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The accuracy of earthquake source descriptions is a major limitation in

high-frequency (> 1 Hz) deterministic ground motion prediction, which is critical

for performance-based design by building engineers. With the recent addition of

realistic fault topography in 3D simulations of earthquake source models, ground

motion can be deterministically calculated more realistically up to higher frequen-

cies. We first introduce a technique to model frequency-dependent attenuation

and compare its impact on strong ground motions recorded for the 2008 Chino

Hills earthquake. Then, we model dynamic rupture propagation for both a generic

strike-slip event and blind thrust scenario earthquakes matching the fault geome-

try of the 1994 Mw 6.7 Northridge earthquake along rough faults up to 8 Hz. We
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incorporate frequency-dependent attenuation via a power law above a reference fre-

quency in the form Q0f
n ,with high accuracy down to Q values of 15, and include

nonlinear effects via Drucker-Prager plasticity. We model the region surrounding

the fault with and without small-scale medium complexity in both a 1D layered

model characteristic of southern California rock and a 3D medium extracted from

the SCEC CVMSi.426 including a near-surface geotechnical layer.

We find that the spectral acceleration from our models are within 1-2 in-

terevent standard deviations from recent ground motion prediction equations (GM-

PEs) and compare well with that of recordings from strong ground motion stations

at both short and long periods. At periods shorter than 1 second, Q(f) is needed

to match the decay of spectral acceleration seen in the GMPEs as a function of dis-

tance from the fault. We find that the similarity between the intraevent variability

of our simulations and observations increases when small-scale heterogeneity and

plasticity are included, extremely important as uncertainty in ground motion esti-

mates dominates the overall uncertainty in seismic risk. In addition to GMPEs, we

compare with simple proxy metrics to evaluate the performance of our determin-

istic models and to determine the importance of different complexities within our

model. We find that 3D heterogeneity, at both the long and short scale-lengths, is

necessary to agree with data, and should be included in future simulations to best

model the ground motion from earthquakes.
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Chapter 1

Introduction

1.1 Motivation

The strong shaking created by large magnitude earthquakes is of principal

interest to structural engineers to determine the ground motion a building must

be able to endure. Typically, a building’s response is designed to withstand a peak

motion described by some metric, such as peak ground acceleration or spectral

acceleration at a certain frequency. Ground motion prediction equations (GMPEs)

seek to predict this motion by using empirical observations of events. Along with

a median value for the ground motion, there is also an uncertainty associated

with the GMPEs’ prediction; this is limited by the finite number of observations,

and is currently constant as a function of distance in most implementations, but

varies as a function of period. At moment magnitudes > 6, there is a shortage

of observations at distances close to the source. Thus, features from synthetic

simulations have been used to supplement the database. This has been done

successfully at low frequencies (< 1 Hz or so) for many years, but only recently has

there been the computational ability to facilitate 3D simulations of high frequency

earthquakes at significant distances from the source. The importance is due to the

simple fact that a building’s response is related to its height; a rough approximation

is 0.1 second period per individual story. A 10 story building would have a natural

frequency near 1 Hz, but anything shorter would have a higher resonant frequency.

Thus, it is extremely important to extend earthquake ground motion prediction to

1
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higher frequencies, to determine the seismic hazard to these shorter structures.

Computational simulations allow one to generate synthetic ground motion

of both historical and hypothetical events and to perform analysis on the resulting

ground motion using a user-defined station distribution. This allows for a mul-

titude of possible research avenues to explore. A particular research need is in

regions where significant seismic hazard is known, but a paucity of data exists to

constrain the expected ground motion. Another avenue of interest is investigation

into reducing the ground motion uncertainty. Simulations work particularly well

to accomplish this task, as they can produce a large dataset of stations to work

with and extract important characteristics and statistics from. This can be done

both in regions where synthetics can be compared with recorded data, and regions

where no recent historical earthquakes have occurred.

1.2 Background

3D wave propagation simulations of ground motions are already playing a

role in assessment of hazard and risk: 1) prediction of ground motion for scenario

earthquakes for planning of earthquake emergency response and public earthquake

preparedness exercises, 2) physics-based seismic hazard assessment and 3) com-

plementing ground motion prediction equations in regions of poor sampling. The

ability to extend deterministic ground motion predictions to higher frequencies

and predict PGA and PSA is invaluable for structural engineers, as there is only a

finite amount of empirical data from prior earthquakes to determine future seismic

hazard.

1.2.1 GMPEs

GMPEs are used in seismic design codes, national seismic hazard maps,

earthquake loss and risk modeling, as well as site-specific seismic hazard evalua-

tions for important critical factors. GMPEs incorporate datasets of many records

at multiple stations for many earthquakes using sources at different distances to

build site-specific ground motion. This is based on a group of parameters, such
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as magnitude, distance, style of faulting, site conditions, and others. The models

predict a median and a standard deviation term (sigma), the latter of which is

extremely important for probabilistic seismic hazard analysis (PSHA), as it con-

trols the hazard level at very low probabilities of exceedance. An important goal

for PSHA is to reduce the sigma associated with ground motion prediction equa-

tions, which has remained stable over the past 40 years. The uncertainty has been

applied both with and without the ergodic assumption that assumes that the vari-

ability of ground motion at a single station is the same as the variability in a more

global dataset. Thus PSHA based on the ergodic assumption can overestimate the

hazard. Dropping this assumption typically reduces the variability, but requires

site-specific and path-specific ground motion models, which, if lacking, will in-

crease the epistemic uncertainty (scientific uncertainty caused by limited data and

knowledge). Part of the aleatory sigma (random variability) can be transferred to

the epistemic uncertainty (which in turn may be reduced by increased knowledge

of source, path and site effects) if repeated measurements are available.

The uncertainty can be separated into inter- (between) and intra- (within)

event terms. The between-event residual corresponds to the average source effects,

depending on stress drop and other factors not included in the statistical GMPE

model. The within-event residual includes azimuthal variations in the source, path,

and site effects that correspond to crustal heterogeneity, geological structure, and

near-surface layering not captured in a site calibration (typically based on average

shear-wave velocity). The within-event variability can be subdivided into site-

specific effects where there are multiple records from earthquakes at one site, and

path-specific effects, where there are multiple recordings from earthquakes located

in a constrained source region. This systematic path effect variability can be used

to reduce uncertainty in ground motion prediction. Site and path effects will

become even more significant at higher frequencies. For path effects, heterogeneity

at both large and small scales is important for reducing uncertainty, depending on

the frequency bandwidth of interest.
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1.3 Ground Motion Simulation Components

There are several components that can affect ground motion spatial patterns

and amplitudes. Next, we introduce a few that we will consider within this thesis.

1.3.1 Rough Fault Topography

Faults manifest varying degrees of geometrical complexities over a broad

range of scales: from large-scale features such as branching and segmentation

to smaller-scale features such as topographic variations on the fault slip sur-

faces. Earthquake rupture propagation along a rough-fault surface can excite

high-frequency radiation as rupture fronts accelerate, decelerate, or lose coher-

ence from the interaction with geometric irregularities. Meanwhile, changes of

rupture properties such as the amplitude and shape of the slip rate induced by

fault roughness can lead to a heterogeneous distribution of fault slip.

With the recent addition of realistic fault topography in 3D simulations of

earthquake source models, ground motion can be deterministically generated more

accurately up to higher frequencies. The synthetic ground motions have been

shown to match the characteristics of real data, having a flat power spectrum up

to some cutoff frequency, generated because of the complex motion of the rough

fault as it propagates due to the complex stress field generated by the topography.

1.3.2 Frequency Dependent Attenuation

Anelastic attenuation is modeled via the use of the quality factor, Q, related

to the change in peak strain energy loss per cycle. It is a physical parameter re-

quired for accurate simulation of seismic wave propagation, critically important for

strong ground motion prediction. Simulation of Q using time-domain techniques

has been notoriously difficult, mainly due to its computational requirements. The

technique has been to add memory variables into the simulation via the use of

relaxation functions. These relaxation functions can approximate the attenuation

and dispersion by specifying a set of weights and relaxation times to fit a target Q

spectrum.
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In previous studies, numerical simulations using time-stepping routines,

such as the finite difference method, have been restricted to constant Q models,

where the weights that scale the relaxation times have been chosen with various

algorithms or simply set equal to a constant. These simulations have been mostly

confined to 1− 2 Hz. In the bandwidth below about 1 Hz, observations show that

a constant-frequency attenuation relationship is appropriate. At higher frequen-

cies, however, ground motion data indicates that anelastic attenuation decreases

as frequency increases. This behavior is typically found to follow the form of a

power-law:

Q(f) = Q0 · (f/f0)γ, (1.1)

where f0 is a reference frequency with Q0 and γ constants that vary with the region

and geology.

1.3.3 Small-scale Heterogeneity

The shaking caused by earthquakes can be dramatically amplified by local

site effects, with prominent examples from the 1989 Loma Prieta earthquake in the

Marina District of San Francisco and the 1985 Michoacan earthquake in Mexico

City. The variation of the soil amplification over short distances (from tens to

hundreds of meters) is important for the design of structures such as bridges and

pipelines, or other constructions that extend over considerable horizontal length.

State of the art area-specific Community Velocity Models (CVMs), e.g., the South-

ern California Earthquake Center (SCEC) CVM version 4.0 and CVM-H, resolve

near-surface velocities at best on the order of kilometers. However, the resolution

of small-scale amplification effects at about 1-2 Hz, the approximate maximum

frequencies in state of the art ground motion simulations, typically requires a res-

olution of the velocities less than 1 km. Due to the expensive acquisition of the

data, it may not be feasible in the foreseeable future to capture the rapid spatial

variation of the near-surface material by deterministic methods. Previous stud-

ies have investigated the importance of small-scale heterogeneity included within

wave propagation simulation, that statistically models the variation in velocity and

density throughout the medium.
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1.4 Thesis overview

With the recent addition of realistic fault topography in 3D simulations of

earthquake source models, ground motion can be deterministically generated more

accurately up to higher frequencies. However, the earthquake rupture description

is not the only source of complexity in the high-frequency ground motion; there are

also scattering effects caused by small-scale velocity and density heterogeneities in

the medium that can affect the ground motion intensity. Additionally, anelastic

attenuation can dramatically affect the ground motions. Previous studies have

been limited to constant Q across the frequency bandwidth; a more realistic repre-

sentation of the earth is to model anelastic attenuation (Q) as a varying function

of frequency.

Here we deterministically model earthquakes by incorporating realistic fault

topography in 3D simulations of earthquake source models and include scattering

effects caused by small-scale velocity and density heterogeneities in the medium

that can affect the ground motion intensity. To further increase the accuracy of

our model, we have implemented frequency-dependent attenuation via a power law

above a reference frequency as well as including nonlinear effects through Drucker-

Prager plasticity. We validate our simulations with empirical observations that

make up the Next Generation Attenuation relations as well as compare to strong-

motion data from individual earthquakes. Additionally, we compare with simple

proxy metrics which have been shown to be consistent across a wide range of

observations.

Chapters 2, 3, and 4 of this thesis were originally written to be self-contained

articles suitable for individual publications. They are, however, all similar enough

to one another to be contained in this thesis with a central theme.

Chapter 2 introduces the method and importance of frequency dependent

attenuation. Chapters 3 and 4 build off of Chapter 2 by including Q(f), as well

as including source complexity and media heterogeneity (on both small and large

wavelengths) and compare the deterministic simulations with that of empirical

data. Finally, in Chapter 5, we briefly summarize our findings and discuss future

research plans.



Chapter 2

Memory-Efficient Simulation of

Frequency Dependent Q

2.1 Abstract

Memory-variable methods have been widely applied to approximate

frequency-independent Q in numerical simulation of wave propagation. The

frequency-independent model is often appropriate for frequencies up to about 1 Hz,

but at higher frequencies is inconsistent with some regional studies of seismic atten-

uation. We apply the memory-variable approach to frequency-dependent Q models

that are constant below, and power-law above, a chosen transition frequency. We

present numerical results for the corresponding memory-variable relaxation times

and weights, obtained by non-negative least squares fitting of the Q(f) function,

for a range of exponent values; these times and weights can be scaled to arbitrary

transition frequency and power-law prefactor, respectively. The resulting memory-

variable formulation can be used with numerical wave-propagation solvers based on

methods such as finite differences or spectral elements, and may be implemented in

either conventional or coarse-grained form. In the coarse-grained approach, we fit

‘effective’ Q for low Q values (< 200) using a nonlinear inversion technique and use

an interpolation formula to find the corresponding weighting coefficients for arbi-

trary Q. A 3D staggered-grid finite difference implementation closely approximates

7
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the frequency-wavenumber solution to both a half-space and layered model with

a shallow dislocation source for Q as low as 20 over a bandwidth of two decades.

We compare the effects of different power-law exponents using a finite-fault source

model of the 2008 Mw 5.4 Chino Hills, CA, earthquake and find that Q(f) models

generally better fit the strong motion data than constant Q models for frequencies

above 1 Hz.

2.2 Introduction

Anelastic attenuation, modeled by the quality factor Q, is needed for accu-

rate simulation of seismic wave propagation, which plays an important role in many

areas of seismology, including strong ground motion prediction (e.g. Olsen et al.,

2000; Komatitsch et al., 2004; Cui et al., 2010; Graves and Aagaard, 2011), seis-

mic imaging (e.g. Savage et al., 2010; Tape et al., 2010; Lee and Chen, 2014), and

forensic seismology (e.g. Xie, 2005). Simulation of attenuation using time-domain

techniques is not computationally feasible when the viscoelastic stress-strain rela-

tionship is expressed in convolutional form. The problem has been made tractable

by by approximating the stress-strain relationship with a discrete decay spectrum

which gives rise to what are known as memory variables into the simulation, where

each memory variable represents a relaxation process, with a characteristic time

constant, satisfying a first-order differential equation (Day and Minster, 1984; Em-

merich and Korn, 1987; Blanch et al., 1995). The relaxation time constants can be

chosen, and the memory variables weighted, such that, collectively, the relaxations

approximate a target Q(f) spectrum and the associated dispersion. The number of

relaxation times is usually chosen so that the superposition of the memory variables

accurately models Q across the desired bandwidth.

In principle, all relaxation times operate on each stress component, for

each volume element in the simulation, and the memory-variables approach has

often been implemented in that form. The added storage and calculations for an

anelastic simulation are directly proportional to the number of relaxation times

introduced into the approximation; in very large simulations, especially in 3D,
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the added storage and computations may become burdensome. To decrease the

computational burden, Day (1998) introduced the coarse-grained approach for a 3D

anelastic medium, where the relaxation times and weights are distributed across

the unit cells, approximating the intrinsic attenuation with a coarser sampling.

