.5 % (w/v) decylmaltoside (Anatrace) in 20 mM Tris/HCl, 100 mM 

KCl, pH 7.8. Lysate was then centrifuged at 100,000g for 1 hour at 4°C and the supernatant 

collected. Supernatant was mixed with Co-Talon resin (Clontech) and mixture was 

transferred to a chromatography column (Bio-Rad) and the solution was allowed to pass 

through. The resin with bound protein was washed with 0.25% (w/v) decylmaltoside, 10 

mM imidazole in 20 mM Tris/HCl, 100 mM KCl, pH 7.8. Buffer was then exchanged to 3 % 

(w/v) n-octyl-β-D-glucopyranoside (OG) in 20 mM Tris/HCl, 100 mM KCl, pH 7.8 and the 

protein eluted with 400 mM imidazole in the same buffer. One unit of thrombin (Sigma) was 

added per mg of protein and the mixture was dialyzed against 3 % (w/v) OG in 20 mM Tris/

HCl, 100 mM KCl, pH 7.8 overnight at 4°C in a dialysis cassette with MW cutoff of 10 kDa 

(Pierce). The protein was analyzed by SDS-PAGE electrophoresis, followed by Coomassie 

staining (Invitrogen) and by MALDI-MS using the Invitrosol MALDI protein solubilizer kit 

(Invitrogen). The efficiency of the thrombin cleavage and the His-tag removal during the 

dialysis was confirmed by His-Probe HRP reagent kit (Pierce) and by MALDI-MS. S1–S4 
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KvAP protein identity was confirmed by mass spectrometric (MS) analysis of protein digest 

fragments and N-terminal Edman sequencing. N-terminal sequencing revealed that the first 

5 amino acids are removed during protein expression, consistent with the earlier 

observations 4. The uniformly deuterated protein was obtained by expression in Bioexpress 

media (Cambridge Isotope Laboratories) supplemented with 80 % 2H2O and the molecular 

weight of the purified protein was determined by MS-MALDI using the Invitrosol MALDI 

protein solubilizer kit (Invitrogen). The concentration of the protein was determined 

spectrophotometrically using an extinction coefficient (ε 280 nm = 17,210 M−1cm−1) 

calculated from the deduced protein composition 51.

Lipid reconstitution of the voltage-sensing domain of KvAP

The S1–S4 voltage-sensing domain of KvAP was reconstituted to different molar ratios of 

protein to lipid as previously described 14,52–54 using a 1:1 mixture of POPC (1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and POPG (1-palmitoyl-2-oleoyl-sn-

glycero-3-[phospho-rac-(1-glycerol)]). All lipids were purchased from Avanti Polar Lipids 

and mixtures dried from solution in chloroform under a stream of nitrogen gas and 

desiccated under vacuum overnight. Lipid films were solubilized in 20 mM Tris/HCl, 100 

mM KCl buffer, pH 7.8 with 3% (w/v) OG and protein was added to the lipid to form mixed 

detergent-lipid micelles. Proteoliposomes were formed by rapid dilution of the protein-

detergent-lipid mixed micelles well below the critical micelle concentration of the OG 

detergent. Proteoliposome pellets were collected by ultracentrifugation at 200,000 g at 4°C 

using an Optima TL 100 TLX ultracentrifuge and 100.3 TLA rotor (Beckman). 

Proteoliposome pellets were resuspended in H2O and sedimented by ultracentrifugation, 

resuspended and mildly sonicated for 1 minute in water bath sonicator. The resultant 

proteoliposomes were analyzed for the lipid content using the modified method of Bartlett 

55 and residual detergent contents determined using the modified phenol-sulfuric acid assay 

56 and by dissolving aliquots of the sample in deuterated MeOH and analysis of the 

components of the mixture by 1H NMR.

Circular Dichroism Spectroscopy

Circular Dichroism spectra were recorded in 20 mM Tris/HCl, 100 mM KCl buffer, pH 7.8, 

using a JASCO J-815 spectropolarimeter equipped with thermally controlled cuvette holder. 

