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RESEARCH ARTICLE Open Access

Systematic quantitative characterization of
cellular responses induced by multiple signals
Ibrahim Al-Shyoukh1,2†, Fuqu Yu1,4†, Jiaying Feng1, Karen Yan1, Steven Dubinett3, Chih-Ming Ho2, Jeff S Shamma5

and Ren Sun1*

Abstract

Background: Cells constantly sense many internal and environmental signals and respond through their complex
signaling network, leading to particular biological outcomes. However, a systematic characterization and
optimization of multi-signal responses remains a pressing challenge to traditional experimental approaches due to
the arising complexity associated with the increasing number of signals and their intensities.

Results: We established and validated a data-driven mathematical approach to systematically characterize signal-
response relationships. Our results demonstrate how mathematical learning algorithms can enable systematic
characterization of multi-signal induced biological activities. The proposed approach enables identification of input
combinations that can result in desired biological responses. In retrospect, the results show that, unlike a single
drug, a properly chosen combination of drugs can lead to a significant difference in the responses of different cell
types, increasing the differential targeting of certain combinations. The successful validation of identified
combinations demonstrates the power of this approach. Moreover, the approach enables examining the efficacy of
all lower order mixtures of the tested signals. The approach also enables identification of system-level signaling
interactions between the applied signals. Many of the signaling interactions identified were consistent with the
literature, and other unknown interactions emerged.

Conclusions: This approach can facilitate development of systems biology and optimal drug combination
therapies for cancer and other diseases and for understanding key interactions within the cellular network upon
treatment with multiple signals.

Background
Understanding how multiple signals affect cellular func-
tions is necessary in order to be able to understand and
control these functions. Extensive studies have been
done to address how the activation/inhibition of a parti-
cular cellular signaling pathway leads to a specific
response. Several challenges limit the ability to study the
simultaneous effects of multiple signaling. The complex-
ity and lack of detailed knowledge of cellular systems
prevent, in many cases, accounting for the effects of
some unknown interactions among pathways or among
non-primary signal targets. In addition, genetic or epige-
netic alterations between otherwise similar cells can

cause a significant difference in their responses. This
places additional constraints on the experimental out-
comes obtained by analyzing individual components.
Furthermore, a critical challenge in the investigation of
the effects of multiple signals is the arising complexity
associated with the increasing number of signals and
their various intensities. Without a systematic approach
to replace a large number of time and resource consum-
ing experimental tests, it is difficult to characterize the
effects of these signals, to identify appropriate signal
combinations.
There has been an increasing interest in examining

how various biological activities are regulated by multi-
ple interacting signals [1-4]. Berenbaum introduced a
direct search method to optimize cancer chemotherapy
regimens [5]. Recently, a method based on stepwise
direct search for identifying optimal combination of
drugs for pain treatment has been introduced [6]. The
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method can also be applied in clinical research. More
recently, a biased random walk approach called the
“modified Gur game” approach was introduced to iden-
tify potent drug combinations [7,8]. It is applied towards
an objective with a “small” number of experimental
trials. While the goal of these studies is to achieve opti-
mization with minimal number of tests, the approach in
these studies has several limitations including sensitivity
to the design of the automatons driving the random
walk and sensitivity to initial conditions. Its capacity to
compare the performance of multiple systems will be
limited due to the limited amount of obtained informa-
tion. Moreover, the approach does not guarantee con-
vergence to local or global maxima. In [8], the modified
Gur game approach was used to identify a wide range of
drug concentrations for which a stochastic search algo-
rithm, differential evolution, was used to maximize an
objective function. Although this approach converges to
better combinations, the determination of the range of
drugs to be used in the combination is sensitive to
initial conditions. Another recent and very similar
approach uses a deterministic search algorithm for opti-
mization of drug combinations [9]. Determining optimal
combinations for systems where a mechanistic model
based on mass-action kinetics was recently presented
[10]. The use of search algorithms as well as other sys-
tems approaches that include the mechanistic mass-
action models were reviewed in [11]. Another limitation
of these approaches is that they require repetition of the
experiment in case the optimization parameters are to
be modified or there is a change in the objective func-
tion. This limitation becomes significant when consider-
ing multi-objective optimization functions in which the
objective function is dependent on subjective para-
meters, resulting in the need to carry over several
experiments to determine a suitable set of parameters.
Additionally, the convergence of the experimentally
applied search algorithms depends on the appropriate
selection of the algorithm’s parameters. In the absence
of a model to enable reasonable selection of the algo-
rithm’s parameters, convergence of these algorithms
might be compromised. Furthermore, the experimentally
applied algorithms can converge to an optima (local or
global) that is not very robust to “small” variations in
the input signals.
Other recent work on identifying drug combination

