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ABSTRACT OF THE DISSERTATION

Kernel Methods in Nonparametric Functional Time Series

by

Tingyi Zhu

Doctor of Philosophy in Mathematics (with a Specialization in Statistics)

University of California, San Diego, 2017

Professor Dimitris Politis, Chair

Functional data objects are usually collected sequentially over time exhibit-

ing forms of dependence. Such data structure is known as functional time series.

While there is plentiful literature addressing the topics of linear functional pro-

cesses, relatively few contributions have dealt with nonparametric functional time

series, which is the focus of this dissertation. After introducing some background

and basics of functional time series in Chapter 1, I address the topics concern-

xii



ing the applications of kernel methods in the analysis of nonparametric functional

time series. Specifically, Chapter 2 investigates the kernel estimation of the au-

toregressive operator in the nonparametric functional autoregression model. A

component-wise bootstrap procedure is proposed in Chapter 3 which can be used

for estimating the distribution of the kernel estimation and constructing the pre-

diction regions. Chapter 4 tackles the problem of spectral density estimation of

functional time series. A class of higher-order accurate spectral density kernel

estimators is proposed based on the notion of flat-top kernel.
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Chapter 1

Preliminaries of Functional Time

Series

1.1 Introduction

Popularized by the pioneering works of Ramsay and Silverman (1997) [58],

(2002) [59], Functional Data Analysis (FDA) has emerged as a promising field

of statistical research in the past decade. When functional data objects being

collected sequentially over time that exhibit forms of dependence, such data are

known as functional time series. The typical situation in which functional time

series arise is when long continuous records of temporal sequence are segmented

into curves over natural consecutive time intervals. One example is the daily price

curves of financial transactions. Figure 1.1 shows two consecutive weeks of Mi-

1
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Figure 1.1: Microsoft stock prices in one-minute resolution, May 1-5, 8-12, 2006

crosoft stock prices in May 2006 in one minute resolution. Instead of using the

closing daily price of the stock, one can practically think of a price curve that is de-

fined at every trading day, and in such the data shown in Figure 1.1 will be treated

as a functional time series with 10 consecutive functional observations. Other ex-

amples of data that can be characterized as functional time series include daily

curves of electricity consumptions, daily patterns of geophysical, meteorological

and environmental data, etc.

Before presenting the main results of our work, we provide in this chapter

the general mathematical framework that is required for the statistical research

of functional time series, as well as some central concepts and early contributions
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in the related field. The chapter follows closely the exposition of Bosq (2000)

[6], a monograph of the theory of linear functional time series, and Hörmann and

Kokoszka (2012) [26], an in-depth review of the basics of functional dependent

data, among the other seminal works in the analysis of functional time series.

1.2 Basics of Functional Time Series

Consider a sequence of functional observations {Xt, t ∈ Z} that form a

functional time series where each Xt is a random function Xt(τ), τ ∈ [a, b]. In the

context of functional time series analysis, the interval [a, b] is typically normalized

to be a unit interval [0, 1] so that the functional observations are modeled as

random elements of the separable Hilbert space L2([0, 1],R) of square integrable

real functions defined on [0, 1]. The Hilbert space is equipped with a countable

basis {ek, k ∈ Z+}, the inner product 〈, 〉 and the induced L2 norm || · ||2

〈x, y〉 =

ˆ 1

0

x(τ)y(τ)dτ, ||u||2 = 〈y, y〉1/2, x, y ∈ L2([0, 1],R).

Each Xt is therefore a square integrable function satisfying ||Xt||22 =
´ 1

0
X2
t (τ)dτ <

∞.

1.2.1 Functional Mean and Covariance Operator

Any curve X in the Hilbert space L2([0, 1],R) possesses a mean curve

µ = (E[X(τ)] : τ ∈ [0, 1]), (1.1)
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and a covariance operator C, defines by

C(x) = E[〈X − µ, x〉(X − µ)]. (1.2)

The operator C possesses another form as a kernel operator given by

C(x)(τ) =

ˆ 1

0

c(τ, σ)x(σ)dσ (1.3)

where c(τ, σ) = Cov(X(τ), X(σ)).

Suppose now we have functional observations X1, . . . , Xn, we can estimate

the mean by the sample mean function

µ̂n(τ) =
1

n

n∑
t=1

Xt(τ), τ ∈ [0, 1], (1.4)

and the covariance operator by the sample covariance operator

Ĉn(x) =
1

n

n∑
t=1

〈Xt − µ̂n, x〉(Xt − µ̂n). (1.5)

For a large class of stationary sequences, both estimators are
√
n-consistent under

rather general weak dependence assumptions in the sense that E||µ̂n − µ||22 =

O(n−1) and E||Ĉn − C||2L = O(n−1), where the operator norm || · ||L is, for any

operator A, defined as

||A||L = sup
||x||2≤1

||A(x)||2. (1.6)

As in the multivariate case, C can admits the spectral decomposition

C(x) =
∞∑
l=1

λl〈vl, x〉vl, (1.7)
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where (λl : l ∈ Z+) are the eigenvalues and (vl : l ∈ Z+) are corresponding

normalized eigenfunctions so that C(vl) = λlvl and ||vl||2 = 1. Hence any X ∈

L2([0, 1],R) allows the Karhunen-Loéve representation X =
∑∞

l=1〈X, vl〉vl. The

coefficients 〈X, vl〉 in this expansion are called the functional principal component

(FPC) scores of X.

1.2.2 Autocovariance Operator

Statistical analyses of functional data typically focus on the first and second-

order characteristics of the law of the functional sequences. When functional data

are independent and identically distributed, the entire second-order structure is

captured by the covariance operator. However, to obtain a complete description of

the second-order structure of sequences of potentially dependent functional data,

one needs to consider the autocovariance operators relating different lags of the

series, as is the case in multivariate time series.

Before getting to the notion of autocovariance operator, we first introduce

the general cross-covariance operator, which is defined for any X, Y ∈ L2([0, 1],R)

by

CX,Y (x) = E[〈X − µX , x〉(Y − µY )], x ∈ L2([0, 1],R) (1.8)

where µX and µY are the mean curves of X and Y , respectively. For a stationary

functional sequence {Xt, t ∈ Z} with mean µ, we let

D(x) = E[〈X1 − µ, x〉(X0 − µ)], x ∈ L2([0, 1],R) (1.9)
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be the cross-covariance operator of X0 and X1, and

D′(x) = E[〈X0 − µ, x〉(X1 − µ)], x ∈ L2([0, 1],R) (1.10)

be the cross-covariance operator of X1 and X0. D(x) and D′(x) can be referred

to as the autocovariance operator of lag 1 and lag -1, which are two key objects

in the estimation of functional autoregressive model that will be introduced in the

next section. The autocovariance operator of lag t is defined by

Rt(x) = E[〈X0 − µ, x〉(Xt − µ)], x ∈ L2([0, 1],R). (1.11)

Define the autocovariance kernel of lag t as

rt(τ, σ) = cov(Xt+s(τ), Xs(σ)) (1.12)

for any τ, σ ∈ [0, 1] and s ∈ Z. It is easy to see that the autocovariance operator

Rt : L2([0, 1],R)→ L2([0, 1],R) is induced by the autocovariance kernel rt through

right integration, i.e.,

Rt(x) = cov[〈X0, x〉, Xt] =

ˆ 1

0

rt(τ, σ)x(σ)dσ (1.13)

for x ∈ L2([0, 1],R).

1.3 Functional Autoregressive Model

The theory of autoregressive and more general linear processes in Hilbert

and Banach spaces is developed in the monograph of Bosq (2000) [6]. In this
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section, we present a few selected results which provide an introduction to the

central ideas.

1.3.1 Existence

The most extensively investigated functional time series model is the linear

functional autoregressive model of order one, i.e., FAR(1). We say a zero-mean

functional sequence {Xt : t ∈ Z} in L2([0, 1],R) follows a FAR(1) model if

Xt = Ψ(Xt−1) + Et, t ∈ Z (1.14)

where Ψ is a bounded linear operator satisfying ||Ψ||L < 1, and {Et : t ∈ Z} is

a sequence of independent and identically distributed mean-zero innovations in

x ∈ L2([0, 1],R) satisfying E||E0||22 <∞.

Concerning the existence of the sequence {Xt : t ∈ Z} in (1.14), recall that

the scalar AR(1) equations, Xt = ψXt−1 + εt, admit the unique causal solution

Xt =
∑∞

j=0 ψ
jεt−j if |ψ| < 1. Bosq (2000) [6] proposed a condition analogous to

|ψ| < 1 for FAR(1) model of Equation (1.14). First we have the following lemma:

Lemma 1.3.1. (Bosq, 2000) For any bounded linear operator Ψ, the following

two conditions are equivalent:

(c0) There exists an integer j0 ≥ 1 such that ||Ψj0||L < 1;

(c1) There exist a > 0 and 0 < b < 1 such that for every j ≥ 0, ||Ψj||L ≤ abj.

Note that condition (c0) is weaker than the condition ||Ψ||L < 1; in the scalar
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case these two conditions are clearly equivalent. Nevertheless, (c1) is a sufficiently

strong condition to ensure the convergence of the series
∑

j Ψj(Et−j) , and the

existence of a stationary causal solution to functional AR(1) equations, as stated

in Theorem 1.3.1.

Theorem 1.3.1. (Bosq, 2000) If condition (c0) holds, then there is a unique

strictly stationary causal solution to 1.14. This solution is given by

Xt =
∞∑
j=0

Ψj(Et−j). (1.15)

The series converges almost surely in L2.

1.3.2 The Classical Predictor

Applying E[〈·, x〉Xt−1] to (1.14) leads to the functional Yule-Walker equa-

tions

E[〈Xt, x〉Xt−1] = E[〈Ψ(Xt − 1), x〉Xt−1] + E[〈Et, x〉Xt−1]

= E[〈Ψ(Xt−1), x〉Xt−1]. (1.16)

Recall that D(x) = E[〈X1, x〉X0] is the cross-covariance operator of X0 and X1.

If Ψ′ denotes the adjoint operator of Ψ, given by the requirement 〈Ψ(x), y〉 =

〈x,Ψ′(y)〉, the operator equation (1.16) yields D(x) = C(Ψ′(x)). This formally

gives

Ψ(x) = D′C−1(x) (1.17)
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where D′(x) = E[〈X0, x〉X1].

The operator D′ can be estimated by

D̂′n(x) =
1

n− 1

n∑
t=2

〈Xt−1, x〉Xt, (1.18)

while the operator C−1 can be estimated by

Ĉ−1
n (x) =

d∑
l=1

λ̂−1
l 〈v̂l, x〉v̂l, (1.19)

for an appropriated chosen d.

Combining the above results with the approximation Xt ≈
∑d

l=1〈Xt, v̂l〉v̂l

gives the estimator Ψ̂n of the autoregressive operator Ψ,

D̂′nĈ
−1
n (x) ≈ 1

n− 1

n∑
t=2

d∑
l=1

d∑
l′=1

λ̂−1
l 〈x, v̂l〉〈Xt−1, v̂l〉〈Xt, v̂l′〉v̂l′

= Ψ̂n(x). (1.20)

This is the estimator of Bosq (2000) [6]. The foregoing gives rise to the one-step

ahead functional predictor

X̂n+1 = Ψ̂n(Xn). (1.21)

Theorem 8.7 of Bosq (2000) [6] provides the strong consistency of Ψ̂n under

certain technical assumptions. It has since been regarded as the classical bench-

mark of FAR(1) prediction.
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1.4 Weak Dependence

What distinguishes time series analysis from other fields of statistics is

the attention to temporal dependence of the data. This is also the case as to the

analysis of functional time series. In this section, we summarize several frameworks

of weak dependence structures that accommodate the temporal dependence of

functional time series.

1.4.1 Strong Mixing

The classical approach to weak dependence, developed in the seminal pa-

pers of Rosenblatt (1956) [63] and Ibragimov (1962) [31], uses the strong mixing

property and its variants like β, φ, ρ and ψ mixing.

Suppose {Xn} is a sequence of random elements taking values in a measur-

able space S. Denote by F−k = σ{. . . , Xt−2, Xt−1, Xt} and F+
k = σ{Xt, Xt+1, Xt+2, . . .}

the σ-algebras generated by the observations up to time t and after time t, respec-

tively. The general idea of strong mixing property is to measure the maximal

dependence between two events lying in the “past” F−t and the future F+
t+m. The

fading memory is described by this maximal dependence decaying to zero for m

growing to ∞. For example, the well known α-mixing coefficient is given by

α(m) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F−t , B ∈ F+
t+m, t ∈ Z}. (1.22)
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Definition 1.4.1. A sequence is said to be α-mixing (or strong mixing), if

lim
m→∞

α(m) = 0

There are two important subclasses of mixing sequences:

Definition 1.4.2. A sequence is said to be arithmetically α-mixing with a rate

a > 0 if

∃ C > 0 such that α(m) ≤ Cm−a.

It is called geometrically α-mixing if

∃ C > 0 and s ∈ (0, 1), such that α(m) ≤ Csm.

While mixing assumptions have been widely used in nonparametric statis-

tics involving finite dimensional random variables, it is worth being noted that the

general definitions presented above are also applicable for the infinite dimensional

variables in functional space. Some general results concerning the strong mixing

property of functional sequence can be found in Ferraty and Vieu (2006) [18] (see

Proposition 10.3 and 10.4 therein). These results are useful for us to treat mixing

sequences in functional space in our kernel nonparametric framework in Chapter

2.

1.4.2 Approximable Functional Sequences

Verifying the general mixing condition of the above type is not easy. Con-

cerning the analysis of functional time series, Hörmann and Kokoszka (2010) [25]
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introduced a moment-based notion of dependence which involves m-dependence.

The so-called Lp-m-approximable condition for a functional sequence can be im-

mediately verified.

A functional sequence {Xn} is said to be m-dependent if for any t, the

σ-algebras F−t and F+
t+m are independent. The notion of m-dependence is the

most direct relaxation of independence. However, most time series models are not

m-dependent. In practice, we usually see various measures of dependence decay

sufficiently fast, as the distance m between the σ-algebras F−t and F+
t+m increases.

This leads to the idea to use m-dependence as a tool to study the properties of

sequences with dependence. The general idea is to approximate {Xn, n ∈ Z} by

m-dependent processes {X(m)
n , n ∈ Z},m ≥ 1, and establish that for every n the

sequence {X(m)
n ,m ≥ 1} converges in some sense to Xn as m→∞. The following

definition formalizes the idea:

Definition 1.4.3. (Hörmann and Kokoszka, 2010) A sequence {Xn} is called

Lp-m-approximable if each Xn admits the representation

Xn = f(εn, εn−1, . . .),

where the εi are i.i.d elements taking values in a measurable space S, and f is a

measurable function f : S∞ → H. Moreover, if assume that {ε′i} is an independent

copy of {εi} defined on the same probability space, then letting

X(m)
n = f(εn, εn−1, . . . , εn+m−1, ε

′
n−m, ε

′
n−m−1, . . .),
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we have
∞∑
m=1

νp(Xm −X(m)
m ) <∞

where νp = (E||X||p)1/p.

Hörmann and Kokoszka (2010) [25] has established the consistency results

for the estimation of functional mean, functional principle components and long-

run covariance when the condition of m-approximable is applied to the functional

sequences; See the details therein.

1.4.3 Cumulant Mixing Condition

Another type of moment-based measures of dependence in time series anal-

ysis is the cumulant condition. It is usually referred to as cumulant mixing con-

ditions as it is also related to the mixing conditions. In this section, we present

a functional generalization of the cumulant multivariate conditions of Brillinger

(2001) [9].

To begin with, we need the notion of cumulant kernel of a functional time

series.