Spectra were recorded on voltage-sensing domain samples in 0.1–1 mm quartz cuvettes, 

from 180 nm to 250 nm with 1 nm step resolution and 4 sec integration time. The helix 

content of the protein sample was calculated according to ref 57, which indicated high (~ 

85%) helical content of the protein both in OG micelles and when reconstituted in lipid, 

consistent with the X-ray structure of the S1–S4 domain of KvAP4, and EPR results on the 

S1–S4 domain and full length KvAP channel 9,13.

Fluorescence Spectroscopy

Fluorescent emission spectra for Trp-70 within the S2 helix of the voltage-sensing domain 

of KvAP were recorded for the protein in either OG micelles or reconstituted into lipid. 

(Trp-70 is the only Trp residue within S1–S4.) Fluorescence spectra were recorded in 20 

mM Tris/Cl, 100 mM KCl, pH 7.4 at 25°C with stirring in a total volume of 2 ml using the 

SPEX FluoroMax 3 spectrofluorometer. Quartz 1 cm × 1 cm curettes were used for all 
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fluorescence measurements. An excitation wavelength of 295 nm (5 nm band pass) was used 

and the emission was scanned between 300 and 400 nm (5 nm band pass) with an increment 

of 0.5 nm. The polarizer was configured to excitation-90°, emission-0° 58 and emission 

spectra of OG buffer or lipid alone were subtracted. Quenching of Trp-70 fluorescence was 

examined by titration with acrylamide (Q), an aqueous quencher of Trp fluorescence. Stern-

Volmer quenching constants, KSV, were calculated from the best fits of equation 1, where F0 

and F are fluorescence of the Trp-70 in the absence and presence of a quencher, 

respectively, and [Q] is the concentration of the quencher:

Equation 1

To determine the disposition of the Trp-70 in model membranes, we compared quenching 

by bromine atoms attached to different positions on the hydrocarbon tail35,36,59. For these 

experiments, protein was reconstituted into proteoliposomes using a 1:1 mixture of POPG 

and either Br2(6,7))-PC (1-palmitoyl-2-stearoyl(6–7)dibromo-sn-glycero-3-

phosphatidylcholine, C16:0,C18:0), Br2(9,10))-PC (1-palmitoyl-2-stearoyl(9–10)dibromosn-

sn-glycero-3-phosphatidylcholine, C16:0,C18:0), or Br2(11,12))-PC (1-palmitoyl-2-

stearoyl(11–12)dibromo-sn-glycero-3-phosphatidylcholine, C16:0,C18:0).

Determining structure from neutron diffraction data and deuterium contrast variation

Lamellar diffraction patterns yield transbilayer distributions of scattering-length projected 

onto the bilayer normal (z-axis), called bilayer profiles written as ρ(z). The profiles 

presented in this paper have been placed on the absolute per-lipid scale. The simplest 

profiles are obtained by Fourier transformation of the measured structure factors FM(h) = 

√Ih, where Ih is the corrected intensity (below) of the hth diffracted intensity. In this case, 

ρ(z) varies along the bilayer normal and has an average value of 0 when integrated over the 

unit cell defined by the Bragg spacing d. The amplitude of ρ(z) is arbitrary, determined only 

by the units used to measure intensities, such as neutron counts observed in a given time 

period. This simple approach provides limited information about the disposition of 

molecules dissolved within the bilayer.