Day and Bradley (2001) implemented the coarse-grained approach in a staggered-

grid finite difference method, and the finite difference implementation was adapted

to very low-Q media by Graves and Day (2003) and to discontinuous media by

Kristek and Moczo (2003). The coarse-grained approach has also been adapted

to the finite element method by Ma and Liu (2006), and to the spectral element

method by van Driel and Nissen-Meyer (2014)

In previous studies, numerical simulations have mainly been restricted to

constant (frequency-independent) Q models, where the memory-variable weights

have been chosen with various algorithms (e.g. Emmerich and Korn, 1987; Xu

and McMechan, 1998, although these approaches allowed for a more general Q) or

simply set equal to a constant (Day and Bradley, 2001). Recently, Fitchtner and

van Driel (2014) modeled Q with a power-law dependence on frequency across the

entire model bandwidth. These approaches have been mostly used for simulations

confined to frequency f ≤ 1 − 2 Hz (e.g. Olsen et al., 2000; Komatitsch et al.,

2004; Cui et al., 2010). With the recent addition of source complexities (such as

surface roughness) to simulations of earthquake sources, ground motion can now be

simulated by dynamically consistent sources, retaining frequencies up to roughly

10 Hz. Such simulations are generally consistent with the spectral characteristics

of recorded data (Dunham et al., 2011; Shi and Day, 2013). With the continued

advancement of high performance computing, high-frequency ground motion pre-

diction can be extended to significant distances from the fault using highly scalable

numerical techniques.

In the frequency range below about 1 Hz, observations show that a frequency-

independent Q relationship is often an appropriate approximation (e.g. Liu et al.,

1976). At higher frequencies, however, seismic observations frequently are more

consistent with models in which Q is an increasing function of frequency (e.g. Mc-

Namara et al., 2012; Raoof et al., 1999; Lekic, 2009; Phillips et al., 2013). This
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behavior is typically found to follow the form of a power-law:

Q(f) = Q0 · (f/f0)γ, (2.1)

where f0 is a reference frequency with Q0 and γ constants that vary with the

region and geology. For example, Erickson et al. (2004) found Q0 to be in the

range 100 − 150 and γ = 0.6 - 0.7 for California, but found Q0 to be around

650 and γ = 0.3 - 0.4 in the eastern United States, showing a weaker frequency

dependence for Lg shear waves. Additionally, Phillips et al. (2013) found evidence

that the frequency dependence is stronger (larger γ) in low-Q tectonic regions

compared to high-Q stable areas.

Here, we use both linear and nonlinear least squares to find the weights that

scale the memory variables to fit a target Q model, with no frequency dependence

up to a transition frequency fT and following a power law formulation above this

transition:

Q(f) =

{
Q0 0 < f < fT

Q0 · (f/fT )γ f > fT
, (2.2)

where Q is the quality factor, Q0 is the low-frequency value of Q, and

0 ≤ γ ≤ 1. We solve for a range of possible values of γ (0.0 − 0.9), linearizing

the relationship between 1/Q and memory-variable weights for high Q (> 200)

through a low-loss approximation and fitting the effective Q or harmonic average

over the coarse-grained cell for low Q values (15−200). Our technique begins with

a specified set of relaxation times appropriate to the bandwidth of the simulation,

and then fits the corresponding memory variable weights to the model of equation

(2). We use a nominal value Q∗
0 for Q0 for high Q, so that the resulting set of

weights can then be scaled to give the target Q0 by multiplying them by the factor

Q∗
0/Q0. For low Q, we fit a discretized range of Q values and solve for a simple

formula so that the weights can be quadratically interpolated. This procedure

yields a Q(f) function that matches equation (2) typically within 4% across the

spectrum 0.1 - 10 Hz, becoming slightly more inaccurate for high-exponent power-

law models (γ > 0.7) near the transition frequency at low Q.

The method is implemented into a fourth-order staggered grid finite dif-

ference code using the coarse-grained technique with eight relaxation times dis-



11

tributed with periodicity of two nodes (as in Day, 1998), with a single relaxation

time at each node. To verify the method, we compare synthetic seismograms com-

puted with the finite difference program to those from a frequency-wavenumber

code, and we illustrate the importance of including Q(f) in ground motion estima-

tion by simulating the 2008 Mw 5.4 Chino Hills, California, earthquake.

2.3 Background

This section reviews the previous development of the conventional memory

variable method, used as a starting point for our technique. The result is an (ap-

proximate) expression for Q in terms of N weighting coefficients and N relaxation

times.

Anelastic attenuation is implemented into time-stepping routines through

the use of memory variables, whereby energy is dissipated from the system. The

isotropic stress (σ), strain (ε) relation can be written as a set of relations of the

form

σ(t) = Mu

[
ε(t)− ΣN

k=1ξk(t)
]
, (2.3)

where Mu is the unrelaxed modulus and ξk is a memory variable. Equation (3)

represents either mean stress in terms of volumetric strain (with Mu representing

a bulk modulus), or a deviatoric stress component in terms of the correspond-

ing deviatoric strain component (with Mu representing the shear modulus). The

memory variables ξk follow the N first-order differential equations (Day, 1998):

τk
dξk(t)

dt
+ ξk(t) = λkε(t), (2.4)

at each relaxation time τk with weight λk (our definition of λk is equivalent to

the product (δM/Mu)λk of Day (1998), equation (14), where δM is the modulus

defect, i.e. the unrelaxed modulus minus the relaxed modulus). These may be

time-stepped using standard approximations (e.g. Day, 1998):

ξk(t+ δt) = e−δt/τkξk (t− δt) + λk
(
1− e−δt/τk

)
ε(t), (2.5)
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The result of approximating the stress-strain relation in the form of equation

(3) is that the complex viscoelastic modulus (as a function of angular frequency

ω) takes the form:

M(ω) = Mu

(
1− ΣN

k=1

λk
1 + iωτk

)
. (2.6)

One definition of Q is

Q−1(ω) =
Im[M(ω)]

Re[M(ω)]
=

ΣN
k=1

λkωτk
1+(ωτk)2

1− ΣN
k=1

λk
1+(ωτk)2

, (2.7)

and if we assume the low-loss approximation δM << Mu, this becomes

Q−1(ω) = ΣN
k=1

λkωτk
1 + (ωτk)2

, (2.8)

which gives a good approximation for Q ≥ 20 in the memory intensive non-coarse-

grained approach. In the case the memory-efficient coarse-grained technique is

used, Graves and Day (2003) determined that the harmonic average of the modulus

is more accurate than equation (6) for Q < 20. Equation (7), besides representing

Q for a discrete approximation to an anelastic model with continuous relaxation

spectrum (Day and Minster, 1984), can also be interpreted as the Q of a spring-

dashpot network model of either the generalized Maxwell or generalized Zener

type (e.g., Moczo, 2005). It takes the form of a sum of Debye peaks centered at

frequencies given by the inverses of the respective relaxation times.

Wavespeeds input to numerical simulations usually correspond to measured

or hypothesized wavespeeds at some finite reference frequency. The reference fre-

quency has to be taken into account in the computation of the unrelaxed elastic

moduli from the input wavespeeds. With a given choice of relaxation times and

weighting coefficients, the unrelaxed modulus can be expressed in terms of the

phase velocity c at reference frequency ω0 by

Mu =
c2ρ
(
Re[
√

1
1+iQ−1(ω0)

]
)−2

Re[1− ΣN
k=1

λk
1+iw0τk

]
, (2.9)

where

c(ω0) =

√
Re[M(ω0)]

ρ

(
Re[

√
1

1 + iQ−1(ω0)
]

)−1

(2.10)
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where ρ is density and M is given by equation (6) and Q by equation (7). In the

case of effective Q, the modulus is found from:

ME(ω) = N · (ΣN
k=1

1

Mk(ω)
)−1, (2.11)

where

Mk(ω) = Mu(1−
λk

1 + iωτk
) (2.12)

and Q in equations (9) and (10) is replaced by

Q−1
E (ω) =

Im[ME(ω)]

Re[ME(ω)]
. (2.13)

Equation (9) then becomes (assuming material homogeneity across the coarse-

grained cell)

Mu =

c2ρ

(
Re[
√

1
1+iQ−1(ω0)

]

)−2

N ·Re[
{

ΣN
k=1(1−

λk
1+iw0τk

)−1
}−1

]
, (2.14)

With these expressions, velocity dispersion corresponding to the defined Q function

is accurately accounted for.

2.4 Method

It remains to describe the method for selecting the relaxation times and

weights to approximate Q(f); in previous applications, the target has typically

been a frequency-independent Q function. When the τk are approximately loga-

rithmically spaced, the frequency-independent Q model is well fit with nearly equal

λk for each relaxation time (e.g., Day, 1998 found that even exactly equal-value

λk gave a good fit, within 5% tolerance, to frequency-independent Q).

In the current paper, we generalize the above approach to include power-

law Q(f). This generalization is done by numerical fitting of the λk to the target

Q(f) (equation 2). Here we set the τk to be equally distributed logarithmically:

ln τk = ln τm +
2k − 1

16
(ln τM − ln τm), (2.15)

where τm corresponds to the minimum relaxation time and τM the maximum, the

lower and upper absorption-band cutoffs.



14

The best fits are typically obtained when these limits are set outside the

bandwidth of computational interest. For large Q, we use constrained least squares

to solve for the λk in equation (8) to fit a target Q function of the form in equation

(2) by minimizing the sum of the squares. The λk are constrained to be positive in

the inversion to ensure that energy is dissipated from the system. Since equation

(8) is linear in λk, solving for λk for one value of Q0 (denoted Q∗
0) allows the

weights to be scaled to any other value of Q0, giving the same target shape as a

function of frequency. For simplicity, we set Q∗
0 = 1 (and the fitted weights can

subsequently be scaled to arbitrary Q0 by multiplication by 1/Q0). The low-loss

approximation used here closely approximates Q (in the form of equation 7) for

Q0 > 50. As Graves and Day (2003) pointed out, once scaled to the desired Q0,

the sum of the the weights must be bounded above by 1 to ensure stability (and

the sum is bounded below by 0, since each weight is non-negative). This condition

is satisfied for all λk after scaling for Q0 > 50 for the range of γ solved for here.

The Q(f) model generated by this technique can also be shifted in frequency, so

that the transition to a power-law model occurs at any specified frequency, fT .

This frequency shift is achieved by dividing the relaxation times by the desired

factor; the weights remain unchanged.

Graves and Day (2003) analyzed the coarse-grained low-Q accuracy and

determined that the best results are obtained when using the harmonic average

of the moduli over the volume of the coarse-grained cell to determine the coeffi-

cients. We use a nonlinear least squares approach to fit equation (11) based on

the conjugate gradient method with the effective weights bounded between 0 and

1 and solve for the weighting coefficients for each integer value of Q ranging from

15 − 220. We then inverted for the coefficients (using least squares) ak and bk in

the expression

λk =
ak
Q2

+
bk
Q

(2.16)

that fits Q accurately to within 5% (and generally much better) between 0.1 and

10 Hz. This is similar in concept to the interpolation technique proposed by Liu

and Archuleta (2006), but uses a simpler formula, with fewer coefficients. We chose

this approach up to Q < 200 after performing plane wave tests and determining



15

that even large values of Q (> 50) can be inaccurately modeled using the arith-

metic modulus for wide bandwidths (> 2 decades) in the coarse-grained approach,

particularly when the weighting coefficients vary significantly in magnitude.

Figure 2.1 shows an example of the fits between the target Q spectrum and

the approximation, for various power-law exponents with N = 8 in equation (8)

using the linear technique (applicable for large Q). The weights scale the individual

terms (Debye peaks) in the summation of equation (8) and these terms superpose to

give an approximation to the target spectrum. Here we have chosen the transition

frequency fT to be 1 Hz, and implemented a transition region between 0.8 to 1.2

Hz, where the Q spectrum is defined as a power-law function with γ/2. This region

allows a better fit when using least squares to invert for the weights, as a sharp

transition is impossible to fit using the superposition of Debye peaks. Figure 2.1

also plots the ratio between the target spectrum and the approximation for the

same power-law exponents. It is clear that the fits are within a 5% tolerance across

the entire bandwidth. The ratio is oscillatory about 1 (a perfect fit) due to the

overlap of the Debye peaks.

Table 1 lists the minimum and maximum relaxation times used for each

power law exponent, and the corresponding weights. We have limited this table to

positive values, and to the range γ = 0.0−0.9, as γ can never be > 1 (Q−1 can never

fall off faster than ω due to the shape of the Debye peak). Our technique is entirely

general, in the sense that the weights determined in this manner can be used in

either a conventional memory variable implementation (i.e. where the memory

variables associated with all N relaxation times are calculated and summed, as

in equation (3), at every stress node) or a coarse-grained implementation. In the

latter case, there is an additional scale factor N related to the increased volume

element represented by each memory variable in the coarse-grained discretization:

λk on the right-hand side of equation (4) is replaced by wk, where wk = Nλk (Day,

1998, equation 43), where N = 23, for a 3D finite difference medium with a peri-

odicity factor of 2. Note that some coefficients are near zero, indicating that there

is little contribution from that relaxation time; this indicates that the bandwidth

could be chosen to be wider and most likely still obtain accurate fits. We found
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that the given choice of relaxation times performs well for the technique for low

Q, where example spectra and fits are plotted in Figure 2.2 for Q = 20 using the

interpolation formula as in equation (16) and the coefficients in Table 2. Here, wk

implicitly includes the factor N in λk already, so no normalization is required. It is

evident that towards the low end of our Q range, it becomes harder for high-power

law exponents to fit the transition region within 5%. Inverting for the weighting

coefficients and relaxation times simultaneously would allow for a denser distribu-

tion of relaxation times near sharp changes or complex regions in the Q spectrum.

However, more accurate fits in the frequency domain do not necessarily transmit to

the actual coarse-grained time domain simulations, due to the dependence on the

relative magnitude between coefficients and the choice of bandwidth. In practice,

this misfit is probably negligible when comparing synthetics with real data, as the

resolution of Q is significantly lower than this.

To accommodate both shear and bulk losses, it is convenient to absorb the

unrelaxed moduli into the forcing term for the memory variable evolution equation

(4) (so the memory variables have the same dimensions as stress), and remove the

modulus factor on the memory variables in stress-strain equation (3). Then adding

the respective evolution equations for shear and bulk, we obtain (following Day

and Bradley, 2001)

τk
dξij
dt

+ ξij = λk[2µuQ
−1
s0 εij + [(κu +

4

3
µu)Q

−1
p0 − 2µuQ

−1
s0 ]εkkδij], (2.17)

where εij, εkk, µu and κu are deviatoric and volumetric strains, and unrelaxed

shear and bulk moduli, respectively, and Q−1
s0 , Q

−1
p0 are reference values of Q−1

s , Q−1
p ,

which differs from Day and Bradley (2001) since δM
Mu

has now been absorbed into

the weights. Adding the bulk and shear equations for stress, equation (3) becomes:

σij = 2µuεij + (κ− 2

3
µu)εkkδij − ΣN

l=1ξijl. (2.18)

The time-differentiated form of equation (17) gives a first-order ODE that one can

solve for the memory variable ˙ξij given the strain rate ˙εij. The stress rate σ̇ij can

then be calculated from ˙ξij and ˙εij. For a fixed set of weights, the righthand side

of equation (17) scales linearly with Q−1
0 , as noted earlier (assuming Q >> 1).
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We have implemented our technique using the memory-efficient coarse-

grained approach of Day and Bradley (2001) described earlier, using a scalable

staggered-grid velocity-stress finite difference (FD) method, 4th-order accurate in

space and 2nd-order accurate in time (Cui et al., 2010). The weights are distributed

with a period of 2 nodes, in the same periodic scheme as the corresponding relax-

ation times. Here the memory variables ξij are collocated with the stresses σij and

the summation in equation (18) is removed, becoming

σij = 2µuεij + (κ− 2

3
µu)εkkδij − ξij, (2.19)

and λk in equation (17) replaced by wk. The implementation assumes that Qκ

and Qµ (where κ and µ correspond to the bulk and shear modulus, respectively)

have identical frequency dependence, though they may have different prefactors

Q0. For Q > 200, this simplification allows us to use the same set of weights for

both bulk and shear attenuation (scaled to their respective Q0 values), though

this simplification is not necessary in our approach. For Q < 200, or when using

independent shear and bulk Q spectra, two different sets of weights are used for

the bulk and shear components.

