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The usual consistent estimator of Ap;(fi) is

Al — 1 -
AP =~ DD 6(X,),
v=1
where {X,, v =1,...,n} is a sequence of random variables with probability

distribution P;(dx). Evidently, a consistent estimator of F(ji) is Fn(ﬁ) =
(n)

max; Ap; (fi). This method can reduce computational time by the factor of

tens and hundreds.
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where F(ji) = maxie(r_gy Ap (Do(e, (). 7). k < N and Dyfa, TI(ji)) is a

Bayes test with respect to the a priori distribution

= (Z KiP1iy- - - Z ﬂz’pki) .

teT* te*

Thus the problem of the search for a least favorable distribution g* is
reduced to minimization of the function F'(). If this function is continuous
one can use standard numerical minimization methods (e.g., gradient or other
minimum-seaking techniques). However, if the sets where likelihood ratios
are constant have non-zero probability (i.e., the distributions of likelihood
ratios are discontinuous), then, as we could see, the function F'(fi) in general
is discontinuous and, moreover, its values at the points /i, which correspond
to the randomization, generally speaking, are not equal to the limit of F'(i)
as we tend to these points in any direction. In this case we cannot apply
standard gradient methods as well as the others without special modification.
The minimization of F'(fi) should include, therefore, a preliminary stage of
the search for all values of ji for which the Bayes test Dy(x,1I(j)) requires
randomization, a special investigation of F'(fi) at these points and finally the
search for minimum at the continuity points of F(i) by standard methods.

A second question of practical importance is the calculation of the func-
tion F'(f{). Sometimes this includes a calculation of complicated integrals in
high-dimensional spaces. It may be more efficient to compute F(ji) by the
Monte Carlo method. In fact,

Apz / 2250 l’ H Ll]pzldpl( )

=1 j7=1

where P;(dz) = Zﬁl Py(dx)p; is the mixture of probability measures with
weights {p;;}, F; is the corresponding expectation,

ZZ5O$ H Ll]ﬂ—l()( )7
=1 j7=1

Wl(i)(x) = P(dx)p;/ P/(dx) is the corresponding a posteriori probability, f/lj =
Ll‘ — mins LS]

J
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Consequently, the distribution function Fy(y) of statistic Y(X) is given
by

B In(C*/a;) +my(T)
fol =11 ( 2 (1) ) |

where m;(T) = lfOT A?(t)dt. If again o; = 1/N and m;(T) = m(T), then

2
equation (83) for the threshold C* has the form

EETYLP (mww + m<T>) o {_ [In(Ny) + m(T)P} iy
2¢/mm(T) /0 2m(T) Am(T)

Ly [1 e (ln(NC*) + m(T))

2m(T)

or after manipulations

B[ ety 2T @) exp(—y 21y = 20— 0(0).

This equation can be simplified in the case of large values of m(T).

5 Computational Aspects

In previous sections we have found the solutions of the minimax problems in
closed form in the more or less general conditions when the set I* where a
least fovorable distribution is strictly positive can be determined in advance.
However, in some cases this set is not known in advance and in order to find
the structure of the MAR test and its parameters it is necessary to solve
the system of equalities and inequalities (13) and (14) (or even (10) and
(11)). The problem of Section 4.4 can serve as an example. The solution
of this system which represents a least favorable distibution i = {u},c/-
(x> 0fors € I*, 3,cp+ i = 1) in the general case can be written as follows

fi- = arg min F (i),
o
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is also weakly depends on N.

Suppose now that the components X; = X,() represent continuous-time
Gaussian processes observed on the interval [0,T], T < oo with stochastic
differentials

dX,(t) = [A;(t) + n;(D)]dt + dW;(t), if H, is true,
ST ma(t)dt + dWi(t), it Hy, k#1or H, are true,

where X;(0) = 0, A;(t) are some deterministic functions (signals), n;(¢)
are correlated Gaussian processes and W;(t) are standard Wiener processes
(noises). In other words, the useful signal can present only in one of the N
resolution elements (channels) or can absent in all channels (hypothesis Hy).
The hypothesis H; is identified, as before, with the presence of a signal in
1th channel. The problem is to detect a signal and to indicate the number of
a channel where a signal appears on the basis of observation of the process
X(t) = (Xq(t),..., Xn(t)) on the interval [0, T]. Let the noises n,(t) + W;(t)
and n,(t) + Wy(t) be mutually independent. Then the likelihood ratios (84)
A(X(1), 0<t<T) = A(Xi(1), 0<t <T)=A(T), i1=1,...,N

K3

have the following representation [3], [5]

AxTwzam{[fowwxxw—ﬁxwﬁ«—%ATAﬂwﬁ},

where

t t
Aty = a0 = [t wAde, ) = [t wdxi),

Here r;(t,u) is a response of a filter which carries out the optimal mean-

square filtering of the process 1;(¢) in the mixture with white Gaussian noise

dW;(t) (r;(t,u) is described by a well known Wiener—Hopf equation).

It could be shown [3] that under hypothesis H the log-likelihood ratios
Z;(t) = In A;(t) are the processes with independent Gaussian increments and
parameters

1

BoZ(T) = ~ S Bl Z(T) ~ B2 (D) = — [ Aty

where F, denotes the expectation with respect to the measure F,.
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The MAR test is non-randomized and the threshold C* is determined
from equation (83) where Fy(y) is defined by (86). Let the distribution
of the location of a target be uniform (o; = 1/N) and the signal-to-noise
ratios be the same for all elements (¢; = ¢). Then using (86) and (83)
after simple manipulations we obtain the following equation for the constant

h = [N(1+ q)C*]-(+1/9)

I'(N +v)

I(NI(T+0v) (87)

Bu(h) + 2201 — (1~ b)Y

where v = 1/(1 + ¢), I'(y) is the gamma function and

I'(A)

I'(A,) v

1 2

= — - M1 — f)re—1dt e (0,1
/\1,/\2(y) F( 1 )\2)‘/0 ( ) b y [ b ]

is the beta distribution with the parameters A;, A,.
It N > 1, which is usually typical for modern radar systems, then equa-
tion (86) is simplified and takes the following form

L oo
TON”[l —exp(—hN)]+v /Nh tv=texp(—t)dt =~ 1.

If, besides, v < 1 (i.e. ¢ > 1) then we have
L
TON”[l —exp(—hN)] +T(1 +v) — (Nh)* ~ 1.
It follows from this that asymptotically for large values of signal-to-noise

ratio (v — 0) the threshold C* weakly depends on the number of resolution
elements. In fact, for ¢ > 1 the equation becomes

LONl/q 1 1 —|—F 14 1 1 /4 |
L P qC* 1+y¢q qC* A

By virtue of (81) and (82) the minimax regret

Ap* = Lo[l = F(Y(X) < C%)] = L[l = (1 = h)M]
and if N > 1, ¢ > 1 then

1

Ap* & Lo[l —exp(—=hN)] =~ L, ll — exp (—)]
qC™
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Assume that the components X; and X,, are statistically independent
for all & # m which corresponds to the natural assumption of independent
noises in different resolution elements. Then

dP; e dP;(x;

— Z(x17 7xN) — Z(xl) — Al(xl) (84)
dPy(xq,...,xn)  dPy(x;)

Ay, o)

where Py(z;) and P;(x;) are the measures corresponding to a noise and to a
mixture of a signal from target and a noise in the ¢th element, respectively
(A;(x;) is the likelihood ratio for this element). If X is the result of a quasi-
optimal preprocessing of a mixture of a Gaussian signal with slow fluctuations
and a white Gaussian noise, then X; has exponential distributions with the

densities (see, e.g., [3])

1 Ly .
pz(%) = TQGXP (—1 n q») ) po(l'i) = pk(%) = eXP(—l’i)a k 7é 1, ; >0,

where ¢; is the signal-to-noise ratio in the ¢th resolution element.
In this special case the statistics A;(z;) and Y(2) have the form

1 .
Az(%) = 1+ 4, exp (1 _ql_lq%) )

Y(:L’):exp{ max |2 :Iii—l-ln(ozi/(l—l-qz'))]}- (85)

ie{l,..,N} [1 + q;
Since X;, ¢ = 1,..., N are mutually independent, the distribution funec-
tion Fy(y) = Py(Y(X) < y) of the statistic Y/(X) is expressed as follows

Foly) = 1:[ Pyl Ay (X;) < y)
By (85) for y > a;/(1+ ¢;)

1 : 1 . ' 1+1/q:
4 a; y(1+¢)

and is equal to zero for y < a;/(1 + ¢;). Hence

N o 1+1/gs .
Foly) = — [1 B (mi) ] vy 2z mineq, vy o/ (14 4i), (86)
0, y < mingegy aypog/(1+q;).
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Relations (81) and (82) give the desirable equation for v and g*.

It should be noted that in attempting to solve the above decision problem,
the first step is to find the conditional distributions of the statistic S(X') that
represents rather difficult problem even in the simplest cases. The problem
is essentially simplified if L, = L. Then S(z) = Y(z) and it follows from
(81) and (82) that the equation for v and g¢* takes the form (c.f. (67))

/ Y(a)dPofx) + 2 By(Y(X) < C*)
x )+ —
{o:Y (z)<C*} 0 L°°
Lo Lo
Y (z)dPF, — P Y(X)=C") = —.
1] ooy YN+ SRV (X) = € =

If P—distributions of A;(x) are continuous the MAR test becomes non-randomized
(v =1) and we arrive at the following equation for C*(g*)

c* LO
WAy (3) + o 07) = 22, 53
where Fy(y) = Fy(Y(X) < y) is the distribution function of the statistic
Y(X) = max;eqq, nyp ;A;(X) under hypothesis Hy.