Useful information can be obtained only when the profiles are placed on an absolute scale, 

meaning that (1) the average value of ρ(z), ρ0, corresponds to the total scattering length of 

the unit cell and (2) the variation of ρ(z) around ρ0 shows absolute changes in scattering-

length density. To determine ρ0, the contents of the unit cell (lipid, water, and protein) must 

be known. To calibrate the variation of ρ(z), an isomorphous substitution of atoms of known 

scattering-length bsub must be introduced into the sample. In this case, the integral over the 

unit cell of the so-called difference profile, Δρ(z) ≡ ρsub(z) − ρ(z), must equal bsub. This 

procedure, described in detail by White and colleagues 32,60,61 yields instrumental 

constants k(h) that lead to absolute-scale structure factors F(h) = k(h)FM(h). For a 

centrosymmetric bilayer containing two lipids per unit cell, the average scattering-length 

density is given by ρ0 = (2/Sd)∑bi, where S is the area per lipid and ∑bi is the sum of the 

scattering-lengths of all of the atoms in the unit cell. One rarely knows the value of S. To 

circumvent this problem, Jacobs and White 32 introduced what they called the relative 

absolute scale in which ρ*(z) = Sρ(z). A better and more descriptive term is the per-lipid 
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scale, because the scattering-length density describes the scattering-length per lipid rather 

than per unit volume. To use this scale, one needs only the average numbers per lipid of 

waters and other components in the unit cell. The profiles presented in this paper have 

placed on the absolute per-lipid scale.

The absolute per-lipid scattering-length density is given by

Equation 2

where ϕ(h) is the sign of the absolute-scale structure factor F(h) whose absolute value is |

F(h)| and hmax is the index highest-angle observable structure factor. For centrosymmetric 

unit cells, which prevail for the data presented here, ϕ(h) = ±1 (i.e. cos(0) or cos(π). 

Methods for determining the signs have been discussed in detail elsewhere 30,31.

Treatment of diffraction data—In the kinematical approximation, the structure factors, 

F(h), at all observed diffraction orders, are determined as the square root of the integrated 

peak intensities, after background correction, absorption correction (B), and Lorentz factor 

correction (sin(2θh)), where θh represents the angle of incidence corresponding to the hth 

order of diffraction. The absorption correction was calculated as: B(h)= sin(θh)/(2αt)*[1-

exp(-2αt/sin(θh)], where t=sample thickness and α=linear absorption coefficient30. We 

determined phases by measuring a sample in a series of different 1H2O-2H2O contrasts (i.e. 

using different mole fractions of 2H2O in the salt solutions for hydrating the sample). 

Assuming a Gaussian distribution of water hydrating the lipid headgroups 60, the difference 

structure factors corresponding to a lipid bilayer hydrated with 2H2O (FD) and 1H2O (FH), 

respectively, can be modeled according to Equation 3.

Equation 3

where A and Z denote the 1/e half-width and the mean position of the Gaussian describing 

the labeled component distribution (water, in this case). The prefactor xD scales with the 

amount of deuterium per lipid: xD = 2(bD-bH)fDnD,, where bH and bD are the scattering 

lengths of deuterium and hydrogen, respectively, fD is the fraction of deuterated component 

and nD is the number of deuterium atoms per molecule in the labeled component. The cosine 

factor in Equation 3 determines the slope of the linear dependence ΔF(h)=f(xD), and thus the 

phases ϕ(h).

To determine the transbilayer distributions of water, -CH2-CH2- group of the 

phosphorylcholine (PC), and the S1–S4 domain of KvAP, we substituted those molecular 

components by their deuterated counterparts, for both protein-containing or pure lipid 

samples, and compared their density profiles with those of protonated samples using the 

absolute per-lipid scale.

Scaling of the neutron data and determination of the amount of water per lipid
—Because the raw diffraction intensities collected are not normalized, the absolute (per 

lipid) scale is determined based on the sample composition (e.g. protein concentration and 
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amount of water). While the protein concentration was determined by UV absorbance at 280 

nm, the amount of water accumulated in the protein-containing membranes at the relative 

humidity of our experiments is unknown, and has to be determined by additional 

experiments. We used a lipid deuteration scheme (manuscript in preparation), which 

includes deuteration of the water of hydration (2H2O) and the PC -C2H2-C2H2- group (D4 

lipid), respectively, to resolve the absolute scale and the number of waters per lipid. The two 

homologous samples (protonated and D4-lipid) were each measured under at least two 

different 1H2O-2H2O contrast conditions by exchanging 1H2O with 2H2O in different 