2.5 Numerical Tests

We have performed several simulations using simple earth models with a

shallow dislocation source. To verify our technique, we have modified a frequency-

wavenumber code (FK) (Zhu and Rivera, 2002) to account for the dispersion asso-

ciated with a power-law Q(f) and used the frequency dependent modulus as given

by equation (6) for the given choice of relaxation times and weights to find the

complex wavenumber used in the computation. We used an iterative approach

to solve for Q−1(ω) as given by equation (7), where first the weights are set to

some initial value (0’s work fine) and inserted into the term in the denominator of

equation (7). The resulting expression (identical to the low-loss approximation of

equation (8) divided by a factor) is fit by using linear least squares. These weight-

ing coefficients are used in the next iteration and the procedure is continued in
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succession until there is negligible change in the coefficients or Q(ω) is fit to within

a certain tolerance (2-3% is typically as accurate as can be achieved for fixed τk).

We use a double-couple buried point source equivalent to right-lateral slip

with a strike = 90◦, dip = 90◦, and rake = 0◦ at a depth of 1.8 km, using the

cosine-bell moment-rate function:

˙M(t) =

{
M0(1− cos(2πt/T ) 0 < t < T

0 otherwise
, (2.20)

with T = 0.2 sec and M0 = 1016 N m, equating to a Mw = 4.6 earthquake. We use

a grid spacing of 40 m and a time step of 0.002 sec. The upper frequency limit (i.e.

the frequency up to which the solution is accurate to within a specific tolerance)

scales with minimum wave speed vs. For example, for a minimum vs of 2000

m/s and a resolution criterion of 5 grid points per minimum shear wavelength, the

upper limit of this grid is 10 Hz. We have constructed our model domain to be large

enough to have no reflections from boundaries at the receiver station during the

simulated time. The source is averaged across two depth points in the FD program

since the shear stress σxy in our scheme is located one-half grid point below the

target grid location. As the horizontal components of the staggered-grid are located

1/2 point below the free surface, we have also averaged the horizontal components

of the receiver stations to be closer to the target geometry (Gottschämmer and

Olsen, 2001).

First, we compare the computed time histories obtained with a purely elastic

(infinite Q) model to determine the accuracy of the FD solution for the prescribed

model parameters. Here we set vp = 6000 m/s, vs = 3464 m/s and ρ = 2700

kg/m3. Figure 2.3 shows seismograms and the Fourier spectra for each component

of a surface station located at a horizontal distance of 15 km from the source with an

azimuth of 53.13 ◦from North. The seismograms have been band-passed between

0.2 and 10 Hz using a fourth-order, zero-phase Butterworth filter; a reference

frequency of f0 = 1 Hz was used for calculating the unrelaxed modulus. We used

the time-frequency representations of misfit between two seismograms classified

as envelope misfit (EM) and phase misfit (PM) as in Kristekova et al. (2009) to

determine the match quantitatively, and found arrival times of all major phases
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are reproduced with phase error less than 1% and peak amplitudes are matched

with relative error less than 2%. Fourier spectral amplitudes are nearly identical in

the two solutions. The Rayleigh wave (4.5-5.5 s, radial and vertical components),

is free of visible spurious oscillations and reproduces the wavenumber-integration

solution with considerable precision.

Next, we use a viscoelastic half-space model simulating constant Q, i.e. a

power law exponent of 0.0, using the values listed in Table 2, where we have set

Qs0 = Qp0 = 50. Figure 2.4 plots the results for the same surface station as located

in Figure 2.3; it is evident that the two solutions are very similar and that the FD

synthetics match the analytical counterparts to high accuracy, demonstrating that

the method is working well, even in the presence of the free surface. EM and PM

here are less than 6% and 2%, respectively, for all components. By optimizing the

weighting coefficients for effective Q, we are able to obtain better accuracy here

than simply setting the coefficients equal to one another, as in Day and Bradley

(2001).

Next, we implement our routine in a half-space using a power-law model

with an exponent of 0.6, again with low-frequency Qs0 = Qp0 = 50, with Q in-

creasing above the reference frequency of 1 Hz in the form of equation (2) using

the coefficients in Table 2. The results are shown in Figure 2.5 for the same surface

station as in Figures 2.3-2.4. It is evident in the seismograms that less energy has

been attenuated, and that the Fourier spectra have more energy at frequencies

> 1 Hz, compared to the constant-Q model. The close fit between the FK and

FD waveforms indicates that our technique works well for all phases present in

the uniform half space, with even better accuracy than in the constant Q model,

where here maximum EM and PM are less than 2% and 1%, respectively.

To further verify our technique, we have used a simple layered model (see

Table 3) composed of a thin velocity layer over a half-space, using a power-law

model, γ = 0.6, with Qs0 and Qp0 values of 20 in the low-velocity layer and 210 in

the underlying half-space. This problem tests the method in the presence of strata

of large contrasting Q as well as seismic velocity, and also tests its performance for

Love waves.
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Figure 2.6 shows the comparison between the FK and FD results. It is

clear that the two techniques compare very well with one another, even with Q

as low as 20 and a sharp Q contrast. EM and PM here are within 5% and 2%,

respectively, for the first 5 s, but increase to 8% - 10% for EM and 2% for PM for

the later surface wave arrivals. The corresponding goodness-of-fit values are above

9 in the scale used in Kristekova et al. (2009), classified as an excellent fit. For

reference, the elastic case is plotted in Figure 2.A.1 with maximum EM of 3% and

PM of 1%. The harmonically averaged Q over the coarse-grained cell in the shallow

layer and arithmetically averaged Q in the underlying half-space is seen to work

well even in the presence of layer discontinuities. The larger misfits in the later

arrivals would likely be smaller if heterogenous Q across the coarse-grain cell was

implemented, allowing a sharper transition in Q, but we find that we have sufficient

accuracy here for a much higher contrast in Q than would likely be present within

the real earth. For frequency-independent Q, Kristek and Moczo (2003) show that

the coarse-grained scheme loses accuracy in the presence of sharp discontinuities

involving very low Q, and they propose an alternative coarse-grained formulation

that is more accurate in that limit. Those results for discontinuous models are

likely to apply also to the power-law case when Q0 << 20.

2.6 Applications

We have shown that we obtain accurate seismograms using a frequency-

dependent Q model, and that there are differences in both the amplitude and

frequency content compared to a constant-Q model. To demonstrate the impor-

tance of Q(f), here we model ground motion for the 2008 Mw5.4 Chino Hills, CA,

earthquake and compare results for different power-law Q models against strong

motion data. We use a finite-fault source model adapted from Shao et al. (2012),

obtained by inversion of local earthquake records, to model the event. Even though

their model was only constrained by data up to 2.5 Hz, there is significant energy

in their source above this threshold, as shown by Taborda and Bielak (2014), so

we design our simulation to numerically resolve frequencies up to 4 Hz with 6.25
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points per minimum wavelength. We use the Southern California Earthquake Cen-

ter (SCEC) Community Velocity Model V4 (CVM-4) (Magistrale et al., 2000 and

Kohler et al., 2003), limiting the minimum shear wave velocity to 200 m/s, and set

the P-wave velocity to 600 m/s when this occurs. Here we choose Q0 to be related

to the shear wave velocity by the relation Qs0 = vs ∗ 0.1 and Qp0 = 2 ∗Qs, where

vs is in km/s. We calculate Q0 after imposing the lower limit on vs; this ensures

that the minimum Q0 is always greater than 20. We run two end-member models

with γ = 0.0 and 0.8 (0.8 is the upper limit of the γ estimate of Song and Jordan

(2013) for southern California).

Figure 2.7 plots the modeled region, indicating the boundary and 110 strong

ground motion stations from which data were obtained from the Center for Engi-

neering Strong Motion Data database (see Data and Resources), to compare with

our simulations. The simulation domain extends 56 by 40 km in the east and north

directions, respectively, to 24 km in depth, using a grid spacing of 8 meters. We

used Cerjan boundary conditions (sponge zone layers) in our 3D models, which

dampens the reflections significantly, reducing energy that would reflect back into

the model.

In Figure 2.8, the east-west component of individual waveforms, as well as

cumulative energy (integral of particle velocity squared) and Fourier amplitude

spectra, are plotted at the stations highlighted in Figure 2.7, ordered with increas-

ing distance to the fault.

The velocity waveforms were band-pass filtered between 0.1 and 4 Hz, while

the energy plots are focused on the higher frequencies, calculated from seismograms

band-passed filtered between 1.0 − 4.0 Hz. There are first-arrival amplitude dif-

ferences between the two simulations and more energy in the coda for the Q(f)

model relative to the constant-Q model. The frequency domain shows that the

two simulations start to diverge above 1 Hz as expected, with Q(f) having more

energy. At stations near the source, the similarity between the synthetics and data

in this frequency range is largely related to the accuracy of the source and site

effects. At stations farther from the source, there is seen to be a greater difference

between the two simulations; it is clear that the Q(f) model has significantly more
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energy. It is not evident whether constant Q or Q(f) performs better compared

with data when looking at individual stations.

To determine the significance of Q(f) for the bulk of the data, we calculated

the cumulative energy in the waveforms in the passband 1−4 Hz for each horizontal

component, and then computed the geometrical mean of these components for each

station. Figure 9 plots the geometrical-mean cumulative energy as a function of

the closest distance to the rupture plane rrup for the strong ground motion stations

in

Figure 2.7. The differences between the data and constant-Q synthetics are similar

to those between data and power-law Q synthetics at distances near the fault

(< 25 km). At further distances, however, there is a significant divergence between

the constant-Q and power-law synthetics, with the power-law synthetics in better

agreement with the data.

We next compare our Q(f) simulations to several leading ground motion pre-

diction equations (GMPEs) (Boore and Atikinson, 2008, Campbell and Bozorgnia,

2008, Chiou and Youngs, 2008). These models are dependent on information about

the source (Mw, width, etc..) as well as site effects (V s30 and others) and distance

to the source rrup. We compute orientation independent median spectral motion

(GMRotD50) (Boore et al., 2006) at several periods for both the data and our

synthetic models and compare to the spectra predicted from the GMPE’s. Figure

2.10 plots the range of the medians of the three different GMPE models at a period

of 3 s. Also plotted is the 5 point moving average of the observed data and the

synthetic predictions. We see that the strong ground motion data is similar to that

of the GMPE predictions, but that there are significant differences between the

data and synthetics. We attribute most of this misfit to inaccuracy in the source

and the medium parameters (velocity and density), as stations near the source

don’t have a significant impact from Q. We see that both power-law simulations

plot almost identically on top of one another, as they should at frequencies lower

that 1 Hz.

Figure 2.11 plots the same thing, but at a period of 0.4 s. Here it is evident

that the power-law model matches the decay in energy seen in the observations
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better than the constant-Q model, as less energy has been attenuated than by

the constant-Q model. The effect becomes more important at further distances

from the source. Figure 2.A.2 plots the comparison at a period of 1 s, showing

differences of constant Q and Q(f) intermediate between Figures 2.10 and 2.11.

The method of picking the peak spectral response includes information

about a range of frequencies. Thus, we choose not to compute spectral accelerations

above 2.5 Hz. Instead, we compute the Fourier spectral amplitude at several

frequencies for both models and data by averaging the spectral amplitude in a

narrow bandwidth (≈ 0.1 Hz) and plot those averages as a function of Rrup. Figures

2.A.3 and 2.A.4 show that we obtain qualitatively similar results to Figures 2.10

and 2.11 at frequencies of 0.25 and 2.5 Hz. Figure 2.12 shows the result at 3.5

Hz. Even though the source model from Shao et al. (2012) was only constrained

by seismic observations up to 2.5 Hz, the figure shows that the model nonetheless

generates 3.5 Hz spectral amplitudes that are consistent with observed spectra at

station distances up to about 20 km, a distance range where the Q model has

a less appreciable effect. Thus, we use the source model without modification

to examine the effect of the Q model on the 3.5 Hz amplitude decay at larger

distances. It is clear from Figure 2.12 that at distances larger than 25 km from

the fault, constant-Q is too attenuating, whereas although there is considerable

scatter, the Q(f) model with γ = 0.8 matches the trend of observed amplitudes

better. The constant-Q model predicts amplitudes that are deficient by a factor of

3 to 5, relative to both the data and the γ = 0.8 power-law model, in the distance

range considered.

We note that these simulations have used a velocity structure that is con-

sidered accurate only for estimating long-period ground motions. The waveforms

would be expected to change significantly with the inclusion of scattering from

small-scale heterogeneity in the media parameters. Current work is being per-

formed to determine the significance and the role that scattering plays in ground

motion simulation (Savran and Olsen, 2014). The presence of additional scattering

will add complexity to the wavefield and lengthen the coda, and scattering-model

parameters may trade off with anelastic parameters. Preliminary calculations con-
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firm, however, that those effects are unlikely to change our conclusion about the

importance of including frequency dependent Q in the model.

2.7 Discussion

Predicting amplitudes of high-frequency regional phases is important for

discriminating explosions when events are small, as well as for accurate imaging

in techniques determining earth’s structure. Additionally, pushing deterministic

simulations of earthquakes to higher frequencies is critically important for physics-

based seismic hazard analysis, to enable structural engineers to design buildings

and structures with shorter natural periods to withstand earthquake ground mo-

tions. As recent work has improved the accuracy of the source at higher frequencies

and as computational resources have become greater, realistic ground motion up

to ≈ 10 Hz has become achievable at considerable distances from the source in a

3D medium. These synthetic ground motions have been shown to match the char-

acteristics of real data, having a flat power spectrum up to some cutoff frequency

(Shi and Day, 2013). However, the earthquake source is not the only source of

complexity in the high-frequency ground motion; to model ground motions accu-

rately, the medium needs to be realistically modeled as well. Included within this

complexity is the model of anelastic attenuation. As simulations extend to higher

frequencies, energy losses from anelasticity become progressively more important

as there are more wavelengths of propagation within a modeled domain.

Observations have shown that Q increases as frequency increases, chang-

ing from the constant behavior below 1 Hz or so. Here, we have implemented

frequency-dependent Q into a staggered-grid velocity-stress FD code via a power-

law function above a reference frequency, fT : Q = Q0f
γ, where Q0 and γ are

constants that may vary with the region being studied (e.g. Phillips et al., 2013).

We have used the low-loss approximation for Q > 200, and effective Q values lower

than this.

The Q spectrum fits are generally accurate to within 5% across 2-3 decades

of bandwidth. We have seen that the scheme simulates broadband frequency-
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dependent Q accurately for both a half-space and a layered model as verified by

agreement with the respective analytical solutions. This includes both body waves

as well as surface waves. The lower limit of Q = 15 that we apply our approach

to is not the lower bound; we choose a minimum Q value of 15, as this will be

valid for almost all regions (except for very low velocity sediments) and allows us

to accurately fit the rapidly changing coefficients at low values of Q with a simple

interpolation formula. Additionally, for a given absorption band-width, the Q value

has a lower bound determined by the thermodynamic constraint that the sum of

the λk values be less than one (and the equivalent constraint in the coarse-grained

approach is that each wk value be less than one).