FExample 12. Let X = (Xy,..., Xy) be an N-component vector, where
X, represents an observation process in the kth resolution element of a radar
system (a total number of such resolution element or channels is equal to
N). The problem is to detect a target and to determine its location (i.e.,
to indicate the number of the element where a target is present) or to make
the decision that a target is absent. The absence of a target is identified
with the hypothesis H, and its presence in the ¢th resolution element —
with the hypothesis H;. Therefore L, is the loss due to a false alarm which
is essentially greater than the loss [; due to target missing or the loss L
due to an incorrect determination of its coordinates. Moreover, it would
seem reasonable to suppose that an incorrect determination of the location
of a target leads to its missing and hence L, = L. The probability of a
target appearance 7, is, of course, unknown but the conditional probabilities
a; = Pr(H; | target is present) of the location of a target in the particular
resolution element are known. Thus the optimal test has the form (77) where

S(x)=Y(x)= maXge (1, N} apAp(2).
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Additional notations:
a=1L[/Ly; C*= Ly/g"Ly;
Y(r)= max azAx(z); S(z)=aY(z)+ (1 —a)A(a).

ke{1,..,N}

It follows from (75) and (76) that the MAR test can be represented in
the form

1, S(x)<C*,
ox(z) =4 7, S(x)=0Cx, (77)
0, S(z)>Cx
L, S(x) > Cx, oA j(2) > maxgey v, (),
5]*(:1;) =< 1—7, S(z)=0C" o;Ai(z) > MaXye N\ ayA(z),  (78)
0, S(x) < C*.
If S(z) > C* and maximum Y'(x) is attained for several hypotheses among
H,, ..., Hy we may accept any one, for instance, with minimal number. The

same hypothesis is accepted with probability 1 — v if S(z) = C*. Now it
remains to specify equation (56) for the parameters ¢g* and ~.

Similarly (63) and (64) we have

Apy = Lo [ [1=85(a)ldPy(); (19)
Apy = (Ly = 1) Y 0 [ [85(2) = (. p)ldP()
LYy [ [0 5) - 67 (@)]dP @) (80)
Combining (77) and (79), we get
Apy = L{1 = Py S(X) < %) =4 Ry(S(X) = C*)}. (s1)

Note that 63(x, py) = 0 for all x and 69(z, py) = 1if Y (2) = a;A;(x), 6%(x, py) =
0 otherwise. Thus, using (77), (78), and (80), similarly (66) we obtain

Apy = (L1 — L)Z%’ [F(S(X) < C%) + 4 P(S(X) = C%)]

+I { /{ sy V@A) £ Y(:z;)dPO(:z;)} . (82)

{z:8(z)=C*}
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Assume that there are N + 1 hypotheses H,, « = 0,1,..., N. Hypotheses
H,,..., Hy are “similar” in the sence that the losses associated with these
hypotheses and corresponding decisions d;, 7 = 1,..., N do not depend on

the particular hypothesis. In other words

oo LElLi#)
i =, i=j, i,j=1,...,N.

On the contrary the loss L,; = Lg associated with the hypothesis H
when it is rejected are essencially greater then L 4 [. Let also L, = L, be
the loss due to making the decision d, when H; is true (accepting H, that is
not true). Assume that the loss associated with any correct decision is equal
to zero (i.e., L;; =1 =0for alle =0,1,..., N). There is no loss of generality
in making this assumption.

Thus the loss function has the form

0, 2=y, v=0,1,..., N,

_ 9 Z%]v Za]: 7"'7N7

Lij_ le Z7é07]:07 (74)
L07 ZZO?]%Ov

where L is the loss associated with dismissing of hypotheses Hy, ..., Hy; 14
is the loss when the hypothesis H,, is accepted instead of any of Hy,..., Hy
and L, is the loss due to rejecting H, when it is true. Let Ly > Ly > L > 0.

The a priori probability 7, = Pr(H,) is unknown, but conditional distri-
bution of Hy,..., Hy under condition that one of them is definitely true is
known (i.e., 7; = (1 — mg)a; where o, ¢ =1,..., N are known, Zf\;l a; = 1).
By A;(z) = dP;(x)/dP,(x) denote the likelihood ratio of hypotheses H; and
Hy, and let A(z) = Zﬁl aN(2), g = (1 — p*)/p* (p* is a least favorable
probability of hypothesis Hy). Then the a posteriori probability that H; is
true is given by

. _ Y+ gA (@), 1=0,
P = O Y s,
By (74) the a posteriori risk is expressed as follows
Ly[L = P*(H,y | z)], j=0,
() — . 76
= bt 4 = e o= e 1, 20 (9
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where X(;) = min{Xy,..., X} is the first order statistic. Assume that 0, —
0; > n~'In(a; /a4y ). Then

Y{zgy) =Y, =aexp{n(0; — 0,)} if 0, <y <y, 1=1,...,N, (72)

where 0y, = oo.
It follows from (59), (60), and (72) that we have to take C* =Y, _, for

some k and consequently the optimal test is defined as

0, l’(l) > ek*v
51‘(:1;(1)) = 1, [E(l) < Qk*_l,
Y, O < () < Oxs
6 (@) =0 for j =2, k" =2
. _/o ) < Ore1s
6 (z@)) { L=, 2y € [Op_1, Ops);
L, zqy€10,,0.,4)
" . ’ (1) VR E o WA
5j(x(1)) B { 07 (1) Q_ﬁ [0j70j+1)7 ] = k*7 e "N’

where the numbers k* and 4 are determined from the equation (see (67))
(i/k*_z ‘I‘ 1)P1(X(1) < ak*_l) ‘I‘ 7(1/16*—1 ‘I‘ 1)P1{X(1) 6 [0k*_170k*)} — 1 (73)

Here
Pi(Xq) <y)=1-[1 —exp{—(y — 0;)}]"

Let, for simplicity, n = 1 and 0, = 6, + 1A, A > 0. Then it follows from
(73) that the number k* is determined from the inequality

Qs _o (e(k*_z)A + 1) e~(F=DA <1 < qju_y (e(k*_l)A + 1) e~k A
and . .
_ 1 — ey (e®" =22 4 1) ("1
' (qpr_q e DA L 1) (e=F"A — e—(F"=1)A)"
Above we have considered somewhat symmetric case when the loss due

to making wrong decisions are greater than the loss due to making a cor-
rect decision by the same constant. Now consider the generalization of this

problem for more complex loss function which occurs in various applications.
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Example 10. Observations have exponential distribution with an unknown
scale parameter 6 > 0:

1 —exp(—fx), x>0,

0 r <0 (71)

and H :0=60,,:=1,...,N. Then

Ay(x) = viexp{(1 —v;)x},

V(@) = esplmax (1 — e +na]),
where v; = 6,/60, and the threshold is determined from equation (68). The
integrals in this equation are expressed in elementary functions and final
transcendental equation can be solved numerically. An interesting peculiarity
of the MAR test for the large values of the a priori probability f of the
hypothesis H; (which is unknown) is that it suppresses some of the nearest
hypotheses to H,. For instance, if N = 5 and «; = 0.25 then 83(x) = 0
for all « > 0. This property essentially distinguishes the MAR test from
the popular maximum likelihood test which is optimal for a uniform a priori
distribution of all hypotheses (i.e., for # = 1/N). However, for other / this
test is not optimal and gives the risk

o8 = =2 v -2 -1+ (v -1 4

which is essentially greater than the minimax risk if 3 > 1/N or < 1/N.

Fxample 11. Let {P;, 0] < oo} represents the family of exponential
distributions with the shift 4, i.e. the density of P, has the form

po(x) = { STP{—(:L‘ —0)}, i i Z

and H; : 0 = 6,, « = 1,...,N; 0, < 0,,,. The likelihood ratios A;(z) =
dP;(x)/dP,(z) for the vector X = (X,..., X)) of i.i.d. observations

n

exp{n(d, —0,)}, X4 >4,
M) = 8 = { =B F 2
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::L{A$YWKCﬂyx@dp¢xy+7 wYWFOﬂYT@de@}. (66)

Finally, using (65) and (66), we arrive at the equation

/{I’:Y(wkc*} Y(z)dPi(z) + A (Y(X) < C7)

v [/{x:Y(x):C*} Y(z)dP(z)+ P (Y(X) = C*)] = 1. (67)

If P,—distributions of the likelihood ratios A;(X) are continuous then
v =1 and equation (67) is simplified:

del(?J) + Fl(c*) =1, (68)

where Fy(y) = P,(Y(X) < y) is the distribution function of the statistic
Y(X) = MmaXie(2,. N} a; A (X).

The minimax risk regret Ap* is determined by expression (65) for the
general case and equals

Apr = L[L = Fy(C7)] (69)

for the continuous case.

Now noting that relations (61) and (62) are valid for any test D(z) and
using Corollary 2, we find that the minimax test D7 (x) = Dy(a, A\p; + (1 —
A)py) has the same structure as D*(z) (see (59) and (60)) with a threshold
C,, which satisfies the equation

/{x:Y(x)<Cm} Y(z)dP(z) + P (Y(X) <))

Y(x)dP P(Y(X)=C =] 4 ——=2
2o YHR@ P = 0] <1425
Comparing (67) and (70), it may be seen that D*(x) and D™ (x) coincide for

all cases when [; = [ = const, i.e. when the loss due to correct decisions are
equal. In the last case the minimax risk p™ = Ap* 4 [.