proportions (e.g. 1H2O:2H2O=100:0; 50:50; 80:20) in the saturated salt solutions used in the 

chamber. Both the water and the D4 label are components that can be described by Gaussian 

distributions 33,60. In Equation 3 we compare the data from the protonated and D4 lipid 

homologous samples, measured in either 1H2O or 20% 2H2O, to determine the parameters 

describing the D4 distribution. Knowing the prefactor xD, we determine the position Z and 

width A, as well as the scale factors kH (protonated lipid) and kD (D4-lipid), by a least-

squares minimization procedure. Once scaled, the data collected in 1H2O and 20% 2H2O, for 

a given sample, are compared in Equation 3 to determine the water distribution parameters 

and the number of waters per lipid contained in the prefactor xD. The water content of neat 

POPC multilayers determined using this approach is indistinguishable from that determined 

by independent methods 62.

Molecular dynamics simulations

Two simulation systems with 9 and 11 waters per lipid and 130 lipid molecules per protein 

(corresponding to the conditions of 86% and 93% relative humidity, and a protein to lipid 

ratio of 0.77%) were prepared from the end configuration of a simulation trajectory of the 

S1–S4 domain of KvAP in a POPC bilayer with excess water reported in reference (27). The 

initial atomistic model in the excess water simulation corresponded to residues 24 to 147 in 

the model of the KvAP full channel proposed by MacKinnon and collaborators 63. The pore 

domain of the full channel model provides an unambiguous constraint for the orientation of 

the S1–S4 domain in the lipid bilayer. The final placement of the protein in the lipid bilayer 

along the transmembrane direction was determined by assuring that the 5 Tyr side chains in 

the S2–S3 connecting turn and the S3–S4 end were, simultaneously, in contact with the 

headgroup region on opposite sides of the lipid bilayer. Further details of excess water 

simulation system set up and MD trajectory generation can be found in reference (27). The 

low-hydration simulation systems consisted of two stacked lipid bilayers, each containing a 

single S1–S4 domain, arranged to form a single pseudo centrosymmetric unit cell. The 

system with 9 waters per lipid was prepared by removing the necessary water and lipid 

molecules from the end configuration of the excess water simulation. The initial 

equilibration consisted of 1000 steps of energy minimization, followed by 1 ns molecular 

dynamics run at constant volume and constant temperature (295 K) with the protein 

backbone held fixed. The full simulation was then carried out at a constant temperature of 

295 K and constant pressure of 1 atm. The protein was progressively released from its initial 

configuration over the first 5.5 ns using harmonic restraints. The simulation was carried out 

in the absence of restraints for 37.5 ns. The system with 11 waters per lipid was prepared 

from the end configuration of 9 waters per lipid system by adding the necessary number of 

water molecules. The initial equilibration consisted of 1000 steps of energy minimization, 
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followed by a 20 ps run at constant volume and constant temperature (295 K) over the newly 

added waters, and 80 ps over the whole system. The full simulation was then carried out at a 

constant temperature of 295 K and constant pressure of 1 atm for 25.2 ns. All of the 

molecular dynamics trajectories were generated with the NAMD 2.6 software package 64. 

The CHARMM22 and the revised CHARMM27 force fields 65–67 were used for the 

peptide and the lipids, respectively, and the TIP3P model was used for water 68. The smooth 

particle mesh Ewald (PME) method 69,70 was used to calculate electrostatic interactions, 

and the short-range real-space interactions were cut off at 11 Å, employing a switching 

function. A reversible multiple time–step algorithm 71 was employed to integrate the 

equations of motion with a time step of 4 fs for electrostatic forces, 2 fs for short-range non-

bonded forces, and 1 fs for bonded forces. All bond lengths involving hydrogen atoms were 

held fixed using the SHAKE and SETTLE algorithms. A Langevin dynamics scheme was 

used for thermostating. Nose-Hoover-Langevin pistons were used for pressure control 72,73. 