The approach demonstrated here could be applied to other grid methods,

both structured and unstructured, and extended using the coarse-grained technique

as long as the coarse graining periodicity is less than half the shortest seismic

wavelength of interest (Day, 1998; van Driel and Nissen-Meyer, 2014). The same

technique can be applied to solve for weights to fit a power law across all frequencies

or a negative value of γ as found by Lindley and Archuleta (1992).

A benefit of this technique is in its flexibility; the Q spectrum can be scaled

to any value of Q > 200 by linear scaling of the weighting coefficients and trans-

ferred to the desired frequency range simply by dividing the set of relaxation times

by the desired shifting factor. Additionally, only 3N coefficients (where N is a

small number - 8 in our examples) per Q model need to be tabulated, allowing

for many different models to be easily stored in memory. In the future, as GPU

hardware becomes less memory-bound, it will likely become unnecessary to use

the coarse-grained approximation, and thus a more simple interpolation procedure

could be used to solve for the weighting coefficients in equation (7) down to very

low values of Q, again using a linear scaling relationship for large Q.

High performance computing now allows seismologists to simulate the prop-

agation of seismic waves through 3D complex crustal structures. This includes

simulating the scattering effects caused by small-scale velocity and density hetero-

geneities in the medium that can affect the ground motion intensity increasingly

at higher frequencies. It is important to note that scattering from small-scale
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heterogeneities may play a large role in the effect of attenuation in the frequency

range > 1 Hz. It remains to determine the relative role of scattering versus in-

trinsic attenuation in high-frequency simulations and determine Qp0 and Qs0 in

combination with scattering parameters. Additionally, the effects of non-planar

topography should be included in future studies as this could also influence the

scattering of energy.

Future work should explore regional variations in Q0 and γ and examine

the relationships of these parameters to seismic velocities, lithology, and tectonic

setting. It remains to be determined whether the parameter κ in exp(−πκf)

proposed by Anderson and Hough (1984), the high-frequency decay in Fourier am-

plitude spectra observed in ground-motion recordings, can be accurately modeled

by some combination of depth variation and frequency dependence of Q. This pa-

rameter will become more important as ground-motion models are extended to

frequencies beyond those covered here, where the effects of kappa are limited.

2.8 Conclusions

We have developed an approach to determine the weighting coefficients

in power-law Q models for use in time-domain wave propagation techniques and

found that we can fit low-order memory-variable approximations to those power

laws to within 5% tolerance over 2 orders of magnitude in frequency. The resulting

memory-variable models can be implemented either in conventional (point-wise)

form, or in a coarse-grained version. We have verified the accuracy of the coarse-

grained finite difference implementation by comparison of solutions with frequency-

wavenumber synthetics for both uniform and layered half space models.

We illustrate the importance of including Q(f) in ground motion estimation

by modeling the Mw 5.4 Chino Hills, CA, earthquake. We find, by looking at both

the distance decay of the Fourier amplitude spectrum and the cumulative energy

of seismograms at various distances from the fault, that frequency dependent Q

does a better job than constant Q at frequencies above 1 Hz. Q(f) is shown to

become increasingly important at higher frequencies.
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The utility of our approach will also extend to many other areas of seis-

mology besides strong ground motion prediction, including explosion monitoring

and seismic imaging, where accurate prediction of amplitudes and arrival times are

important.

2.9 Data and Resources

The seismograms from the 2008 Mw 5.4 Chino Hills earthquake used here

were obtained from the archives of the Center for Engineering Strong Motion Data

at http://www.strongmotioncenter.org/. The southern California velocity model

CVM-S 4.26 can be obtained from SCEC at

http://scec.usc.edu/scecpedia/.

Most of the data-processing work was done using MATLAB

(http://www.mathworks.com/products/matlab/). Figures were prepared using

MATLAB and the Generic Mapping Tools package

(http://www.soest.hawaii.edu/gmt/). All electronic addresses referenced here were

last accessed October 2014. All other data used in this paper came from published

sources listed in the references.
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Figure 2.1: (a) Comparison of fits obtained between model Q (dashed line) and
target Q (solid line) for several values of γ in equation (2) using the low-loss
approximation as in equation (8) for an unscaled Q. (b) Ratio between target
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Table 2.1: Relaxation times and weight coefficients for a range of power law

exponents*.

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

τm 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0066 0.0066 0.0085

τM 15.9155 15.9155 15.9155 15.9155 15.9155 15.9155 15.9155 3.9789 3.9789 3.9789

w1 0.8867 0.3273 0.001 0.001 0.001 0.2073 0.3112 0.1219 0.0462 0.001

w2 0.8323 0.8478 0.804 0.6143 0.4639 0.1872 0.001 0.001 0.001 0.001

w3 0.5615 0.369 0.2005 0.0918 0.001 0.001 0.001 0.001 0.001 0.001

w4 0.811 0.9393 1.0407 1.1003 1.1275 1.081 1.0117 0.2999 0.1585 0.1935

w5 0.4641 0.4474 0.4452 0.4659 0.509 0.6016 0.7123 1.3635 1.4986 1.5297

w6 1.044 1.0434 1.0349 1.0135 0.9782 0.912 0.8339 0.001 0.001 0.001

w7 0.0423 0.044 0.0497 0.0621 0.082 0.1186 0.1616 0.5084 0.4157 0.1342

w8 1.7275 1.7268 1.7245 1.7198 1.7122 1.6984 1.6821 1.2197 1.3005 1.5755

*Power laws using γ as in equation 2 with Q0 = 1. These weights can scale to any

Q > 20 with accuracy within 5%. The minimum relaxation time, τm, was adjusted

for higher values of γ to optimize the fits. Here, wk = Nλk, where N = 8.
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Table 2.2: Relaxation times and weight coefficients for a range of power law

exponents.

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a1 -27.5 7.37 31.8 43.7 41.6 20.0 8.08 1.99 5.16 -0.811

a2 -34.1 -37.6 -42.0 -43.4 -41.1 -23.07 -13.0 -2.7 -8.2 0

a3 -1.62 13.1 25.7 34.3 38.0 31.4 25.4 0 0 0

a4 -27.7 -36.1 -40.8 -41.4 -43.2 -25.1 -10.4 41.3 58.9 56.03

a5 14.6 12.3 7.02 -2.87 5.63 -45.2 -75.9 -88.8 -108.6 -116.9

a6 -52.2 -51.4 -49.2 -45.3 -73.0 -27.8 -13.2 0 15.02 22.0

a7 72.0 69.0 65.4 60.9 103.0 45.9 35.7 40.7 -5.88 0.03

a8 -82.8 -83.1 -83.2 -83.1 -164. -81.6 -79.9 -76.6 -46.5 -61.9

b1 7.41 4.165 1.612 -0.1091 -0.734 -0.435 -0.196 0.418 0.212 0.162

b2 6.02 5.52 5.08 4.58 3.82 2.67 1.81 0.59 0.345 0

b3 4.68 3.47 2.28 1.19 0.393 -0.0434 -0.394 0 0 0

b4 6.28 7.210 7.931 8.39 8.67 8.245 7.657 2.18 0.813 0.797

b5 3.88 3.61 3.46 3.53 3.32 4.847 6.17 11.0 12.4 13.02

b6 8.17 8.193 8.15 8.02 8.58 7.19 6.36 0 -0.283 -0.402

b7 0.529 0.498 0.511 0.592 -0.419 1.15 1.68 1.95 1.42 -0.0006

b8 13.19 13.13 13.07 13.0 14.9 12.8 12.7 11.3 11.7 12.5



41

Table 2.3: Media parameters defined in layered model.

vp (m/s) vs (m/s) Density (kg/m3) Qp0 Qs0 γ Thickness (m)

5196 3000 2550 20 20 0.6 1000

6000 3464 2700 210 210 0.6 -
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2.11 Appendix

2.11.A Additional Figures

Here we include additional figures showing an elastic layered-model point-

source test comparison between the frequency-wavenumber (f-k) and finite differ-

ence (FD) results. In addition, we plot median spectral acceleration centered at

1 s and Fourier amplitude centered at 0.25 and 2.25 Hz as a function of distance

using the strong ground motion stations in Figure 2.7.
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Figure 2.A.1: Layered-model point-source test: comparison of (f-k) and FD
results for an elastic model for (left) velocity and (right) Fourier amplitude.
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Figure 2.A.2: Median spectral acceleration (in units of gravity) as a function of
distance centered at 1 s, using the strong ground motion stations in Figure 2.7
as compared to the range of several ground-motion prediction equation (GMPE)
predictions. A five-point moving average was used for both synthetics and data
for the strong ground motion station locations. Rrup indicates the closest distance
to the ruptured surface of the fault plane.
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Figure 2.A.3: Fourier amplitude as a function of distance centered at 0.25 Hz,
using the strong ground motion stations in Figure 2.7. Dots depict values for
individual stations, and lines depict a five-point moving average. Rrup indicates
the closest distance to the ruptured surface of the fault plane.
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Figure 2.A.4: Fourier amplitude as a function of distance centered at 2.25 Hz
using the strong ground motion stations in Figure 2.7. Dots depict values for
individual stations, and lines depict a five-point moving average. Rrup indicates
the closest distance to the ruptured surface of the fault plane.
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Chapter 3

Ground Motion and Intraevent

Variability from 3-D

Deterministic Broadband (0-7.5

Hz) Simulations along a

Non-planar Strike-slip Fault

3.1 Abstract

We model deterministic broadband (0-7.5 Hz) ground motion from a Mw

7.12 strike-slip event with rough-fault topography. The synthetic ground motion

is compared with that of ground motion prediction equations (GMPEs) as well as

a broadband hybrid technique up to 60 km from the source. We run our simula-

tions in varying media, progressively increasing the complexity: from a 1D-layered

model to a 3D velocity model extracted from the Southern California Earthquake

Center (SCEC) Community Velocity Model (CVM) including a geotechnical layer.

We include frequency-dependent attenuation as a power-law above a transition fre-

quency, and include small-scale medium heterogeneity using a range of statistical

parameters. We find that for this bilateral rupture, spectral acceleration at various
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periods and Arias Intensity duration lie within 1-2 interevent standard deviations

above the median, with a spectral decay with distance that closely matches that of

GMPEs when using a Q(f) power-law exponent between 0.6−0.8 above 1 Hz. Scat-

tering from small-scale heterogeneity in the medium tends to increase the median

ground motion for this extended-fault rupture, but it can also serve to reduce it

through scattering attenuation. The ground motion variability is strongly affected

by the addition of media heterogeneity, serving to reduce otherwise large values

of intraevent standard deviation to nearer that of empirical observations. We find

that a 3D background velocity model influences directivity compared to a layered

model, reducing the pulse period into the expected period range. Finally, we esti-

mate κ and introduce an approach to control the high-frequency decay in energy

that may be necessary as simulations continue to extend to higher frequencies.

3.2 Introduction

The strong shaking created by large magnitude earthquakes is of principal

interest to structural engineers to determine the ground motion that buildings and

other structures must be able to endure. Typically, a structure’s response is de-

signed to withstand a peak motion described by some metric, such as peak ground

acceleration (PGA) or spectral acceleration (PSA) at a certain frequency. Ground

motion prediction equations (GMPEs) seek to predict this motion by using empiri-

cal observations of events. Along with a median value for the ground motion, there

is also an uncertainty associated with the GMPEs prediction; this is limited by the

finite number of observations, and is currently set to be constant as a function of

distance in most implementations, but varies as a function of period. At moment

magnitudes > 6, there is a shortage of observations at distances close to the source

(< 200 km). Thus, characteristics from empirical simulations have been used to

supplement the database. This has been done successfully at low frequencies (< 1

Hz) for many years, but only recently has there been the computational ability

to simulate 3D high-frequency earthquake ground motion at significant distances

from the source. Small structures typically have a resonant frequency larger than
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1 Hz. Thus, it is extremely important to extend earthquake ground motion predic-

tion to higher frequencies, to determine the seismic hazard associated with these

structures.

Deterministic simulations allow one to generate synthetic ground motion of

both historical and hypothetical events and to perform analysis of the resulting

ground motion using a user-defined station distribution. Broadband hybrid tech-

niques have been developed by utilizing the low-frequency deterministic ground

motion and combining with that of stochastically generated high-frequency com-

ponents. These techniques, however, lack deterministic information that may be

important in predicting strong ground motion. A recent push has been made to

extend deterministic simulations to higher frequencies, using purely physics-based

simulations (Taborda et al., 2016). To model these high-frequency synthetics ac-

curately, the fault and the medium need to be modeled realistically. This includes

ensuring that the source has energy content comparable to observations and imple-

menting complex velocity structure that matches borehole studies in a statistical

sense. Additionally, anelastic attenuation (energy losses due to heat and other

causes) can dramatically affect the ground motions. Previous studies have been

mostly limited to attenuation being constant across the bandwidth; a more re-

alistic representation of the earth is to model attenuation as a varying function

of frequency. Here, we extend 3D deterministic simulations to higher frequencies

using a source that has energy consistent with that of data. We model broadband

(0-7.5 Hz) ground motion of a generic strike-slip fault with rough fault topography

for distances up to 60 km from the source and compare with that of GMPEs. We

include frequency-dependent attenuation via a power law above a reference fre-

quency and superimpose small-scale heterogeneity on both 1D and 3D background

velocity models. The purpose is to determine if realistic ground motion is obtained

compared with empirical observations (examining both the median and standard

deviation of ground motion), and to investigate the effects of anelastic attenuation

and scattering at high frequencies (> 1 Hz) with a finite source and duration.

We also compare our deterministic synthetics with that generated from a hybrid

broadband approach derived from the low-frequency synthetics. Additionally, we
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examine κ, the decay in high-frequency energy, as a function of distance, and in-

troduce a shallow constant-Q zone in the top 3 km that serves to simulate the

site-component of κ.

3.3 Background

3D wave propagation simulations of ground motions are already playing a

role in assessment of seismic hazard and risk through prediction of ground motion

for scenario earthquakes. Additionally, they are useful for planning of earthquake

emergency response and public earthquake preparedness exercises, physics-based

seismic hazard assessment (Graves et al., 2010), as well as complementing ground

motion prediction equations in regions of poor sampling, as in Day et al. (2008),

where simulated basin responses were used in the Next Generation Attenuation

(NGA) project. The frequency range of engineering interest extends up to at least

10 Hz. The ability to extend deterministic ground motion predictions to higher

frequencies and predict PGA and PSA is invaluable for structural engineers, as

there is only a finite amount of empirical data from prior earthquakes to determine

future seismic hazard.