focuses on identifying mixtures of drugs where the the
search space is reduced to use only a single concentra-
tion while the search space is increased by searching
through a larger number of potential drugs [12,13]. The
latter example describes an approach and applies it
towards finding promising mixtures for lung cancer.
In this work, we achieve the desired goals through the

integration of data-driven mathematical tools with

biological measurements to generate quantitative models
of cellular functions (Figure 1). Instead of mapping phy-
sical interactions, the resulting model is a quantitative
model mapping particular signals to their cellular pro-
cess responses. The responses represent the net change
in certain cellular activities caused by signal interactions
within a large and complex network. The model is gen-
erated using a suitable mathematical approximation
method, which relies on testing a relatively small subset
of all possible signal combinations and is capable of pre-
dicting the response to the complete set of signal com-
binations. Through running in silico experiments, the
model enables analyzing the response of the system to
various combinations and determining or selecting sub-
sets of signal combinations that can yield desired cellu-
lar responses. The determination of these subsets can be
achieved using tools such as stochastic search algo-
rithms and cluster analysis. The proposed approach will
facilitate the understanding of fundamental cellular
responses, which are system responses reflecting the
activity of a complex signaling network controlled by
multiple internal and external signals. This approach
can promote efficient understanding of cellular func-
tions without intermediates. In addition, the approach
allows multiple cell types or other biological systems to
be quantitatively characterized, modeled, and compared
in parallel. The maximal difference or similarity can be
identified using a computational search. It can facilitate
the development of drug combination therapies for var-
ious types of cancers [14,15].
In comparison to the approaches previously men-

tioned, the approach introduced in this work overcomes
their limitations by identification of the complete
response function and carrying out the optimization in
silico. The cost of carrying such in silico experiments is
significantly less and is generally faster. The identifica-
tion of the system response function also provides addi-
tional information regarding the potential of using a
smaller number of drugs and on key system-level signal-
ing interactions.

Results
We utilize mathematical tools to characterize the effects
of three and four agents on the differential response of
cancer and normal cells. The cellular ATP levels of a
non-small cell lung cancer cells A549 and primary lung
fibroblast culture of AG02603 cells in response to com-
binations of three chemical agents are measured. Mathe-
matical tools are used to construct predictive models of
the cellular ATP levels in response to the combinations.
We examine the ability to utilize relatively small num-
bers of combinations for model generation. The results
are extended to study systems of higher complexity with
the addition of a fourth chemical agent. The resulting
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models are used to compare the responses of normal
and cancer cell to the same set of combinations. We
show that a properly selected combination can result in
a significant difference in the respective performance of
normal and cancer cells. We also experimentally validate
the selected combinations. Furthermore, we show that a
combination of chemical agents, if properly chosen, can
be more effective than a single agent in inducing a dif-
ferential response between normal and cancer cells.
Using the models, we will examine all the possible lower
order mixtures of the four drugs. Moreover, we extract
key system-level signaling interactions and compare
these interactions between different cell types. We also
compare these interactions to known interactions
between the drugs.

Signal-Cellular Response Modeling with a Complete
Data Set
Inhibition of cell survival and proliferation has been a
widely-used approach in cancer treatment [16]. We

investigated the combined effect of several drugs that
target critical cellular signaling pathways for cell survival
and proliferation. Three drugs AG490, U0126, and
indirubin-3’-monoxime (I-3-M), which target three dis-
tinct while connected signaling pathways critical to most
cancer and non-cancer cells, were chosen in our study
(Figure 2).
One of the goals of this work is to identify differences

in the responses between cancer and non-cancer cells
upon the drug treatment. The interactions in Figure 2
are an oversimplified set of interactions of the drugs
used. The simplified diagram serves to illustrate some of
the known interactions within the cell upon treatment
with various drugs. AG490 is a tyrosine kinase inhibitor;
U0126 is a MEK inhibitor; and indirubin-3’-monoxime
is a cyclin-dependent kinase inhibitor. The drugs are
also known to inhibit other targets in addition to the
intended target enzymes and as such can lead to
unknown interactions. Moreover, each pathway has var-
ious interactions with more pathways that are not
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Figure 1 Summary of approach. (A) The proposed approach uses input-output data to generate mathematical models capable of predicting
the cellular responses to input combinations. The models enable using other mathematical tools for analyzing the cellular responses and for
selecting the appropriate combinations of the input signal to drive the system to respond favorably. (B) The desired drugs are combined in
certain concentrations and a few combinations are chosen and evaluated experimentally. A predictive mathematical model is generated that can
predict the response to all possible combinations. The model can be used to analyze and predict drug interactions and their effects on the
observed cellular response and can also be used to determine effective combinations.
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depicted. The drugs may activate some pathways such as
some of the stress responses, directly or indirectly. Thus,
the interactions of these drugs and their combinatory
effects are difficult to predict.
Cellular ATP represents one of the most common and