. (70)
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5/z%mm@+@+mu—®@wmw

_Zal+LZ /1—5 )JdPy () (62)

and hence

Apy =L [ [1=8(2)]dP, () (63)

Ap, = LZ {/ p)dpie) - [ 5;(1;)61132.(3;)} . (64)
From (59) and (63) we get
Apy = L{A(Y(X) > C") + (1 —y)A(Y(X) = C")}
— L{1 - P(Y(X) < C*) — 7P, (Y(X) = C*)} . (65)
Using (60) and evident fact that 8(x,7,) = 1 if ¥ (x) = Y;(z), we obtain

N

ﬁwé@@* n=3 [, 10 (2)dP ()

—Z/ (2)Py () = AY@MW%

N

Sai [ 8:(e)d Z/ (2) > C*)Yi(w)dPy(x)

+§%Anx@=ywmmw=mnmwaw

_ Y (2)dP,(x) + (1 — / Y (2)dP,(x
{z:Y (z)>C*} ( ) 1( ) ( 7) {z:Y (z)=C*} ( ) 1( )

= Y:L'dP:L'—/ Y (x)dP(x),
{z:Y (z)>C*} ( ) 1( ) 7 {z:Y (z)=C*} ( ) 1( )

where [(-) is an indicator function.
These last relations together with (64) yield

Spy= i [ YR - [ V@R 4 Vior, o)

{z:Y (z)=C*}

36



distribution II*(p*) and the a posteriori risk associated with the decision d;
are given by

. _ */Z\(x)v 1=1,
Pt o) = { 51 — p)eihi(z)[A(z), i=2,...,N o7

= 30 Ly Pr(H | ) = Y LPA(H, | @) + L[ = Pr(H; [ 2)]. (58)

Since the optimal test minimizes a posteriori risk, it follows from (58)
that it maximizes P*(H; | ) and using (57) we obtain

0, Y(x)>C~,
6 () = { 1, Y(e)<C (59)
v, Y(z)=Cr,
) > C=, Yi(x) <Y(x),

5]*(:1;) _ { 0, Y(x)<CrorY(x (60)

vy Y(z) =Y (x)>C*, j=2,...,N

J
where Y;(2) = a;A;(x), Y(r) = max; <<y ;A2 ) C* = p*/(1 — p*) and ~;
are arbitrary non-negative numbers such that Z v = 1if Y (x) > C* and
2]227]—1 yif Y(x) = C~.

Therefore the structure of the MAR test is determined but it remains
to find the “threshold” C'* and the numbers v, ~,. To this end let us use
equation (56). Clearly,

Y

(Do( _)) }71) = ly;

(Dol /Zoz 169, ) + 301 + L)&x, 5,)]dPi(x)

JF

_/ Za [1:69(x, ) + (L + L)(1 — 6%(x, 7,))]dPy()

:Zozi —I—LZ [ =80 P )

p(D*(@),5) =+ L [ [1 = 6(2)]dP () (61)
(D /Zam )+ (0 + L)8x(2)]dPi(x)
JF
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wrong is known. In other words =y =  is unknown and =, = (1 — #)ey, @ =
2,..., N, where a; are known, ZJQV a; = 1. Then the set P is a linear segment
with vertices at the points p; = {1,0,...,0}, py = {0,a5,...,ay}.

This case describes a variety of practical problems. The problem of de-
tecting a target (signal) with an unknown probability of appearance by multi-
channel radar system can serve as an example. The fact of a target appear-
ance represents a composite hypothesis: the number of a channel where the
signal is located (i.e., the target location, target type, etc.) has to be estab-
lished along with the fact of a target presence. These features (in particular,
the probability of a target location after it appears) have known (conditional)
distribution.

Another interesting example is the problem of classification and identifi-
cation of an object (in particular, in images) when multiple past observations
are available for the representatives of N — 1 classes and hence consistent es-
timates of a priori probabilities of these classes can be constructed. But the
Nth class is absolutely new, we know nothing about the probability of the
presence of this class and a priori information is restricted by the fact of its
possible existence.

Again for the sake of simplicity, consider the case when M = N. Let the

loss function is defined as follows

I.. = lz—l_Lv Z%]v
CA liv ZZ]? ivjzlv"'va

where L > 0, [, = L;; > 0. Thus the loss due to making a correct decision
when H, is true is equal to [; and the loss due to incorrect decision is more
than this loss by a positive constant L.

By Corollary 1 the MAR test is Baeys with respect to II*(p*) = p*p) +
(1—p*)py (ie., D*(2) = Do(x, p*py +(1—p*)py)) and the constant p* € (0,1)
is determined by the equation

Apy, = Ap,, (56)

where Apz = Ap(D*(l’),ﬁZ) = p(D*(l‘),ﬁZ) - p(DO(xvﬁz)vﬁz)
Denote A;(z) = %% the likelihood ratio of hypotheses H;, and H, and
let A(x) = p=+ (1 — p*) ZQ;Q apAy(2). After the element « has been drawn,

the a posteriori probability that ith hypothesis is true under the a priori
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the results of Example 4, we see that p(D*(x), ) = Lo /(07 4 07) for all
71 € [0,1] and hence the relative efficiency of the tests
o p(D:(l’),Trl)—p(D*(m),ﬂ'l) _ 1_7"—1 o

= = — -2 <07/ (0" 4 07).
7 o(D2(),m) noap VS s

It may be seen that efficiency increases when 7, decreases and tends to
infinity as 7, tends to zero. For 7; > 07 /(07 +07) the test (31) has advantage
since the condition of optimality of the test (55) m; < 0.5 is not fulfilled.
Note that 67/(0r 4 07) > 0.5, i.e. D*(x) has advantage in comparison with
(31) even in less rigid conditions than simple ordering. This reflects the
fact that the MAR test (55) is uniformly optimal in the conditions when
T < i (0:/0)" i =1,....N—=1(6; > 0,,,).

The family of distributions for which the ordering of prior probabilities
ensures the existence of a uniformly optimal test (which coincides with the
MAR test) is of course a lot richer than in example considered. Really, let S
be a sufficient statistic for the family of distributions P;(dx), ¢« = 1,..., N.
Denote Fj(ds) probability measures corresponding to S under H;. Assume
that there exists a collection of nonintersecting sets Sy, ..., Sy such that for

SGSk, kzl,,N

Fi(ds)=0,i=k+1,....,N; Fy(ds) > max F;(ds).

1<5<k
Then
. . 1, SGS]‘,
51(3)_{0, s¢S;, j=1,...,N,
Ap==Apm =10

and this test is uniformly optimal (i.e. Bayes) for all I belonging to the class
{Il: 7 < m < --- < 7wy}. The family of exponential distributions with
unknown shift parameter (see Section 4.5, Example 11) can serve as another
example.

4.5 Partial prior uncertainty: Case C3

Consider now Case C3 when the a priori probability of one of hypotheses (say
H,) is unknown and conditional prior distribution under condition that H, is
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(nyn=1/0m)dy, y € [0,0] corresponding X, satisfy the following conditions:
for Uy € (0k+1,0k], k= 1,...,N

PV (dy) =0ifi=k+1,....N; P"(dy) >

7

max P (dy).
<J J

1<5<k—-1

Then obviously,

% o S (0j+170j]7
5](x(n)) - { 0, L(n) Q_f (ej-l-lvej]v j=1L...,N (55)

and the regret is equal to zero:

Ap=e=Apy=L| [T arD ) - [ anird) w)
On nyn—l
[ o Oy y]

This means that for all II from the class of ordered a priori distributions
the risk of the MAR test is equal to the Bayes risk, i.e. the MAR test gives
the uniformly best solution. Thus simple ordering of the prior probabili-
ties provides exhaustive a priori description for the model considered. The
knowledge of the exact values of a priori probabilities only changes the value
of the average risk but not the optimal test.

Note that the minimax test of course coincides with the MAR test and
the average risk equals

p(D*(2).11) = p(D"(2).10) = LY, [ [1 = 87(x)}dP(x)

N N-1 . n
= LY m Py (X & (00.0) = L Y 7, ( ;*F) .
i=1 i=1 i

In particular, if N = 2 then p(D*(x),1l) = Lx,(0,/60,)", where 7y < 0.5.
Let us compare this test with the MAR (minimax) test D*(x) in the case of
complete prior uncertainty (see (31)) when we do not know in advance that
the a priori probability of H, is more than or equal to the a priori probability
of the first hypothesis (i.e., the condition 7; < 0.5 is not required). Using
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=1

1_F(a*—]~z—|—c) _F(a*—l—iz—c)]‘
o o

Obviously, if we take a* = 0, then the left- and right-hand sides of this equa-
tion are equal to zero and hence the least favorable distribution is uniform.
In particular, this result takes place for Gaussian observations with unknown
mean (see Example 1).

4.4 Partial prior uncertainty: Case C2

Consider the problem for Case C2 when we know in advance that the a prior:
probabilities of hypotheses do not decrease,ie. 0 < 7y <7y < -+ <7y < 1.
Then, as we established in Section 2, the set P represents a polyhedron with
vertices at the points p; = (N —¢4+1)-{1,1,...,1,0,0,...,0}, e =1,..., V.
N—i+1 i1

For the sake of simplicity, we shall restrict ourselves to problems when
the number of hypotheses is equal to that of decisions and the loss function
is simple,i.e. M = N and L;; = L(1 —¢,;). Then evidently, L;: = L(1 = 6;;)

and

]

Ap; = Ap(D*(z), p;) =

ZH/XZZ&* 2)dP,(x

k=1 j#£k

_@+1{/XZ£%WPIC -3 [ e }

The set I* is not necessarily identical with {1,..., N} and in order to
find II* we have to use the complete set of equalities and inequalities (13)
and (14). The only conclusion that can be made in the general case is that
always pur # 0.

As an illustration, consider the following example in which the MAR test
is uniformly optimal.

Example 9. The model is the same as in Example 4,1.e. X, k=1,...,n
are 1.1.d. in accordance with uniform distribution with unknown scale pa-
rameter 0; H; : § = 0; 0, > 6,,,, + = 1,...,N (054 = 0). The nth
order statistic X,,) = max(Xy,...,X,,) is sufficient in this problem and has
distribution (32). Therefore conditional probability measures P;n)(dy) =
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defined by system (13) where ¢ € {1,..., N}. It may be shown that

l]
L Pr(H | 2) >
l]
dr(e) =4 0. Pr(H|2) < 2 (53)
l]
v Pr(H; @) = 3

where P=(H; | z) = p* exp{Z;(x)}/ SN, prexp{Z,(x)} is the a posteriori
probability that H; is true after the element z has been observed (Z;(z) =
logldP, () /AP

If the distributions of the log-likelihood ratios Z;(x) are continuous, then
one can take v; = 1 and the test becomes non-randomized.