Definition 1.4.4. (Panaretos and Tavakoli, 2013) For a functional time se-

ries {Xt(τ); τ ∈ [0, 1]}t∈Z in the separable Hilbert space L2([0, 1],R), the pointwise

definition of a kth order cumulant kernel is

cum(Xt1(τ1), . . . , Xtk(τk)) =
∑

ν=(ν1,...,νp)

(−1)p−1(p− 1)!

p∏
l=1

E

[∏
j∈νl

Xtj(τj)

]
,
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where the sum extends over all unordered partitions of {1, . . . , k}.

With the definition of cumulant kernel in place, we present below the func-

tional cumulant-type mixing conditions. Given a stationary functional sequence

{Xt}t∈Z, for fixed l ≥ 0 and k = 2, 3, . . . ,

Condition C(l,k). For each j = 1, . . . , k − 1,

∞∑
t1,...,tk−1=−∞

(1 + |tj|l)||cum(Xt1 , . . . , Xtk−1
, X0)||2 <∞.

The notion of cumulant kernels was employed to quantify the weak dependence

among functional observations as the foundation of Fourier analysis of functional

time series of Panaretos and Tavakoli (2013) [44]. We will make use of the above

functional cumulant mixing conditions in our study of higher-order accurate spec-

tral density estimation in Chapter 4.



Chapter 2

Kernel Estimates of

Nonparametric Functional

Autoregression

2.1 Introduction

The primary goal of functional time series analysis is to provide reliable

guesses for the future realizations. In this chapter, we focus our attention on a

first-order nonparametric functional autoregression–FAR(1) model which is defined

by the recursion:

Xn+1 = Ψ(Xn) + En+1, (2.1)

where the observations Xn and the error terms En are functions, and distinguished

15
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with the linear FAR(1) model of (1.14), no linearity restrictions are imposed on

the functional operator Ψ. Precise definitions and details of the model are stated

in Section 2.2. Existing contributions have mostly focused on the functional linear

autoregression model while the research addressing the nonlinear model is scarce.

We approach this problem by merging the ideas in nonparametric time series and

functional regression analysis, extending the theoretical study to the nonparametric

model of functional autoregression.

The research pertains to the FAR model can trace back to Bosq (2000) [6], in

which the theory of linear processes in functional space was first developed. One of

the major contribution of that book was the study of linear autoregressive processes

in the Hilbert space. As we have mentioned in Chapter 1.3, under the assumption

that the functional operator Ψ in (1.14) is linear, Bosq has derived a one-step ahead

predictor Ψ̂ based on a functional form of the Yule-Walker equation, which has been

regarded as the classical benchmark in FAR(1) prediction. Since then, there has

been plentiful literatures on the study of the linear functional processes. We refer

the readers Antoniadis and Sapatinas (2003) [3], Antoniadis et al. (2006) [2], Bosq

(2007) [8], Kargin and Onatski (2008) [34], Gabrys et al. (2010) [21] and Horváth

and Kokoszka (2011) [27], among other contributions. Bosq’s predictor in 1.20 has

a rather complicated form which makes it unrealistic to implement in practice.

Aue et al. (2015) [4] proposed an alternative method of predicting linear FAR(1)

process utilizing functional principal component analysis (FPCA). The method
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appears to be much more widely applicable under the idea that the dimension

reduction with FPCA should lead to a vector-valued time series of FPC scores

that can be predicted by existing multivariate methodologies. Hörmann et al.

(2015) [24] proposed a dynamic version of functional principal component analysis

to address the problem of dimension reduction for functional time series. More

recently, Klepsch et al. (2017) [36] used a similar dimension reduction technique

to model the FARMA process with an application to traffic data. See also Klepsch

and Klüppelberg (2017) [35] in which an innovation algorithm was proposed to

obtain the best linear predictor of a functional moving average (FMA) process.

On the other hand, kernel methods have been a powerful tool when deal-

ing with nonparametric models. Numerous early references have investigated its

implementations in nonparametric univariate autoregression. To mention some,

asymptotic study of the kernel smoother was presented in Robinson (1983) [62],

and Masry (1996) [38]. The bootstrap procedures for this model and its validity

were provided in Franke et al. (2002) [19]. Pan and Politis (2016) [42] devel-

oped a coherent methodology for the construction of bootstrap prediction inter-

vals, which can be successfully applied to the nonlinear univariate autoregression

models. Those results can be naturally extended to multivariate time series, but

that is not the case for functional time series due to the infinite dimensional nature

of functional data.

Nonparametric statistical methods for functional data analysis were estab-
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lished in Ferraty and Vieu (2006) [18]. The nonparametric functional regression

model, i.e. Y = r(X ) + ε, has been extensively studied since then. Ferraty et al.

(2007) [17] concentrated on the situation where the response variable Y is scalar

and X takes values in some functional space. Asymptotic properties concerning the

kernel estimator r̂(·) of the regressor r(·) have been investigated and the validity of

its bootstrap approximation was proved in Ferraty et al. (2010) [15]. The results

have been extended to the model with double functional setting (i.e. both Y and

X are functionals); see Ferraty et al. (2012) [16]. Masry (2005) [39] and Delsol

(2009) [13] investigated the same model taking into account dependent functional

data.

Motivated by the prior works aforementioned, we investigates the kernel

estimator for nonparametric functional autoregression. We show the consistency

of the estimator under the assumption of a strong mixing condition on the sam-

ple. The proof of its consistency involves a functional central limit theorem for

dependent sequence in a triangular array setting.

The rest of this chapter is organized as follows. In Section 2.2, the detailed

mathematical background of the model is provided and the functional version ker-

nel estimator of the autoregressive operator is defined. Some notations and nec-

essary assumptions are stated in Section 2.3. Section 2.4 provides the asymptotic

results of the proposed estimator. A simulated study is given in Section 2.5 and

all proofs are gathered in Section 2.6.
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2.2 The FAR(1) model

Let {Xn} be a stationary and α-mixing functional sequence in some separa-

ble Hilbert space H with the usual definition of α-mixing coefficients introduced by

Rosenblatt (1956) [63]. H is endowed with inner product 〈·, ·〉 and corresponding

norm || · || (i.e. ||g||2 = 〈g, g〉), and with orthonormal basis {ek : k = 1, · · · ,∞}.

A semi-metric d(·, ·) is also defined on H to measure the proximity between two

elements in H. The semi-metric structure d will be the key tool for controlling

the good behavior of the estimators whereas some separable Hilbert structure is

necessary for studying the operator Ψ component by component. See more details

on the two-topology framework in Ferraty et al. (2012) [16].

We consider the following FAR(1) model

Xi+1 = Ψ(Xi) + Ei+1, i = 1, 2, . . . , (2.2)

where Ψ is the autoregressive operator mapping functions from H to H, and the

innovations Ei’s are independent and identically distributed (i.i.d.) H-valued ran-

dom variables satisfy E(Ei+1|Xi) = 0 and E(||Ei+1||2|Xi) = σ2
E(Xi) < ∞. Assume

here that the model is homoscedastic, that is, σE(Xi) ≡ σE . The operator Ψ is

not constrained to be linear; this is a Nonparametric Functional Autoregression

model.

Remark 2.2.1. Because of the generality of the notation, a higher-order autore-

gression, say FAR(2), in which Xi+1 depends on Xi and Xi−1, can still be written
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as FAR(1) by redefining the X and Ψ; e.g. in the FAR(2) case, one may let

Yi = (Xi,Xi−1) with an obvious choice for the FAR(1) operator relating Yi+1 to Yi

only.

Estimation of Ψ is given by the functional version of Nadaraya-Watson

estimator of time series

Ψ̂h(χ) =

n−1∑
i=1

Xi+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

, (2.3)

where χ is a fixed element in H, K is a kernel function and h is a bandwidth

sequence tending to zero as n tends to infinity. The way of choosing a semi-metric

d(·, ·) was discussed in Ferraty and Vieu (2006) [18]. For a fixed k ∈ Z+, applying

〈·, ek〉 on both sides of the Eq. (2.2) yields

〈Xi+1, ek〉 = 〈Ψ(Xi) + Ei+1, ek〉

= 〈Ψ(Xi), ek〉+ 〈Ei+1, ek〉 i = 1, 2, . . .

Let Xn,k, εn,k be the jth component of the functional Xn and En respectively,

i.e. Xn,k = 〈Xn, ek〉, εn,k = 〈En, ek〉. Also, define the functional ψk from H to R

such that

ψk(·) = 〈Ψ(·), ek〉. (2.4)

When k is fixed, we will drop the index k for the simplicity of notations, using

{Xn} and {εn} to denote the sequences {Xn,k} and {εn,k}, respectively. Similarly,
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ψ can be used in place of ψk. For a fixed k, we obtain

Xi+1 = ψ(Xi) + εi+1 i = 1, 2, . . . (2.5)

Eq. (2.5) can be treated as an auxiliary functional autoregressive model

with scalar response. The scalar innovations εi’s are i.i.d. random variables satisfy

E(εi+1|Xi) = 0 and E(ε2
i+1|Xi) = σ2

ε < ∞. Again, the operator ψ in (2.5) is not

constrained to be linear. Accordingly, its kernel estimation is given by

ψ̂h(χ) =

n−1∑
i=1

Xi+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

, (2.6)

and the two estimators, Ψ̂h and ψ̂h, are connected in the following way

ψ̂h(χ) = 〈Ψ̂h(χ), ek〉. (2.7)

Consistency of both ψ̂h(χ) and Ψ̂h(χ) will be addressed in Section 2.4.

While it is more of the interest to study the estimator Ψ̂h(χ), the need for model

(2.5) and the estimator ψ̂h(χ) will be seen in Section 3.2 where a componentwise

bootstrap approximation is proposed.

2.3 Assumptions and notations

In the sequel, χ is a fixed element and X is a random element of the func-

tional space H. For k = 1, 2, . . . , let ϕχ,k be a real-valued function defined as

ϕχ,k(s) = E[ψ(X )− ψ(χ)|d(X , χ) = s]
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= E[〈Ψ(X )−Ψ(χ), ek〉|d(X , χ) = s].

Again, for the simplicity of notations, we drop the index k to use ϕχ in

place of ϕχ,k when k is fixed. Let F be the distribution of the random variable

d(X , χ),

Fχ(t) = P (d(X , χ) ≤ t),

which is usually called the small ball probability function in functional data anal-

ysis. Also define for s ∈ [0, 1],

τhχ(s) =
Fχ(hs)

Fχ(h)
= P (d(X , χ) ≤ hs|d(X , χ) ≤ h).

Technical aspects of the functions ϕχ, Fχ and τhχ have been discussed in

Ferraty et al.(2007) [17]. The following assumptions are needed:

(A1) ψ is continuous in a neighborhood of χ with respect to the semi-metric d,

and Fχ(0) = 0.

(A2) ϕχ(0) = 0 and ϕ′χ(0) exists.

(A3) h→ 0 and nFχ(h)→∞, as n→∞.

(A4) The kernel function K is supported on [0, 1] and has a continuous derivative

with K ′(s) ≤ 0, and K(1) > 0.
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(A5) For s ∈ [0, 1], lim
h↓0
τhχ(s) = τ0χ(s).

(A1)-(A5) are the standard assumptions inherited from those introduced in

the independent case in the setting of nonparametric functional regression. For

our autoregressive model, additional assumptions (A6)-(A10) below are necessary:

(A6) ∃ p > 2, E(|εi|p|X ) <∞.

(A7) max(E(|Xi+1Xj+1||Xi,Xj), E(|Xi+1||Xi,Xj)) <∞ ∀i, j ∈ Z.

(A8) {Xn} is α-mixing process with mixing coefficients α(n) ≤ Cn−a.

(A9) ∃ ν > 0, such that Θ(h) = O(Fχ(h)1+ν), with a >
(1 + ν)p− 2

ν(p− 2)
,

where p and a are defined in (A6) and (A8) respectively, and

Θ(s) := max{maxi 6=jP (d(Xi, χ) ≤ s, d(Xj, χ) ≤ s), F 2
χ(s)}.

(A10) ∃ γ > 0 such that nFχ(h)1+γ →∞ and a > max

{
4

γ
,

p

p− 2
+

2(p− 1)

γ(p− 2)

}
where p and a are defined in (A6) and (A8), respectively.

Remark 2.3.1. Delsol (2009) [13] considered a functional regression model with

functional variables under dependence. (A6)-(A10) are inherited from the ad-

ditional assumptions Delsol made to control the dependence between variables.
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These assumptions enable us to obtain asymptotic results of the estimator in our

autoregressive model, which has a formal resemblance to the analogous regression

model. In particular, (A8)-(A10) is a set of conditions on the mixing coefficients,

and (A8) is the so-called arithmetically α-mixing condition which is typically sat-

isfied in the case of an autoregressive model. From a theoretical point of view,

a more general set of conditions on the mixing coefficients ((H1)-(H2) in Delsol

(2009) [13]) is available, see the details therein.

The semi-metric d will act on the asymptotic behavior of the estimator

through ϕχ, Fχ and τhχ, and the following quantities:

M0 = K(1)−
ˆ 1

0

(sK(s))′τ0χ(s)ds,

M1 = K(1)−
ˆ 1

0

K ′(s)τ0χ(s)ds,

M2 = K2(1)−
ˆ 1

0

(K2)′(s)τ0χ(s)ds.

2.4 Asymptotic study

2.4.1 Consistency of estimator ψ̂h(χ)

First, we have the following point-wise asymptotic results for the estimator

ψ̂h(χ):

Theorem 2.4.1. Assume (A1)-(A6), then

E[ψ̂h(χ)]− ψ(χ) = ϕ′χ(0)
M0

M1

h+O(
1

nFχ(h)
) + o(h), (2.8)
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Theorem 2.4.2. Assume (A1)-(A10), then

V ar(ψ̂h(χ)) =
σ2
ε

M2
1

M2

nFχ(h)
+ o(

1

nFχ(h)
). (2.9)

Theorem 2.4.1 and 2.4.2 can be obtained following Lemma 2.6.1 and 2.6.2,

and along the similar lines of the proof of Theorem 1 in Ferraty et al. (2007) [17].

See details of the proof in Section 2.6. Combining 2.4.1 and 2.4.2, we immediately

obtain the following corollary:

Corollary 2.4.3. Assume (A1)-(A10), then

ψ̂h(χ)
p→ ψ(χ). (2.10)

The pointwise asymptotic normality is given in Theorem 2.4.4 below:

Theorem 2.4.4. Assume (A1)-(A10), then√
nF̂χ(h)

(
ψ̂h(χ)− ψ(χ)−Bn

) M1√
σ2
εM2

d→ N(0, 1), (2.11)

where Bn = hϕχ
′(0)M0/M1, and F̂χ(h) is the empirical estimation of Fχ(h) :

F̂χ(h) =
#(i : d(Xi, χ) ≤ h)

n
.

Proof. See Section 2.6. �

The bias term can be ignored under the following additional assumption:

(A11) limn→∞ h
√
nFχ(h) = 0.

Corollary 2.4.5. Assume (A1)-(A11), then√
nFχ(h)

(
ψ̂h(χ)− ψ(χ)

) M1√
σ2
εM2

d→ N(0, 1). (2.12)
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2.4.2 Consistency of estimator Ψ̂h(χ)

Corollary 2.4.3, together with Eq. (2.7), implies the following component-

wise consistency of Ψ̂h:

〈Ψ̂h(χ)−Ψ(χ), ek〉
p→ 0, k = 1, . . . ,∞ (2.13)

However, (2.13) does not guarantee the consistency of the estimator Ψ̂h in

an infinite-dimensional space. A more general consistency result is desired. We

consider the following regularity conditions:

(C1) For each k ≥ 1, ψk is continuous in a neighborhood of χ with respect to

semi-metric d, and Fχ(0) = 0.