3.3.1 Hybrid Deterministic-stochastic Broadband

Approach

Ground motion time series are needed as input for more realistic nonlinear

structural dynamic analysis of building and performance based earthquake engi-

neering. Realistic ground motion synthetics may help to verify or even improve

GMPEs and reliably extend them into the distance range where only few recordings

exist, such as in the near field of large earthquakes. Because of the prohibitive cost

of fully-deterministic broadband simulations, in recent years hybrid methodologies

have been incorporated, combining a deterministic approach at low frequencies

(f < 1 Hz) with a stochastic approach at high frequencies (f > 1 Hz). There

are several techniques in use today; (e.g., Olsen and Takedatsu, 2015; Anderson,

2015; Graves and Pitarka, 2015; Atkinson and Assatourians, 2012; Crempien and
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Archuleta, 2015). An example is BBtoolbox (Olsen and Takedatsu, 2015), derived

from Mena et al. (2010), who extended the approach from Mai et al. (2010) to

include large-magnitude effects by incorporating dynamically consistent source-

time functions and accounting for finite-fault effects in the computation of the

high-frequency (HF) waveforms. The (HF) accelerograms are generated for each

component of motion based on the theory for multiple S-to-S backscattering (Zeng

et al., 1993). The Fourier amplitude of the scattergram is then combined with

the Fourier amplitude of the low-frequency synthetic. BBtoolbox matches the am-

plitude and phase spectra at a target intersection frequency, typically near 1 Hz.

One drawback of hybrid techniques is that the purely stochastic methods (at least

for the HF) involve little physics in terms of parameterizing the earthquake rup-

ture and details of wave propagation. The result is that stations are completely

uncorrelated even for close neighboring stations.

3.3.2 Rough Fault Topography

Faults are observed to have roughness at all scales, ranging from the map-

scale (such as branching and segmentation, e.g. Ben-Zion and Sammis, 2003) to the

finer scale with topographic complexity on the fault slip surfaces (e.g. Power and

Tullis, 1991; Renard et al., 2006). This has been modeled by a self-similar fault-

surface in deterministic simulations (Dunham et al., 2011) with a single power

law. The synthetic ground motions have been shown to match the characteristics

of real data, having a flat power spectrum up to some cutoff frequency (Shi and

Day, 2013). This is generated because of the complex motion of the rough fault

as it propagates due to the complex stress field generated by the fault topogra-

phy. As the earthquake rupture propagates along a non-planar surface it creates

high-frequency radiation as the rupture fronts accelerate, decelerate, or lose coher-

ence from interaction with geometrical irregularities. With this recent addition of

realistic fault topography in 3D simulations of earthquake source models, ground

motion can be deterministically generated more realistically at higher frequencies.
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3.3.3 Frequency Dependent Attenuation

The earthquake source is not the only source of complexity in the high-

frequency ground motion; anelastic attenuation is also important in the accurate

simulation of seismic wave propagation. At higher frequencies, where there are

more cycles per wavelength, it has an even greater effect on the ground motion.

Most previous studies have implemented constant-Q across a bandwidth; however,

observations have indicated that Q seems to fall off at higher frequencies (e.g.,

Raoof et al., 1999; Phillips et al., 2013). Recently, Withers et al. (2015) imple-

mented this behavior in the form of a power-law above a transition frequency:

Q(f) = Q0 · (f/f0)γ, (3.1)

where f0 is a reference frequency with Q0 and γ constants that can vary. They

found that a power-law model with exponent of 0.8 above 1 Hz had significantly

more energy up to 4 Hz, increasing with distance from the source, compared to a

constant Q model.

3.3.4 Small-scale Heterogeneity

There are also scattering effects caused by small-scale velocity and den-

sity heterogeneities in the medium that can affect the ground motion intensity.

State-of-the-art Community Velocity Models (CVMs), e.g., the Southern Cali-

fornia Earthquake Center (SCEC) CVM version 4.0 and CVM-H, resolve velocity

structure on the order of kilometers. However, to be able to resolve the ground mo-

tion at frequencies > 1 Hz requires resolution on a much smaller scale. Currently,

it is not possible to capture the location-specific small-scale velocity variation in

the medium at this scale-length from a large region; thus statistical methods are

used to depict its variability.

Previous studies have investigated these statistical parameters in wave prop-

agation simulations (e.g. Frankel and Clayton, 1986; Hartzell et al., 2010; Impera-

tori and Mai, 2013; Bydlon and Dunham, 2015). The power spectrum depends on

the Hurst exponent, determining the spectral decay at high-wave numbers which
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changes the roughness of the medium, as well as the correlation length and stan-

dard deviation. These studies determined the appropriate ranges of the Hurst

exponent, ranging from 0.0 to 0.5, and analyzed the effect of different correlation

lengths. Frankel and Clayton (1986) found that a Von Karman autocorrelation

function best explained two features seen in seismic records: teleseismic travel-

time anomalies and the high-frequency (> 30 Hz) content of the seismic coda in

microearthquake waveforms. Weak (∼ 5%) standard deviations in random fractal

crustal velocity variations are required to explain observed body-wave travel-time

variations and high frequency coda waves. Previous studies have performed an

analysis on the statistical properties of these small-scale variations in well logs and

tomography in Southern California (Nakata and Beroza, 2015; Savran and Olsen,

2016) and found parameters describing the medium assuming a Von Karman auto-

correlation function, defined by the Fourier transform of the correlation function.

These studies found results of a vertical correlation length up to 150 meters, a

Hurst exponent near 0.0 (indicating that the medium is very rough and rich in

short wavelength heterogeneities), between 5 − 10% bounds on the standard de-

viation. Additionally, Nakata and Beroza (2015) and Shaw et al. (2014) estimate

a horizontal to vertical anisotropic factor near the range of 5− 10 (i.e. ellipsoidal

anisotropy).

3.4 Method

3.4.1 Rough Fault Topography

We include complexity from a non-planar fault within our deterministic

simulations. A fault roughness model is generated in the wavenumber domain

and is designed to follow a self-similar fractal distribution over a specified band-

width from a vertical mean plane, here over three orders of magnitude from 80

m to the length of the fault (∼ 80 km). Shi and Day (2013) studied the effects

of fault roughness on rupture propagation and resultant ground motion from a

generic right-lateral strike-slip model using the Support Operator Rupture Dy-

namics (SORD) code. They found that this source created realistic power spectra,
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having a near-flat spectrum up to 10 Hz. Here we use a similarly described dy-

namic model of the source from a generic Mw 7.12 strike-slip earthquake, where

the initial shear stresses are applied in a right-lateral strike-slip sense of motion

and the simulation uses physics to deterministically model the slip rates. The

simulation uses the same fault topography as in Shi and Day (2013), but uses a

1D-layered velocity model derived from an unweathered characteristic hard rock

site in southern California with a minimum shear wave velocity of 863 m/s (V s30

corresponding to Class B of the National Earthquake Hazards Reduction Program

[NEHRP] boundary site conditions), and rapidly increases with depth. Figure

3.1 shows the topography along the rough fault, showing a strike-slip model com-

posed of ∼ 5 million subfaults as well as the 1D-layered velocity model used in the

dynamic simulations.

The details of the simulation are similar to Shi and Day (2013), where a

strongly rate-weakening friction law was imposed, and the bulk material is subject

to Drucker-Prager viscoplasticity. Rupture nucleation is achieved by imposing a

shear traction perturbation circle with a radius of 1 km. The inclusion of Drucker-

Prager viscoelasticity allows the off-fault plastic strain to relax what would other-

wise be unphysical high stress concentrations in the dynamic process around the

rupture tip. The rupture progresses at a generally subshear rupture velocity and

low-confining pressure at shallow depth allows for a small amount of shallow slip

triggered by radiated stress waves from rupture fronts at depth.

As in Shi and Day (2013), inelastic strain deformation occurs near the free

surface, induced by stress waves originating from the dynamic rupture at depth.

The extent of non-negligible irreversible strain extends to fault-normal distances

of up to 5-10 km from the fault, with the majority of plastic yielding induced by

seismic energy arriving after the hypocentral S-phase. As noted in Shi and Day

(2013), PGA measurements from simulations without plasticity in a homogenous

medium are, on average, 50% larger than those from simulations with plasticity. It

is likely that nonlinear effects would also cause a reduction in peak ground motion

in the layered model run here, at similar distances from the fault.
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3.4.2 Simulations Details

The seismic source in physics-based earthquake simulations can be speci-

fied using a kinematic or dynamic representation. In a dynamic source, only the

friction properties and initial stresses are prescribed on the fault and the time

history of fault slip evolves spontaneously as part of the elastodynamic solution

of the rupture model. In the kinematic approach, the spatial and temporal evo-

lution of slip (slip-velocity functions and rupture velocity) is prescribed a priori

on each grid point along the fault (subfault). Here, we take the dynamic rup-

ture slip rate time histories output from the spontaneous rupture simulation along

the rough fault in SORD and convert them to moment-rate time histories and

input as a kinematic source into AWP-ODC-GPU, a parallel wave-propagation

program (Cui et al., 2013). This is a finite difference anelastic wave-propagation

code that is highly scalable, allowing us to extend the ground motions to fur-

ther distances from the fault, and retain high-frequency content. Specifically, the

moment-rate tensor elements are T nij = snµA(nid
i
j + njd

j
i ) where n and d are unit

vectors oriented normal to the fault and along the slip direction, respectively and

A is the fault surface area associated with the given discretization element (i.e.,

subfault). We assume that there is no fault opening component. As AWP requires

a regularized grid, we choose the closest subfault of the rough fault corresponding

to our regularized mesh, with a maximum error of one half grid spacing in the

fault-perpendicular direction. This discretized fault model approximation starts

to break down at higher frequencies, but still retains sufficient accuracy in the

bandwidth of interest here (< 7.5 Hz). If this approach is used in the future at at

higher frequencies, an interpolation algorithm could be used to improve accuracy,

if necessary. Verification of the two-step procedure showing SORD and AWP seis-

mograms and frequency spectra comparisons can be found in Appendix 3.11.A.

It is found that the misfit for both the envelope and phase is less than 5% up to

10 Hz. We deem this as acceptable, as there are inherent differences between the

second-order SORD and fourth-order AWP codes that likely reduce the accuracy,

in addition to the approximations used here. For example, by using this procedure,

we assume that anelastic attenuation along the fault has a negligible effect on the
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dynamic propagation, and that scattering from small-scale heterogeneities in the

medium have little effect on the rupture process. This second assumption is rea-

sonable, as Bydlon and Dunham (2015) found that variations in slip and rupture

velocity can arise from material heterogeneity alone, but are dominantly controlled

by fault roughness, and scattering effects only become applicable beyond about 3

km from the fault. Thus, one can safely neglect random material heterogeneity

when solving the rupture process. The cohesive zone is large enough throughout

the entire model to accurately resolve the slip-rate along the fault, which controls

the accuracy of the dynamic simulations (Day et al., 2005).

Both the dynamic and kinematic simulations are run in a laterally homo-

geneous model characteristic of a typical southern California rock-site profile. Our

model domain extends up to 60 km from the fault in all directions for a size of

204 x 124 x 41 km, allowing analysis of full azimuthal coverage of rrup (the closest

distance to the fault plane) to 60 km, with a grid spacing of 20 m up to a maximum

of 8 Hz for a minimum of 5-6 grid points per wavelength at the lowest shear wave

velocity.

In addition, we used a 3D velocity model extracted from the CVM (Magis-

trale et al., 2000; Kohler et al., 2003) known as CVMSi 4.26, including a near-

surface geotechnical layer (GTL), as an additional background velocity model in

this study. Taborda and Bielak (2014) analyzed simulations of the 2008 Chino

Hills earthquake with and without the appended information of soft sedimentary

deposits, or GTL near the surface, and showed that better results are obtained

with its inclusion when compared with data. This algorithm uses observed values

of Vp, Vs ,and ρ in the GTL, replacing information in the upper 350 m with a

velocity model derived from Vs30 maps, and interpolated at depth to merge with

the background CVM. In cases where we include 3D velocity structure, we clamp

the minimum shear wave velocity to be 863 m/s, and then modified Vp such that

the local Vp/Vs ratio is conserved. The kinematic simulation is embedded in the

heterogeneous 3D structure, which modifies the total moment of the simulation

(because of the altered shear modulus) by less than 3%. We input the mean fault

plane along a 80 km section along the San Andreas Fault, located northeast of the
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Los Angeles Basin (see Figure 3.2), and rotate our model domain to lie along the

strike of the fault.

We compare the results from the deterministic simulations to those from

the SDSU Broadband Hybrid technique, (Olsen and Takedatsu, 2015) or Broad-

band Ground-Motion Generation Module BBtoolbox Version 1.5, which takes into

account an improved merging procedure for combining deterministic and stochas-

tic synthetics. This hybrid method uses the low-frequency deterministic synthetics

with high-frequency scatterograms to generate hybrid broadband time series up

to 10 Hz or higher. P and S wave arrival times are calculated from the 1D and

averaged source-receiver 3D media using a 3D raytracing method, downsampled

to a spatial resolution of 1 km, using a Q(f) exponent of 0.8 above 1 Hz, and κ0

value of 0.04.

3.4.3 Frequency Dependent Attenuation

We run simulations including frequency dependent attenuation, with

constant-Q up to a transition frequency fT and following a power law formula-

tion above this threshold:

Q(f) =

{
Q0 0 < f < fT

Q0 · (f/fT )γ f > fT
D, (3.2)

where Q is the quality factor, Q0 is the low-frequency value of Q, and 0 ≤ γ ≤ 1.

A γ exponent of 0 simply reduces to that of a constant Q model. We relate the

shear wave velocity to the Q values: Qs0 = vs ∗ C and Qp0 = 2 ∗ Qs, where C is

a constant ranging from 0.05 − 0.1 and vs is in m/s. In the hybrid simulations

we used Q0 = 150.0, equivalent to the deterministic simulation at Vs = 3000 m/s

when C = 0.05.

3.4.4 Small-scale Heterogeneity

Scattering in earth’s crust is known to affect seismic ground motion, includ-

ing amplitudes, travel times and spectra. Imperatori and Mai (2013) demonstrated

that scattering can increase ground motion complexity at a few kilometers away
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from the source. To more accurately simulate the medium, we include self-similar

small-scale heterogeneity within our models by using a Von Karman distribution,

which statistically models the variation in velocity and density throughout the

medium. Heterogeneous 3-D velocity models can be obtained by superimposing a

spatially random field to a specific deterministic model as described in Imperatori

and Mai (2013). Superimposed random perturbations are scaled at each depth

level to maintain the relative standard deviation. We generate several statistical

models, with a vertical correlation length ranging from 150−1000 meters, keeping

the Hurst exponent constant at 0.05, a value close to what is predicted for South-

ern California (Savran and Olsen, 2016). We introduce pattern anisotropy in the

model by horizontal stretching of an isotropic distribution by a factor of 5. The

fractal inhomogeneities are incorporated with standard deviations of 5 or 10 per-

cent (the range estimated by Savran and Olsen, 2016, Nakata and Beroza, 2015,

and Shaw et al., 2014) for several different choices of the random seed. Figure

3.3 gives an example of the surface heterogeneity of the shear wave velocity after

superimposing a statistical fractal model on the 1D-layered velocity profile. In our

simulations, we clamp the velocities that extend below 750 m/s, accounting for

just a few node locations in the medium (and only at the surface) for 5% σ and

slightly more at 10%.