Thus it follows from (53) that the “refusing” decision dy (a; = 0 V) is
never accepted, while all hypotheses are accepted (o; = 1 V) if P*(H; | x) >
L;/(l; + L) V.

For the case of two hypotheses the test becomes especially simple: ay =
L ag = 0 if Z(z) > hyyoqy = 0, ay = 1 if Z(z) < hyy af = ay =
1if Z(x) € (hy, hy), where hy = log(usly/piL), hy = log(usL/pxly) and
2(2) = logldPy(2) AP,(2)]

By (20), (52), and (53) we have the following equation for a* = log[(1 —
AL N N

LP(Z(X) < a” = hy) + LP(Z(X) <a* + hy)

= LP)(Z(X) > a* + hy) + L Py(Z(X) > a* — Iy), (54)
where hy = log(L/1,), h, = log(L/1y).
In the special case when [; = [, = [ and the distribution functions of

Z(X) have the form

Py <) = F(U0) pzn) <) =1 (U5,

2 2

where F'(y) is some continuous and symmetric relative to y = 0 distribution
function (|c| < oo, 0 < o < o0), the values of hy and h, are equal to

h =log(L/l) and we get from (54)

F(a*—iz—c)_l_F(a*—l—iz—l—c) _1]
o o
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4.3.2 A problem with a possibility of making non-single-valued
decisions

Suppose that the decision space consists of the values of the vector @ =
(aq,...,an) with components «; = {0,1}. Then the total number of deci-
sions equals M = 2V where, as before, N is a number of possible hypotheses.
The situation when «; = 0 and 1 means that the :th hypothesis is rejected
and accepted, respectively. Thus we admit the possibility of rejecting all hy-
potheses (no decision making) and accepting any combination of hypotheses
(in particular, only one hypothesis or all hypotheses), i.e., non-single-valued
decisions are allowed.

This problem occurs, for example, in generalized classification of objects
when the observed object which definitely belongs to one of the N possible
classes at the same time can be related to several classes, to all classes or to
none of the classes. For details, see Tartakovsky [4].

Let the loss function has the following “additive” form

o LO—I_ZZ lfOékZOVk,
L(H;,a) = { (L+1)(1 — ;) + XN, Loy if at least one oy, = 1.

In other words [, represents the cost of identification of the object with kth
class, I + [, is the loss due to rejecting the true ¢th class and L, is the loss
due to no decision making. Let [; < Ly < L ¥Vi. Then ming L(H;,d) = 1;;

= | Ly if all oy, =0, 59
U L1 —ay) + Zi\;l Kt [y, if at least one o, = 1, (52)
N
E(x) =L+ Ly H[l —¥p(2)] + Zlk¢k(x) — Lyi(),
k=1 ki

where f/ij = L(H;,d) — ming L(H;,d) and ¢,(z) = Pr(a, = 1 | x) is the
probability of choosing a;, = 1 (i.e., accept kth hypothesis) regardless of
the choice of the other values of «,. Clearly, the set of these probabilities
completely defines the test. Comparing the last expression with (34), we see
that aqpg=¢;, =L >0, b, =10,>0, k=1,....N; by = Ly > 0 and b, = 0 for
k=N+1,...,2Y and hence pz > 0 for alls = 1,..., N.

By Theorem 1 and Corollary 1 the optimal test {(x)} is completely
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=20 [ [Fly+hta) = By + b= afiln)dy,  (51)

which, obviously, has the solution a* = 0. In other words the least favorable
distribution is uniform (u; = 1/2) for any continuous distributions Fy(y) and

Fi(y).
Let, for instance, the probability densities

D) = s=exp{—(1 = 02}, anlt)Se=exp(~2/2), 0>,

Then Z(x) = 0(xy — x,), a* = 0 and the regret

logl (L — L)/ 1] + 2 losl (L — L)/ ] ~
e R ]

Ap* = (L — Ly)® (—

Example 8. Let the model be the same as in Example 1. Then

y—q/2 y—l—q/Z)
Vv

Rz sn =0 (P) pze 1o

and it follows from (50) that a* satisfies the following equation

() o)
()

() et

It a* = 0, then the left- and right-hand sides are equal to zero and hence the
least favorable distribution is again uniform.

Note that this result remains true not only for Gaussian distribution but
for any continuous distribution F'(y) which is symmetric relative to zero and

y—c y+0)

g

Pz <) = F(U5) pz0) <y =1 (

(Je] <00, 0 <0 < o0).
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where Z(z) = log %Eg and hence
1, hy < Z(x) < hy,
RN I Z(x) ¢ [y, hsl,
50($> 1 - Y25 Z(l’) = h17
1_717 Z(x)_h%
L, Z(x) > hy, L, Z(z) < hy,
or(z) =14 0, Z(x) <hy, 65(x)=1 0, Z(x)> hy, (49)
Y15 Z(x):h% Y25 Z(x):hlv
where v, € [0,1], hy = log [%LE%O] , hy =log [%%}

It Ly < L <2L, then hy > hy and the decision d;, is never accepted.

It follows from (48) and (49) that the thresholds %4, h, and the constants
1,7, satisfy the equation

L{P(Z(X) < hy) + 7 P(Z(X) = hy)} + Lo{ Py (hy < Z(X) < hy)
‘|’(1 - ’72)P1(Z(X) = hl) + (1 - ’71)P1(Z(X) = hz)}
= L{R(Z(X) > hy) + 1 Po(Z(X) = hy)} + Lo{Py(hy < Z(X) < hy)
‘|’(1 - ’72)P2(Z(X) = hl) + (1 - ’71)P2(Z(X) = hz)}

which has, generally speaking, nonunique solution.
If P,—distribution of the log-likelihood ratio Z(X) is continuous, the test
is non-randomized (v, = 7, = 1) and this equation is simplified

LP{Z(X) < a*— h} + LoP{Z(X) € (a* — h,a* + h)}
= LP{Z(X) > a* + h} + LyP{Z(X) € (a* — h,a* + k)Y,  (50)

where a* = log[(1 — pz)/p;] and h = log[(L — Lo)/ L)
Example 7. Consider the extension of Example 2 for the case with addi-

tional decision dy (no one of Hy and H, is accepted). Using (28) and (50),
we obtain the following equation for a*

L[ Ry + b+ ar) = Foly + b= )} fi(y)dy
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the decision d;, respectively (Fy(+) is some basic measure). By (46)

r(z) = Lo+ Zf\il [, P<(H; | @), J=0,
f‘ L[ = Po(H, | 0) + S8, LP(H, | 2), j=1.....N.
Since the MAR test is Bayes ralative to p*, it minimizes a posteriori risk and
we have
1, max, P*(H |z)<1—Ly/L,
ox(z) =< 0, max, P*(Hy |z)>1—Ly/L,
7, MmaXg P*(Hk | l’) =1- LO/L7
17 P*(H]|x)>1_LO/L7P*(H]|x)>P*(Hk|x)Vk7é]7
5(x) = 0, max; P*(H;|z)<1-1Ly/L,

I Y5, P*(H; | 2) = max;z; P*(H; | ) > 1~ Lo/L,
7j7 P*(H]|x):maX2P*(Hz|x):1_LO/L7 jzlv"'va

where 74; and 7, are non-negative constants such that Zé\f:l v; =1, Zé\f:l v =
1 —~, v €10,1]. Note that if 1 — Ly/L < 1/N,i.e. Ly > (N —1)L/N, then
the decision d;, is never accepted.

Using (20) and (47), we get the system of equations for yx, 4, and +;:

Ap*=Ap =L [ (1= 8:())dP )

—@—L@A%@W&@%i:LHWN (48)

Similarly the parameters of the minimax test which has the same form
are determined from the following equations

pr = Ri(D" () = i+ L [ (1= 67(2))dPy(x)

—@—L@Aﬁﬂ@ﬂﬂ@%i:L”wN

Consequently again the structures of the MAR and minimax tests coincide
if the loss due to making correct decisions are equal (I; = [ = const).
Let us specify these tests for the case of two hypotheses. Obviously,

. _ . _ (py/ps) exp{Z(x)}
PO T =4 = UL 1 = ) exp{ 2]
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4.3 Many hypotheses, M > N

We shall consider now two problems in which the decision space richer than
the space of hypotheses.

4.3.1 Hypotheses testing with a possibility of a no decision mak-
ing

Assume that along with the decisions dy, . .., dy the additional decision d; can
be made which means that no one of the hypotheses is accepted. In this case
M = N+1, D(x) = {by(x),61(x),...,on5(x)} and vazl oi(x) =1—d¢(x) < 1,
where 1 — é4(x) is a probability that at least one of Hy,..., Hy is accepted.
Consider the following loss function

L =(L+1)(1—=06;)+ 06, Liog=Lo+1, i,5=1,...,N, (46)

where L > max(Lg,[;), é6; = 1, é; = 0, ¢ # j (a Kronecker symbol).
Therefore the cost of accepting true :th hypothesis equals /;, the accepting a
wrong decision increases this loss by L > [, and when we do not make any
terminal decision this loss increases by Ly < L. Obviously,

T T L7 Z%]v
Lio—[an Lij—{m i:j, i,j:1,...,N (47)

and

Ei(x) = Lodo() + Lg%(l‘) = Lo+ (L= Ly) g;%(l‘) — Lobi(z).

Hence condition (34) is fulfilled with ¢; = aqg = Ly > 0, b, = L — Ly >
0, ¥y(x) = 6;(x) and all pr are positive. By Theorem 1 the MAR test is
Bayes and the constants p are determined by conditions (20).