Molecular graphics and simulation analyses were performed with the VMD 1.8.6 software 

package 74 over the last 10 ns of each simulation. To compare simulations with 11 waters 

per lipid with the experimental data directly, neutron diffraction structure factors75 for the 

nth order of diffraction F(n) were computed from the MD trajectory according to Equation 4,

Equation 4

where the sum is over all the atoms in the simulation unit cell, bj and zj are the neutron 

scattering length and z-coordinate of the jth atom, respectively, d half of the simulation cell 

length along the transmembrane direction and n is an integer. The scaling factor of half the 

simulation cell length for the spatial coordinates corresponds to the repeat distance of an 

oriented stack of bilayers. The oriented bilayers diffract as centrosymmetrical objects 

independent of the presence of the protein. The purpose of the double-bilayer simulation 

system is to model the two equally probable orientations of the protein in the lipid bilayer. 

Therefore, since the total scattering length of a single simulation cell is twice that of a single 

repeat unit in the diffraction experiment, each atom in the simulation cell is considered to 

have an occupation factor of one-half. Structure factors were averaged over 10 system 

configurations (one per ns of trajectory), and the total scattering density profiles were 

constructed from the structure factors exactly as in the analysis of the experimental 

diffraction data (see Eq. 2 in neutron diffraction methods section). Component densities 

were computed following the experimental protocol (see Eq 3 in neutron diffraction 

methods section) assuming uniform labeling at the same mole fraction as in the neutron 

diffraction experiments. The average length of the simulation cell in the dimension 

perpendicular to the membranes was 104 Å, corresponding to a d-spacing of 51.8 Å for a 

single bilayer containing the S1–S4 voltage-sensing domain of KvAP, in excellent 

agreement with the experimental value of 52 Å obtained at 93% relative humidity 

(corresponding to 11 waters per lipid).

The electrostatic potential in the excess hydration simulation was calculated using the 

linearized Poisson-Boltzmann theory, treating all the system components as linear, isotropic 

dielectrics under an applied potential difference across the membrane, as previously 

described 76–78. For a given configuration along the simulation trajectory, the electrostatic 
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potential was calculated over a composite system consisting of a cuboid region of space 

(dashed rectangle in Figure 5b), containing the atomistic configurations of the protein and 

most of the lipids. This region is embedded in a continuum composed of a semi-infinite 

planar slab, representing the membrane, between two half-spaces that represent the 

electrolyte solution 77. The calculations were performed over the last 16 ns of the simulation 

trajectory, taking one configuration per ns, using the PBEQ module of the CHARMM 32a2 

software package 79. The linearized Poisson-Boltzmann equation was solved by finite 

differences, using the successive over-relaxation method, over a cubic grid of 161 nodes 

with a grid spacing of 1 Å. The continuum slab thickness was set to the separation between 

carbonyl distributions in the atomistic system. A dielectric constant of 2 was assigned to 

lipids and protein. The solvent dielectric constant was set to 80 and the salt concentration 

was set to 150 mM. The molecular surface was used to define the atomistic dielectric 

boundaries using the CHARMM force field 65 van der Waals radii.

NMR Saturation Transfer Difference using MAS

Saturation Transfer Difference (STD) experiments 80 were implemented to study hydration 

of the voltage-sensing domains in membranes. Magic Angle Spinning (MAS) conditions 

were used as previously described 38,81 to resolve lipid resonances. 1H NMR spectra of 

lipids were recorded and resonance attenuation measured in response to radio frequency 

(RF) pulses. The saturating RF pulses (field strength 0–1.2 kHz) consisted of twenty 

Gaussian-shaped 50-msec pulses. The saturation frequency was set to the amide region of 

the protein (8.5 ppm) or water resonance (4.792 ppm). The attenuation of the lipid 

methylene signal defined as resonance amplitude recorded without saturation divided by the 

amplitude with saturation was followed as indicator of magnetization transfer to lipid. The 

proteoliposomes were packed into 4 mm MAS rotors (Bruker) and hydrated with 

either 2H2O or 1H2O to the final water to lipid ratio of 30:1. 16 scans with a recycle delay of 