Figure 3.4 plots the media variations of the shear-wave velocity including

a geotechnical layer extracted from the CVM as well as a plot of small-scale het-

erogeneity superimposed on this 3D background model. This causes the longer

wavelengths and geologic units formed by fault boundaries and contacts between

other structural units to be retained, with statistical variability of the random

media at shorter wavelengths. It is evident that the GTL layer greatly reduces the

surface-wave velocity; to keep our simulations accurate at high-frequencies, we first

clamp the background model before adding in small-scale heterogeneity, so that

we do not bias our simulations with only positive variations of heterogeneity. We

choose 863 m/s as the background minimum shear wave velocity, matching that of

the 1D-layered models, which greatly reduces the CVM background complexity in

the top 1-2 grid points within our models. We note that we applied the 3D hetero-
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geneity throughout the entire medium when using perturbed velocity models, even

along the fault itself. Some authors include a homogenous region surrounding the

fault; in either case, the effect should be small when dealing with several million

fault elements, as we are here.

Appendix 3.11.B investigates the accuracy of 3D simulations when intro-

ducing fine-scale variations in the media by comparing AWP with a semi-analytical

technique (f-k) (Zhu and Rivera, 2002) and a summation by parts approach

(Sjögreen and Petersson, 2012) for purely elastic models. It is found that a high

level of accuracy is still achieved when including complexity from small-scale vari-

ations, indicating that we can accurately simulate the scattering process in the

medium.

3.5 Results

3.5.1 Qualitative Comparions

In this section we quantify the contributions to high-frequency ground mo-

tion from both small-scale fault geometry and media complexity and perform val-

idation against recent GMPE relations. We compare both the median and in-

traevent variability of ground motion for both the synthetic data and empirical

models. We analyze the ground motion simulated from both 1D and 3D back-

ground models, with small-scale medium heterogeneity using a range of statistical

parameters, and different exponents of frequency dependent attenuation. First, in

Figure 3.5, we qualitatively compare the ground motion with and without small-

scale heterogeneity for two snapshots in time, for the fault-parallel component.

One can see both the complexity originating from the rough-fault rupture, as well

as the waves backscattered behind the main arrivals for the model including small-

scale media heterogeneity.

Next, we compare spatial maps of the final ground motion. Typically, in

dealing with empirical data, the logarithm of a peak ground-motion parameter

or response spectral ordinate is used as a metric to characterize the amplitude

of ground motion. Here, we compare GMRotD50 values of pseudospectral ac-
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celeration (SA) at 5% damping, the orientation-independent geometric mean of

the orthogonal horizontal components rotated through all possible non redundant

rotation angles, which removes the sensor orientation component of aleatory un-

certainty (Boore, 2006). Figure 3.6 plots SA at a period of 0.3 s for both 1D and

CVM background velocity models with and without statistically-described media

heterogeneity. A few observations can be made; one is that small-scale media het-

erogeneity serves to spatially redistribute the energy, particularly as a function of

azimuth from the fault plane. This arises from the complicated multi-paths that

energy takes when including small-scale complexity in the medium. Additionally,

it is seen that the ground motion is much larger off the ends of the fault. Part

of this is due to ground motion being highly coherent when using simple layer

models, emphasizing cones of directivity, even at the higher frequencies. This is

strongly reduced in 3D models that include large-scale features that can serve to

scatter long-frequency waves, reducing the wave-guide effect (Figure 3.6, bottom).

It is clear the ground motion is a function of both source and path effects, not just

surface velocities, indicated by the lack of correlation between Vs structure seen in

Figure 3.4 and the ground motion amplitude plotted here.

3.5.2 Effects of Q

We next compare the synthetic ground motion quantitively with empirical

observations in a variety of ways. The ground motion is output at every 4th grid

point in our model domain, allowing analysis at a resolution of 80 m. The stations

are sorted by grouping them into distance bins defined by rrup from the mean

fault plane (which equals the Joyner-Boore distance here for a strike-slip fault)

excluding the absorbing boundaries. This gives a minimum of a few thousand

stations at each distance interval (at 1 km widths) for a total of just under 4 million

stations. We compute the predicted ground motion from four leading recent NGA

West 2 relations (Abrahamson et al., 2014; Boore et al., 2015; Chiou and Youngs,

2014; Campbell and Bozorgnia, 2014) at the same resolution of the output data,

using the parameters in the NGA models computed from the simulations. These

include the closest distance to the fault surface (Rrup), the depth to Vs = 2.5 km/s,
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Z2.5, the time-averaged upper 30-m shear-wave velocity, and depth to the top of

the rupture as a source parameter. We compare the synthetic median SA and

empirical predictions in Figure 3.7 for different anelastic attenuation models and

different power-law exponents. Because the different GMPEs use different model

parameters and expressions to relate the empirical observations, there is significant

variation of the predictions at a specific period, particularly at distances close to

the fault. The shaded region for SA indicates the range of 4 median predictions

and the dashed blue lines corresponding ±1 interevent standard deviations. For

example, the 84th percent event, i.e. the median plus one standard deviation of

the inter-event component of variability τ , is added onto the range of the four

GMPE medians.

It is seen that there is little difference in models with varying power-law

models and different V s − Q relations (unless specified, Qs = 0.05 ∗ Vs) at long

periods (3.0 s). The ground motion decays generally at the level of 2 interevent

standard deviations above the median. This is larger median ground motion as

compared to Shi and Day (2013) for a few reasons. One, we are using a layered

velocity model, with shallow low-velocity layers, that serves to increase the ground

motion through an impedance effect and trap surface waves. We also are including

ground motion off the ends of the fault, beyond the spatial region that the SORD

simulations captured, where Figure 3.6 indicates experiences the largest ground

motion. Finally, we do not incorporate nonlinear effects, that would serve to

reduce the ground motion. This additional feature is included within Chapter 4

for dip-slip models.

There starts to be minor differences between power-law models at T = 1

s, as spectral acceleration is sensitive to a broad bandwidth. At shorter periods,

for example T = 0.2 in Figure 3.7, it is clear that ground motion attenuates very

rapidly, deviating increasingly from the GMPE median ground motion decay as a

function of distance, for a constant Q model. Power-law exponents of 0.6− 0.8 do

a much better job matching the observed decay in energy as a function of distance

for both long and short periods.

Several tests were performed to ensure that the spatial selection of stations
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didn’t bias the results. One, spectral observations from the simulations were sorted

into several different sized bin-widths, ranging from 1-20 km, calculating the log-

normal mean and standard deviation for each bin. This method produced similar

values of both median and standard deviation, albeit at a lower resolution. Because

of the regular grid of synthetic stations, there are many more stations at azimuths

near the fault-strike, compared with perpendicular to it. We analyzed for spatial

bias by choosing a random selection of points within the medium and found that

this had little effect on both the median and sigma values. Additionally, assigning

the same number of receivers in both the forward and backward directivity regions

as described in Somerville et al. (1997) and Spudich et al. (2013) (see Appendix

3.11.C for more a spatial map of the predicted directivity coefficient) produced no

bias; the medians remained indistinguishable within the epistemic uncertainty.

We also compute the intra-event variability, or φ, of our synthetic simula-

tions considering a lognormal distribution, calculated from the standard deviations

of the residuals. Here we assume that sigma represents only aleatoric ground-

motion variability. Appendix 3.11.C plots histograms and q-q plots comparing the

log-normality of residuals, showing that the distribution becomes more normally

distributed when including more complexity in the velocity model. The within

event residuals represent azimuthal variations in source, path and site effects that

aren’t captured by a simple distance metric and a site-classification based on the

average shear-wave velocity. The lower row of Figure 3.7 plots the within-event

standard deviation in logarithmic units and shows the range predicted from the

4 GMPE models. It is clear that when the ground motion amplitude increases

from either adjusting the V s−Q relation or power-law exponent, there is greater

variability at a particular distance, from the increased deviations as a function of

azimuth. The values are seen to increase at long periods from distances near the

source up to the edge of our model domain, where they are near the expected level.

At shorter periods (higher frequencies) it is clear that the variability is much higher

than that of observations, generally increasing as a function of distance, due to the

large contrasts in ground motion in azimuthal regions along and perpendicular to

the strike of the fault.
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3.5.3 Effects of Heterogeneity

Here we compare models including heterogeneity at both small and long

wavelengths. Previous work has looked at the effects of small-scale heterogeneity,

particularly for simple source models, such as point sources (e.g. Frankel and Clay-

ton, 1986). Hartzell et al. (2010) looked at the effects of random correlated velocity

perturbations on predicted ground motions and the effect of different correlation

lengths and standard deviations up to 1 Hz. He found that there was a signif-

icant increase in the variability of motions compared to the non-perturbed case.

Imperatori and Mai (2013) also looked at the influence of heterogeneity in several

earthquake source models, including one-dimensional models of earth structure,

and found a loss of radiation pattern and directivity breakdown at higher frequen-

cies in elastic models including heterogeneities. They also found that coda wave

generation is very sensitive to the spectral properties of the medium, both the

correlation length and Hurst exponent. Additionally, they showed that scattering

can affect ground motions and variability even at short distances from the source.

Takemura et al. (2009) showed the distortion in the S-wave radiation pattern as

frequency increases from 2 to 5 Hz when including small-scale heterogeneities.

Figure 3.8 plots both spectral acceleration and within event standard devi-

ation for periods of 1 and 0.2 seconds for a background 1D layered model. Unless

specified in the legend, all models use a power-law exponent of 0.8, deemed the

most appropriate from the distance decay observed in Figure 3.7. A variety of

models are superimposed here, comparing differing correlation lengths, random

seeds, varying σ of small-scale heterogeneity, as well as a comparison with the

hybrid approach. In the case of models with media heterogeneity, we used adjust-

ment factors from Boore et al. (2015) to correct the spectral accelerations from

a common reference value of Vs30, referred to as Vref , here at 863 m/s, using ln

Y − SBJ(Vs30) + SBJ(Vref ), where Y is the value of spectral acceleration at some

period, SBJ(Vs30) is the log amplification of the site Vs30 value and SBJ(Vref ) is

the log amplification of the reference velocity at 760 m/s. Correcting the spectral

accelerations had negligible effect on the medians and sigma values obtained, with

the corrected values lying almost identically on top of the unmodified ones. We
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chose not to consider the variation in Z2.5, which would likely average out as well.

We find that the features we observe are consistent across differing periods,

but with amplified effects as period decreases. For example, at a period of 1 second,

all models of median spectral acceleration are clustered around the model with no

small-scale heterogeneity, with only small differences between one another. At a

period of 0.2 seconds, however, there are significantly larger differences between

models with and without small-scale heterogeneity, and values of σ. Some general

observations follow; one is that there is no significant difference in the effects of two

different random seeds used here in modeling the heterogeneity. The method of

binning a large number of stations together averages out any differences that may

be seen from different small-scale media structure. However, if we choose to look at

individual stations, a suite of random velocity models should be used to determine

the range of ground motion expected from variations in velocity structure.

The effect of adding in heterogeneity tends to increase the median ground

motions, but only significantly so at higher frequencies for large σ, and increasing as

a function of rrup. The effect of correlation length on spectral acceleration medians

has little dependence here at a specific period, but as shown in Chapter 4, can vary

as a function of frequency. We also include a gradient model, that has large σ (10%)

near the surface, and linearly decreasing down to 2% at 7.5 km depth, and thereby

set to a constant below this. This is a more realistic representation of the real

earth, where the normal stress increasing as a function of depth from increasing

lithostatic pressure likely reduces the amplitude variations at the same correlation

length. Figure 3.8 shows that the gradient model produces similar ground motion

to large σ near the source, and similar to models with no heterogeneity farther

away. From this, we deduce that near surface heterogeneity largely affects areas

near the source, while deeper variations determine ground motion at distances

farther from the fault.

The hybrid technique shows very similar median values at longer periods,

as it is derived from the low-frequency synthetics. At shorter periods, a significant

discrepancy is seen; the hybrid median is much lower than that of the empirical

simulations. This could be due to a variety of reasons. One, as already mentioned,
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nonlinear effects such as plasticity, will reduce the ground-motion at higher fre-

quencies, where Figure 3.8 shows it as being upwards of 2 − 3 g’s near the fault.

This near fault reduction will likely also affect the ground motion further from the

source. Additionally, we have not specifically included κ as the hybrid technique

does. The Discussion section (3.6) delves into this aspect further. The Q0 values

also differ in the two techniques, but this is likely not that significant, and would

actually produce an increase in the deterministic ground motion as Q0 is, in gen-

eral, smaller than in the hybrid technique, particularly in the near surface region

where Vs is smaller. And finally, the hybrid approach could potentially be biased,

as it is designed to fit the GMPEs.

Looking at the standard deviation, we find there are oscillations at long

periods, but the general trend, as in Figure 3.7, is to increase as a function of

distance. Here the largest variation in standard deviation comes from models in-

cluding heterogeneity, which serves to reduce the variability. This is particularly

evident at higher frequencies, where the energy redistribution due to scattering

favors less variation as a function of azimuth. Both the hybrid approach and 5%

σ in small-scale heterogeneity in the deterministic simulation show that models

are fairly constant as a function of distance and very near that of empirical obser-

vations, with an average of about 0.45 logarithmic units. Atkinson (2006) found

that sigma for individual stations (φss, known as the event-corrected single-station

standard deviation or single-station φ) is less than that of the overall sigma, and

was reduced even further if only looking a fixed azimuth from a single fault. Lin

et al. (2011) found that single-site standard deviations are about 10 % smaller than

the total standard deviation, whereas single-path standard deviation is about 50

percent smaller. Rodriguez-marek et al. (2013) found that φss is largely region in-

dependent, with an average value of φss = 0.45 fitting the data across all periods,

with little trend with Vs30. They find larger value of φss at shorter distances, but

this is possibly due to limitations of the data. The lack of available records near

the source for > Mw 6 events produces an interest to the values of single-station

sigma obtained from simulations. Here, we argue that our sigma values are lower

than expected from the ergodic assumption since we have no site effects, and at
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large distances from the source, path effects are minimal in a 1-D layered model.

Imtiaz et al. (2015) looked at the distance variability of ground-motion for

bilateral faults, finding that the variability tends to increase with distance up to

about 20 km for PGV (up to 3 Hz), and then increases more gradually from the

source. This agrees with our simulations, where at short distances φ is controlled

mainly by source parameters and increases up to about 20 km, where it remains

fairly constant in the distance range considered here. At farther distances, ex-

tended sources behave like point sources and φ is likely controlled by the radiation

pattern shape of S and Love waves. Imtiaz et al. (2015) also showed that for

unilateral ruptures, higher φ values at shorter distance are due to presence of di-

rectivity effects and pointed out that most stations at short distances are in the

low azimuth region (from strike), and have strong amplification due to forward

directivity effects. In our model, at short distances most stations are along the

fault, while further away there are more stations off the ends of the fault. As

mentioned previously, however, no spatial bias is seen to exist when using an equal

distribution of the number of stations in forward and backward directivity zones.

Vyas et al. (2016) also analyzed the distance dependence of variability and

introduced a power-law decay of standard deviation with increasing distance for

unilateral ruptures. They argued that large near-field sigma is due to the presence

of strong directivity and rupture complexity. When analyzing variability as a func-

tion of azimuth, they found that sigma is highest in the forward directivity region

and lowest in backward directivity region. They found that slip heterogeneity is

the controlling parameter for the power-law decay of ground-motion variability at

low frequencies (< 0.5 Hz). Here, we find that at short distances from the earth-

quake source, ground motion amplitudes vary by almost an order of magnitude.