Let
« 4P (x
K TP (z)
N % 4P (95)

k=1 Fk dP, (z)

and () = YN Li;P*(H; | ) denote a posterioriprobability of the hypoth-

esis H; under prior pu* = (p%,...,u%) and a posteriori risk corresponding to

Pr(H; | X = ) = P(H; | ) =
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Similarly for the general case

Can €(0,,0,0,], k=3j,...,N,
s =t = g oSGkt m
where 6, = 0. By (36) and (44)
N
= L{P(X —I—kZ(l—%k)Pi(X(n) (ekﬂ,ek])}
=L§u—mf”jﬁ%z oo N (45)
k=1 7

Using (45) and (35), we find that
N
=1, wwn= ‘9?/ 292
k=1

and the other values v, € [0,1], k= 1,...,7; j = 2,... N satisfy the system
of equations

NN+ N+ vy = 1,
YiN—1 +Yan-1 T FINoaN-1 = 1

Y2 + Va2 = 15
N
Yn = (07 — 07, )y /0r, =1, N —1.
k=1

Evidently, the test (44) is nonunique for N > 3 (but unique for N = 2, see
Example 4). It follows from Lemma 1 that any appropriate values of ~;;, can
be chosen and this does not reduce the effectiveness of the test.

The minimax regret and average risk are equal to

Apr = p(D*(2)) = p(D™(2)) = L(1 = yyy) = L Z 0/ Z 0.

Note that similar results can be obtained not only for a uniform distri-
bution but for any distribution for which the likelihood ratios are piecewise
constant on some sets Xj. The sets X, may be finite or infinite (see, e.g.,
Example 11 below concerning the family of shifted exponential distributions).
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where X(,) = max(Xy,..., X,).
Let L;; = L, 1 # j5; L; = 0. At first consider the case N = 3. Using (37)
and (43), we obtain

L — 733 — 723, Ty < 03,
o) = é5(x) = { 1 — a2 O3 < () < 0y,
17 l‘(n) > 027

Now taking into account (32) and (36), we get
Ry(D(2)) = L |322(05 = 03) + (123 + 72)03] /07,

Ry(D*(2)) = L [(1 = 7200 — 05) + (1 = 720)07] /0.
Ry(D*(x)) = L(1 — 733).
Thus we have three equations (see (35))

Ry (’7227’7337723) = R2(7227’723)7 R, (’7227’7337’723) = R3(733)7

Rz(%za ’723) = R3(733)-

Solving this system, we obtain

o7
V33 = 00 L o L ono 22T @
01 —|—02 —|-(93
067
Yoz = | o - ( _(gn) /‘9

or + 07 + 07
where a € [0, 1] is arbitrary constant such that the right-hand side of the last
equality belongs to the interval [0, 1]. The minimax regret coincides with the
average risk and with the conditional risk:
07 + 0%

Apm = p(D*(2)) = p(D™(x)) = Bi(D™(2)) = Lg—=0 ==
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Obviously, D*(x) is also a minimax test and

Apt=pm =1-— /Z[l — ()N foly)dy. (42)

It should be remarked that the problem considered occurs in radar ap-
plications when it is known exactly that the signal presents in one of the
channels but it is unknown in what channel. It is necessary to indicate the
channel where the signal is located. The statistical characteristics of the
noises in the channels are described by probability density ¢q(-) and the mix-
ture of the signal and noise — by the density ¢,(-) (regardless of the true
channel). If the signal and noise are Gaussian processes and specific pre-

processing is carried out (see, e.g., [3]) then the distributions are exponential
with densities

0o(y) = exp(=y),  1(y) = — Xp( v ) )0,

= ——e -
1+g¢g 1+g¢g
where ¢ characterizes signal-to-noise ratio. Consequently we have
q
Z XZ = —XZ — 10 1 —|— ;
B

Fyly) =1 — exp{—l%[y +log(1 + q>1},

1
Rl = 1= exp{—ly+los1+ )| v 2 ~log(1 40
and expression (42) yields

N1
=¥rs

Apr=pm

Example 6. Assume, as in Example 4, that X, £ = 1,...,n are inde-
pendent and identically distriduted random variables with common uniform
distribution with a scale parameter § and X = (Xy,...,X,). The values
of parameter # are assumed to be unknown and hypotheses have the form
H :0=0,i=1,...,N, N>2 6, >60,>...>60y. Analogously (30) for
J<k
nlog(@k/ej), X(n) < 0,

2x) - 7,3 = { ! Fose (13
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are independent and the density of the joint distribution under hypothesis
H; has the form

pl(l‘) = gl(xi) kl;['go(xk)v i=1,...,N. (41)

As the basic density for the log-likelihood ratio it is convenient to take
the density go(-) (i.e. Zi(z) = loglp:(e)/ TI™-, go(x)]). Then

91(x;)

Zia) = Z(x) = log S0

Assume that P;-distributions of Z(X;) are continuous and do not depend
on ¢,j (symmetric case), i.e.

Pz < ={ B2

Y

where Fy(y) # F,(y) are continuous distribution functions. Then, obviously,

(ﬂ{Z ) > Dy, ) / H 1=F\(y+h)) foly)dy, i =1,...,N

k#i X ki

and using (40) we obtain the system of equations for the “thresholds” hy; =
log(px/pz) of the MAR test

[ T0-Ahal ooy = [~ TL0-Fthl ooy, i = Lo N1,
X ki k=1
where fo(y) = dFy(y)/dy.

The solution of this system is h; = 0 for all k #¢and ¢ =1,..., N and
hence the least favorable distribution is uniform, p* =1/N, ¢t =1,...,N. It
could be expected because the problem is completely symmetric. Thus the
MAR test represents the maximum likelihood test:

5]*(:1;) =1if Z,(z;) = kel{q;lax }Zk(:zjk)
(i.e., decide on d; where j is the smallest integer for which the likelihood
ratio A;(z) attains maximum).
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where A;(x) = dPj(x)/dPy(x), ¢ = 1,..., N are the likelihood ratios for
hypotheses H; with respect to some convenient basic measure I, and v, are
some non-negative numbers such that Zé\f:l Yok Vik = 1.

Denote Z;(x) = log A;(z) the log-likelihood ratio, h,; = log(,uz/,u;). After

simple manipulations we get

J
1, ;

0, Zj(x)— Zp(x) < hy; at least for one k # j,
5]*(1’) = Zi(x) = Zy(x) > hy; Yk # ja . (37)
Viks Zj(x)_Zk(x):hkjv k%]v ]:17"'7N7

In the case when P;-distributions of Z;(x) are continuous we can take
¥;x = 1 and the test D*(x) becomes non-randomized:

5(2) = 0, Z;j(x)— Z,(x) < hy; at least for one k # j,

YTV Zi(a) = Zy(w) > gy YR # G, j=1,...,N.

? J

(38)

Let
Agp(hy) = {X 0 Zy(X)=Zp(X) > hyi}, Dig(hyi) = { X+ Ziy(X)=Zp(X) = hyi}-
Using (35) and (37), we obtain the following system of equations for h;; and
Vik
P {ﬂ Azk(hkz)} + Z%’kpi {Dig(hy)} =
ki ki
N-1

Py () Ani(han) ¢ + D0 APy {Dai(hin)}, i=1,...,N—1. (39)

k#EN k=1

For the continuous case this system is simplified

P; (ﬂ{Zz(X) — Zp(X) > hm}) = Py ( ﬂ {Z:(X) = Zn(X) > hkN}) .

ket k#£EN
(40)

Example 5. Consider the generalization of Example 2 for arbitrary N > 2.
One can observe the N-component vector X = (X,..., Xy), where X; is a
random variable which is identified with the observation process in the ith
channel of a multichannel (N-channel) system. The components X; and X;
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Assume that when the ¢th hypothesis is true the loss due to making a
correct decision L; = [; and due to a wrong decision L;; = L+1;, ¢+ # j, L >

E(x) = ZL‘SJ‘(:L’) = L(1 = é;(x)).

J#i

Hence condition (34) holds with b, = 0, ¢; = aqg = L and v;(x) = §;(x) and
the optimal test D*(x) can be determined by the system (see (20))

/}([1—5;(95)]613(95):/XU—(S;V(@]CZPN(@, i=1,....N—1. (35

The minimax regret is then the probability of making a wrong decision times
L, ie.
Ap- = L/ [ — &%(«)JdP(x), i=1,....N.
X

Similarly, for the minimax test D™ (x) we have
R(D" () =+ L [ [1 = o7 (a)]dP,(x) (36)
and consequently D™ (z) satisfies the equations
I + L/X[l —m(2)|dP(z) = Iy + L/X[l —om(e))dPy(z), i=1,...,N—1.
It follows from this that if [; =1, ¢ =1,..., N then D™(2) = D*(z) and
pm = Apt 4l = Z+L/X[1 — 65 (2)]dPy(x), i=1,...,N.
Let us determine the general structure of these tests for the particular case
when [; =0, L =1 (“0-1" or so-called simple loss function). By Theorem 1

the test D*(x) = Dy(x,11*) is Bayes relative to II* = (u*, ..., %) and hence
has the form (2) where 7; = p¥,~; = ;. For the case considered this gives

1, ,u;/\j(:zj) = maXe(, N} /L};Ak(l') > ,ul*Al(:z;) VI # 3,
5]*(51?) =4 0, N;Aj(x) < maxge vy A (),
Yito 1A () = ppAi(@) = maxpe vy ppA(x), T# 7,
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The minimax test has the same form as 5; but

Ly — Lyy + [Nflzﬂn
Ly + LyyB"

"=

Of course as for the general case, the MAR test completely coincides with
the minimax test (y = ™) if Ly = Lq,.
Using (24), (31)—(33), we get the minimax regret

B L Ly,37
01V = Ly = =

L21 + j’lQﬂn ‘

=~

Ap* =

For the symmetric case (Lyy = Lyy =0, Ly = Ly, = L), we have

Ap* = pm = LpA" /(14 5").