(C2) For some β > 0, all 0 ≤ s ≤ β and all k ≥ 1, ϕχ,k(0) = 0, ϕ′χ,k(s) exists, and

ϕ′χ,k(s) is Hölder continuous of order 0 < α ≤ 1 at 0, i.e. there exists a 0 < Lk <∞

such that |ϕ′χ,k(s) − ϕ′χ,k(0)| ≤ Lks
α for all 0 ≤ s ≤ β. Moreover,

∑∞
k=1 L

2
k < ∞

and
∑∞

k=0 ϕ
′
χ,k(0) <∞.

(C3) The bandwidth h satisfies h→ 0, nFχ(h)→∞, and (nFχ(h))1/2h1+α = o(1).

With additional assumptions on the mixing coefficients and moments, we are able

to prove the following limit result for Ψ̂h(χ).

Theorem 2.4.6. For some fixed χ ∈ H, assume ∃ δ′ > δ > 0 such that
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(i) 2+δ
2+δ′

+ (1−δ)(2+δ)
2

≤ 1,

(ii) E||Xi −Ψ(χ)||2+δ′ <∞,

(iii)
∑

n α(n)
δ

2+δ <∞,

where α(·) is the mixing coefficient of the functional sequence {Xt, t ∈ N}. Also

assume (A4), (C1)-(C3). Then

Ψ̂h(χ) = Ψ(χ)− Bn +Op(
1√

nFχ(h)1+δ
) (2.14)

where

Bn = h
M0

M1

∞∑
k=1

ϕ′χ,k(0)ek.

Remark 2.4.7. To prove Theorem 2.4.6, we need a functional central limit the-

orem for dependent sequence in a triangular array setting such as Theorem 2.3

in Politis and Romano (1994) [52]. See Section 2.6 for details of the proof. The

assumptions (i)-(iii) show a trade-off between the moment assumptions and the

mixing conditions. The conditions on mixing coefficients can be less stringent if

higher moments are assumed. The parameter δ′ controls the moment while δ con-

trols the mixing condition and they can be chosen under the constraint (i), for

example, δ = 0.5 and δ′ = 5.

2.5 Simulations

In this section, the theoretical results of the previous sections are illustrated

through a simulation study. First we provide the details of the process of simulating
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a FAR(1) series. We use a linear functional series here since its stationarity can

be guaranteed by existing theories. The performance of the kernel estimation will

be shown through the experiments performed on the simulated data.

2.5.1 Data Generating Process

The simulated realization of a linear FAR(1) series has been discussed in

Didericksen (2012) [14]. Curves in the series are assumed to be elements of the

Hilbert space L2[0, 1]. The linear operator Ψ(X ) =
´ 1

0
ψ(s, t)X (s)ds is acted on

the functions Xi’s, thereby the series are generated according to the model

Xn+1(t) =

ˆ 1

0

ψ(t, s)Xn(s)ds+ En+1(t). (2.15)

We use the kernel

ψ(s, t) = C · s1{s ≤ t},

such that (2.15) becomes

Xn+1(t) = C

ˆ t

0

sXn(s)ds+ En+1(t), (2.16)

Here, C is a normalizing constant to be chosen such that ||Ψ|| < 1, which ensures

the existence of a stationary causal solution to FAR(1) model; see Bosq (2000) [6].

We pick C = 3, such that ||Ψ|| = 0.5.

We use the Brownian bridge process as the error process E(t) (see Dider-

icksen (2012) [14]), which is defined by

E(t) = W (t)− tW (t), (2.17)
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where W (·) is the standard Wiener process

W

(
k

K

)
=

1√
K

k∑
j=1

Zj, k = 0, 1, . . . , K,

where Zk’s are standard independent normal and Z0 = 0. The interval [0, 1] is

equally partitioned such that 0 = t1 < t2 < · · · < t99 < tp = 1 with p = 100. We

choose the initial curve X1 = cos(t) for t ∈ [0, 1], and build the series X1, . . . ,X250

according to the following scheme for j = 1, . . . , 100:

X1(tj) = cos(tj),

Xi(tj) = 3

ˆ tj

0

sXi−1(s)ds+ Ei(tj), i = 2, . . . , 250.

Figure 2.1 displays the curves X101,X102, ...,X105. The last panel is the five

curves combined. Out of the 250 curves we generate, the first 200 are used as the

learning sample (i.e. {Xi}i=1,...,200), and the last 50 make up the testing sample (i.e.

{Xi}i=201,...,250). The learning sample allows us to compute the kernel estimator

while the testing sample will be accessed to assess the performance of the estimator

and the behavior of bootstrap approximation.

2.5.2 Computing Kernel Estimator

With the simulated data, we use the learning sample to compute the kernel

estimator by Eq. (2.3). The kernel function is chosen to be K(u) = 1.5(1 −

u2)1[0,1](u), while the bandwidth h is selected through a cross-validation procedure.



30

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

x

0.0 0.2 0.4 0.6 0.8 1.0

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

x

X[
i, 

]

0.0 0.2 0.4 0.6 0.8 1.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

x
X[

i, 
]

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

X[
i, 

]

0.0 0.2 0.4 0.6 0.8 1.0

-2
.5

-1
.5

-0
.5

0.
0

0.
5

Figure 2.1: 5 Curves X101,X102, ...,X105 from the sample.
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A projection-based semi-metric is considered:

d(χ1, χ2) =

√√√√ J∑
k=1

〈χ1 − χ2, vk,n〉2,

where vk,n, k = 1, . . . , J are orthonormal eigenfunctions associated with the largest

J eigenvalues of the empirical covariance operator of the learning sample:

C(·) =
1

200

200∑
i=1

〈Xi, ·〉Xi.

Figure 2.2 compares the kernel estimation (i.e.Ψ̂h(χ)) with the true opera-

tor (i.e.Ψ(χ)) at χ = X201,X202,X203,X204, which shows the quality of the kernel

estimation (the relatively higher volatility of panel 1 and 4 is due to the scaling

difference of y axis).

2.6 Technical Proofs

Throughout this section, given some random variable U , PU stands for the

probability measure induced by U . Since the stationarity of the sequence {Xn},

we assume Xi′s are identically distributed as X . Also, the pairs (Xi+1,Xi) have

the same joint distribution. So are the functions of them. The kernel estimator ψ̂h

will be decomposed as follows:

ψ̂h(χ) =
ĝ1(χ)

f̂(χ)
,

where

ĝ1(χ) =
1

nFχ(h)

n∑
i=1

Xi+1K

(
d(Xi, χ)

h

)
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Figure 2.2: Kernel estimations Ψ̂h(χ) (dashed lines); true operator Ψ(χ) (solid
lines).
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and

f̂(χ) =
1

nFχ(h)

n∑
i=1

K

(
d(Xi, χ)

h

)
.

Similarly, the estimator Ψ̂h can be decomposed as:

Ψ̂h(χ) =
ĝ2(χ)

f̂(χ)
,

where

ĝ2(χ) =
1

nFχ(h)

n∑
i=1

Xi+1K

(
d(Xi, χ)

h

)
.

2.6.1 Proof of Theorem 2.4.1, 2.4.2 and 2.4.4

To prove these theorems, we need the following lemmas:

Lemma 2.6.1.

E[f̂(χ)]→ K(1)−
ˆ 1

0

K ′(s)τ0χ(s)ds = M1, (2.18)

E[ĝ1(χ)]→ ψ(χ)

(
K(1)−

ˆ 1

0

K ′(s)τ0χ(s)ds

)
= ψ(χ)M1. (2.19)

Proof. For the first assertion, we have

E(f̂(χ)) =
1

Fχ(h)
E

(
K

(
d(X , χ)

h

))
=

1

Fχ(h)

ˆ
K(t)dP d(X ,χ)/h(t)

=
1

Fχ(h)

(
K(1)Fχ(h)−

ˆ 1

0

K
′
(s)Fχ(hs)ds

)
= K(1)−

ˆ 1

0

K
′
(s)

Fχ(hs)

Fχ(h)
ds

→ K(1)−
ˆ 1

0

K ′(s)τ0χ(s)ds = M1,
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the third line coming from Eq. (14) in Ferraty et al. (2007) [17] and the fifth line

follows from the uniform boundedness of the integrand. The second assertion is

proved as follows:

E(ĝ1(χ)) =
1

Fχ(h)
E

(
Xi+1K

(
d(Xi, χ)

h

))
=

1

Fχ(h)
E

(
E(Xi+1|Xi)K

(
d(Xi, χ)

h

))
=

1

Fχ(h)
E

(
ψ(Xi)K

(
d(Xi, χ)

h

))
=

1

Fχ(h)
E

(
ψ(X )K

(
d(X , χ)

h

))
=

1

Fχ(h)
E

(
(ψ(χ) + o(1))K

(
d(X , χ)

h

))
→ ψ(χ)M1

where the fifth line follows from the continuity of ψ with respect to the semi-metric

d. �

Lemma 2.6.2. Under the assumption (A1)-(A8), we have

V ar(f̂(χ)) =
M2

nFχ(h)
(1 + o(1)), (2.20)

V ar(ĝ1(χ)) = (σ2
ε + ψ2(χ))

M2

nFχ(h)
(1 + o(1)), (2.21)

Cov(f̂(χ), ĝ1(χ)) = ψ(χ)
M2

nFχ(h)
(1 + o(1)). (2.22)

Proof. Since the functional sequence {Xn} is stationary and strong mixing, the n

pairs (Xi, Xi+1)i=1,··· ,n are identically distributed and the sequence (Xi, Xi+1)i is

also strong mixing. Then the results follows directly from Lemma 2.5 in Delsol
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(2009) [13]. �

Proof of Theorem 2.4.1. For the proof of Eq. (2.8), we write the following

decomposition:

E(ψ̂(χ)) =
E(ĝ1(χ))

E(f̂(χ))
+

A1

(E(f̂(χ)))2
+

A2

(E(f̂(χ)))2
, (2.23)

with

A1 = E(ĝ1(χ)(E(f̂(χ))− f̂(χ))) (2.24)

and

A2 = E((f̂(χ)− E(f̂(χ)))2ψ̂h(χ)). (2.25)

The last two terms on the right-hand side of Eq. (2.23) are negligible

since we have A1 = O((nFχ(h)−1)) and A2 = O((nFχ(h)−1)), both are direct

consequences of Lemma 2.6.1 and 2.6.2 (see proof of Lemma 7.5 in Raña et al.

(2016) [60]). For the first term on the right-hand side of (2.23), we calculate

E(ĝ1(χ))

E(f̂(χ))
− ψ(χ) =

E
(

(Xi+1 − ψ(χ))K
(
d(Xi,χ)

h

))
E
(
K
(
d(Xi,χ)

h

)) , (2.26)

which follows from the stationarity of the sequence {Xn}. Assume Xi ∼ X for

i = 1, · · · ,∞, then we can write the numerator in (2.26) as follows

E

(
(Xi+1 − ψ(χ))K

(
d(Xi, χ)

h

))
= E

(
(ψ̂(Xi)− ψ(χ))K

(
d(Xi, χ)

h

))
= E

(
(ψ̂(X )− ψ(χ))K

(
d(X , χ)

h

))
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= E

(
ϕχ(d(X , χ))K

(
d(X , χ)

h

))
=

ˆ
ϕχ(t)K(

t

h
)dP d(X ,χ)(t)

=

ˆ
ϕχ(ht)K(t)dP d(X ,χ)/h(t)

= hϕχ
′(0)

ˆ
tK(t)dP d(X ,χ)/h(t) + o(h),

here PU stands for the probability measure induced by U , and the last line comes

form the first order Taylor’s expansion for ϕ around 0. For the denominator in

(2.26), we have

E

(
K

(
d(Xi, χ)

h

))
=

ˆ
K(t)dP d(X ,χ)/h(t).

Consequently,

E(ĝ1(χ))

E(f̂(χ))
− ψ(χ) = hϕχ

′(0)I + o(h), (2.27)

where

I =

´
tK(t)dP d(X ,χ)/h(t)´
K(t)dP d(X ,χ)/h(t)

.

By Lemma 2 in Ferraty et al. (2007) [17], I → M0/M1 as n → +∞. Finally,

combining (2.23) and (2.27), we obtain

E[ψ̂h(χ)]− ψ(χ) = ϕ′χ(0)
M0

M1

h+O(
1

nFχ(h)
) + o(h),

which completes the proof. �
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Proof of Theorem 2.4.2. We use the following decomposition:

V ar(ψ̂h(χ)) =
V ar(ĝ1(χ))

(E(f̂(χ)))2
− 4

E(ĝ1(χ)Cov(ĝ1(χ), f̂(χ)))

(E(f̂(χ)))3

+ 3V ar(f̂(χ))
(E(ĝ1(χ)))2

(E(f̂(χ)))4
+ o(

1

nFχ(h)
).

(2.28)

Then Theorem 2.4.2 follows from this decomposition together with Lemma 2.6.1

and 2.6.2.

Proof of Theorem 2.4.4. Since the sequence (Xi, Xi+1)i is stationary and strong

mixing, this theorem is the same as that obtained in Delsol (2009) [13].

2.6.2 Proof of Theorem 2.4.6

Proof. Consider the expression

√
nFχ(h)1+δ

[
Ψ̂h(χ)−Ψ(χ)− Bn

]
. (2.29)

Following similar arguments as in the proof of Theorem 4.1 in Ferraty et al. (2012)

[16], we have that the above expression has the same asymptotic distribution as

√
nFχ(h)1+δ

M1

[
ĝ2(χ)− Eĝ2(χ)− (f̂(χ)− Ef̂(χ))Ψ(χ)

]
=

1

M1

√
nFχ(h)1−δ

n∑
i=1

[
Xi+1K

(
d(Xi, χ)

h

)
− E

{
Ψ(X )K

(
d(X , χ)

h

)}

− Ψ(χ)K

(
d(Xi, χ)

h

)
+ Ψ(χ)E

{
K

(
d(X , χ)

h

)}]
=

1√
n

n∑
i=1

(Zn,i − EZn,i),
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where for 1 ≤ i ≤ n,

Zn,i =
1

M1

√
Fχ(h)1−δ

[
Xi+1K

(
d(Xi, χ)

h

)
−Ψ(χ)K

(
d(Xi, χ)

h

)]
.

By assumption (i), we can apply Hölder’s inequality to obtain

E||Zn,i||2+δ

=
1

M2+δ
1 Fχ(h)

(1−δ)(2+δ)
2

E

(
||Xi+1 −Ψ(χ)||2+δ

{
K

(
d(Xi, χ)

h

)}2+δ
)

≤ 1

M2+δ
1 Fχ(h)

(1−δ)(2+δ)
2

(
E||Xi+1 −Ψ(χ)||2+δ′

) 2+δ
2+δ′

×

{
E

[
K

(
d(Xi, χ)

h

)] 2
1−δ
} (1−δ)(2+δ)

2

.

In the above expression,
(
E||Xi+1 −Ψ(χ)||2+δ′

) 2+δ
2+δ′ is finite because of assumption

(ii). For the last item, we note that

K
2

1−δ (t) = K
2

1−δ (1)−
ˆ 1

t

(K
2

1−δ (s))′ds.

Applying Fubini’s Theorem, we obtain

E

[
K

(
d(Xi, χ)

h

)] 2
1−δ

=

ˆ 1

0

K
2

1−δ (t)dP d(X ,χ)/h(t)

= K
2

1−δ (1)Fχ(h)−
ˆ 1

0

(ˆ 1

t

(K
2

1−δ (s))′ds

)
dP d(X ,χ)/h(t)

= K
2

1−δ (1)Fχ(h)−
ˆ 1

0

(K
2

1−δ (s))′Fχ(hs)ds

= Fχ(h)

(
K

2
1−δ (1)−

ˆ 1

0

(K
2

1−δ (s))′τhχ(s)ds

)
.