essential markers for all live cells. Measuring ATP is a
generally accepted quantitative and sensitive assay for
assessing the inhibition of cellular growth, proliferation,
and induction of cell killing by drugs. The cellular ATP
level, which is regulated by multiple cellular pathways,
was experimentally quantitated [17]. Total cellular ATP-
levels of A549, a non-small cell lung cancer cell line,
and AG02603, a normal fibroblast cell culture, were
measured 72 hours after drug treatment and normalized
to untreated cellular ATP-levels. The drug response
dose curves were measured for each of the three drugs
(Figure 3). The three drugs (each with eight different
concentrations including zero) comprised 512 possible
combinations in total. The doses of individual drugs
were chosen based on the individual dose-response
curves and covered the concentration ranges that
resulted in minimal to maximal cell inhibitory effect
(Table 1).
The ATP level in response to all of the 512 drug com-

binations was experimentally measured in lung cancer
A549 cells and in primary lung fibroblast AG02603
cells. The fibroblast cells were derived from normal
healthy tissue and are not cancer cells. There are several
mathematical methods that can be used to generate
models of input-output data. Here we provide a com-
parison of some of these methods in view of the func-
tion approximation problem considered. The methods

include two neural network structures and two linear
regression models. The neural network structures are a
single layer multi-layer perceptron (MLP) and a cas-
caded neural network [18,19]. We have examined differ-
ent numbers of neurons per layer for each of these
neural network structures. The results below show that
a four-neuron single-layer MLP is sufficient for the pur-
poses of this work. For the cascaded network, two layers
with a single neuron per layer were sufficient. Networks
with more neurons per layer also produced satisfactory
results. The two linear regression models involve differ-
ent nonlinear regressors. The first one uses interaction
terms that are pairwise and k-wise products of all the
concentrations of the drugs. The second is a quadratic
response surface that uses only pairwise products and
quadratic terms of the concentrations (See the Methods
Sections).
The different models were trained against 80 out of

512 points with the goal of minimizing the mean square
error of prediction. The outputs of the models are pro-
cessed through a saturation function to limit outputs to
the interval [0,1]. The trained models can predict the
responses to all 512 combinations with high fidelity.
The correlation coefficients between the predicted nor-
malized ATP levels and their corresponding experimen-
tally measured values are higher than R = 0.91 (Figure
4A). Looking at only the points that were not used for
training, i.e., the 432 points, the correlation coefficients
between the predicted normalized ATP levels and their
corresponding experimentally measured values were also
high (Table 2). We have also examined how the differ-
ent models compare to each other by measuring the

Survival

Cell cycle 
progression

Proliferation

ERKRaf MEK

Ras

JAK STAT3

PI3KPKC

AG490

U0126GF109203X

Indirubin−3’−monoxime

Cyclin D  degredation1

GSK−3

Figure 2 Simplified pathway and drug interactions. Shown are simplified pathways targeted in the three and four-drug combination
treatment of nonsmall cell lung cancer cells A549 and primary fibroblast AG02603 cells that are already known or reported. The dashed arrows
indicate indirect connections.
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correlation between their predicted values (Figure 4B).
Examining the correlation between the different models,
we see that there is also strong correlation with R-values
higher than 0.94.
Experimental testing of all possible combinations can

be a costly process. Whenever the response of the biolo-
gical system is smooth enough, we can utilize a smaller
number of combinations to map the entire response
surface. In this regard, we have examined the effects of
using varying numbers of points to fit the models on
the accuracy of prediction. The four methods discussed
above were considered and models using 10, 20, 40, 80,
160, and 320 points were fitted. To mimic an actual
experimental setup, the points were randomly selected
out of the 512 possible combinations using a uniform
distribution. The mean square error of prediction for
each of the methods and fitting data for both cell types

Figure 3 Single-drug dose response curves. Shown are the experimental single-drug dose response curves for the four drugs used in the
study. The data was used to identify the drug concentrations to be used in combination studies.

Table 1 Concentrations of the drugs used in the three
and four drug treatments.

A Drug Name Drug Concentration

AG490 0, 0.3, 1, 3, 10, 30, 100, 300 (uM)

U0126 0, 0.1, 0.3, 1, 3, 10, 30, 100 (uM)

Indirubin-3’-monoxime 0, 0.3, 1, 3, 10, 30, 100, 300 (uM)

B Drug Name Drug Concentration

AG490 0, 1, 3, 10, 30, 100, 300 (uM)

U0126 0, 0.1, 0.3, 1, 3, 10, 30 (uM)

Indirubin-3’-monoxime 0, 1, 3, 10, 30, 100, 300 (uM)

GF109203X 0, 0.3, 1, 3, 10, 30, 100 (uM)