4.2 Many hypotheses, M = N > 2

We continue to consider the case where the number of decisions is equal to
the number of hypotheses and hence again the decision d; is interpreted as
the decision to accept the hypothesis that P; is the true distribution. But
now N is assumed to be an arbitrary number more than 2. In this case a
least favorable distribution could be concentrated, in principle, not on the
whole set (some of ;> can be equal to zero) and the set I*, generally speaking,
does not coincide with {1,..., N}. However, it is rather easy to prove that
sufficient condition for I* = {1,..., N} (i.e., pr > 0 forall e = 1,..., N) are
the following one.

Denote &;(x) = Y 5j(:1;)[~/ij (here at first we suppose that M > N). Let
Yu(x) €10,1], k=1,..., M be some functions and a, > 0, b, > 0, ¢; > 0 be
some constants. If &(a) can be represented in the form

M
k=1,k#2

then the set /= = {1,..., N}, all values u* > 0 and can be determined by
the system of equations (13).
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For large value of 6, /v we have the following approximate formula for the
maximum regret of the minimax test

(Lgy = Lyy)(Lay — Lyy)
Lyy+ Ly — 2Ly — A

Apm =

and relative efficiency of the MAR and minimax tests is expressed as

_ Apm — Ap* _ A
Ap™ Ly — Ly

EF

Since usually Ly > Loy, EF < 1 and the advantage of the MAR test is
nonessential.

Example 4. Consider the case when the condition of continuity of the
log-likelihood ratio is not satisfied. Let X = (Xy,...,X,) be a sample from
the uniform distribution with the density py(x;) = 61, x; € [0,0] (ps(x;) =
0, x; ¢ [0,0]), where 6 takes values 6; and 6, (§; > 6,) under H; and H,,
respectively. Clearly,

o nlog g, X(n) < 0,,
Z(X) B { o0, X(n) > 027

where 3 = 0,/0; and X(,,) = max(Xy,..., X,,).
By (23) and (30) the MAR test can be represented in the following form

(30)

b € n 2 0 b
07 (2(n)) = { " <0, (31)

Obviously,
y €10,0],
Py X,y <y)= 32
Now using (24), (31) and (32), we obtain

zl?ﬂn

L21 + LlZﬂn

~y

where Ly, = Lj; — Lyy, Ly = Ly — Ly, and the MAR test is completely
determined.
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The log-likelihood ratio Z(x) = (0, — 6,)x + log(8,/0,) has continuous
distributions (i = 1,2)

P

K3

_ U —expi—glaly +log(0,/6,)];, y > —log(6/0,),
(2(X) <y) = { 0, { } y < —log(01/0,).

Additional notations:
v="0,—0,, I*= (L21 - L22)/(L12 - Lll)v

= (le - L11)/(L12 - Lzz)a Ly, = (L21 - Lzz)/(le - L22)7
C=(14v/8)exp(h), C,=(14v/8)exp(h,,).

Since the distributions of the log-likelihood ratio are continuous, we can
put v = v, = 0 in (23), (24) and (25). After simple manipulations we
arrive at the following equations for the constants €' and ), of the MAR
and minimax tests, respectively,

O+l O — =0,

Cito/v — ¢ —1_ =0.
For large values of the parameter 0, /v (6;/v > max{l,log(l +1,)}) we get

from this

C o (14 1)@+ O (141, )2 040,

Ap* = (L — L) Po(Z(X) 2 h) = (Lgy — Lgp)C~(H0/Y)
(L21 - LQQ)(le — Lll)

(Lo 22)( ) L+ Ly —2L, — A
P = (Lyy — Lgg) Po(Z(X) > hy,) + Loy = (Lgy — Lyg)(1 — Cﬂ;(1+91/v)) Iy
(L21 - L11)(L12 — Lll)
Ll? + L21 - 2[/11 — A ’

~ L+

Where A — L22 - Lll‘
Obviously,

Ap™ = ml%X(Pm — po(Il)) = p™ — mr}n po(Il) = p™ — min(Ly;, Lyy)
= (Lyg — Lyy)(1 — Cﬂ;(l+€1/v))-

16



If Ly = Ly, then the MAR test coincides with the minimax one. If, further-
more, Ly = Ly = L then equation (29) gives h = 0 and p3 = A7 = 1/2
(uniform distribution). In this case the minimax regret and average risk
equal

Apt = p = R(DM@) = L [ (1= Fo()li(y)dy, i=1.2
Let, for instance, the distributions of X, be exponential with densities

go(wk) =0, exp(—@oxk), gl(xk) =0, eXP(_‘glxk)a z, >0

(and 0 for z;, < 0), where 0 < 0, < 6,. Then

Z(zy,) = (09 — 01)zy — log(0y/0,),

0, |
Fl) = 1= exp{ =2l +Tou(0,/0,)1 = —logt0y/0,), i = 0.1
0 1

and we get
Ap* = py, = L0,/ (6y + 0;).

For the case of Gaussian variables when X, ~ A(6,1) under H, and
X, ~N(0,1) under H;, j # k, k=1,2, we have

Z(xy) = Oz, — 02/2,  Z(z) = 0(xy — 2,),
Ap* = p,, = LO(—-0/2).
Example 3. Consider asymmetric case when L, < Loy, L5 > Ly and
the conditional distributions of the observations X are exponential
P(X <z)=1—-exp(—bx), >0, i=1,2,

where 0 < 6, < 8,. This problem occurs in radar systems when one wants
to detect a Gaussian signal with slow fluctuations in the presence of a white
Gaussian noise (see, e.g., [3], [4]) and in image processing when one wants
to detect the anomaly in the radio image. The decision d, in the situation
when H, is true is identified with a false alarm and L, > L.
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FExample 2. Let X = (X, X,) be a two component process which is
observed in a “two-channel” system, i.e. X, is the observation process in
the ith channel (¢ = 1,2). The components X; and X, are statistically
independent and have conditional joint densities (under hypotheses H; and
H,, respectively) of the form

iy, 23) = g1(71)g0(72),  pa(T1,72) = gol(T1)g1(22),

where ¢o(y) and ¢, (y) are some probability densities. Thus the log-likelihood
ratio

= Z(l'l) - ZN(wz)a

where Z(y) = log[g, (y)/g0(y)]. N
Suppose that the P;-distributions of Z(X},) are continuous and have the

form

PZ(Z(Xk) < y) = FO(y)v k 7é i; PZ(Z(X’L) < y) = Fl(y)v ka = 1727 (28)
where Fy(y) and F}(y) are some distribution functions (Fy # F}). Conditions
(28) describe specific symmetric case and hold, for instance, in the problem
of signal detection in a multi-channel system (two-channel in our case) when
statistical characteristics of observations in channels do not depend on the
number of the channel where the signal is located (see, e.g., [3], [4]).

In view of the continuity of the distributions, ¥ = 0 in (23) and equation
(24) takes the form

(Liz = L) PU(Z(X1) = Z(X3) < h) = (Lyy = Loa) Po(Z(Xy) = Z(X5) = ).

Now using (28), we obtain
PAZ(X) = 20X) 2 h) = [ (1= Fyly + W)l (w)dy,

P2 = 2(X%) < h) = [ 1= Foly = W fiw)dy.

where f(y) = F,/(y) is the density of F,(y).

Thus we can rewrite the equation for the constant 2 in the form
L [ 10 = Foly = WAy = Loy [ 1= Foly + DAy, (29)

14



Obviously, if A = 0 then the least favorable distribution is uniform (uy =
1 —py=Am=1-=\" =1/2). In particular this is fulfilled if

P(Z(X)<h)=F (h - c) . P(Z(X)<h)=F (h + c) :

2 2

where o > 0, |¢| < oo and the distribution function F(y) is continuous and
symmetric with respect to y = 0.

Note also that in all cases when P,—distribution of Z(X) is continuous
we can put v = 0 in (23)—(27) and consider only non-randomized tests.

Ezample 1. Let X ~ N(0;,1) be a Gaussian variable with unit variance
and the mean 6, under hypothesis H;, : = 1,2. Then

K3

Za) = 0= 0)e = 502 — ), ByZ(X) = —B7(X) = &

DLZ(X) = Dy Z(X) = g
where ¢ = (0; — 0,)? and hence

h—q/2 h—l—q/Z)
Vi Vi )

Here and in the sequel £, and D, denote operators of conditional expectation

PI(Z(X)<h):<I>( ) PQ(Z(X)zh)zl—CI)(

and variance, respectively, and

0 = = [ expl-e2/2

is a standard normal distribution function. Therefore for the symmetric case

(L11 = Lyy =0, Lyy = Ly = L) using (27) (v = 0), we obtain

(122 o)

i.e. h =0 and the least favorable distribution is uniform. The regret and the

minimax risk equal

Ap* = p™ = LO(—/q/2).

13



where

(Lo — Lzz)/@
(Liz — Ln)#f7

Since the loss due to making wrong decisions are always more than due

to correct ones, Ly = Ly =0, L;; = L;; — L;;, 5 #¢, v = 1,2 and we have

h = log v € [0,1].