As the factor of Fχ(h) converges to M 2
1−δ

for h→ 0 where

M 2
1−δ

= K
2

1−δ (1)−
ˆ 1

0

(K
2

1−δ (s))′τ0χ(s)ds
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is a constant depending on K(·), the right-hand side is bounded by CFχ(h) for a

suitable C and all small enough h.

Now we have, E||Zn,i||2+δ ≤ C < ∞ for all n. Combining this with as-

sumption (iii), it follows from Theorem 2.3(i) in Politis and Romano (1994) [52]

that 1√
n

∑n
i=1(Zn,i − EZn,i) converge weakly to a Gaussian measure with mean 0

in H. Hence, (2.29) converges weakly to the same measure and

Ψ̂h(χ) = Ψ(χ)− Bn +Op(
1√

nFχ(h)1+δ
). (2.30)
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Chapter 3

Bootstrap Approximation of the

Kernel Estimators

3.1 Introduction

In this chapter, we propose a bootstrapping procedure in the functional

dependent framework that can be used for estimating the distribution of the pro-

jection of the kernel estimation introduced in the previous chapter. The bootstrap

prediction regions are constructed as a measurement of accuracy for the func-

tional prediction. A regression bootstrap scheme is implemented in the procedure

which provides a simplification for the bootstrap method in the autoregression case.

Franke et al. (2002) [19] first applied the regression-type bootstrap in univariate

nonlinear autoregression for inference of the kernel estimator, and Neumann and

40
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Kreiss (1998) [41] considered to what extent regression-type bootstrap procedures

can be successfully applied as long as nonparametric estimators and tests for con-

ditional mean in nonparametric autoregressions are considered. It was mentioned

in Kreiss and Lahiri (2012) [37] that the regression-type bootstrap is also valid

for the Yule-Walker estimates for coefficients in a parametric AR(p) model, but it

might not lead to asymptotically valid results for more general statistics.

The rest of this chapter is organized as follows. A componentwise bootstrap

scheme is introduced and its validity is shown in Section 3.2. A simulated study

is given in Section 3.3 while Section 3.4 presents the approach of constructing the

bootstrap prediction regions. The technical proof of the main theorem in provided

in Section 3.5.

3.2 Bootstrap approximation

Ferraty et al. (2010, 2012) [15, 16] have employed both naive and wild

bootstrap to approximate the asymptotic distribution of the kernel estimators for

nonparametric functional regressions. Their first result showed the validity of

bootstrap when the explanatory variable is functional and the response is real. To

extend the bootstrap approach to the double functional setting, i.e. when both

variables are functional, they introduced the notion of “componentwise bootstrap”,

in which the idea is to show that the bootstrap approximation has good theoretical
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behaviors when functionals are projected to a fixed basis element ek. Here we take

advantage of the auxiliary univariate model in (2.5), extending this componentwise

bootstrap idea to the functional autoregression.

First, we propose a bootstrap procedure to approximate the distribution of

ψ̂h(χ)− ψ(χ) under the AR model (2.5), which consists of the following steps:

Algorithm 3.2.1.

1. For i = 1, . . . , n, define ε̂i,b = Xi+1 − ψ̂b(Xi), where b is a second smoothing

parameter.

2. Draw n i.i.d. random variables ε∗1, . . . , ε
∗
n from the empirical distribution of

(ε̂1,b − ¯̂εb, . . . , ε̂n,b − ¯̂εb) where ¯̂εb = n−1
∑n

i=1 ε̂i,b.

3. For i = 1, . . . , n− 1, let X∗i+1 = ψ̂b(Xi) + ε∗i+1.

4. Define

ψ̂∗hb(χ) =

n−1∑
i=1

X∗i+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

. (3.1)

Remark 3.2.1. From a theoretical point of view, the second smoothing parameter

b has to be asymptotically larger than h (see condition (D5)), so over-smoothing

is needed to make the bootstrap procedure work, as is the case in the functional

regression. However, the two bandwidths have to be fixed in practice and a cross-

validation procedure is used to determine the bandwidths in the simulation study

in Section 2.5.
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Remark 3.2.2. It is also worth being noted that instead of generating a real

bootstrap sequence, here we are actually generating a scatter plot. Every bootstrap

point X∗i+1 is generated by the prior true point Xi—see step 3 above—and the

desired estimation in the bootstrap world comes from fitting the pairs (X∗i+1, Xi).

This is so called regression bootstrap scheme, introduced in Franke et al. (2002)

[19] as one of the three bootstrap schemes proposed for the scalar-valued nonlinear

autoregression. The main reason we use the regression bootstrap scheme here is

in the fact that when conditioning on the sample {X1, . . . ,Xn}, it eliminates the

random element in the denominator of ψ̂∗hb(χ)—see Eq. (3.1)—which makes the

proof of Theorem 3.2.3 proceed (see details in appendix). The regression-type

bootstrap is considered as an important simplification for the bootstrap method

in autoregression. We refer the readers Neumann and Kreiss (1998) [41] for its

applications in nonparametric autoregressions, and Kreiss and Lahiri (2012) [37]

for its extensions in parametric time series models.

Theorem 3.2.3. If conditions of Theorem 2.4.4 hold, as well as assumptions

(D1)-(D7) in Appendix, we have

sup
y∈R

∣∣∣∣P ∗(√nFχ(h){ψ̂∗hb(χ)− ψ̂b(χ)} ≤ y

)
− P

(√
nFχ(h){ψ̂h(χ)− ψ(χ)} ≤ y

)∣∣∣∣ a.s.→ 0, (3.2)

where P ∗ denotes probability conditioned on the sample {X1, . . . ,Xn}.

Theorem 3.2.3 shows the validity of the bootstrap procedure for ψ̂h. Then,
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the bootstrap procedure for Ψ̂h is proposed as follows:

Algorithm 3.2.2.

1. For i = 1, . . . , n, define Êi,b = Xi+1 − Ψ̂b(Xi), where b is a second smoothing

parameter.

2. Draw n i.i.d. random variables E∗1 , . . . , E∗n from the empirical distribution of

(Ê1,b − ¯̂Eb, . . . , Ên,b − ¯̂Eb) where
¯̂Eb = n−1

∑n
i=1 Êi,b.

3. For i = 1, . . . , n− 1, let X ∗i+1 = Ψ̂b(Xi) + E∗i+1.

4. Define

Ψ̂∗hb(χ) =

n−1∑
i=1

X ∗i+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

. (3.3)

Theorem 3.2.4. For any η ∈ H with ||η|| = 1 and any bandwidth h and b,

let Ψ̂η,h(χ) = 〈Ψ̂h(χ), η〉, Ψ̂∗η,hb(χ) = 〈Ψ̂∗hb(χ), η〉 and Ψη(χ) = 〈Ψ(χ), η〉. If, in

addition to conditions of Theorem 2.4.4, (D1)-(D7) in Appendix hold, we have for

every χ

sup
y∈R

∣∣∣∣P ∗(√nFχ(h){Ψ̂∗η,hb(χ)− Ψ̂η,b(χ)} ≤ y

)
− P

(√
nFχ(h){Ψ̂η,h(χ)−Ψη(χ)} ≤ y

)∣∣∣∣ a.s.→ 0,

(3.4)

where P ∗ denotes probability conditioned on the sample {X1, . . . ,Xn}.

Proof. Choosing a basis with e1 = η, this theorem is a direct consequence of

Theorem 3.2.3. �
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3.3 Simulations

To illustrate Theorem 3.2.4, we compare, for k = 1, 2, 3, 4, the density

function of the componentwise bootstrapped error f ∗k,χ

〈Ψ̂∗hb(χ)− Ψ̂b(χ), vk,n〉,

with the density function of the component wise true error f truek,χ

〈Ψ̂h(χ)−Ψ(χ), vk,n〉.

To estimate f ∗k,χ, we use the bootstrap procedure as described in Section 3.2:

1. compute Ψ̂b(χ) over the learning sample X1, . . . ,X200,

2. repeat 200 times the bootstrap algorithm introduced in the previous section to

obtain

Ψ̂∗1hb(χ), . . . , Ψ̂∗200
hb (χ),

3. estimate the density f ∗k,χ over the 200 values

〈Ψ̂∗1hb(χ)− Ψ̂b(χ), vk,n〉, . . . , 〈Ψ̂∗200
hb (χ)− Ψ̂b(χ), vk,n〉.

The Monte-Carlo scheme is used to estimate f truek,χ :

1. build 200 samples {X s
1 , . . . ,X s

200}s=1,...,200,

2. for the sth sample {X s
1 , . . . ,X s

200}, compute Ψ̂s
h to obtain

Ψ̂1
h(χ), . . . , Ψ̂200

h (χ),
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3. estimate the density f truek,χ over the 200 values

〈Ψ̂1
h(χ)−Ψ(χ), vk,n〉, . . . , 〈Ψ̂200

h (χ)−Ψ(χ), vk,n〉.

The bandwidth h = hCV is selected through a cross-validation procedure

and we set b = h, which was the same setting used in the context of functional

regression in Ferraty et al. (2010) [15]. They have studied the influence of both

bandwidths on the behavior of the bootstrap procedure by varying b and h around

hCV . Their simulation showed the bootstrap works well for any combination of b

and h, which leads to the conclusion that bootstrap results are not sensitive to the

bandwidth choice.

Figure 3.1 presents the comparisons between the estimated f ∗k,χ and the

estimated f truek,χ for the first four components, at the curves χ = X201, . . . ,X205.

The density estimation is performed with Gaussian kernel and the bandwidth being

chosen three times the rule-of-thumb bandwidth estimator (1.06σ̂n−1/5) where σ̂

is the sample standard deviation.

3.4 Bootstrap prediction regions

3.4.1 Construction of bootstrap prediction regions

Politis (2013) [50] constructed bootstrap prediction intervals in regression based

on a bootstrap approximation to the distribution of the error in prediction—also

called a ‘predictive root’. This method was later extended to autoregression by
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Figure 3.1: Solid line: true error, dashed line: bootstrap error.
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Pan and Politis (2016) [42] who constructed bootstrap prediction intervals in the

setting of a (univariate) nonparametric autoregression. Given a valid resampling

procedure as developed in Section 3.2, we are able to construct bootstrap prediction

regions in the functional autoregression model in the spirit of Pan and Politis

(2016) [42]. Two bootstrap ideas, forward and backward, were considered in Pan

and Politis (2016) [42] for the construction of prediction intervals with conditional

validity. It is unrealistic, however, to generate the bootstrap pseudo-data backward

in the functional setting. Therefore, we restrict to forward bootstrap scheme in

our functional model.

Algorithm 3.4.1. Bootstrap with fitted residual

1. Construct the Nadaraya-Watson kernel estimator Ψ̂h(·) by

Ψ̂h(χ) =

n−1∑
i=1

Xi+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

. (3.5)

2. Compute the fitted residuals: Êi,b = Xi− Ψ̂b(Xi−1) for i = 1, . . . , n− 1, where

b is a second smoothing parameter.

3. Center the residuals: r̂i,b = Êi,b − (n− 1)−1
∑n−1

i=1 Êi,b

(a) Let the empirical distribution of ri,b be denoted by F̂n, and draw bootstrap

pseudo-residuals E∗1 , . . . , E∗n i.i.d. from F̂n.
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(b) Use regression bootstrap scheme to generate the pseudo-data:

X ∗i+1 = Ψ̂b(Xi) + E∗i+1 for i = 1, . . . , n− 1

(c) Re-estimate Ψ by

Ψ̂∗hb(χ) =

n−1∑
i=1

X ∗i+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

. (3.6)

(d) Calculate the bootstrap predictor

X̂ ∗n+1 = Ψ̂∗hb(Xn)

and the future bootstrap observation

X ∗n+1 = Ψ̂b(Xn) + E∗n+1

where E∗n+1 is also drawn from F̂n.

(e) Compute ||X ∗n+1 − X̂ ∗n+1||, where || · || is a norm of the practitioner’s

choice; note that difference choices for the norm will lead to prediction

regions of different shape.

4. Repeat steps (a)-(e) in the above B times. The B bootstrap replicates ||X ∗n+1−

X̂ ∗n+1|| are collected in the form of an empirical distribution whose β-quantile

is denoted q(β).

5. Finally, the (1 − β)100% bootstrap predictive region for Xn+1 consists of all

χ such that

||χ− Ψ̂h(Xn)|| ≤ q(β).
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Analogously to Pan and Politis (2016) [42], we also consider using predic-

tive, as opposed to fitted, residuals for the bootstrap. We define the predictive

residuals as Ê (t)
t,b = Xt − X̂ (t)

t where X̂ (t)
t is calculated from the delete-Xt data set,

i.e. the available data for the scatterplot of Xk vs. Xk−1 over which the fitting takes

place excludes the single point that corresponds to k = t. The forward bootstrap

with predictive residuals is similar to Algorithm 3.4.1 except for Step 2.

Algorithm 3.4.2. Bootstrap with predictive residuals

1. Same as step 1 of Algorithm 3.4.1.

2. Use the delete-Xt dataset to compute the delete-one kernel estimator

Ψ̂
(t)
b (χ) =

n−1∑
i=1,i 6=t

Xi+1K(b−1d(Xi, χ))

n−1∑
i=1,i 6=t

K(b−1d(Xi, χ))

, for t = 1, . . . , n− 1. (3.7)

Then compute the predictive residuals: Ê (t)
t,b = Xt−Ψ̂

(t)
b (Xt−1) for t = 1, . . . , n−

1, where b is a second smoothing parameter.

3-5. Replace Êt,b by Ê (t)
t,b in Algorithm 3.4.1; the remaining steps are the same.

Remark 3.4.1. Recall that prediction intervals are asymptotically valid (in a

conditional sense) when the probability of coverage of the future value Xn+1 condi-

tional on the observed data X1, . . ., Xn gets close to the nominal one as n increases.

The prediction regions constructed in Algorithm 3.4.1 and 3.4.2 would indeed be

asymptotically valid if the predictive root Xn+1−X̂n+1 and the bootstrap predictive
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root X ∗n+1 − X̂ ∗n+1 have the same distribution asymptotically. For the predictive

root, we have

Xn+1 − X̂n+1 = Ψ(Xn)− Ψ̂h(Xn) + En+1 = A+ En+1,

where En+1 is independent of the estimation error A. Similarly, the bootstrap

predictive root can be written as

X ∗n+1 − X̂ ∗n+1 = Ψ̂b(Xn)− Ψ̂∗hb(Xn) + E∗n+1 = A∗ + E∗n+1,

where E∗n+1 is independent of A∗. Consequently, the prediction regions of Algorithm

3.4.1 and 3.4.2 would be asymptotically valid provided that the distribution of the

true errors E1, . . . , En is captured in the limit by the empirical distribution of the

residuals (fitted or predictive).

Corollary 3.4.2. Assume the conditions of Theorem 2.4.6 and 3.2.4 as well as

assumptions strong enough to ensure that ||Ê1,b||
d→ ||E1|| as n→∞ where || · || is

the norm appearing in Algorithm 3.4.1 and
d→ denotes convergence in distribution.

Then, the prediction region of Algorithm 3.4.1 is asymptotically valid. If in addition

||Ê (1)
1,b ||

d→ ||E1||, then the prediction region of Algorithm 3.4.2 is asymptotically valid

as well.