This reflects the large variability of ground motions when wave propagation from a

finite fault is characterized by distances closest to a point on the fault rupture. The

distance to asperities could be a more representative parameter that the closest

distance from the entire fault plane, at least at low-frequencies. Prior knowledge

about rupture directivity could also help to determine φ, and azimuth may help

as an additional parameter at low frequencies.
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Next we analyze results from simulations using a 3D background CVM

model, for our rough-fault model input along an 80 km section of the San Andreas

Fault. Figure 3.9 plots SA and intraevent variability in the same format in Figure

3.8 for a subset of models that span the end member cases of heterogeneity. Here,

we extracted the GMPE relations including the variation in Vs30 and depths to 1

and 2.5 km values of Vs. The corresponding range in GMPE medians is slightly

increased. We immediately see that differences in the 3D results compared to the

1D layered models. As seen in Figure 3.6, ground motion is significantly reduced at

all distances from the fault, consistent at all frequencies. This is due to the reduc-

tion in broadband directivity from the scattering that occurs at long wavelengths

from the 3D background structure. No longer is the energy coherently directed

outward from the hypocenter, but is redistributed and scattered at depth. The

absence of sharp velocity discontinuities also prevents important wave conversion

and reverberation phenomena, potentially able to reduce peak amplitudes.

The value of σ of small-scale heterogeneity is seen to make a change in the

behavior at high frequencies. At 5% σ we find similar results as in Figure 3.8 for 1D

layered models: energy is increased. At 10% σ, however, we see that ground motion

is reduced, particularly at larger distances from the source. We attribute this to

scattering attenuation overpowering the lateral azimuthal redistribution effect we

see for lower σ values. As energy travels from the source to the surface, it is

scattered when meeting an impedance contrast. A larger σ value produces a larger

impedance contrast, thus changing the angle of reflection. This energy is scattered

in multiple directions, with some being lost to downward propagating waves that

will attenuate within the upper mantle (the deepest portion of our model). Korn

(1993) found that coda decay is dominated by leaking of scattered energy into the

mantle and not by inelastic effects (diffusion energy). This effect is clearly seen at

large distances, where SA falls off rapidly. The gradient model where σ varies with

depth agrees with this explanation, as the near-surface region is identical, showing

that energy is increased compared to the model without heterogeneity. Energy

coming from a deeper source does not develop a large coda wave amplitude, as

some of the energy reflected at the free surface leaks back into the deeper crust.
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To better explain this, we have plotted horizontal components of seismograms for

homogenous, and 5 and 10% σ models in Figure 3.10 and 3.11 extracted along a

profile perpendicular to the fault, for 1D and 3D background models, respectively.

We plot acceleration records, where the scattering is most apparent. The 5% σ

model for both 1 and 3D background velocity models shows the characteristic loss

of energy from the main arrivals, due to scattering, and the increase in coda energy.

This is seen to both increase and decrease the PGA, but on average increases it. At

higher σ in the 3D background model, we still see the same features as compared to

the model without small-scale heterogeneity, but with a significantly reduced coda

amplitude. Complexities from source finiteness and potential rupture complexity

in our 3D simulations may help explain why this result is different from that of

previous studies showing that σ scales the energy in the coda in 2D (e.g. Frankel

and Clayton, 1986 and Bydlon and Dunham, 2015). We hypothesize that a point-

source would have more typical effects, i.e. scattering causing mainly attenuation

because of the lack of directivity from the source.

3.5.4 Duration

Parameters related solely to the amplitude of the ground motion, such as

PGA, are often insufficient indicators of damage. Metrics that incorporate the

amplitude, frequency content, and duration of the ground motion across a broad

frequency bandwidth are likely to be more reliable predictors of damage than

ones only relating to ground motion amplitude. Arias Intensity (AI) is a scalar

parameter that captures the potential destructiveness of an earthquake as the

integral of the acceleration time history. It is a duration-related ground motion

parameter of cumulative energy per unit weight absorbed by an infinite set of single

degree of freedom oscillators having fundamental frequencies uniformly distributed

from 0 − ∞ with zero damping. AI is mathematically defined by the equation

AI = π/(2g)
∫ tmax

0
a(t)2dt where a(t) is the amplitude of the acceleration at time

t, g is the acceleration due to gravity, and tmax is the total duration of the time

series. As it is an acceleration based parameter, AI is not very sensitive to long

periods and is not significantly affected by forward rupture directivity.
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Afshari and Stewart (2016) used the NGA-West2 data set to build a model

for the duration dependence of 5− 95% normalized AI, D5−95. They used additive

path terms with distance breaks at 10 and 50 km, and a site term that increases

duration for decreasing Vs30 and increasing basin depth. They found residuals

to be log-normally distributed at confidence intervals > 95%. Figure 3.12 plots

median values of duration of 5 − 95% AI and intraevent standard deviation for

1D-layered model medians and variability. It is seen that the the complex source

model combined with 1D scattering has a significant duration, rapidly increasing as

a function of distance. The addition of small-scale heterogeneity strongly increases

the duration, matching that of 1 interevent standard deviation above ∼ 5 km using

a 5% σ model of small-scale heterogeneity, and at about 2 interevent standard

deviations at 10% σ. The hybrid model seems to have a relatively accurate source

effect, indicated by the close agreement at near distances, but increases a little too

rapidly at larger distances, indicating the path effect is deviating from the GMPE

for this specific realization. We again find that heterogenous structure tends to

reduce the variability, decreasing as a function of distance. It is interesting to

note that the 10% σ models of heterogeneity best agree with that of the hybrid

approach used here, much lower than that of GMPE observations. Figure 3.13

plots the results for a background 3D model. Similar characteristics are seen, but

as in the case for high-frequency SA, there is seen to be a decrease in AI at large σ,

as well as well as at a long correlation length (500 m). All the intraevent values that

include small-scale heterogeneity hover around the expected range of variability,

with the model without over-predicting the empirical result.

3.5.5 Pulse Period

Double-sided velocity pulses caused by constructive interference of seismic

waves as a rupture propagates along a fault tend to occur far from the epicenter

but close to the fault, amplifying the structural response at long periods. Forward

directivity occurs when both the rupture propagates toward the site and the direc-

tion of slip is aligned with the rupture direction. This leads to a significant increase

in the amplitude and a reduction in the duration of the ground motion, mainly
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expressed in the long period range of the strong ground motion. As frequency and

distance from the source increase, rupture front incoherence and scattering in the

propagation media gradually weaken the directivity signature.A transition occurs

between 1− 4 Hz for directivity effects and where scattered wave energy becomes

dominant. Somerville et al. (1997) reported directivity effects from large events

are found to be erased at short period.

Graves (2016) used a generalized hard-rock velocity structure and analyzed

the fault-normal to fault-parallel acceleration response spectral ratio, finding it to

be > 1 for long periods. Their goal was to reduce the coherence of radiated higher

frequency (> 1 Hz) ground motion in the forward rupture directivity direction,

to match observations which see that the FN/FP ratio decreases steadily with

frequency until reaching a level value of about 1 at 1 Hz.

There is a group of proxy metrics of engineering relevance that a wide

range of data has been shown to be consistent with. Chapter 4 analyzes a few

of these proxies in comparison with deterministic simulations. Here, we look at

a secondary parameter, less precisely constrained by an empirical model, known

as the directivity pulse period. There are few records at short distances where

directivity is most likely to occur. Simulations may be able to provide a more

accurate characterization of directivity pulses and near fault ground motions. We

use the wavelet analysis technique to extract the largest velocity pulse from the

fault-normal ground motion to isolate directivity effects (Baker, 2007). It is ensured

that the pulse has a high peak velocity, and has a high pulse indicator greater than

0.85 (chosen by Baker, 2007 to be the best way to discriminate between directivity

pulses), which limits the pulses to be early in the time history, where directivity

pulses are more likely to occur.

Figure 3.14 plots the pulse period extracted from the fault-normal com-

ponent records for both 1D and 3D background models. Components such as

small-scale heterogeneity and attenuation have little effect on this proxy, as it is

primarily influenced by low frequencies. It is seen that the regions where a pulse

exists are constrained to be near the fault rupture, extending out from the hypocen-

ter, as expected. Interestingly, there are few pulses extracted off the ends of the
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fault, particularly for the 1D simulation, where from our spatial ground motion

maps, directivity would seem to be quite large. The 3D background model intro-

duces a lobe of directivity off the left end of the fault, with fairly short periods,

decreasing away from the fault. This may be related to the velocity structure at

depth. Theses results are averaged as a function of distance and plotted in Figure

3.15, along with the predictive relationship, and the standard deviation, ln Tp. It

is seen that the 3D background structure reduces the directivity down into the

range predicted by observations. The distance dependence of the pulse period also

agrees with observations, finding few stations> 30 km that are found to have a

pulse period, as shown in the histogram of Figure 3.15.

3.6 Discussion

3.6.1 κ

To ensure that synthetic ground motion is realistic at high frequencies, it

is necessary that the ground motion records have a spectral decay similar to that

of observations. Anderson and Hough (1984), first described this trend as κ, by

modeling it as an exponential decay. This decay is measured from above the corner

frequency, fc, up to to the noise level or Nyquist frequency. They found consistent

values for southern California records in the range κ = 0.04 − 0.06 for hard rock

sites. Here our seismograms are band-pass filtered to the resolution of our finite

difference grid, < 7.5 Hz, and we measure κ from the synthetic simulations. Since

the source is approximately flat up to 8 Hz, there is no κ contribution from the

source (on average). κ is calculated using a linear least-squares fit to spectra at high

frequencies (in frequency/log-amplitude space), determining the average horizontal

κ value from the two perpendicular components. We first choose a narrow window

(5 − 7 Hz) where the Fourier energy starts to deviate from a flat spectrum. We

find that the window length has little influence on determination of κ as long as

the strong energetic part of S waves is encapsulated in the selected window. At

individual stations, site amplification effects leave peaks in the spectra, making it

more difficult to accurately pick the slope, and there is significant variation in κ
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from source directivity effects. Thus, as the results are very inconsistent across the

confined bandwidth, we stacked Fourier Spectra as a function of rrup to average

out individual site response and reduce the high-frequency oscillations: see Figure

3.16. We find, that in general, the measured κ from using a power-law exponent

of Q of 0.8 and C = 0.05 for Q0 = C ∗ Vs (with Vs in m/s) in our attenuation

relationship is similar to the trend found in Anderson and Hough (1984).

κ is primarily a high-frequency effect, having the most influence on spectral

content for frequencies greater than 5− 10 Hz. As κ values may be inconsistently

calculated across a narrow bandwidth (as performed in Figure 3.16), we introduce

an alternative approach to model a target κ0, the site effect, that may be necessary

to include as simulations extend to higher frequencies. This approach employs a

frequency independent attenuation zone at the near surface to simulate κ0. κ0

is taken to be primarily site attenuation from local geological conditions down

to a few hundred of meters or a few kilometers beneath the site under study

(Anderson and Hough, 1984). Hough et al. (1988) also hypothesized that there

exists a shallow attenuation layer present along the near surface, overlying a less

attenuating medium. Abercrombie (1997) conjecture that 90% of total seismic

attenuation in bedrock occurs in the upper 3 km of the earth’s crust. Q is observed

to be low (15 − 50) even for Class B Vs30 values in the shallow crust (Assimaki

et al., 2008). Anderson (2015) also used low Q values in the shallow sediments (3

km) to model κ0.

The κ0 value corresponds to the attenuation that S-waves encounter when

traveling vertically thorough the geologic structure beneath the station. Site lithol-

ogy, stratification, and randomness significantly affect attenuation estimates in the

near surface. Houtte et al. (2011) also found that the superficial layers of the soil

predominantly influence κ0, but there remains a component with a deeper origin

as well. It is possible to estimate the contribution from the site effect by relating

exp(−πfκ0) and Qs = exp( −πfR
VsQ(f)

), giving κ0 = R
VsQs

, where R is distance, Qs the

shear attenuation, and Vs the shear wave velocity in that layer. We can sum up

the contributions from each layer and assuming a constant Q model at the level

of Q found at 5 Hz (as an approximation) in Q = Q0f
γ, we find κ0 in the top 3
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km to be an order of magnitude smaller than the expected value near 0.04 s for

western North America. Thus, it is possible that we may be not including sufficient

attenuation to model the high-frequency decay in our models.

As we previously showed that a Q(f) model with a power-law exponent of 0.8

matches the decay in energy as a function of distance, we introduce a shallow (3 km)

region where Q follows a constant Q model along the surface, approximating the

depth to bedrock. This constant Q layer in the near surface should have a nearly

common attenuating effect at all stations. We use the relation Qs = 0.025 ∗ V s to

obtain a κ0 value of ∼ 0.03 for both the 1D layered and 3D velocity model. Thus,

the shallow region introduces a site effect on κ, while the path effect is derived from

the underlying region of Q(f), with path attenuation from higher quality factor in

the deeper crust. Figure 3.17 plots the corresponding value of κ as a function of

distance, for both the 1D and 3D models. Instead of picking the frequency at which

the spectra starts to decrease linearly with frequency (fE), we set the bandwidth

of our calculation from 1−7 Hz to calculate κ. It is seen that by adding in κ = 0.03

corresponds to an increase in the calculated κ very near that value. We note that

the values are smaller (sometimes negative in the unmodified approach) for models

with small-scale heterogeneity , as it tends to increase the high-frequency energy,

reducing the decay in the spectrum. This is in contrast to an increase in κ when

including small-scale heterogeneity from site attenuation (stratigraphic filtering)

as seen in Ktenidou et al. (2015). This may be due to the complicated influence

from laterally-propagating waves (e.g., surface waves), as well as 3D heterogeneity

changing the ray paths to form multiples.

Figure 3.18 shows the results for SA and intraevent variability (comparable

to Figure 3.9) for models with and without the κ implementation for 1D layered

models. It is observed that the effect is to reduce the ground motion medians, with

significant effects at higher frequencies, as expected. This new method drops the

median values for both models with and without heterogeneity to near the range

of the hybrid technique, and with a distance dependence near that of a median

event above about rrup = 5km or so. The effect of kappa is seen to reduce the

variability at high frequencies for this 1D layered simulation to align near that of



78

empirical observations.

Figure 3.19 shows the corresponding results for a 3D background model.

Again, the high-frequency energy reduction causes a decrease in spectral response

values, to lie near that of GMPE median precautions. The intraevent variability

here is actually increased for models that include the κ0 approach, however; it is

thus still necessary to have small-scale heterogeneity to match variability in our

models. This brings the model including heterogeneity to be right in the range of

expected values for a distance above 30 km or so.

3.6.2 Future Work

As the next step, there are a variety of routes to continue to advance ground

motion simulations. One approach is to conduct a wide range of scenario earth-

quake simulations from the information gained in this study, with a focus on specific

source-receiver geometries; this would help ascertain the range of ground motion

expected at a given station. Additionally, simulations could be performed to ho-

mogenize the radiation pattern effects that we see here from just one bilateral

event. Running events with different stress drops would help to determine the

correlation with median ground motion and impact of the source on sigma.