(A) Shown are the eight concentrations (including zero) of each of the three
drugs (AG490, U0126, Indirubin-3’-monoxime) used in the three-drug
treatments of A549 and AG02603 cells. (B) Shown are the seven
concentrations (including zero) of each of all four drugs (AG490, U0126,
Indirubin-3’-monoxime, GF109203X) used in the four-drug treatments of A549
and AG02603 cells.
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indicate that increasing the number of points reduces
the mean square error (Figure 5).
However, no significant improvement in the errors are

observed for models with more than 80 points. Using a
small number of points results in poor prediction with
the linear regression models, the interaction model and
the quadratic models. In the absence of post-processing

0 0.5 1
0

0.5

1
AG02603

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Experimental Normalized ATP Level

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1
A549

0 0.5 1
0

0.5

1

P
re

d
ic

te
d

 N
o

rm
al

iz
ed

 A
T

P
 L

ev
el

P
re

d
ic

te
d

 N
o

rm
al

iz
ed

 A
T

P
 L

ev
el

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1
AG02603

0 0.5 1
0

0.5

1
A549

d

c

b b

a

d

c

R=0.98R=0.98

R=0.99 R=0.98

R=0.96R=0.92R=0.96

R=0.95

R=0.95R=0.97

R=0.91

R=0.97

R=0.97

R=0.95

R=0.99R=0.95

aA B

Predicted Normalized ATP Level

Figure 4 Three-drug model fitting. The figure shows an evaluation of modeling the responses of A549 and AG02603 to combinations of three
drugs. (A) The panels show a plot of the model predicted cellular ATP levels versus the experimentally measured values. Cellular ATP-level
predictive models for A549 and AG02603 cells were developed using a number of different methods. a. A linear regression model that uses
pairwise products of concentrations and quadratic terms (QRF). b. A linear regression model with n-wise products of concentrations (LR). c. A
cascaded neural network with two single-neuron layers (Cascaded NNet). d. A four-neuron single layer multi-layer perceptron artificial neural
network (MLP). The models are based on fitting 80 out of 512 combinations and the figure shows the predicted versus experimental values for
all 512 combinations. The correlation between the experimentally tested cellular ATP-level (x-axis) and the predicted cellular ATP-level (y-axis) is
shown. The circles in the graphs represent individual data points. The diagonal line represents a perfect fit between the experimental and
predicted data. (B) Comparison between the predicted normalized ATP levels of different models. The predicted ATP levels for different models
are plotted against each other. a. QRF versus LR. b. Cascaded NNet versus MLP. c. QRF versus MLP. d. LR versus MLP. The correlation coefficients
between the different methods are shown.

Table 2 Correlation coefficients between the 432 points
not used for training and the corresponding
experimentally measured values.

Cell Type QRF LR Cascaded NNet MLP

AG02603 R = 0.96 R = 0.95 R = 0.95 R = 0.96

A549 R = 0.96 R = 0.92 R = 0.97 R = 0.98
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of the data by passing through a saturation function,
the mean square error of prediction of the linear
regression models become significantly worse. Between
the two linear regression models, the quadratic model
performs better than the interaction model, potentially
due to the added quadratic terms, suggesting the nonli-
nearity of the response of these cells to the drug com-
binations used. These models also have higher mean
square errors than the neural network models. The dif-
ferences between the mean square error of these mod-
els tend to diminish as the number of points used
increases. The two neural network models were com-
parable overall.
The number of data points required to generate a

valid model relies on factors including intrinsic signal-
response relationships for individual cell cultures and
the experimental measurement error. In addition, the
smoothness of many signal-response relationships
enables the modeling to rely on less dense mapping
over small ranges of signal concentrations. Our results
suggest that with a proper mathematical modeling
method, the effect of signal combinations can be sys-
tematically described through randomly testing a rela-
tively small percentage of signal combinations within
specified concentration ranges.

Characterization of Signal-Cellular Response Relationships
in Systems of Higher Complexity
The simulated models capable of systematically describ-
ing the signal-cellular response relationships for various
cells enable the comparison of the cell-type specific dif-
ferences in cellular responses to multi-drug treatments.
An interesting question is whether our approach can
simulate more complex systems with a relatively small set
of experimental data, and whether efficient multi-drug
combinations that lead to a high level of A549 cell inhibi-
tion while preserving AG02603 cells can be identified
among more drugs. In this regard, we added GF
109203X, a PKC inhibitor, to the three drugs tested in
the above section. The addition of a fourth drug increases
the search space to 2401 combinations (four drugs with
seven concentrations each). Models representing the rela-
tionship between the four drugs and the ATP-levels of
A549 and AG02603 cells were generated based on 148
experimentally tested combinations. We fitted a single-
layer neural network with four neurons using the experi-
mental data. The correlation coefficients between the pre-
dicted data from this model and the experimental data
were 0.98 for A549 and 0.97 for AG02603 (Figure 6).
Overall, there is a very high agreement between the
predicted and experimental results (Figure 7).
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for fitting the models and the effects on the model accuracy as measured by the mean square error of prediction. The mean square error of
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We have also investigated the ability of these models
to predict the experimental data obtained in the three
drug combinations experiment. These combinations cor-
respond to four-drug combinations where the concen-
tration of the fourth drug is set to zero.
Correlation coefficients between the 512 data points

and their predicted values were 0.86 for A549 cells and
0.88 for AG02603. These correlation coefficients are
quite reasonable given that the two experiments were
conducted several months apart and the model was
trained on a separate and independent data set. This
provides evidence of the ability of our models to predict
cellular responses despite the relatively small number of
data points used to generate these models.