Remark 3.4.3. The proof of the corollary is immediate since, under the conditions

of Theorem 2.4.6 and 3.2.4, we have both A
p→ 0 and A∗

p→ 0. Note that the

condition ||Ê1,b||
d→ ||E1|| would follow if F̂n, the empirical distribution of the
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residuals, were shown to converge weakly to the distribution of the true errors as

shown e.g. by Franke and Nyarige (2016) [20] in the case of a linear operator Ψ.

However, the importance of Corollary 3.4.2 is limited: as discussed in Politis (2015)

[51]—asymptotic validity of prediction regions does not tell the whole story since

the variability of estimation—which is asymptotically negligible—does not enter

the picture. A prediction region will have good finite sample coverage only if the

method employed is able to capture the variability of estimation error; that is why

Algorithms 3.4.1 and 3.4.2 employ the bootstrap for prediction intervals instead of

just relying on the empirical quantiles of F̂n. Indeed, by construction, our model-

based bootstrap procedure is capable of approximating the distribution of the re-

scaled estimation error
√
nFχ(h)A by that of

√
nFχ(h)A∗ due to Theorem 3.2.4.

Hence, our bootstrap prediction regions should have good finite sample coverage

which is something that can not be captured by the property of asymptotic validity.

As mentioned in the introduction, Aue et al. (2015) [4] proposed a method

of predicting FAR(1) using functional principal component analysis (FPCA). In

addition, they proposed an algorithm for computing the prediction regions to assess

the prediction accuracy. That is the only existing method we could find on the

construction of prediction regions for functional time series. In the next subsection,

we are going to compare it with the algorithm we proposed.
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3.4.2 Monte Carlo studies

In this subsection, we use the Monte Carlo simulations to evaluate the

quality of the bootstrap prediction regions with both fitted and predictive residuals.

Simulations are performed on the model from the previous section; see Eq. (2.16).

500 ‘true’ datasets each with sample size n are generated and n varies from 100

to 400. For the ith true dataset, we use one of the bootstrap methods to create

B = 1000 bootstrap sample paths (step 4 of the algorithms), and construct the

prediction region.

To assess the corresponding coverage level (CV R) of the constructed re-

gion, we also generate 1000 one-step ahead predictions Yn+1,j = Ψ̂i(Xn,i) for

j = 1, 2, ...1000 where Ψ̂i is the estimate from the ith ‘true’ dataset, Xn,i is the ith

dataset’s last data and Ej is randomly drawn from the error process (2.17). Then

the empirical coverage level from the ith dataset is given by

CV Ri =
1

1000

1000∑
j=1

1

{
||Yn+1,j − Ψ̂b(Xn)|| < qi(β)

}
where 1(·) is the indicator function and β is the nominal coverage level. The

coverage level for bootstrap methods is calculated by the average {CV Ri} over

the 500 ‘true’ datasets, i.e.

CV R =
1

500

500∑
i=1

CV Ri.

Note that the last observation Xn,i is different for each dataset; hence the coverage

CV R represents an unconditional coverage probability.
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Prediction regions are constructed with nominal coverage levels of 95% and

90%. Five different norms in the functional space are selected to measure the

proximity between functions. The first three are the common lp norms in the

functional space:

• l1: ||f ||1 =
´ 1

0
|f(t)|dt

• l2: ||f ||2 = (
´ 1

0
|f(t)|2dt)1/2

• l∞: ||f ||∞ = supt∈[0,1]|f(t)|.

We also consider two pointwise measures:

• 1st coordinate: ||x− y||coordinate = |x(0)− y(0)|

• 1st component: ||x− y||component = |〈x− y, v1,n〉|

where x and y are functions in L2[0, 1] and e1 is the eigenfunction associated with

the largest eigenvalue of the sample covariance operator. Table 3.1 presents the

empirical coverage rate of the prediction region we construct. The results are

promising as the empirical coverage rates pretty well match the nominal cover-

age rate even with quite small sample size. As expected, when using predictive

residuals, the coverage rate is a bit higher compared to fitted residuals.

For the comparison purpose, we apply the algorithm of Aue et al. (2015) [4]

on the functional data we generate. Table 3.2 presents the coverage rate of their

constructed prediction region. The value of p represents the number of components
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Table 3.1: Comparison between empirical coverage rate and nominal coverage
rate using (a) fitted residuals and (b) predictive residuals.

fitted residuals nominal coverage 95% nominal coverage 90%
n 100 200 400 100 200 400
l1 0.956 0.955 0.953 0.914 0.910 0.907
l2 0.956 0.955 0.953 0.914 0.910 0.908
l∞ 0.959 0.957 0.956 0.918 0.913 0.910
1st coordinate 0.953 0.954 0.953 0.907 0.908 0.904
1st component 0.954 0.955 0.955 0.907 0.909 0.908

(a) Fitted residuals

predictive residuals nominal coverage 95% nominal coverage 90%
n 100 200 400 100 200 400
l1 0.957 0.955 0.955 0.913 0.910 0.911
l2 0.957 0.956 0.956 0.914 0.911 0.911
l∞ 0.960 0.959 0.958 0.918 0.915 0.916
1st coordinate 0.956 0.954 0.955 0.911 0.908 0.909
1st component 0.956 0.957 0.956 0.912 0.913 0.910

(b) Predictive residuals
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Table 3.2: Empirical coverage rate compared to the nominal coverage rate 95%.

n 100 200 400
p = 2 0.859 0.923 0.948
p = 3 0.874 0.928 0.945
p = 4 0.881 0.931 0.951

to be kept in the prediction algorithm; see Aue et al. (2015) [4] for more details.

The experiment is also done on three different sample size, 100, 200 and 400. As

is shown in the table, their prediction regions fail to achieve the ideal coverage

rate when sample size is small–see the case n = 100–and results get better when

sample size grows. This phenomenon is not surprising, and explainable. Recall

that there are two constituents in the expression of predictive root Xn+1 − X̂n+1,

the estimation error A and the true error E . The bootstrap predictive root in our

algorithm is capable of capturing the distribution of both errors by A∗ and E∗.

However, the method of Aue et al. (2015) [4] does not attempt to capture the

variability of estimation error and thus, as expected, it yields coverages less than

nominal (undercoverage). Coverage rate improves under larger sample size since

the estimation error diminishes as n grows. As a conclusion, we can say that the

prediction regions constructed through our bootstrap procedure can achieve better

finite sample coverage.
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3.5 Proof of Theorem 3.2.3

Let us first state some additional assumptions which are needed:

(D1) For some β > 0, all 0 ≤ s ≤ β and all χ1 in a neighborhood of χ with respect

to the semi-metric d, ϕχ1(0) = 0, ϕ′χ1
(s) exists, ϕ′χ1

(0) 6= 0, and ϕ′χ1
(s) is uniformly

Hölder continuous of order 0 < α ≤ 1 at 0, i.e. there exists a constant 0 < L <∞

such that

|ϕ′χ1
(s)− ϕ′χ1

(0)| ≤ Lsα, for all 0 ≤ s ≤ β,

uniformly in χ1 in a neighborhood of χ.

(D2) For all χ1 ∈ H, Fχ1(0) = 0 and Fχ1(t)/Fχ(t) is Hölder continuous of order α

in χ1, uniformly in t in a neighborhood of 0 (with α defined in (D1)), i.e. for some

β > 0, there exists a constant 0 < M <∞ such that

|(Fχ1(t)− Fχ2(t))/Fχ(t)| ≤Md(χ1, χ2)α, for all χ1, χ2 ∈ H,

uniformly for all 0 < t ≤ β.

(D3) For all χ1 ∈ H and all 0 ≤ s ≤ 1, τ0χ1(s) exists, supχ1∈H, 0≤s≤1|τhχ1(s) −

τ0χ1(s)| = o(1), M0χ > 0, M2χ > 0, infd(χ1,χ)<εM1χ1 > 0 for some ε > 0, and Mkχ1

is Hölder continuous of order α for k = 0, 1, 2, (with α defined in (D1)), i.e. for

k = 0, 1, 2, there exists a 0 < Nk <∞ such that

|Mkχ1 −Mkχ2| ≤ Nkd(χ1, χ2)α, for all χ1, χ2 ∈ H.
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(Here the quantities Mk, k = 0, 1, 2 are indexed with an additional index χ, which

is necessary to the above continuity conditions of Mk as a function of χ.)

(D4) E(|Xi+1||Xi = ·) is continuous in a neighborhood of χ with respect to the

semi-metric d, and supd(χ1,χ)<εE(|Xi+1|m|Xi = χ1) < ∞ for some ε > 0 and all

m ≥ 1.

(D5) b → 0, h/b → 0, h(nFχ(h))1/2 = O(1), Fχ(b)−1h/b = O(1), bhα−1 = O(1),

n1/pFχ(h)1/2log(n) = o(1), b1+α(nFχ(h))1/2 = o(1), Fχ(b + h)/Fχ(b) → 1, and

[Fχ(h)/Fχ(b)]log(n) = o(1) (with p and α defined in (A6) and (D1), respectively).

(D6) For each n, there exist rn ≥ 1, ln > 0 and curves t1n, . . . , trnn such that

B(χ, h) ⊂ ∪rnk=1B(tkn, ln), with rn = O(nb/h) and ln = o(b(nFχ(h))−1/2), where

B(χ, t) = {χ ∈ H : d(χ1, χ) ≤ t} is the ball in H with center χ and radius t.

(D7) a > 4.5 (with a defined in (A8)).

Note that (D1)-(D3) are regularity conditions related to the smoothness of

the functions ψ, ϕχ, Fχ and τ0χ, which have been used in the context of bootstrap

in functional regression. Assumption (D7), along with n1/pFχ(h)1/2log(n) = o(1)

and Fχ(b)−1h/b = O(1) in (D5) are additional assumptions made in the dependent

case in Raña et al. (2016) [60] which facilitates the proof of Lemma 3.5.2. See

more details on these assumptions in Ferraty et al. (2007) [17], (2010) [15].
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Proof. The expression between the absolute values of (3.2) can be decomposed as

P ∗
(√

nFχ(h){ψ̂∗hb(χ)− ψ̂b(χ)} ≤ y

)
− P

(√
nFχ(h){ψ̂h(χ)− ψ(χ)} ≤ y

)
= T1(y) + T2(y) + T3(y)

where

T1(y) = P ∗
(√

nFχ(h){ψ̂∗hb(χ)− ψ̂b(χ)} ≤ y

)

− Φ

y −√nFχ(h){E∗ψ̂∗hb(χ)− ψ̂b(χ)}√
nFχ(h)var∗(ψ̂∗hb(χ))

 ,

T2(y) = Φ

y −√nFχ(h){E∗ψ̂∗hb(χ)− ψ̂b(χ)}√
nFχ(h)var∗(ψ̂∗hb(χ))


− Φ

y −√nFχ(h){Eψ̂h(χ)− ψ(χ)}√
nFχ(h)var(ψ̂h(χ))


and

T3(y) = Φ

y −√nFχ(h){Eψ̂h(χ)− ψ(χ)}√
nFχ(h)var(ψ̂h(χ))


− P

(√
nFχ(h){ψ̂h(χ)− ψ(χ)} ≤ y

)
.

By the asymptotic normality of ψ̂h given in Theorem 2.4.4, we have T3(y) → 0.

The a.s. convergence to 0 of T1(y) is given by the asymptotic normality of ψ̂∗hb

conditioning on Xi, i = 1, ..., n, which is proved below.
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We decompose ψ̂∗hb as follows

ψ̂∗hb(χ) =

n−1∑
i=1

X∗i+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

=
ĝ∗(χ)

f̂(χ)
,

where

ĝ∗(χ) =
1

nFχ(h)

n−1∑
i=1

X∗i+1K(h−1d(Xi, χ)),

f̂(χ) =
1

nFχ(h)

n−1∑
i=1

K(h−1d(Xi, χ)).

Then we have

ĝ∗(χ) =
1

nFχ(h)

n−1∑
i=1

(ψ̂b(Xi) + ε∗i+1)K(h−1d(Xi, χ)),

E∗(ĝ∗(χ)) =
1

nFχ(h)

n−1∑
i=1

(ψ̂b(Xi) + E∗ε∗i+1)K(h−1d(Xi, χ)).

Therefore,

ψ̂∗hb(χ)− E∗(ψ̂∗hb(χ))√
var∗(ψ̂∗hb(χ))

=

ĝ∗(χ)

f̂(χ)
− E∗( ĝ

∗(χ)

f̂(χ)
)√

var∗( ĝ
∗(χ)

f̂(χ)
)

=
ĝ∗(χ)− E∗(ĝ∗(χ))√

var∗(ĝ∗(χ))

=
ĥ∗(χ)− E∗(ĥ∗(χ))√

var∗(ĥ∗(χ))

where

ĥ∗(χ) =
1

nFχ(h)

n−1∑
i=1

ε∗i+1K(h−1d(Xi, χ)).

ĥ∗(χ) is a sum of a mixing sequence and its asymptotic normality follows from the

similar arguments in the proof of Theorem 3 in Delsol (2009) [13].
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A special case is when K(·) = 1[0,1](·), under which

ĥ∗(χ) =
1

#{i : d(Xi, χ) ≤ h}
∑

i:d(Xi,χ)≤h

ε∗i+1,

so that ĥ∗(χ) is a sum of independent random variable given Xi, i = 1, . . . , n. and

the asymptotic normality follows directly.

It remains to consider T2(y), and its a.s convergence to 0 follows from Lemma 3.5.1

and 3.5.2 that follow:

Lemma 3.5.1. Assume (A1), (A4) and (D1)-(D5). Then

var∗[ψ̂∗hb(χ)]

var[ψ̂h(χ)]
→ 1 a.s.

Proof. Define σ̂2
ε = n−1

∑n
i=1(ε̂i,b − ¯̂εb)

2. Then

var∗[ψ̂∗hb(χ)] = var∗


n−1∑
i=1

(ψ̂b(Xi) + ε∗i+1)K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))



= var∗


n−1∑
i=1

ε∗i+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))



=

n−1∑
i=1

K2(h−1d(Xi, χ))var∗(ε∗i+1)(
n−1∑
i=1

K(h−1d(Xi, χ))

)2

=
σ̂2
ε

f̂(χ)2
(nFχ(h))−2

n−1∑
i=1

K2(h−1d(Xi, χ))

=
σ2
ε

E[f̂(χ)]2
(nF 2

χ(h))−1 · E[K2(h−1d(Xi, χ))] · (1 + o(1))
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=
σ2
ε

M2
1

M2

nFχ(h)
(1 + o(1))

= var[ψ̂h(χ)] + o((nFχ(h))−1).

Since var[ψ̂h(χ)] = O((nFχ(h))−1) by Theorem 2.4.2, the result follows by dividing

var[ψ̂h(χ)] on both sides. �

Lemma 3.5.2. Assume (A1)-(A11) and (D1)-(D7). Then

√
nFχ(h){E∗[ψ̂∗hb(χ)]− ψ̂b(χ)− E[ψ̂h(χ)] + ψ(χ)} a.s.→ 0.