10 s were acquired at 295.1°K. All spectra were recorded on a 800 MHz Bruker AV800 

spectrometer equipped with a 4 mm 1H/13C/2H CP-MAS probe (Bruker Biospin Corp., 

Billerica, MA) at a MAS frequency of 10 kHz.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. S1–S4 voltage-sensing domains and their biophysical properties in lipid bilayers
a) Representation of membrane proteins containing S1–S4 voltage-sensing domains (red), 

embedded in the lipid bilayer (light grey). b) Circular Dichroism spectra of the S1–S4 

voltage-sensing domain of KvAP in OG micelles (dotted red line) or reconstituted into 

POPC:POPG proteoliposomes at a protein/lipid molar ratio of 1:130 (solid red line). Mean 

residue elipticity (Θ) is given in units of deg cm2 dmol−1. CD spectra indicate high (~85 %) 

helical content (see Methods). c) Fluorescence emission spectra of Trp70 within the S1–S4 

voltage-sensing domain after reconstitution in POPC:POPG (protein/lipid molar ratio of 
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1:100) in the absence (solid red line) and presence of 50 mM aqueous acrylamide (dotted red 

line). Emission spectra for the free Trp (25 µM) mixed with the POPC:POPG liposomes of 

identical lipid concentration in the absence (solid green line) and presence of 50 mM 

aqueous acrylamide (dotted green line). d) Stern-Volmer plots for acrylamide quenching of 

fluorescence emission for Trp70 within the S1–S4 voltage-sensing domain (red) or free Trp 

(green). Error bars are S.E.M (n=3). The Stern-Volmer constant for quenching was 0.4±0.02 

M−1 for Trp70 and 26.2±0.2 M−1 for free Trp. e) Quenching of fluorescence emission of 

Trp70 within the S1–S4 voltage-sensing domain by Br atoms attached at different positions 

along the lipid hydrocarbon tail. The protein was reconstituted into the 1:1 mixture of POPG 

and either POPC or one of three dibrominated lipids (Br2(6,7)-PC, Br2(9,10)-PC, 

Br2(11,12)-PC (see Methods for nomenclature). Error bars are S.E.M (n=3).
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Figure 2. Scattering length density profiles for bilayers containing S1-S4 voltage-sensing 
domains
a) Scattering-length density profiles on an absolute scale32 of the S1–S4 voltage-sensing 

domain in lipid bilayers (black solid line) and the water distribution (blue solid line). 

Protein:lipid ratio is 1:130 (0.77 mol%) and relative humidity is 86%. Profiles for lipid in 

the absence of protein (dashed lines) are shown for comparison. The density profile 

amplitudes are presented in units of scattering-length per unit length, corresponding to the 

scattering-length density of a unit cell (0.4962:0.4962:0.0079 POPC:POPG:protein, plus 8.5 
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water molecules) multiplied by the area per lipid (S) (see Methods). The X axis shows the 

distance from the bilayer center (z) with 0 positioned in the middle of the bilayer. b) Effect 

of S1–S4 voltage sensing domains on the bilayer thickness (Bragg spacing, d) at different 

protein:lipid ratios (given as mol% protein). Triangle marks the value of d for neat lipid 

bilayers. Open circles are for voltage-sensing domains with His tag removed (see methods) 

and closed circles are for the His-tagged protein. c) Distribution of deuterium atoms in 

headgroup labeled phosphocholine (–C2H2-C2H2-; D4 lipid) in bilayers containing S1–S4 

domains (solid green line) and comparison to the distribution of water (solid blue line). 

Dashed lines show distribution of D4 lipid and water in the absence of the protein. 

Protein:lipid ratio is as in b and 25 mol% D4-POPC is used in the mixture of POPC:POPG. 