Effects of Single Signal Versus Multiple Signals
Although all four drugs inhibit cellular functions com-
mon in both cell types, combinations of these drugs
may result in a significant difference in cellular ATP-
levels between A549 and AG02603. Inhibition of A549
cells and preservation of AG02603 cells using the same
drug combination constitute two conflicting objectives.
Our goal of identifying the drug combinations that
effectively satisfy the above objectives can be realized by
utilizing a multi-objective search or optimization techni-
que. A performance function combining the relative
importance of each of the two conflicting objectives is
introduced (Materials and Methods). The drug combina-
tions resulting in the highest performance are consid-
ered the best drug combinations of a given set of drugs
with corresponding concentrations.
Identification of the best performing subset is achiev-

able through various methods. Enumeration and sorting
of all possible combinations and their corresponding
performances is one method. Alternatively, we can use a
clustering algorithm such as a k-means clustering algo-
rithm to group combinations with similar performances
[20,21].
Clustering the points into 20 different groups (Figure

7A), we find that the points with the highest perfor-
mance are associated with low A549 ATP-level and
moderate to high AG02603 cellular ATP-level (Figure
7B). The heat map on both panels is a function of per-
formance and the best performing combinations are
highlighted in dark red (Figure 7). The effect of drug
combinations on the difference in the ATP-level of
A549 and AG02603 cells can be clearly seen in Figure 8
which shows the predicted individual dose-response
curves of both cell types in the presence of different
levels of the other three drugs. The levels chosen are
zero (low) concentrations, medium concentrations, max-
imum concentrations, and a selected combination from
the subset of combinations identified to maximize the
introduced performance function (Table 3). A significant

difference in the response was observed at the selected
combinations. This result illustrates how a properly cho-
sen combination can result in a response unachievable
individually by any of the drugs. As evident in Figure 8,
the response to any individual drug on its own was
small. However, a properly selected combination of the
same four drugs yields a significant increase in the
response.
Additionally, we investigated the effects of pairwise

combinations of drugs on the responses of both A549
and AG02603 cells. The remaining two drugs were fixed
at one of two cases, zero or a selected optimal concen-
tration (Table 3) from the set of combinations identified
to maximize the performance functions. Similar to sin-
gle drug responses, there is a significant difference
between combinations of two drugs and combinations
of 4 drugs (Figure 9). The data illustrates that there is a
significant difference between normal and cancer cell
ATP levels when two drugs are used with the other two
fixed at a selected combination concentration versus
zero concentration. In addition, the data shows that
using a four drug combination increases the effective
range or therapeutic windows of the two drugs when
compared to two drug combinations.

Examining the Efficacy of Mixtures of Two, Three, and
Four drugs
The availability of the model enables examining all
lower order mixtures of drugs and their potential per-
formances. Testing four or more drugs at time can
enable efficient identification of effective lower order
mixtures of the drugs. Based on the model, we evaluated
the performances of all possible mixtures of drugs at
varying concentrations. We identified the best achiev-
able performance for each mixture (Figure 10). The
results show that there is an improvement in the achiev-
able performance as more drugs are used.
However, this improvement becomes less as four

drugs are used instead of three. The results also show
that the improvement is more significant for certain
mixtures of drugs, e.g., the performance of the mixture
of AG490 and I-3-M is better than the performance of
AG490 and U0126. A similar observation can be made
about three-drug mixtures where the mixture of AG490,
I-3-M and GF109203X performs better than the three
other three-drug mixtures. This information is not
known a priori and without this approach, determining
the best mixtures requires testing of each mixture inde-
pendently. This can be a lengthy and costly process.
Moreover, if one elects to randomly select combinations
for the mixtures then there is no guarantee that the
combination or mixture can have a good performance.
In fact the random combination and mixture can per-
form quite poorly (Figure 10A). Hence, an effective
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approach for identifying mixtures of drugs and effective
combinations can be very useful in this regard.
The potency of our approach can be illustrated by

examining the performance of this approach versus more
simple approaches. An example of such approaches is
combining the drugs at the best single-drug concentra-
tions. The best concentrations for each single drug were
30uM, 30uM, 30uM, and 100uM for AG490, U0126, I-3-
M, and GF109203X respectively. Combining the drugs at
the best single-drug concentrations results in a poor per-
formance of 44.48 corresponding to zero normalized