Proof. Write

E∗[ψ̂∗hb(χ)]− ψ̂b(χ)

= E∗


n−1∑
i=1

(ψ̂b(Xi) + ε∗i+1)K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

− ψ̂b(χ)

=

n−1∑
i=1

ψ̂b(Xi)K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

− ψ̂b(χ)

=
(nFχ(h))−1

f̂h(χ)

n−1∑
i=1

{ψ̂b(Xi)− ψ̂b(χ)}K(h−1d(Xi, χ))

=
(nFχ(h))−1

f̂h(χ)

n−1∑
i=1

{ψ̂b(Xi)− ψ̂b(χ)− E[ψ̂b(Xi)] + E[ψ̂b(χ)]}K(h−1d(Xi, χ))

+
(nFχ(h))−1

f̂h(χ)

n−1∑
i=1

{E[ψ̂b(Xi)]− E[ψ̂b(χ)]− ψ(Xi) + ψ(χ)}K(h−1d(Xi, χ))

+
(nFχ(h))−1

f̂h(χ)

n−1∑
i=1

{ψ(Xi)− ψ(χ)}K(h−1d(Xi, χ))
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= U1 + U2 + U3

Using our Lemma 2.6.2 instead of Theorem 1 in Ferraty et al. (2007) [17], we can

follow the lines of the proof of Lemma 5 in Ferraty et al. (2010) [15] to obtain U1 =

o((nFχ(h))−1/2) a.s. We can also obtain U2 = o((nFχ(h))−1/2) a.s. by following

the lines of the proof of (8.11) in Raña et al. (2016) [60], which is the extension of

the Lemma 6 in Ferraty et al. (2010) [15] to the dependent data case. Finally, it

is easy to see from Theorem 2.4.4 that U3 = E[ψ̂h(χ)] − ψ(χ) + o((nFχ(h))−1/2),

which completes the proof of the lemma. �
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Chapter 4

Higher-order Accurate Spectral

Density Estimation of Functional

Time Series

4.1 Introduction

Typically, we consider a stationary functional sequence {Xt(τ); τ ∈ [0, 1]}t∈Z

whose terms are random elements of the separable Hilbert space L2([0, 1],R). The

central issue in the analysis of functional time series is to take into account the

temporal dependence between the observations. In this respect, a fundamental

element is the investigation of second-order characteristics of the functional se-

quences. A handful of early papers have studied the covariance structure of the

64
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functional sequences with dependence. For example, Bosq (2002) [7], Dehling and

Sharipov (2005) [12] consider the estimation of covariance operator for functional

autoregressive processes, Horváth and Kokoszka (2010) [25] studied the covari-

ance structure of weakly dependent functional time series under an m-dependence

condition; see also Horváth and Kokoszka (2012) [26] for an overview.

Nevertheless, to obtain a complete description of the second-order structure

of dependent functional sequences, one needs to consider autocovariance operators,

or autocovariance kernels relating different lags of the series, analogous to the auto-

covariance matrices in the context of multivariate time series analysis. One statistic

of interest associated with the autocovariance operator is the long-run covariance

kernel (or long-run covariance function) defined as C(τ, σ) =
∑

l∈Z rl(τ, σ) where

rt(τ, σ) = cov(Xt+s(τ), Xs(σ)) for τ, σ ∈ [0, 1] and t, s ∈ Z, is the so-called auto-

covariance kernel. The analysis of the long-run covariance kernel is applicable to

general functional dependence sequences without a particular model assumption.

Horváth et. al (2013) [28] proposed the kernel lag-window estimator of

C(τ, σ) and showed its consistency under mild conditions. The asymptotic nor-

mality of the estimator is established in Berkes et. al. (2016) [5]. The estimation

has applications in mean and stationarity testing of functional time series, see

Horváth et. al (2015) [29] and Jirak (2013) [32]. Horváth et. al (2016) [30] and

Rice and Shang (2016) [61] address the bandwidth selection for the kernel of the

lag-window estimator.
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Rather than focus on the isolated characteristic like the long-run covari-

ance, Panaretos and Tavakoli (2013) [43] approach the problem of inferring the

second-order structure of stationary functional time series via Fourier analysis,

formulating a frequency domain framework for weakly dependent functional data.

In the frequency domain of functional setting, the entire second-order dynamical

properties are encoded in the spectral density kernel which is defined as

fω(τ, σ) =
1

2π

∑
t∈Z

exp(−iωt)rt(τ, σ). (4.1)

where the autocovariance kernel rt(τ, σ) and the spectral density kernel fω(τ, σ)

comprise a Fourier pair. The notion of spectral density kernel in the functional

setting is a generalization of finite-dimensional notion in the context of spectral

density analysis of multivariate time series, which has been extensively studied by

prominent statistical researchers; see, e.g. Parzen (1957, 1961) [45, 46], Brillinger

and Rosenblatt (1967) [10], Hannan (1970) [23] and Priestley (1981) [57]. A con-

sistent estimate of the spectral density kernel in the form of a weighted average of

the periodogram kernel—the functional analogous of periodogram matrix—is also

proposed in Panaretos and Tavakoli (2013) [43] under a type of cumulant mixing

condition. This weak dependence condition is the functional analog of classical

cummulant-type mixing condition of Brillinger (2001) [9].

In this chapter, we propose a new class of spectral density kernel estimators

based on the notion of flat-top kernel defined in Politis (2001) [47]; see also Politis

and Romano (1995, 1996, 1999) [53, 54, 55]. The new class of estimators employs



67

the inverse Fourier transform of a flat-top function to construct the weight function

smoothing the periodogram. With the choice of a high-order flat-top kernel, it is

shown to be able to achieve bias reduction, and hence the higher-order accuracy

in terms of optimizing the integrated mean square error (IMSE). It is also nearly

equal to the general lag-window type estimators which is a well-know fact in finite-

dimensional case; see Brockwell (2013) [11] and Brillinger and Richard (2001) [9].

The higher-order accuracy of flat-top estimation typically comes at the

sacrifice of the positive semi-definite property. To address this issue, we show

how a flat-top estimator can be modified to become positive semi-definite (even

strictly positive definite) while retaining the favorable asymptotic properties. The

modification is similar to the one proposed in Politis (2011) [49], for the treatment

of flat-top spectral density matrix estimators. In addition, we introduce a data

driven bandwidth selection procedure realized by an automatic inspection of the

correlation structure.

The rest of this chapter is organized as follows. In the next section, the

flat-top estimator of the spectral density kernel is defined after introduction of

some basic definitions of the frequency domain framework, and theorems on the

asymptotic accuracy are given. Section 4.3 shows the almost equivalence of the

proposed estimator in the form of weighted average of periodogram and the flat-

top lag-window estimator. A modification of the flat-top spectral density estima-

tor is introduced in Section 4.4 which results into an estimator that is positive
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semi-definite while retaining the estimator’s higher-order accuracy. Section 4.5

addresses the issue of data-dependent bandwidth choice where an empirical rule

of picking bandwidth is proposed. Our favorable asymptotic results are supported

by a finite-sample simulation in Section 4.6 where higher-order accuracy of the

flat-top estimators are manifested in practice. Finally, the technical proofs are

gathered in the in Section 4.7.

4.2 Spectral density kernel estimation

We consider a functional time series {Xt(τ); τ ∈ [0, 1]}t∈Z where each Xt(·)

belongs to the separable Hilbert space L2([0, 1],R) possessing mean zero, i.e.,

EXt(τ) = 0 for all τ ∈ [0, 1], and autocovariance kernel rt(τ, σ) = EXt+s(τ)Xs(σ)

for τ, σ ∈ [0, 1] and s ∈ Z.

The space is equipped with the inner product 〈·, ·〉 and the induced L2 norm

|| · ||2,

〈f, g〉 =

ˆ 1

0

f(τ)g(τ)dτ, ||g||2 = 〈g, g〉1/2, f, g ∈ L2([0, 1],R).

We assume the series {Xt}t∈Z is strictly stationary in the sense that for any finite

set of indices I ⊂ Z and any s ⊂ Z, the joint law of {Xt, t ∈ I} is identical to that

of {Xt+s, t ∈ I}.

In addition, the weak dependence structure among the observations {Xt}

is quantified by employing the notion of cumulant kernel of a series which is intro-
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duced in Chapter 1. Recall that the pointwise definition of a kth order cumulant

kernel is

cum(Xt1(τ1), . . . , Xtk(τk)) =
∑

ν=(ν1,...,νp)

(−1)p−1(p− 1)!

p∏
l=1

E

[∏
j∈νl

Xtj(τj)

]

where the sum extends over all unordered partitions of {1, . . . , k}. We will make use

of the following cumulant mixing condition, defined for fixed l ≥ 0 and k = 2, 3, . . .

Condition C(l,k). For each j = 1, . . . , k − 1,

∞∑
t1,...,tk−1=−∞

(1 + |tj|l)||cum(Xt1 , . . . , Xtk−1
, X0)||2 <∞

We inherit the frequency domain framework of functional time series de-

veloped in Panaretos and Tavakoli (2013) [43], in which the functional version of

discrete Fourier transform is introduced. Given a functional sequence of length T ,

{Xt}T−1
t=0 , the functional Discrete Fourier Transform (fDFT) is defined as

X̃(T )
ω (τ) = (2πT )1/2

T−1∑
t=0

Xt(τ) exp(−iωt). (4.2)

The tensor products of the fDFT leads to the notion of periodogram kernel–the

function analogue of the periodogram matrix in the multivariate case. The peri-

odogram kernel is defined as

p(T )
ω (τ, σ) = X̃(T )

ω (τ)X̃
(T )
−ω (σ). (4.3)

The periodogram kernel is asymptotically unbiased under certain cumulant mixing

conditions. However, it is not a consistent estimator of the spectral density kernel
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fω as its asymptotic covariance is not zero. Panaretos and Tavakoli (2013) [43]

proposed a consistent estimator f
(T )
ω by convolving the periodogram kernel with a

weight function, which has the form

f (T )
ω (τ, σ) =

2π

T

T−1∑
s=1

W (T )

(
ω − 2πs

T

)
p

(T )
2πs/T (τ, σ). (4.4)

The weight function, W (T ), is constructed as

W (T )(x) =
∑
j∈Z

1

BT

W

(
x+ 2πj

BT

)
(4.5)

where BT , T = 1, 2, . . . is a sequence of scale parameters with the properties BT >

0, BT → 0 and BTT → ∞ as T → ∞. W is a fixed function satisfying that W is

a positive, even function and

W (x) = 0 for |x| ≥ 1;

ˆ ∞
−∞

W (x)dx = 1;

ˆ ∞
−∞

W (x)2dx <∞.

The summation over j ∈ Z in (4.5) makes the weight function W (T ) periodic with

period 2π. The same will be true for the estimator f
(T )
ω by its definition in (4.4).

With the above constraints imposed on function W , it has been shown in Panaretos

and Tavakoli (2013) [43] that f
(T )
ω is a consistent estimator of the spectral density

kernel fω in mean square (with respect to Hilbert-Schmidt norm). The bias of f
(T )
ω

is partly attributed to the assumption that W is positive and it can potentially be

significantly reduced if an appropriate function W is chosen that is not restricted to

be positive. To this aim, we propose a class of higher-order accurate estimator by

making use of the so-called flat-top kernels in the construction of weight function
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W (T ). The resulting estimator is shown to achieve bias reduction while retaining

the asymptotic covariance structure of f
(T )
ω in (4.4).

To describe our estimator, we need the notion of a “flat-top” kernel. A

general flat-top kernel Λ is defined in terms of its Fourier transform λ, which is in

turn defined as

λ(s) =


1 if |s| ≤ c,

g(s) otherwise.

(4.6)

where c > 0 is a parameter and g : R→ [−1, 1] is a symmetric function, continuous

at all but a finite number of points satisfying g(c) = 1 and
´
R g

2(x)dx < ∞. The

flat-top kernel Λ(x) is then given by the inverse Fourier transform of λ(s)

Λ(x) =
1

2π

ˆ ∞
−∞

λ(s)eisxds. (4.7)

Note that in the preceding definition, the function λ, and hence the kernel Λ,

depend on the function g and the parameter c, but this dependence will not be

explicitly denoted.

The function λ(s) is ‘flat’, i.e., constant, over the region [−c, c], hence the

name flat-top for the kernel function Λ(x). If a kernel function Λ has finite qth

moment, and its moments up to order q−1 are equal to zero, i.e.
´
sqΛ(s)ds <∞,

and
´
skΛ(s)ds = 0 for all k ≤ q − 1, then the kernel is said to be of order q. We

have the following property concerning the order of the kernel function Λ:

Proposition 4.2.1. If λ(s) is p times differentiable flat-top function and λ(p) is

Hölder continuous of order 0 < α < 1, then Λ(x) is a kernel of order p− 1.
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Proof. See Appendix. �

In the following, we will be using f̂
(T )
ω,λ to denote the flat-top estimator

employing the flat-top kernel Λ, which is in turn induced by a flat-top function

λ. The estimator is of the same form as (4.4), except the difference in the weight

function, i.e.,

f̂
(T )
ω,λ (τ, σ) =

2π

T

T−1∑
s=1

W
(T )
λ

(
ω − 2πs

T

)
p

(T )
2πs/T (τ, σ), (4.8)

where

W
(T )
λ (x) =

∑
j∈Z

1

BT

Λ

(
x+ 2πj

BT

)
, (4.9)

with Λ(x) being the flat-top kernel induced by a flat-top function λ(s) defined in

(4.7).

The following theorems investigate the performance of f̂
(T )
ω,λ employing the

general flat-top kernel Λ.

Theorem 4.2.1. Provided that BT → 0 and BTT →∞ as T →∞, and assume p

is the maximum value that can be attained such that C(p,2) holds; then by choosing

an appropriate flat-top kernel Λ of order p, we have

E[f̂
(T )
ω,λ (τ, σ)] = fω(τ, σ)ω +O(Bp

T ) +O(B−1
T T−1),

where the equality holds in L2, and the error terms are uniform in ω.

Proof. See Appendix. �



73

Remark 4.2.2. According to Proposition 4.2.1, a sufficient condition for a kernel

Λ to be of order p is that λ is a p + 1 times differentiable flat-top function and

λ(p+1) is Hölder continuous. On the other hand, the decay rate of bias crucially

depends on the cumulant mixing condition satisfied by the functional sequence.

A type of moment conditions is provided in Panaretos and Tavakoli (2013) [43],

which are sufficient for the cumulant mixing condition to hold for a general linear

process of the form Xt =
∑

s∈ZAsεt−s; see Proposition 4.1 therein.

The flat-top estimator f̂
(T )
ω,λ achieves bias improvements while retaining the

rate of decay of the covariance structure as stated in the following theorem:

Theorem 4.2.3. Under C(1,2) and C(1,4),

cov(f̂
(T )
ω1,λ

(τ1, σ1), f̂
(T )
ω2,λ

(τ2, σ2)) = O(B−2
T T−1)

where the equality holds in L2, uniformly in the ω’s.

Using our Lemma 4.7.2 and 4.7.3, Theorem 4.2.3 can be proved along the same

lines of proof of Corollary 3.3 in Panaretos and Tavakoli (2013) [43]. For fixed

ω1, ω2, the covariance can be shown to have a sharper bound O(B−1
T T−1); see

Proposition 3.4 in Panaretos and Tavakoli (2013) [43].

Concerning the mean square error, we need the notion of spectral density

operator of functional time series, which is introduced in Panaretos and Tavakoli

(2013) [43]. The spectral density operator Fω is an operator induced by the
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spectral density kernel through right integration,

Fωh(τ) =

ˆ 1

0

fω(τ, σ)h(σ)dσ

=
1

2π

∑
t∈Z

e−iωt
ˆ 1

0

rt(τ, σ)h(σ)dσ

=
1

2π

∑
t∈Z

e−iωtRth(τ), (4.10)

where Rt is the autocovariance operator induced by the autocovariance kernel

through right integration,

Rth(τ) =

ˆ 1

0

rt(τ, σ)h(σ)dσ = cov[〈X0, h〉, Xt(τ)], h ∈ L2([0, 1],R). (4.11)

The spectral density operator Fω is the integral operator with kernel fω.

Analogously, we denote F̂ (T )
ω,λ the operator induced by the the kernel f̂

(T )
ω,λ through

right integration, and thereby the estimator of Fω. Combining the results on

the asymptotic bias and variance of the spectral density operator, we have the

following consistency in integrated mean square of the induced estimator F̂ (T )
ω,λ for

the spectral density operator Fω.