Relative humidity is 93%.
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Figure 3. Deuteration of S1–S4 voltage-sensing domains and distribution of the protein in lipid 
membranes
a) Mass spectra (MS-MALDI) of the protonated S1–S4 domain of KvAP (1H S1–S4; 

purple) and uniformly deuterated S1–S4 domain (2H S1–S4; red). The difference in mass 

indicates that the protein is deuterated to 74%. b) Transbilayer distribution of the S1–S4 

domain (white line surrounded by a broad red band) obtained in neutron diffraction 

experiments by the profile difference of deuterated and protonated S1–S4 domains. Profiles 

are shown on an absolute (per lipid) scale. Water distribution is shown in blue and lipid as a 
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black line surrounded by a gray band. The broad bands represent estimates of experimental 

uncertainty computed using the methods of Wiener and White35. Protein:lipid ratio is 1:130 

(0.77 mol%) and relative humidity is 93%. c) Neutron scattering length density profiles for 

the simulation system with 11 water molecules per lipid. Transbilayer distribution of the S1–

S4 domain is shown as a white line surrounded by a broad red band (estimated experimental 

uncertainty), water in blue and lipid in black. d) Snapshots of the region in the vicinity of 

one of the two voltage-sensing domains from the MD simulation of a stack of two bilayers 

with 11 water molecules per lipid (left) and excess water (right). Waters within 6 Å of 

protein are shown as red/white spheres while all other waters are colored purple. 

Phosphocholine headgroups are colored yellow and the acyl chains are colored light green. 

Ribbon diagram of the S1–S4 domain is colored red with the outer four arginines in S4 

shown as blue CPK models.
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Figure 4. Interaction of water and S1–S4 voltage-sensing domains within lipid membranes
a) Schematic representation of crevices in S1–S4 voltage-sensing domains (red) filled with 

water (blue) and an experiment in which selective, saturating radio frequency (RF) pulses 

were applied at the water resonance (4.792 ppm). Magnetization transfer from water through 

protein to the surrounding lipid results in the attenuation of the lipid 1H NMR signals. b) 
Aliphatic region of MAS 1H NMR spectra of a lipid sample containing S1–S4 voltage-

sensing domains in the presence of 1H2O (left spectrum) or 2H2O (right spectrum). Lipid 

resonances for both POPC and POPG (present in a 1:1 mix) are indicated on the spectra, 
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with peaks corresponding to underlined 1H atoms. Attenuation of the methylene resonance 

(1.3 ppm) is observed (blue traces) when saturating RF pulses (field strength 232 Hz) are 

applied at 4.792 ppm to a sample containing 1H2O (left spectrum), but not to one 

containing 2H2O (right spectrum). Attenuation is defined as signal intensity recorded 

without saturation divided by signal intensity with saturation. c) Attenuation factors plotted 

as a function of RF field strength (power, kHz). The carrier frequency was placed on either 

the water resonance (4.792 ppm) (blue) or protein amide region 8.5 ppm (red). All circles 

are for S1–S4 domains in lipid bilayers where protein: lipid ratio is 1:100. Triangles are for 

samples containing lipid alone. Samples containing 1H2O are shown as filled symbols, 

whereas those in 2H2O are shown as open symbols.
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Figure 5. Effects of the voltage-sensing domain on a lipid bilayer as revealed by molecular 
dynamics simulation
a) The lipid bilayer interface, represented as a 2D Delaunay triangulation for the average 

positions of lipid carbonyl carbon atoms, reveals local distortions around the voltage-sensing 

domain. b) The transmembrane potential on a slice passing through the system center (the 

R133-D62 salt-bridge) shows focusing features in the voltage-sensing domain cavities. 

Contributions to the molecular surface by aliphatic chains (green); polar groups (yellow); 

and protein (white, transparent) of the corresponding cutaway view are shown as 
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background. The dashed box indicates the region of the system considered atomistic in the 

calculation of the transmembrane potential (see Methods). In both panels the voltage-

sensing domain is in ribbon representation with the outer four arginines in S4, and their salt-

bridge partners, shown in CPK representation and colored by atom.
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