ATP levels of A549 and AG02603. One can argue that
this combination can be very toxic because of the com-
bined high concentration of each of the drugs. However,
there is no simpler way to reduce the concentration of
some or all drugs to achieve a better performance. Addi-
tionally, an argument can be made for the selection of
the mixture of two drugs by picking the two best single
drugs. In our case, this would correspond to mixing
U0126 and I-3-M. This mixture does not perform as well
as the mixture of AG490 and I-3-M (Figure 10). Again,
there is no simpler approach for the selection of such
mixtures. The approach we introduced attempts to
answer to this need and provides a systematic approach
that can be used to identify the best combinations for
mixtures of two, three, and four drugs. In a more general
setting, the approach enables identification of efficient
combinations and mixtures for any number of n-drugs.
Validation of selected top performing combinations

(30 uM of AG490, 0.3 uM of U0126, 10 uM of I-3-M,
and 0.3 uM of GF109203X), (30 uM of AG490, 0.3 uM
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Figure 8 Single-drug response curves. The figure shows an evaluation of the model-predicted ATP-levels of A549 and AG02603 when the
concentrations of three drugs are held constant while the concentration of the fourth drug is varied. The values of the concentration at which
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Table 3 Shown are the concentrations used for for
generating the drug response curves.

Drug Name Low Medium Maximum Selected

AG490 0 10 300 30

U0126 0 1 30 0.3

Indirubin-3’-monoxime 0 10 300 10

GF109203X 0 3 100 0.3
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of U0126, 30 uM of I-3-M, and 1 uM of GF109203X),
and (30 uM of AG490, 1 uM of U0126, 10 uM of I-3-
M, and 0.3 uM of GF109203X) showed that the experi-
mental ATP levels of A549 and AG02603 were 0.2 and
0.65, 0.13 and 0.51, and 0.13 and 0.5 respectively. This
is in agreement with the predicted values for A549 and
AG02603 of 0.21 and 0.59, 0.08 and 0.51, and 0.2 and
0.58 respectively.

Drug-Drug Interactions Affect the Observed System
Responses
Modeling of multi-signal induced cellular responses can
also be used to study key system-level signaling interac-
tions between the applied signals and their effects on
the system outputs. To that end, consider the linear
regression model with interaction terms. This model
uses a total of 15 regressors that are the concentrations
of the drugs, six pairwise interaction terms, four three-
drug interaction terms, and one four-drug interaction
term. This is a large number of regressors and, poten-
tially, only a portion of these regressors are necessary to
describe the variation in the data. Reduction of the
regressors matrix X can be achieved using principal
components analysis. Partial least squares can also be
used and in this case the reduction in the regressors
matrix takes into account variation in the output. How-
ever, the components obtained with principal compo-
nent analysis or partial least squares models would be
hard to interpret given the large number of regressors.
Instead, we pursue a subset selection algorithm based
on all the possible subset regressions [22]. The algo-
rithm provides the best models of 1, 2, 3, . . ., 15 regres-
sors. In total, the algorithm provides the best 15 models
out of 215 - 1 possible models.
The residual sum of squares of the best models shows

that there is no significant reduction in the residual sum
of squares for models with more than 10 regressors for
the A549 data, and for models with more than 7 regres-
sors for the AG02603 data (Figure 11A,B). The regres-
sors used in these models correspond to single-drug
concentrations, pairwise interactions, and three drug
interactions for the the A549 data. Whereas the regres-
sors for the AG02603 data included only single-drug
concentrations and pairwise interactions (Figure 11C,D).
The effects of these interactions vary between positive
and negative. The individual concentrations and three-
drug interactions have a negative influence, and the
pairwise interactions have a positive influence on ATP
levels. Examining the interaction terms, these interaction
terms can be grouped into three categories, interactions
that only occur in A549 cells, interactions that only
occur in AG02603 cells, and interactions that are com-
mon to both cell types (Figure 12).