Theorem 4.2.4. Provided assumptions C(p,2) and C(1,4) hold, BT → 0, BTT →

∞, then the spectral density operator estimator F̂ (T )
ω,λ employing a flat-top kernel

Λ of order p is consistent in integrated mean square, that is,

IMSE(F̂ (T )
ω,λ ) =

ˆ π

−π
E
∣∣∣∣∣∣∣∣∣F̂ (T )

ω,λ −Fω

∣∣∣∣∣∣∣∣∣2
2
dω → 0, as T →∞,

where |||·||| is the Hilbert-Schmidt norm. More precisely, IMSE(F̂ (T )
ω,λ ) = O(B2p

T ) +

O(B−1
T T−1) as T →∞.
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Theorem 4.2.4 gives the rate of convergence of F̂ (T )
ω,λ to Fω. In the mean-

time, it also suggests the optimal value of the bandwidth parameter BT in terms

of optimizing the decay rate of integrated mean square error. Apparently, the

optimal BT depends on the cumulant condition a functional sequence possesses,

that is, the value of p. For any finite p, the optimal decay rate O(T−2p/(2p+1))

can be achieved with BT = T−1/(2p+1). In the case that p = ∞, one can choose

BT = 1/ log T to obtain a favorable rate of O(log T/T ).

4.3 Alternate estimates and flat-top kernel choice

4.3.1 Alternate estimates

The spectral density kernel estimator considered in the previous section

has the form of a weighted average of periodogram ordinates. In fact, the weight

function W
(T )
λ (x) in the estimate (4.8) has an alternate form

W
(T )
λ (x) =

1

2π

∑
u∈Z

λ(BTu)e−ixu. (4.12)

The equivalence of (4.9) and (4.12) can be easily verified by using Poisson summa-

tion formula. Moreover, if the discrete average in (4.8) is replaced by a continuous

one, the estimate becomes

ˆ 2π

0

W
(T )
λ (ω − α)p(T )

α (τ, σ)dα =

ˆ 2π

0

W
(T )
λ (α)p

(T )
ω−α(τ, σ)dα

=

ˆ ∞
−∞

B−1
T Λ(B−1

T α)p
(T )
ω−α(τ, σ)dα. (4.13)
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By Equation (4.2) and (4.3), the periodogram kernel is given by

p(T )
ω (τ, σ) =

1

2π

∑
|u|<T

r̂u(τ, σ)e−iωu (4.14)

where

r̂u(τ, σ) =
1

T

∑
0≤t,t+u≤T−1

Xt+u(τ)Xt(σ)

is the sample autocovariance kernel. If this is substituted into (4.13), then the

estimate takes the form

1

2π

∑
|u|<T

λ(BTu)r̂u(τ, σ)e−iωu (4.15)

where

λ(s) =

ˆ ∞
−∞

Λ(x)e−isxdx.

With a flat-top function λ in place, the estimate (4.15) has a formal re-

semblance to the flat-top estimation for multivariate spectrum explored in Politis

(2011) [49] with the bandwidth parameter mT = B−1
T . The estimator has been

shown to achieve higher-order accuracy in estimating the spectral density matrix;

see Politis (2011) [49] for details. In fact, the estimate (4.15) is the general form of

spectral estimation that has been extensively investigated by prominent statistical

researchers as early as 1950s and 1960s. See, e.g., Grenander (1951) [22], Parzen

(1957) [45] and Priestley (1962) [56].
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4.3.2 Flat-top kernel choice

As suggested by Theorem 4.2.1, in order to achieve favorable asymptotic

rates, it is desirable to choose a flat-top kernel Λ of higher order, and hence a

flat-top function λ as smooth as possible according to Proposition 4.2.1. McMurry

and Politis (2004) [40] constructed a member of the flat-top family that is infinitely

differentiable, which is defined as

λID,b,c(s) =



1 if |s| ≤ c,

exp(−b exp(−b/(|s| − c)2)/(|s| − 1)2) if c < |s| < 1,

0 if |s| ≥ 1

(4.16)

where c ∈ (0, 1] determines the region over which λ is identically 1, and b > 0 is a

shape parameter, making the transition from λID,b,c(c) = 1 to λID,b,c(1) = 0 more

or less abrupt.

The function exp(−b exp(−b/(|s|−c)2)/(|s|−1)2) connects the regions where

λ is 0 and the region where λ is 1 in a manner such that λ(s) is infinitely differ-

entiable for all s, including where |s| = c and |s| = 1. The resulting kernel Λ is of

infinite order in the sense that Λ(x) decays faster than |x|−m, for all positive finite

m, as |x| → ∞. Figure 4.1 shows the plots of the infinitely differentiable flat-top

function λID,b,c(s) with b = 0.25 and c = 0.05, and the resulting kernel Λ(x) as

well as the corresponding weight function W
(T )
λ (x). Note that the plot of W

(T )
λ (x)

can be created from either Equation (4.9) or (4.12) as their equivalence stated in

Section 4.3.1.
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Figure 4.1: (a) Plot of λID,1/4,0.05(s); (b) Plot of corresponding kernel Λ(x) in-
duced by inverse Fourier transform of λID,1/4,0.05(s); (c) Plot of the corresponding

weight function W
(T )
λ with BT = 0.1.
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Nevertheless, while the effectiveness of the flat-top kernels is reflected in

Theorem 4.2.1 and 4.2.4, they in fact provide merely theoretical bounds for the

decay rate of bias and IMSE. In the meantime, according to Theorem 4.2.1, the

reduction of bias of the flat-top estimation could potentially be limited by the order

of the cumulant condition, which indicates that an infinite order kernel might not

be necessary. That leads us to attempt other choices within the flat-top family.

One simple representative flat-top function has the trapezoidal shape defined as

λTR,c(s) =



1 if |s| ≤ c,

|s| − 1

c− 1
if c < |s| < 1,

0 if |s| ≥ 1.

(4.17)

The trapezoidal λTR,c is continuous everywhere and it already exhibits good perfor-

mance when being implemented for the estimation of spectral density matrix; see

Politis (2011) [49]. The infinite differentiable function λID,b,c(s) looks very much

like the trapezoidal, but with smoothed corners.

Another choice to be considered is the flat-top function created by adding

a piecewise cubic tail, similar to that of Parzen’s (1961) [46] kernel, to the [−c, c]
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Figure 4.2: (a) Plot of trapezoidal λTR,1/2(s); (b) Plot of flat-top Parzen
λPR,3/4(s).

flat-top region. It is defined as

λPR,c(s) =



1 if 0 ≤ s ≤ c,

1− 6(s− c)2 + 6|s− c|3 if c ≤ s ≤ c+ 1/2,

2(1− |s− c|)3 if c+ 1/2 ≤ s ≤ c+ 1

0 if s ≥ c+ 1,

λPR,c(−s) if s < 0.

(4.18)

Plots of flat-top functions λTR,1/2 and λPR,3/4 are shown in Figure 4.2. Concerning

the choice of parameters of flat-top kernels, i.e., b and c, we refer the readers to

Politis (2011) [49] where a detailed discussion is given.

4.4 Positive semi-definite spectral estimation

By employing the infinite-order flat-top kernels, the flat-top estimator F̂ (T )
ω,λ

is capable of achieving higher-order accuracy with improved estimation bias. The
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disadvantage of flat-top kernels, however, is that they are not positive semi-definite.

As a result, the operator estimation F̂ (T )
ω,λ is not almost surely positive semi-definite

for all ω, while it converges to a positive semi-definite operator Fω.

The positive semi-definiteness of the estimation is desirable especially in the

case of ω = 0 when the object is estimation of a long-run covariance operator. In

the context of finite-dimensional time series analysis, the spectral density matrix

estimators can be easily adjusted to be positive semi-definite via replacing nega-

tive eigenvalues by zeros in the diagonalization of the estimated matrices; see e.g.

Politis (2011) [49]. Analogously, we now show how the flat-top operator estimator

F̂ (T )
ω,λ can be modified to render a positive semi-definite estimator while preserving

the asymptotic consistency.

The spectral decomposition of operators in an infinite-dimensional Hilbert

space is much more intricate than that in a finite-dimensional context. However,

recall that both operators Fω and F̂ (T )
ω,λ are induced by kernel functions through

right integration, and therefore they are symmetric Hilbert-Schmidt operators that

admit the following decompositions

Fω(h) =
∞∑
j=1

νj〈h, ej〉ej, h ∈ L2([0, 1],R) (4.19)

F̂ (T )
ω,λ (h) =

∞∑
j=1

ν̂j〈h, êj〉êj, h ∈ L2([0, 1],R) (4.20)

where (νj) and (ν̂j) are two sequences of real numbers tending to zero; (ej) and
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(êj) are two orthonormal bases of L2([0, 1],R). We have for j ≥ 1,

Fω(ej) = νjej and F̂ (T )
ω,λ (êj) = ν̂j êj;

thus (νj, ej) and (ν̂j, êj), j ≥ 1 are complete sequences of eigenelements of Fω and

F̂ (T )
ω,λ respectively.

Noting that the eigenvalues νj, j ≥ 1 are all non-negative since the operator

Fω is positive semi-definite. To fix the possible negativity of F̂ (T )
ω,λ , let ν̃j =

max(ν̂j, 0) for all j, and define the estimator

F̃ (T )
ω,λ (h) =

∞∑
j=1

ν̃j〈h, êj〉êj, h ∈ L2([0, 1],R). (4.21)

We keep nonnegative eigenvalues of F̂ (T )
ω,λ and replace negative eigenvalues by zero,

which makes the resulting operator F̃ (T )
ω,λ an positive semi-definite estimator. The

connection of F̂ (T )
ω,λ and F̃ (T )

ω,λ is shown in the following inequality:

Proposition 4.4.1. Let F̃ (T )
ω,λ be the positive semi-definite operator estimator of

Fω defined in (4.10), then for a fixed ω

∣∣∣∣∣∣∣∣∣F̃ (T )
ω,λ −Fω

∣∣∣∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣∣∣∣F̂ (T )

ω,λ −Fω

∣∣∣∣∣∣∣∣∣
2
, (4.22)

where |||·|||2 is the Hilbert-Schmidt norm.

Proof. See Appendix. �

A direct consequence of the last result is the following corollary which shows

that, in addition to being positive semi-definite, F̃ (T )
ω,λ possesses the same mean

square convergence of F̂ (T )
ω,λ given in Theorem 4.2.4.



83

Theorem 4.4.1. Under the condition of Theorem 4.2.4, the positive semi-definite

spectral density operator estimate F̃ (T )
ω,λ employing a flat-top kernel Λ of order p is

consistent in integrated mean square with

IMSE(F̃ (T )
ω,λ ) =

ˆ π

−π
E
∣∣∣∣∣∣∣∣∣F̃ (T )

ω,λ −Fω

∣∣∣∣∣∣∣∣∣2
2
dω = O(B2p

T ) +O(B−1
T T−1)

where |||·|||2 is the Hilbert-Schmidt norm.

In the case that the estimand Fω is not only positives semi-definite but

strictly positive definite, it is desirable to have a strictly positive definite estimator

of Fω. A similar modification of F̂ (T )
ω,λ can be applied here to make the estimator

strictly positive definite. Let ν̌j = max(ν̌j, εT ) for all j, where εT > 0 is some chose

sequence, and define the estimator

F̌ (T )
ω,λ (h) =

∞∑
j=1

ν̌j〈h, êj〉êj, h ∈ L2([0, 1],R). (4.23)

The estimator F̌ (T )
ω,λ is positive definite and it can be verified that it main-

tains the high accuracy of the flat-top estimator if εT = O(1/T ). Thus, F̌ (T )
ω,λ is a

higher-order accurate, strictly positive definite estimator.

4.5 Data-dependent bandwidth choice

As it has been demonstrated in Section 4.3.1 that the lag-window estimate

(4.15) with bandwidth mT is nearly equal to the estimate (4.8) with bandwidths

BT = m−1
T , we propose here an empirical rule for choosing the bandwidth BT in
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practice, which resembles the bandwidth choosing rule for the flat-top lag-window

introduced in Politis (2011) [49].

Recall that the sample autocovariance kernel

r̂u(τ, σ) =
1

T

∑
0≤t,t+u≤T−1

Xt+u(τ)Xt(σ),

the proposed bandwidth choice rule is done by a simple inspection of the functional

version of correlogram/cross-corregram, i.e. a plot of ρ̂m(τ, σ) vs. m where

ρ̂m(τ, σ) =
r̂m(τ, σ)√

r̂0(τ, τ)r̂0(σ, σ)

for all τ, σ ∈ [0, 1].

We look for a point, say q̂, after which the correlogram for each pair of

(τ, σ) appears negligible, i.e. ρ̂m(τ, σ) ' 0 for |m| > q̂, and ρ̂q̂(τ, σ) 6= 0. Here

ρ̂m(τ, σ) ' 0 is taken to mean that ρ̂m(τ, σ) is not taken significantly different

from 0. In practice, we determine q̂ by considering the correlogram for (τ, σ) over

a finite grid of [0, 1]× [0, 1]. After identifying q̂, the recommendation is to take

B̂T =
1

max(dq̂/ce, 1)
(4.24)

where c is the parameter determines the ‘flat-top’ region of λ.

From the flat-top lag-window perspective, the intuition behind the above

bandwidth choice rule is an effort to extend the ‘flat-top’ region of λ over the whole

of the region where ρ̂q̂(τ, σ) is thought to be significant so as not to downweigh it

and introduce bias. As scrutinized in Politis (2011) [49], the ‘flat-top’ region of λ
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can be greater than [−c, c] depending on the choice of function g. The decreasing

rate of g(s) near c could be slow enough so that λ(s) ' 1 for an interval much

greater than [−c, c]; see, for example, (4.16) and Figure 1(a) regarding the infinite

differentiable λID,b,c(s) with b = 0.25 and c = 0.05. Instead of the interval [−c, c],

we consider an ‘effective’ flat-top region of λ defined as the interval [−cef , cef ]

where cef is the largest number such that λ(s) ≥ 1− ε for all x in [−cef , cef ]; here

ε is some small number chosen number, e.g. ε = 0.01.

Let Γ = {(i/10, j/10); i, j = 0, . . . , 9)} be a finite grid of [0, 1]2. Now we

can formalize the empirical rule of choosing bandwidth BT .

EMPIRICAL RULE OF CHOOSING BANDWIDTH BT .

For (τ, σ) ∈ Γ, let q̂τ,σ be the smallest nonnegative integer such that |ρ̂m+q̂τ,σ(τ, σ)| <

C0

√
log10 T/T , for m = 0, 1, . . . , KT , where C0 > 0 is a fixed constant, and KT

is a positive, nondecreasing integer-valued function of T such that KT = o(log T ).

Then, let q̂ = max
(τ,σ)∈Γ

q̂τ,σ, and BT = 1/max(dq̂/cefe, 1).

The constant C0 and the form of KT are the practitioner’s choice. Politis

(2003) [48] makes the concrete recommendations

C0 ' 2 and KT = max(5,
√

log10 T )

that have the interpretation of yielding (approximately) 95% simultaneous confi-

dence intervals for ρ̂m+q̂τ,σ(τ, σ) with m = 1, . . . , KT by Bonferroni’s inequality.
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It is also worth noting that by considering the correlogram over the finite

grid Γ, we actually generate a matrix of thresholds and, q̂ is picked as the maximum

among the entries of the matrix, i.e, q̂τ,σ for (τ, σ) ∈ Γ. This rule of identifying p̂

can be blemished in the situation that certain q̂τ,σ are radically greater compared

to the others. Picking p̂ to be the average of the matrix entries will be a more

reasonable choice when such a special case arises. Nevertheless, if the target is to

estimate the spectral kernel fω for a particular pair (τ, σ), one can always choose

the bandwidth BT by using the specified q̂τ,σ, i.e. BT = 1/max(dq̂τ,σ/cefe, 1).