Apy = (L — Lyy) /X(l - 5f($))dpl($)v Apy = (Lyy — Lyy) /X 5;(:1;)dP2(:1:),

Thus the MAR test is completely defined by two parameters h and ~ and we
can write the equation (13) (I* = {1,2}) with respect to h and 7 (instead of

pp=1—p3):
Ap* = (Lgy — Lyg) [P(Z(X) > h) + 7Py (Z(X) = h)]

= (Lyg — L) [P(Z(X) < h) + (1 =) P(Z(X) = h)]. (24)

The minimax test has the same form as 67(z) but, generally speaking,
with 4™ £ 4 and h™ # h. These constants satisfy the equation

pr= R (D7 () = Ry(D™(2)
= (L1 = Lyp) [Po(Z(X) > ™) + 4" Py(Z(X) = h™)] + Ly,
= (Lyy = L) [P(Z(X) <h™) + (1 =y™) P (Z(X) = h™)] + Lyy. - (25)
Comparing (24) with (25), it may be seen that é3(z) and é(x) coincide if
Ly = L,,, i.e. when the losses due to correct decisions are equal. Moreover,
lf Lll — L22 — 0 then
Apr=p™ = By(D™(x)) = Ly [Po(Z(X) > h) + yPo(Z(X) = h)]

— Ly [P(Z(X) < b) + (L= )P(Z(X) = k)], i= 1,2 (26)

If besides Ly = Ly, = L (symmetric case), equation (24) for ~ and v (h™
and v) takes the form

Py(Z(X) > h)+ P(Z(X) > h)
+ 7 [P(Z(X) = h) + P(Z(X) = h)] = 1. (27)

12



Zﬁl pr = 1. Then D*(x) = Dy(x,11*) and it follows from Corollary 1 that
i are determined by the system of N equations

Ap* = Ap; = /25* )LydP(x), i=1,....N, (20)
where )
Lij = Lij - ke{f{}.l.{lM} L. (21)

Similarly under assumption A" > 0, ¢ = 1,..., N we get from (16) the
system of equations for a least favorable distribution II"™ of the minimax test

/Z&m )LidPy(x), i=1,...,N. (22)

Obviously, p; coincides with the conditional risk R,(D™(x)) that reflects a
well-known Wald’s result [2].

It would be interesting to obtain the conditions under which the set /* =
{1,...;N} (I™ = {1,...,N}). But we do not discuss this problem here,
because it would take us too far astray. We shall consider now the cases
when this assumption is obviously fulfilled. However, for a simple sufficient
condition, see Section 4.2, relation (34).

4.1 'Two hypotheses, M =N =2

The special case where the number of decisions is equal to that of hypotheses
is of particular interest. In this case we may interpret d; as the decision to
accept the hypothesis H; that P; is the true probability measure.

If N =M = 2 then, by Theorem 5.1 of Wald [2], a Bayes solution relative
to any a prioridistribution Il = (7, 7,) represents a likelihood ratio test and

hence the MAR test has the form

> h
bi(a) = 1—b3(2) =3 v, Z(x)=h, (23)
Z(x) < h

11



p(D™ (), 1) < p,,(P) for all 11 € Bp\B™. (17)

If the set P is a convex polyhedron with vertices p;, e = 1,...,k, k< N
then similarly (13) and (14) we have

pm(P) =p, = ler{rllft.i(k} p; forall ¢ e ™, (18)

p; < pm(P) forall ¢e{l,... k}\I™, (19)

where p; = p(D™(x),p;), I™ = icpm PAT, Yiepm A7 =1, A7 > 0 for 7 €
Im.

It should be noted that while randomization does not reduce the Bayes
risk under complete a priori information, the system of equalities (10), (11)
and (16), (17) (respectively, (13), (14) and (18), (19)) are not always solvable
for the class of non-randomized tests. Consequently, generally speaking, in
order to find the MAR and minimax tests we have to consider randomized
tests as well.

In spite of Theorems 1 and 2 completely define the structures of the
optimal tests (in general case) it is not still so easy to carry out this program.
Further specialization of D*(x) and D™ (x) requires specialization of a set P,
a set of decisions {d;,...,dy;} and the loss function and sometimes even a
distribution of observations. A number of important specific and at the same
time relatively general problems will be considered in the next sections. Note
also that it is interesting to obtain more or less general conditions under which
the minimax and MAR tests coincide. However, it seems that this problem is
not less complicated than to find the structure of optimal tests and we shall
find the answer only for some cases, in particular for the case of complete
prior uncertainty.

4 Complete Prior Uncertainty

Consider the case C1 in the list of Section 2. Suppose that a least favor-
able distribution is concentrated on the whole set Bp = {p},...,px}, P; =
(Oi15 -y 0in)s de T = (pz, ..., py,), where px >0 forall @ =1,..., N and

10



which is fulfilled for any D(«) and the proof is complete.

For a particular case when P is a polyhedron with vertices p;, ¢ = 1,...,k
the boundary Bp = {p, ..., Py}, the set B* represents some subset of {p;,...,p;}
with indices ¢ € I* C {1,...,k} and the problem becomes especially simple.

Corollary 1 Let the set P be a convex polyhedron with vertices p;, 1 =
L...ok, & < N and Ap*(P) = minp,y maxeqr, gy Ap(D(x),p;). Then
D*(x) = Dy(x,11%),

Ap*(P) = Ap; = le?ll?%k} Ap; for all @ € I, (13)
Ap; < le%l?i(k} Ap; forall i€ {1,... k}\I*, (14)

where Ap; = Ap(D*(x),p;), 11" = Yiep Pty Zierp7 = 1, p7 >0 fora €
I~

Thus it turns out that the MAR test is a Bayes test relative to some
specific (least favorable) a priori distribution II* which is determined by
equalities and inequalities (10) and (11) (or (13) and (14) for polyhedron).
This could be expected and reflects Wald’s theorem on completeness of the
class of Bayes decision rules [2].

Let us now reformulate the results for a minimax test D™(a) which is
obtained by applying the minimax principle to the average risk:

pr(P) = p(D™(x), P) = inf sup p(D(x), IT). (15)
(z) eP

The same kind of argument as in proof of Theorem 1 gives the following

result.

Theorem 2 The minimax test D™ (x) is the Bayes test with respect to the
a priori distribution 1I™ = [ HLdA(ID), where the measure A(IT), A(B™) =1

and the set B™ are chosen such that

p™(P) = p(D™(x),1I) = IIIIEl%); p(D™ (), 1) for all 1l € B™, (16)

9



3 The Structure of the Optimal Tests

Let

Ap*(P) = inf sup Ap(D(a),11) (9)
D(z) 1ep

denotes the minimax regret and g(Il) be some measure on B* C Bp such
that u(B*) =1 and du(1l) > 0 for Il € B*.
The following theorem determines the general structure of the MAR test.

Theorem 1 The MAR test D*(x) is the Bayes test with respect to the a pri-
ori distribution 11* = [g. I du(11), where u(11) and B* are chosen such that
the following equality and inequality are satisfied simultaneously

Ap*(P) = Ap(D*(x),1I) = rﬁlé%(Ap(D*(x),H) for all 11 € B>, (10)

Ap(D*(2), 1) < Ap*(P) for all 11 € Bp\B*. (11)
Proof. By (7) for any D(x)

max Ap(D(x), 1) = max Ap(D(z), 1) > max Ap(D(z), )

epr IeBp ~ [eB*

— [ max Ap(D(x), Ndu(IT) > / Ap(D(x),Mdu(1l). (12

B* I[leB* -

Clearly,
[, Ap(D.0)dp(11) = p(D.11) — [ p( Do )11

> (D7) = [ p(Do, Wdu(Il) = [ Ap(D*,T1)du(I0)

However, by the condition of the theorem the last value is equal to

max Ap(D*(x),11) = max Ap(D*(x), 1)

e B* eBp
that together with (12) gives the inequality

> *
max Ap(D(x), 1) = max Ap(D*(z), IT)

8



In what follows we shall establish the structure of the optimal test D*(x)
for arbitrary prior constraints and specialize this structure for the particular
constraints of the type C1-C3 and for various particular examples. Note that
for some types of loss function, e.g. for zero—one loss function, and complete
a priori uncertainty (case C1 above) the structures of the tests D*(x) and
Dm(x) coincide and furthermore Ap(D*(x)) = R;(D*(x)) = R;(D™(x)) =
const for all 2 = 1,..., N, i.e. the conditional risk gives simultaneously the
value of the average risk regret. In the sequel we shall call the test D™ (x)
minimax test and the test D*(z) minimax average regret (MAR) test.

The next proposition is useful for practical calculations and simplifies the

search for the MAR test.

Lemma 1 1. The regret Ap(D(x),11) is a concave function of I for any
fized D(x).
2. The functional supyep Ap(D(2),11) is concave.

The proof of this lemma is very simple and might be omitted.

As a consequence of the first part maxpep Ap(D(z),I1) is attained only
on the boundary of the set P. More precisely, let By be the boundary of the
set P, i.e. a subset of P such that for any II;,Il, € Bp and any A € (0,1)
the point (1 — M1y + All, ¢ Bp. Then we have

max Ap(D(2),1T) = max Ap(D(2),1T) (7)
and, in particular, if the set P is a convex polyhedron with vertices at the
points p;, ¢ = 1,...,k then clearly Bp = {p},...,p.} and

ax Ap(D(2),1T) = max  Ap(D(x), py). (8)
This result essentially simplifies the problem of minimizing the regret for the
most interesting cases C1, C2, and C3 (see above).

As follows from the second part of Lemma, a local minimum of the func-
tional suppep Ap(D(2), 1) coincides with a global one and hence if we found
some test minimizing this functional further search can be terminated. Any
of several available tests may be accepted — only the principle of convenience
is important.



Since a uniformly optimal solution of the problem which minimizes the
conditional risk

R(D()) = [ 3 Lty (2)dP () (4)

foralli =1,..., N does not exist (and consequently a Bayes solution depends
on an unknown a priori distribution) it is necessary to consider alternative
methods. Wald [2] proposed to minimize the maximum value of the risk
(4) and proved that this solution was a Bayes solution with respect to a
least favorable a priori distribution. Moreover, he proved that the minimax
test D™ (x) gives constant conditional risk for all ¢ for which least favorable
distribution is positive. In particular,

By (D7 () = Ry(D™(2)) = ... = By (D™(2)) (5)

if this distribution is positive for all 2 =1,..., N.