Discussion and Conclusions
We demonstrated the integration of an efficient mathe-
matical approach for a systematic quantitative character-
ization of the effect of multi-signal combinations in two
different cell types. Our method enables the establish-
ment of accurate models to directly connect multi-signal
combinations and their effects through a learning pro-
cess. Only a small percentage of total data points are
required to be experimentally tested to establish a pre-
dictive model that is capable of simulating the effect of
all possible signal combinations.
The resulting predictive model is also able to systema-

tically reveal the inter-drug interactions which are often
non-linear relationships. Such a model is necessary for
multi-drug combination optimization as the optimal
combination, upon the addition of a new drug, cannot
be achieved simply by testing various amounts of the
new drug added to the previously optimized combina-
tion. Moreover, the approach allows for examining all
lower order mixtures of the drugs and for evaluating the
effectiveness without added experimental overhead. This
enables efficient selection of drug combinations of dif-
ferent drugs particularly as the interactions between the
different drugs vary. The approach enables systematic
selection of input signals (drug combinations) that can
achieve desired therapeutic goals. Experimental valida-
tion of selected top performing combinations presents
additional evidence of the validity and utility of the
approach introduced.
Our approach requires a relatively small number of

experimental measurements. With the development of
large scale-high throughput measurement systems, our
approach will be necessary and more efficient, e.g.,
when the number of inputs increases. Additionally, it
will allow for integration into automated machines for
testing and analysis of various biological systems. The
addition of other cellular outputs can be another factor
in favor of using this approach.

Mathematical Modeling Methods
We demonstrated the utility of various mathematical
modeling approaches for the purposes of modeling and
predicting multi-signal induced cellular responses. Lin-
ear regression with models including interaction and
quadratic terms were capable of producing powerful
predictive models. The usefulness of linear regression
methods and subset selection algorithms was also
demonstrated as they enabled determination of key sys-
tem-level signal interactions that result in the observed
cellular responses. Alternately, neural network models
performed generally better for fitting the data particu-
larly when fewer data points were available to fit the
models. Additionally, different structures of neural
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networks were almost equally powerful in producing the
models. This present ample opportunity to exploit dif-
ferent structure of networks to mimic more realistic
interactions within the cell given such a priori data. The
choice of the best method for fitting the model is
dependent on many factors. While in some cases simple
linear regression can be used, in other cases nonlinear
regression methods are necessary to get satisfactory
models. Neural networks represent powerful computa-
tional models with great flexibility. Different types and
configuration renders them useful for a wide range of
problems including dynamic prediction using, e.g.,
recurrent neural networks. This presents an additional
use for neural network to build on a wide range of
applications in biological and medical research [23-34].
It is important to note here that the novelty in this

work is not this particular use of artificial neural net-
works. Rather, it is the use of a system-level model-
based approach to study the effects of a large number of
signals on various cellular processes and to use that as a
basis for selection of the retrospective optimal input sig-
nals. Our method resembles a general systems biology
approach that can be utilized to address a broad range
of biological questions. The method enables comparison

of multiple system performances through modeling of
their responses. The advantage of our method becomes
critical when input signal combinations are character-
ized for the development of effective in vivo therapies,
in which case the limited experimental scale imposes
restrictions on the number of possible drug combina-
tions to test. By largely reducing the number of tests
required, our approach can greatly facilitate the develop-
ment of clinically applicable treatments.
For the drugs and cell types chosen, our results showed

that four drugs did not provide a significant improvement
over three drugs. However, this is not a general result and
the causes of this observation are not well known and
pose an interesting problem to be examined in a separate
study. A potential cause is that the signaling pathways
affected by some of the drugs are saturated potentially due
to sharing of a common target between two of the drugs.
In other studies we are working on with different drugs
and cells, four drugs result in an improvement over three
drugs and five drugs also improve on four drugs.

Mechanistic Reasoning
Our modeling approach enabled identification of key
system-level signaling interactions that contribute to the
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observed responses. These interactions highlighted poten-
tial differences in the signaling networks of different cell
types as demonstrated. While some signaling interactions
were common to the two cell types studied, there were
other interactions that were specific to each cell
type. Many of these interactions were known a priori.
For example, the interactions between U0126 and
GF109203X, I-3-M and GF109203X, AG490 and I-3-M,
as well as AG490 and U0126 and GF109203X. There are
other interactions that were not known a priori such as
the interaction between U0126 and I-3-M. Thus the pre-
diction of such interactions can guide experimental iden-
tification of the molecules mediating the interactions.
In the work presented, we used mathematical tools to

construct a predictive model of cellular outcomes. The
method was developed in experimental systems that only
involved single output measurements. However, the
method is a general method that can be used to con-
struct models of the effects of multiple signals on various
cellular outcomes, including signaling intermediates.
Molecules from various cellular pathways, “intermedi-
ates”, can serve as candidates for measurement and quan-
tification [1,35,36]. Moreover, measuring these cellular
outcomes and intermediates at various time points

enables the construction of predictive dynamic models.
The incorporation of time provides the model with pre-
dictive capability similar to those of ordinary differential
equation models, though without a priori assumptions or
knowledge about the molecular interactions. The intro-
duction of more cellular outcomes presents the opportu-
nity to utilize additional tools that can infer sets of rules
which can provide, at least in part, descriptive reasoning
of some of the internal interactions within the cell
[37-39].