4.6 Simulations

We now present some numerical simulations to complement our asymptotic

results. The main goal of the simulations is to compare the performance of the

estimators employing flat-top kernels with that of the non-flat-top estimation, as

well as to illustrate the main issues discussed in the paper. The simulations are

performed on a simple functional moving average model

Xt = A0εt + A1εt−1. (4.25)

The simulations we carry out are analogous to that conducted in Panaretos and

Tavakoli (2013) [43]. The innovation functions εt’s are independent Wiener pro-

cesses on [0, 1], which are represented using a truncated Karhuen-Loève expansion,

εt(τ) =
1000∑
k=1

ξk,t
√
ηkek(τ),
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where ηk = 1/[(k− 1/2)2π2], ξk,t are independent standard Gaussian random vari-

ables and ek(τ) =
√

2 sin[(k − 1/2)πτ ] is orthonormal system in L2([0, 1],R); see

Adler (1990) [1]. The operators A0 and A1 are constructed so that their image

be contained within a 50-dimensional subspace of L2([0, 1],R), spanned by an or-

thonormal basis ψ1, . . . , ψ50. Representing εt in the ek basis, and As, s = 1, 2

in the ψm
⊗

ek basis, we have the matrix representation of the process Xt as

Xt = A0εt + A1εt−1, where Xt is a 50× 1 matrix, each As is a 50× 100 matrix,

and each εt is a 100× 1 matrix.

A stretch of Xt, t = 0, . . . , T − 1 is generated for T = 2n with n = 6, . . . , 10.

Matrices As, s = 1, 2 are constructed as random Gaussian matrices with indepen-

dent entries, such that element in jth row are N(0, j−2) distributed.

For the simulation, B = 200 simulation runs are generated for each T which

are used to compute the IMSE by approximating the integral

2

ˆ π

0

E
∣∣∣∣∣∣∣∣∣F̂ (T )

ω,λ −Fω

∣∣∣∣∣∣∣∣∣2
2
dω

by a weighted sum over the finite grid Γ = {πj/10; j = 0, . . . , 9}. We consider the

estimators with proposed flat-top kernels and compare them with the Epanechnikov

kernel, W (x) = 3
4
(1 − x2)+, which is non-flat-top implemented in the simulations

of Panaretos and Tavakoli (2013) [43]. We apply bandwidth BT = T−1/5 for the

estimator of each kernel. In addition, the bandwidths of the estimators employing

flat-top kernels are also estimated using the empirical rule proposed in Section 4.5.

The simulation results are presented in Table 4.1, entries of which are log-
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Table 4.1: Entries represent the logarithm of IMSEs in base 2 of different esti-
mators using (a) bandwidth BT = T−1/5 and (b) Empirical rule of choosing BT .
Sample size ranges from 26 to 210. Minimum IMSE for each T is indicated by
boldface.

T 64 128 256 512 1024

Epanechnikov kernel -6.188 -6.852 -7.588 -8.276 -9.082
λTR,1/2 (Trapezoid) -6.389 -7.112 -7.902 -8.719 -9.493
λPR,3/4 (Flat-top Parzen) -6.383 -7.041 -8.018 -8.846 -9.710
λID,1/4,0.05 (Flat-top Inf. Diff.) -6.344 -7.262 -8.074 -8.832 -9.719

(a) Bandwidth BT = T−1/5

T 64 128 256 512 1024

λTR,1/2 (Trapezoid) -6.519 -7.331 -8.260 -9.145 -10.089
λPR,3/4 (Flat-top Parzen) -6.627 -7.592 -8.455 -9.349 -10.313
λID,1/4,0.05 (Flat-top Inf. Diff.) -6.701 -7.640 -8.538 -9.327 -10.280

(b) Empirical rule of choosing BT

arithm of IMSE in base 2. As expected, the estimators employing flat-top ker-

nels show a faster decay rate of IMSE compared to the one with the non-flat-top

Epanechnikov kernel. The performances of flat-top Parzen and flat-top indefinite

differentiable kernels are close, while they slightly outperform the trapezoid as the

sample size grows. This might be due to the fact that the smoothness of the flat-

top functions is indeed a factor on the decay of IMSE, but over-smoothing might

not be necessary as the performance could potentially be limited by the order of

cumulant conditions as Theorem 4.2.4 suggests. Also note that implementing the

empirical rule of bandwidth choice indeed yields an overall improvement by the

comparison of results between Table 4.1(a) and 4.1(b).
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4.7 Appendix: Proofs

4.7.1 Proof of Proposition 4.2.1

To prove Proposition 4.2.1, we need the following lemma, which measures

the magnitude of Fourier coefficient.

Lemma 4.7.1. Let f be an integrable function on the interval [0, 2π], and f̂(n) be

its Fourier coefficients defined by

f̂(n) =
1

2π

ˆ 2π

0

f(t)eintdt. (4.26)

If f is p times differentiable and f (p) is Hölder continuous of order o < α < 1,

then

|f̂(n)| = O(|n|−p−α).

Proof. By repeated integration by part on Equation (4.26), we have

f̂(n) = (in)−pf̂ (p)(n). (4.27)

On the other hand, f̂ (p)(n) = 1
2π

´ 2π

0
f (p)(n)e−intdt = −1

2π

´ 2π

0
f (p)(n)e−in(t+π/n)dt;

by a change of variable, f̂ (p)(n) can be written as

f̂ (p)(n) =
1

4π

ˆ 2π

0

(
f (p)(t+

π

n
)− f (p)(t)

)
e−intdt.

By Hölder continuity of f (p), we have

|f̂ (p)(n)| ≤ C

|n|α
, (4.28)
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for some constant C. Combining (4.27) and (4.28), we obtain

|f̂(n)| = |n|−p|f̂ (p)(n)| = O(|n|−p−α). (4.29)

�

Proof of Proposition 4.2.1. For a flat-top function λ(s) and its inverse Fourier

transform Λ(x), we have

Λ(x) =
1

2π

ˆ
R
λ(s)eisxds, (4.30)

λ(s) =

ˆ
R

Λ(x)e−isxdx. (4.31)

Since the assumption that λ is p times differentiable and λ(p) is Hölder continuous of

order 0 < α < 1, by Lemma 4.7.1, we have |x|p+α|Λ(x)| ≤ C for some constant C,

which implies Λ(x) has finite moments up to order p− 1, i.e.
´
R |x|

k|Λ(x)|dx <∞

for 0 ≤ k ≤ p− 1.

By repeated differentiations on both sides of (4.31), we obtain for k = 1, . . . , p− 2,

dkλ(s)

dsk
=

ˆ
R
(−ix)kΛ(x)e−isxdx

by dominated convergence theorem. Now that λ(x) is flat-top, λ(k)(0) is zero for

all k, which in turn leads to

ˆ
R
xkΛ(x)dx = 0 for k = 1, . . . , p− 2 (4.32)

if we set s = 0 on both sides of (4.32). Therefore, Λ is a kernel of order p− 1.
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4.7.2 Proof of Theorem 4.2.1

To prove Theorem 4.2.1, the following lemmas are necessary.

Lemma 4.7.2. We have the following properties for the flap-top kernel Λ(x) and

the function W
(T )
λ (x):

(i)
´
R Λ(x)dx = 1;

(ii)
´ π
−πW

(T )
λ (x)dx = 1;

Let ||f ||∞ = supx∈[a,b]|f(x)|, and denoted by V b
a (h) the total variation of a function

h : [a, b]→ C.

(iii) If BT < 1, ||W (T )
λ ||∞ = 1

BT
||Λ||∞ +O(BT );

(iv) If BT < 1, V π
−π(W

(T )
λ ) ≤ 1

BT
V π
−π(Λ).

Proof. The statement (i) follows directly from setting s = 0 on both sides of

Equation (4.31). The statement (ii) is obtained by following the same arguments

in the proof of Lemma F.11 in Panaretos and Tavakoli (2013) [43]. For the third

statement, recall that

W
(T )
λ (x) =

∑
j∈Z

1

BT

Λ

(
x+ 2πj

BT

)
.

If BT < 1, then for x ∈ [−π, π],

|W (T )
λ (x)| ≤ 1

BT

∑
j∈Z

∣∣∣∣Λ(x+ 2πj

BT

)∣∣∣∣
=

1

BT

∣∣∣∣Λ( x

BT

)∣∣∣∣+
1

BT

∑
j∈Z+

∣∣∣∣Λ(x+ 2πj

BT

)∣∣∣∣+
1

BT

∑
j∈Z−

∣∣∣∣Λ(x+ 2πj

BT

)∣∣∣∣ .
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Consider the second term, by the fact that |Λ(x)| ≤ C
|x|1+α for large x, we obtain

1

BT

∑
j∈Z+

∣∣∣∣Λ(x+ 2πj

BT

)∣∣∣∣ ≤ 1

BT

∞∑
j=1

C(
x+2πj
BT

)1+α

= BT

∞∑
j=1

C

(x+ 2πj)1+α

= O(BT ).

Similarly, the third term above is O(BT ). Therefore, we have

|W (T )
λ (x)| ≤ 1

BT

|Λ(x/BT )|+O(BT ),

and the statement (iii) then follows from the periodicity of W
(T )
λ . For the last

statement, since

W
(T )
λ (x) =

1

BT

Λ

(
x

BT

)
+

∑
j∈Z,j 6=0

1

BT

Λ

(
x+ 2πj

BT

)
,

then by the triangle inequality of total variation, we have

V π
−π(W

(T )
λ ) ≤ V πBT

−πBT (Λ/BT ) ≤ V π
−π(Λ/BT ) =

1

BT

V π
−π(Λ)

where the second inequality holds because BT < 1. Here we use several properties

of total variation, see Lemma F.6 in Panaretos and Tavakoli (2013) [44]. �

Lemma 4.7.3. If BT → 0,

2π

T

T−1∑
s=1

W
(T )
λ (ω − 2πs/T ) = 1 +O(B−1

T T−1).

Proof. Let

∆n =

ˆ π

−π
W

(T )
λ (ω − α)dα− 2π

T

T−1∑
s=1

W
(T )
λ (ω − 2πs/T )
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=

ˆ π

−π
W ′(T )

λ (α)dα− 2π

T

T−1∑
s=1

W ′(T )
λ (2πs/T )

where W ′(T )
λ (α) = W

(T )
λ (ω − α). We have

|∆n| ≤
2π

T

{
V π
−π(W ′(T )

λ ) + ||W ′(T )
λ ||∞

}
≤ 2π

T

{
1

BT

V π
−π(Λ) +

1

BT

||Λ||∞ +O(BT )

}
=

2π

BTT

{
V π
−π(Λ) + ||Λ||∞ +O(B2

T )
}
.

where the first inequality above follows from Lemma F.10 in Panaretos and Tavakoli

(2013) [44] and the second inequality follows from (iii) and (iv) of Lemma 4.7.2.

Hence, |∆n| is of order O(B−1
T T−1) as BT → 0. Then by Lemma 4.7.2(ii), we

obtain

2π

T

T−1∑
s=1

W
(T )
λ (ω − 2πs/T ) = 1 +O(B−1

T T−1).

�

Proof of Theorem 4.2.1. By Proposition 2.6 in Panaretos and Tavakoli (2013)

[43], under C(0,2) the periodogram kernel has expectation

E[p
(T )
2πs/T (τ, σ)] = f2πs/T (τ, σ) +O(T−1),

then we can write

E[f̂
(T )
ω,λ (τ, σ)] =

2π

T

T−1∑
s=1

W
(T )
λ

(
ω − 2πs

T

){
f2πs/T (τ, σ) +O(T−1)

}
= A+B,

where

A =
2π

T

T−1∑
s=1

W
(T )
λ

(
ω − 2πs

T

)
f2πs/T (τ, σ),
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B = O(T−1)

{
2π

T

T−1∑
s=1

W
(T )
λ

(
ω − 2πs

T

)}
.

Noting that ||W (T )
λ ||∞ = O(B−1

T ) by Lemma 4.7.2, and ||f.||∞ = O(1), it follows

from Lemma F.6(i) and F.10 of Panaretos and Tavakoli (2013) [44] that

A =

ˆ 2π

0

W
(T )
λ (ω − α)fα(τ, σ)dα + εT

where εT ∼ O(B−1
T T−1), uniformly in ω. Using Lemma 4.7.3, B = O(T−1) if

BTT →∞. Combining these facts, and with a change of variable α = ω−xBT on

the integral, we obtain

E[f̂
(T )
ω,λ (τ, σ)] =

ˆ 2π

0

W
(T )
λ (ω − α)fα(τ, σ)dα +O(B−1

T T−1) +O(T−1)

=

ˆ
R

Λ(x)fω−xBT dx+O(B−1
T T−1). (4.33)

Following the similar lines in the proof of Lemma F.4 in Panaretos and Tavakoli

(2013) [43], we can use the Taylor expansion of fω−xBT to obtain

ˆ
R

Λ(x)fω−xBT dx =fω +

p−1∑
k=1

(−1)kBk
T

k!
· ∂

kfω
∂ωk

·
ˆ
R
xkΛ(x)dx

+
Bp
T

p!
· sup

∥∥∥∥∂kfω∂ωk

∥∥∥∥ · ˆ
R
|x|pΛ(x)dx.

With Λ being a kernel of order p, i.e.
´
R x

kΛ(x)dx = 0 for all k = 1, . . . , p− 1, we

obtain ˆ
R

Λ(x)fω−xBT dx = fω +O(Bp
T ). (4.34)

Combining (4.33) and (4.34) completes the proof.
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4.7.3 Proof of Proposition 4.4.1

Recall the spectral decompositions of the operators Fω, F̂ (T )
ω,λ and F̃ (T )

ω,λ .

For h ∈ L2([0, 1],R),

Fω(h) =
∞∑
j=1

νj〈h, ej〉ej,

F̂ (T )
ω,λ (h) =

∞∑
j=1

ν̂j〈h, êj〉êj,

F̃ (T )
ω,λ (h) =

∞∑
j=1

ν̃j〈h, êj〉êj.

Noting that Fω and F̂ (T )
ω,λ are both induced by kernel functions through right

integration, the two operators commute, i.e., FωF̂
(T )
ω,λ = F̂ (T )

ω,λFω. Due to the

fact that commuting operators can be simultaneously diagonalised, Fω and F̂ (T )
ω,λ

share the common eigenfunctions, i.e., ej = êj for all j. Therefore, eigenvalues of

F̂ (T )
ω,λ −Fω are ν̂j − νj, j ≥ 1; and eigenvalues of F̃ (T )

ω,λ −Fω are ν̃j − νj, j ≥ 1.

Viewed as an estimator of the nonnegative νj, ν̃j is a better estimator than ν̂j in

the sense that |ν̃j − νj| ≤ |ν̂j − νj| always holds true. Hence, it follows that

∣∣∣∣∣∣∣∣∣F̃ (T )
ω,λ −Fω

∣∣∣∣∣∣∣∣∣2
2

=
∞∑
j=1

(ν̃j − νj)2 ≤
∞∑
j=1

(ν̂j − νj)2 =
∣∣∣∣∣∣∣∣∣F̂ (T )

ω,λ −Fω

∣∣∣∣∣∣∣∣∣2
2
,

which completes the proof.
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[35] Klepsch, J. and Klüppelberg, C. (2017). An innovations algorithm for
the prediction of functional linear processes. Journal of Multivariate Analysis.
155 252–271.
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