However, the minimax solution in its traditional form has at least two
drawbacks. Firstly, it does not take into account any a priori information
about the distribution of the hypotheses, i.e. only the case C1 in the list
above fits with this particular form. Secondly, it does not take into account
a deviation of a minimax average risk from a Bayes risk (3). Hence the regret
Ap(Dm(x), Dy(x), 1) = p(D™(x),11) — p(Dy(x),II) can be large for II which
differs from a least favorable distribution and we cannot control this regret.
In this sense the traditional minimax method is too cautious.

These drawbacks motivate us to consider another, in our opinion, more
reasonable minimax approach which makes it possible to control the ex-
cess of a risk over Bayes risk. More precisely, we propose to use the min-
imax principle not to conditional risk (4) but to the regret Ap(D(x),II) =
p(D(x), 1) — p(Dy(x),I1), i.e. the optimal test D*(x) is determined from the
condition

Ap(D*(z), P) = }}?f) sup Ap(D(z),11), (6)

where Ap(D(x),11) > 0 and P is a given set that describes our prior knowl-
edge. Therefore we adopt as our optimal solution the one which will give
the minimum of the maximal regret Ap(D(x), 1) over all possible a priori
distributions from the set P.

This technique was proposed in [1] for the general decision making prob-
lem with nuisance parameters as the basis of an adaptive (empirical) Bayes
approach.



The most restrictive assumption among those we used above is the knowl-

edge of an a priort distribution. In practice almost always this distribution
is unknown and a Bayes test cannot be used.

Consider the problem when II is unknown and prior information is re-
stricted by assumption that II belongs to some set of distributions P which
contains more than a single point. Some typical examples which frequently

occur in various applications are as follows.

Cl.

C2.

C3.

C4.

Complete prior uncertainty: =, are arbitrary nonnegative values, Zf\;l i
1. 1In this case P represents a convex polyhedron with vertices at
D; = (Piry- -+ i), Where p; = 6 (655, is a Kronecker symbol, 6;, =
0,0 £k, 6;=1).

7, ¢ = 1,..., N represent an ordered sequence: m,_; < 7w, 7q = 0.

Again the set P is a convex polyhedron with vertices at the points

— 1 g D
plzﬁ{lvlv"'vl}v P2 = {1717"'7170}7"'7pN:{1707“‘70}'

N -1
Partial prior uncertainty when probabilities 7y, ..., 7, are completely
unknown and remaining probabilities m;, ¢« = r + 1,..., N are pro-

portional to known values «;, Zi\;l o, = 1. In other words =, =

(1 =By, v = r+1,...,N, where 3 = 37, is unknown and o,
are known. This means that the conditional prior distribution un-
der condition that one of the hypotheses H,,,,..., Hy is true is known
(Pr(H; | either H._q,..., Hy is true) = «;). Obviously, P is a polyhe-
dron with vertices at the points

py=1{1,0,...,0}, p, ={0,1,0,...,0},...,

7, =1{0,...,0,1,0,...,0}, p.oy ={0,...,0,c,q,...,n}.
——— ———
r—1 N-—r
In the important particular case when r = 1, 7; = # (unknown) and
7 = (1 —Ba;, i = 2,...,N the set P is a linear segment, p; =
{1707...70}7 ﬁz — {070527...705]\7}.

IT is known with the accuracy to a small deviation from the known
value II; which does not exceed some constant 3,: 11 = I, + g€, where
€ is a unit vector and 0 < 3 < f3,.



made additionally to “ordinary” decision d; which means that the hypothesis
H; (j=1,...,N) is accepted (for details, see Section 4.3).

As usual a vector function D(x) = (61(x), ..., oy (x)) with M components
6;(x) satisfying the conditions

6:(x) >0, %5%:1;) =1

is called a (randomized) statistical test (decision function, rule, procedure,
algorithm) of a hypothesis, where 6,(z) is the probability that we shall make
the decision d; when the element X = x is observed. Thus D(z) is a probabil-
ity measure on the set of decisions {d,,...,d;}. If for any x the probability
measure D(x) assigns the probability 1 to a single element of {d,,...,dy}
(i.e., 6;(x) takes only values 0 and 1), then the test is called non-randomized
(deterministic) and may be identified with a measurable function d(x) taking
values in the set {d,...,dy}.

The consequences of the adoption of the decision d; when the hypothesis
H; is true is evaluated by the loss L(H;,d;) = L;; € [0,00), 1 =1,...,N;j =
..., M.

Any a prioridistribution can be represented by a vector Il = (7q,...,7y),
where m; = Pr(H;) > 0 denotes the a priori probability that H, is true,
Zﬁl 7, = 1. If the a priori distribution II is known then the degree of
preference given to the various tests can be evaluated by an average risk

p(D(2), 1) = /X;(Sj(x);[/ijmdpi(x). (1)

The optimal test Do(z) = (69(z),...,8%,(x)) minimizing p(D(x),II) is
called a Bayes test and has the form

50(1,) _ 0, ZNzl Lz’jﬂ'idpi(x) > miﬂke{1 ..... M} Z%l Likﬂ—idpi(x)v (2)
I Yiv iy Lz’jﬂ—idpi(x) = miﬂke{1 M} 2oy Ly, dP(z),

.....

where 7;, 7 = 1,..., M are arbitrary non-negative values, Zj]\il v; = 1. Ob-
viously, we can take 7, = 1 for arbitrary n among the others for which the
second equality in (2) is satisfied (say, the minimum value). Thus a Bayes
rule is non-randomized and its average risk is given by

po=p(Do M) = [ min 3" LymdP(a) (3)

X je{1,..,.M} P



for obtaining the best adaptive Bayes decision making rules which use esti-
mates of unknown parameters of distributions of observed data. The results
show that usually this approach gives quite attractive solution.

In the present paper we use the above mentioned “regret” ideas in the
problem that includes testing several simple hypotheses and unknown (com-
pletely or partially) a priori distribution of hypotheses. As could be expected
the “minimax regret” approach similarly to the ordinary minimax approach
gives a Bayes solution with respect to some specific, in some sense least fa-
vorable distribution. The proofs of the major general results are quite simple
and our main goal was to illustrate these results for the variety of particular
cases which are of great importance for applications.

2 Notations, Formulation of the Problem and
Auxiliary Results

A variety of practical problems involving detection, classification, identifi-
cation and pattern recognition can be formulated as the following multiple
decision problem. Let (P, F, Q) be a stochastic space with standard assump-
tions and one can observe a random vector X with values in some measur-
able space {X,U} (in other words X is a measurable mapping of {Q, F} in
{X,U}). We shall suppose that P = {P;,i = 1,..., N}, where P; are some
completely known probability measures. The true probability distribution
of the observed data X is not known and the problem consists in testing
finitely many (N < oo) statistical hypotheses H;, 1 = 1,..., N, where the
hypothesis H; means that the true probability measure is P,.

Since the space X' is arbitrary the element X can represent a scalar or
vector process which is observed in both discrete and continuous time. How-
ever, we shall restrict ourselves to cases when the observation time is fixed
in advance, i.e. only non-sequential procedures will be considered.

The problem is formalized as making one of the M decisions d;, j =
1,...., M, where N < M < co. It should be mentioned that the value of M,
generally speaking, is not equal to N. In other words the space of decisions
can be richer than the space of hypotheses. For instance, the decision that

no one of P, is true or that several H; are accepted simultaneously can be



from various fields such as detection, identification, classification and
pattern recognition.

1 Introduction

A number of important applied problems such as detection, identification,
classification and pattern recognition can be reduced to a testing several
statistical hypotheses. The case of complete prior information when a Bayes
solution can be used is exotic because an a priori distribution of hypotheses
and conditional probability distributions of observed data are almost always
unknown at least partially. Thus we usually deal with prior uncertainty when
a Bayes test cannot be applied successfully. The type of prior uncertainty
depends on particular circumstances.

There are many approaches to the solution of a decision making problem
under limited prior knowledge [1], including a minimax one. The minimax
approach relative to conditional risk was introduced and studied by Wald [2].
The main advantage of this approach is that it uses only the main data of
the problem that we really have and does not use any additional, frequently
subjective information. At the same timeits peculiarity and sometimes draw-
back is the constancy of the conditional risk for all hypotheses and hence the
average risk of the minimax test is constant for any prior distribution of
hypotheses. Firstly, it means that only the case of complete uncertainty rel-
ative to an a priori distribution is involved into consideration and if we have
some additional information about the character of this distribution this in-
formation is not used. The second drawback is that the traditional minimax
approach does not use any information about characteristics of the Bayes
rule which is optimal under complete prior knowledge. As a result it may
lead to undesirable excess of the minimax average risk over the average risk
of another reasonable rule (in particular, over Bayes risk) for almost all prior
distributions except several ones. At the same time it is quite clear that for
most cases the control of the deviation (regret) of the minimax average risk
from the average risk of the Bayes solution is desirable.

In contrast to “purely” minimax approach Repin and Tartakovsky [1]
proposed to use the principle of minimax to the average risk regret in the
problems involving nuisance parameters and successfully applied this method
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Abstract

We consider the problem of testing many statistical hypotheses
with incomplete information on a priori distribution of hypotheses. A
minimax deviation (regret) of the average risk from the Bayes risk for
a known a priori distribution serves as the optimality criterion. In
contrast to traditional minimax method (with respect to a conditional
risk) our approach makes it possible to control the excess of the risk
over the risk of the optimal rule under complete prior knowledge. It
appears that the optimal rule is Bayesian relative to some specific prior
distribution. Generally speaking the structure of this “least favorable”
distribution depends on the type of prior uncertainty, loss function and
the distribution of observations. We present the relations which enable
us to find a least favorable distribution and parameters of the minimax
rule and minimax regret. Several types of prior uncertainty are con-
sidered: from complete uncertainty to partial uncertainty with various
types of restrictions. The general results are illustrated by examples