Implications on the Design of Combination Therapies
Combinational therapies have attracted significant
research efforts. Combination therapy for cancer is one
example. The challenges associated with cancer treat-
ment range from a lack of understanding of fundamen-
tal pathogenic mechanisms to practical experimentation
limitations. Cancer is usually caused by multiple muta-
tions and alterations of multiple signaling pathways
which pose an extra challenge when defining the
mechanisms underlining cancer development [40]. In
addition, there is extensive heterogeneity of tumors
among individual patients. Thus there are multiple
potential targets for cancer therapy, resulting in an
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increasing need for distinct therapeutic agents and their
combinations. Furthermore, drug resistance, arising
from a subpopulation of original tumor cells or from
subsequent mutations under the selection pressure of
drug treatment, has been a major hurdle in cancer treat-
ment. Drug combination therapy is emerging as a
potentially effective approach to prevent drug resistance,
as well as achieve higher efficacy and lower toxicity
[41-43].
However, the design of combination therapies based

on studies of the response to individual drugs might not
lead to the desired outcomes as interactions between
the various drugs can lead to unknown outcomes. The
emerging toxicities can be a major hurdle to the devel-
opment of combination therapies. Therefore, it is impor-
tant to consider system level signals or outputs that are
representative of the state of the cell in addition to cel-
lular intermediates targeted by the drugs. As such, it is
important to investigate whether and how a combina-
tion of drugs can lead to a better system response com-
pared to any of the individual single-drug responses.
Development of drug combination therapies for cancer

can lead to more effective therapies to overcome drug
resistance and achieve maximal drug efficacy. The
demanding task is to find a combination that is maximally
effective on cancer cells with minimal effect on non-can-
cer cells. The method introduced in this work provides
the ability to study the system-level effects of combina-
tions of drugs and use the data to select combinations that
can lead to desired outcomes by comparing the mathema-
tical models of multiple cellular types. Furthermore, the
method is capable of studying and characterizing experi-
mental problems of higher complexity such as the order
and timing of administration of multiple inputs into the
system, which may help further reduce cytotoxicity and
enhance efficacy with the same drugs utilized in clinical
treatment of diseases. Moreover, employing our method
with emerging technologies such as micro-fluidic devices
or “lab-on-chip” will enable high-throughput investigation
of multi-drug combinations, and become a promising plat-
form for developing personalized medicine.

Methods
Cell Culture and Experimental Measurements
A549 cells were cultured in RPMI1640 medium (Cell-
Gro) supplemented with 10% heat-inactivated FBS,
100U/ml penicillin and 100g/ml streptomycin (CellGro).
AG02603 cells were in MEM (Gibco) supplemented
with non-essential amino acid (Gibco), 15%heat-inacti-
vated FBS, 100U/ml penicillin, and 100g/ml streptomy-
cin. Cells were seeded one day before drug treatment at
a density of 1000cells/well for A549, and 8000cells/well
for AG02603, in 96 well plates. ATP assays were

conducted with the ATPlite 1step assay system (Perki-
nElmer) following the manufacturer’s instructions and
the luminescence signal was measured by Lmax micro-
plate luminometer (Molecular Devices).

Neural Networks Models
We used two types of neural networks to fit the data.
The first is a single layer four-neuron multilayer percep-
tron and the other is a two-layer cascaded neural net-
work with a single neuron per layer. The networks were
constructed and trained using the neural network tool-
box of MATLAB [44]. The training was done using
Bayesian Regularization.

Linear Regression Models
We used two linear regression models to fit the data.
The two models are

y1 =β0 + β1x1 + β2x2 + · · · + βnxn

+ β12x1x2 + β13x1x3 + · · ·
+ β23x2x3 + · · · + β1...nx1 . . . xn,

y2 =β0 + β1x1 + · · · + βnxn + β12x1x2

+ β13x1x3 + . . . + β23x2x3 + . . .

+ β45x4x5 + β11x2
1 + · · · + βnnx2

n.

(1)

Performance Function
In our work, we used a single performance function
reflecting the relative importance of each criteria to our
setup. The criteria are: maximize AG02603 cellular
ATP-level and minimize AG02603 cellular ATP-level.
The performance function used is defined as follows.
Let xnc be the ATP-level of AG02603 and xcc be the
ATP-level of A549 cells. Then, the performance func-
tion used is given by Perf(xnc, xcc)

perf(xnc, xcc) =
∫ xnc

−∞

∫ 1−xcc

−∞
f (x, y)dydx,

where

f (x, y) =
1

2π |�|1/2
×

exp

(
−1

2
(
(

x
y

)
− μ)

T

�−1(
(

x
y

)
− μ)

)
,

(2)

μ is the column vector

(
0
0

)
, � =

(
10 0
0 10

)
. The per-

formance function range is adjusted to be within the
interval [0,100] using the relation Perf = (Perf - 0.25)/
0.14 * 100. This function can be easily generalized to
accommodate more decision criteria.
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