Graves et al. (2010) used physics-based 3D ground motion simulations to

generate synthetic ground motion data. Using many earthquake cycles (rupture

scenarios) alleviates the need for the ergodic assumption. With more events and

simulations, a mixed effect regression could be used to develop a GMPE based on

the synthetic dataset, similar to that of Villani and Abrahamson (2015). More spe-

cific simulations should be performed to isolate the influence of heterogeneity on

intraevent variability, particularly on path effects which arise from both attenua-

tion and scattering, that would lead to a nonergodic PSHA. Empirical GMPEs can

thus potentially be improved by supplementing direct observations of ground mo-

tions with simulation data that use the physics of wave propagation to extrapolate

to areas of insufficient data..

An additional validation technique could be to compare with precariously

balanced rock (PBR) observations. Brune (1996) found that the presence of pre-
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carious rocks in Southern California is not consistent with the large value of ground

motion predicted by PSHA studies; simulations could be run along the San An-

dreas and other major faults and compared with PBRs using the additional high-

frequency content.

There are many additional features that can be included in future ground

motion simulations to further increase their agreement with data. For example,

Graves (2016) introduced a near fault damage zone in a 1D plane layered structure.

Although it was found that this zone has little impact on the overall amplitude

level of ground motion over a broad frequency range, future simulations could

include such a damage zone in 3D background velocity structure to determine its

importance.

More simulations are needed to fine tune our κ0 approach, if it is deemed

necessary as simulations extend to higher frequencies. Constraining the constant

Q region to be set to less than 3 km would decrease the decay seen as a function

of distance. Q(f) may vary with depth; introducing a gradient model where the

attenuation exponent gradually increases at larger depths may better fit observa-

tions. This allows for a large potential area of research to be performed on the

components influencing κ. Some of these would be to analyze the Vs30 depen-

dence, the correlation with basin depth, and further investigate the significance of

scattering from near-surface heterogeneities.

In this paper, we ignore the nonlinear effects from plasticity in the wave-

propagation that may strongly damp ground motions near the fault, as the dynamic

simulation already includes Drucker-Prager plasticity along the fault. Including

them in the kinematic simulation would cause a double-counting of plasticity, un-

less the fault boundary condition of Roten et al. (2016) is used. In Chapter 4, we

neglect plastic effects in the dynamic simulation, but include them in the kinematic

runs, which is shown to be important in regions of low shear wave velocities.

To develop a region and station specific estimate of ground-shaking levels

for future earthquakes, it is likely that components such as topography will need to

be included, causing additional diffraction and scattering. The shaking amplitude

at the top of hills can be larger than that based on level surfaces. Takemura et al.



80

(2015) showed that topography distorts P-wave polarization, transferring energy to

the transverse motion, but is only significant at locations near the station, account-

ing for only 12% of the high-frequency wavefield. Mai and Imperatori (2015) also

analyzed topographic effects, finding that they can be significant, especially in the

proximity of the source. Future simulations should continue to evaluate the effects

of irregular topography in combination with the effects of velocity inhomogeneity.

Takemura and Furumura (2013) showed that different regions have different

velocity fluctuations; this will become important when working with different loca-

tions. Here, we ran models with the heterogeneity spectrum of the crust changing

with depth, particularly in the near surface where open joints and fractures present

can change the correlation structure. Multiscale models may also be appropriate,

with a depth dependence.

Many studies have looked at contributions from scattering and attenuation

(e.g. Mayeda and Koyanagai, 1992) and the separation of the two (e.g. Fehler et al.,

1992). The total apparent attenuation, Qapp, comes from the combined effect of

both intrinsic (Qi) and scattering attenuation (Qs):
1

Qapp
= 1

Qi
+ 1

Qs
(Parolai et al.

(2015)). Scattering Q is a measure of apparent attenuation and causes more energy

to be distributed into the coda from the direct pulse with increasing time. Waves

are attenuated along the paths from the source to the scatterer and from the scat-

terer to the receiver. Thus, the energy reduction from scattering depends largely

on the part of the record used. As we have shown, small-scale inhomogeneities can

cause additional high-frequency attenuation through scattering. This is explained

from two mechanisms: multiple reflections cause part of the energy in the up-going

waves to be diverted downwards into the Earth and forward scattering of energy

causes a redistribution of energy in the time history. Higher σ in the small-scale

heterogeneity model should mean more attenuation in the direct waves, and more

energy in the late coda due to strong multiple scattering. We observed that a

waveguide effect, in which surface waves propagate across the basin, generating

enhanced long-period motion amplitudes and shaking duration, exists in our 1D

models. The ground motion distance attenuation here is controlled by geometric

spreading of the wave field, anelastic attenuation, scattering effects, and the gener-
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ation of surface waves, and body to surface wave conversion at low frequencies. A

3D background model with σ of 10% adjusts the media at depth and changes the

path rays travel, thus modifying its amplification and complicating the predicted

attenuating behavior.

Larger intrinsic attenuation entails greater loss of elastic energy with time

from both the coda and the direct wave. We find that intrinsic attenuation domi-

nates over the scattering attenuation above 1 Hz for our layered models, but being

more equal for a background CVM structure. Equivalent Q estimates may be

made by a loss of energy from the primary waves or presence of energy in the coda

(Kang and McMechan, 1994). A better method to separate scattering and anelas-

tic attenuation would be to use the method of Frankel and Wennerberg (1987),

who introduced an energy flux model that assumes a spatially uniform distribution

of coda wave energy, applied in Jemberie and Nyblade (2009). More investigation

should be performed to determine the details and significance of scattering on coda

energy as well as the contribution between scattering and intrinsic Q, and their

separation.

Future work could analyze coda Q, which is measured simply from the coda

at different lapse times to determine depth dependence (Parvez et al., 2008). Coda

Q measured from synthetic seismograms should match observations. However,

many studies have shown that coda Q is close to intrinsic Q (e.g. Jin et al., 1994).

Frankel and Clayton (1986) compared observed and predicted coda decay up to the

time corresponding to the travel time from the source to the edge of the grid and

back to the receivers. Comparisons of simulated time series are not appropriate for

times greater than this, because the initial wave front has been absorbed along the

edge of the grid. We ignore any discrepancies due to this approximation within

this study. The separation of scattering Q from Coda Q is based on the single

scattering assumption, which is valid when sigma is small. Multiple scattering

occurs when sigma is large: as we have seen comparing 1D and 3D background

velocity models, scattering from sharp discontinues in the media can play a major

role in the attenuation process of seismic waves.
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3.7 Conclusions

The ability to extend deterministic ground motion predictions to higher fre-

quencies and predict PGA and PSA is invaluable for building engineers. Recordings

in the near field of large earthquakes are sparse, so earthquake simulations become

important for seismic hazard assessment. As simulations advance, we become bet-

ter at constraining seismic hazard in the bandwidth important for engineering

applications by deterministically modeling broadband seismic ground motion, par-

ticularly with application to regions with poor data coverage. Information inferred

from simulations may have significant impact on seismic hazard estimation. A goal

is to use ground motion simulations to complement the strong motion database

for use in engineering applications. Before this can be done we need to compare

physics-based 3D ground-motion simulations with that of empirical ground motions

to ensure the decay of energy at high frequencies, decay as a function of distance,

and the source model. Whereas previous deterministic ground motion studies have

been severely limited by computational limitations, here we use the Titan super-

computer utilizing GPUs to extend ground motion prediction to higher frequencies

using a fourth-order staggered-grid finite difference method (AWP-ODC) with a

grid spacing of 20 m using geometrical fault complexity.

Here, we quantify the contributions of small-scale fault geometric complex-

ity and small-scale velocity and density inhomogeneities in the medium that can

affect the ground motion intensity included within our deterministic simulations,

and validate against recent Next Generation Attenuation (NGA) relations (empir-

ical observations). We bin stations as a function of distance and compare several

metrics with empirical predictions, including spectral acceleration at different pe-

riods and duration of Arias Intensity. The slip-rates from a dynamic simulation

along a rough-fault topography that follows an omega-squared spectrum are used

as the input to our wave propagation code. We include frequency-dependent at-

tenuation via a power law above a reference frequency for both 1D layered and

3D velocity structures as background models, and superimpose small-scale hetero-

geneity in the entire domain using a range of statistical parameters. We find that

for this particular rupture model, ground motion lies within ∼ 1 − 2 interevent
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standard deviation above the median, with a spectral decay that closely matches

that of the GMPEs when using a power-law exponent between 0.6 − 0.8 above 1

Hz. Ground motion attenuates faster with distance than is predicted by GMPEs

for constant Q. We found that 3D structure strongly affects azimuthal distribution

of radiated energy and rupture directivity by increasing the path complexity by

low-wavelength scattering.

The primary effect of both anelastic attention and scattering is to reduce

amplitudes of the first propagation impulse, but scattering leads to redistribution

of seismic-wave energy from low to high frequencies from the main arrivals to later

in the signal. For full time-series metrics such as SA used here, there can be both

an increase and decrease in the ground motion with a complicated source model

that has finite length and duration. There are complementary features between

scattering and apparent attenuation with heterogeneous Earth structure. We have

seen that small-scale heterogeneity tends to increase median ground motion for 1D

layered models, but can be strongly reduced with 3D CVM that have reduced di-

rectivity; the σ parameter doesn’t seem to directly control the scattering intensity

as a simple scaling factor. More simulations are needed to fine-tune the relation-

ship between source size and apparent attenuation. Low-velocity layers acts as a

wave guide, in which energy is trapped and continued scattering occurs, to create

complex propagation effects. Synthetics associated with this particular medium

are characterized by multiple reflections and important coda waves which counter-

balance the expected decay of peak parameters. Each simulation method matches

empirical models for some parameters and not others, indicating that all relevant

parameters need to be carefully validated. Parameters that incorporate amplitude

as well as frequency content, and duration of the ground motion are likely to be

more reliable predictors of its damage potential. We find that the duration median

is strongly related to the scattering energy, where both long and short scale media

variations tend to increase the signal duration.

Larger intrinsic attenuation can serve to decrease the standard deviation,

as a result of drop in amplitude of seismic waves. We show that small-scale hetero-

geneity can significantly reduce the intra-event variability at frequencies greater
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than ∼ 1 Hz, becoming increasingly important at larger distances from the source.

This suggests the need for a highly complex velocity model to fit ground motion

variability, at least when considering a bilateral strike-slip event. Scattering can

be distance dependent, as a decreasing gradient model of σ in small-scale hetero-

geneity with depth shows reduced expected peak attenuation at larger distances

from the source. This systematic path effect variability can be used to reduce

uncertainty in ground motion prediction. Site and path effects will become even

more significant at higher frequencies. For path effects, heterogeneity at both large

and small scales is important for reducing uncertainty, depending on the frequency

bandwidth of interest.

We also compared our deterministic results with that of a hybrid method

generated using the low-frequency deterministic synthetics and found significant

differences in both spectral acceleration median and variability at high frequencies.

Part of this may be due to the stochastic part of the hybrid technique not including

surface wave scattering, but specifically modeling κ0 and a nonlinear effect. More

simulations are needed to quantity the source of the discrepancies.

We examined the the decay of energy both as a function of frequency and

distance, and find that our simulations are comparable to observations across a

narrow bandwidth. We also introduced a technique to modify the high-frequency

energy decay that relates to κ. We showed that the new approach has a significant

effect at the high frequencies, while still retaining the appropriate distance decay.

Heterogeneity is seen to consistently reduce the κ values. Including this approach

reduced the differences between the deterministic and hybrid approaches.

3.8 Data and Resources

The southern California velocity model CVM-S 4.26 can be obtained from

SCEC at http://scec.usc.edu/scecpedia/. Most of the data-processing work was

done using MATLAB (http://www.mathworks.com/products/matlab/). Figures

were prepared using MATLAB and the Generic Mapping Tools package

(http://www.soest.hawaii.edu/gmt/). All electronic addresses referenced here were
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last accessed October 2014. All other data used in this paper came from published

sources listed in the references.
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Figure 3.1: (Left) Model geometry and dimensions of the strike-slip rough fault
used in this study. The rupture surface uses 4.7 million subfaults that follows
a self-similar fractal distribution with wavelengths ranging from 80 meters to 80
kilometers. The strike slip fault is 80 kilometers in length, and 16 km in width.
Reproduced in full from Shi and Day (2013). (Right) 1D layered velocity used
in the dynamic simulation derived from the SCEC broadband platform validation
exercise for southern California.
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Figure 3.2: Model domain (rectangle) used in our 3D models with the same
dimensions as the 1D simulations (204, 124, 41 km). The intersection of fault plane
along surface is shown by the line, input along a 80 km segment of the San Andreas
Fault. The star depicts the epicenter.
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Figure 3.3: Example of small-scale heterogeneity of Vs (m/s) along the free sur-
face with a correlation length of 150 m, anisotropy factor (vertical-to-horizontal
stretch) of 5, and a standard deviation of 5% across the model domain. The black
line indicates the surface intersection of the rough fault and the star depicts the
epicenter.
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Figure 3.4: (Left) Surface view of shear wave velocity (m/s) extracted from the
CVM including the GTL. (Right) Same as the left, with the addition of a statical
model of heterogeneity superimposed on the background 3D model, here before
clamping the minimum Vs in the background CVM.
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Figure 3.5: Snapshots of the fault-parallel velocity at the surface at two moments
in time using a 1D layered background model (m/s). (Left) No small-scale media
heterogeneity is included. (Right) Small-scale media heterogeneity with vertical
correlation length of 150 m, H = 0.05, and σ = 5%.
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Figure 3.6: GMRotD50 maps of spectral acceleration in units of g at T = 0.3 s.
(Left) Models without statistically-described media heterogeneity. (Right) Models
with statistically-described media heterogeneity using a vertical correlation length
of 150 m, H = 0.05, and σ = 5%. (Top Row) 1D layered models. (Bottom row)
3D models extracted from the CVM.
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Figure 3.7: (Top) The spectral acceleration median (GMRotD50) for 3 periods
as a function of distance. The shaded region indicates the range of the GMPE
medians, where the dashed blue lines are the ± 1 and +2 interevent standard de-
viation. Unless specified, Qs = 0.05 ∗Vs. (Bottom) Intraevent standard deviations
as a function of distance, with the shaded area indicating the 2014 intra-event
standard deviation range of 4 GMPE models.
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Figure 3.8: SA and intraevent variability for a characteristic long and short
period showing the influence of several models of heterogeneity compared with
GMPE predictions and a hybrid technique using a 1D background layered velocity
model. ’Hetero’ refers to small-scale heterogeneity.
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Figure 3.9: Similar to Figure 3.7, but using a 3D background model extracted
from the CVM.
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Figure 3.10: Accelerograms extracted from a profile perpendicular to the fault
for a background 1D layered model, with coordinates as given in Figure 3.6 for
models with 0 (red), 5 (green) and 10% (black) value of σ in heterogeneity shown
in Figure 3.8.
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Figure 3.11: Accelerograms extracted from a profile perpendicular to the fault
for a background 3D CVM, with coordinates as given in Figure 3.6 for models with
0 (red), 5 (green) and 10% (black) value of σ in heterogeneity shown in Figure 3.9.
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Figure 3.12: Median and intraevent variability for 5 − 95% duration of Arias
Intensity for a 1D background layered structure.
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Figure 3.13: Similar to Figure 3.11, but using a 3D background model extracted
from the CVM.
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Figure 3.14: Regions where a directivity pulse occurs and its corresponding pulse
period (s) for (left) 1D and (right) 3D background models.
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Figure 3.17: κ values calculated over the bandwidth 2-7 Hz, using the new ap-
proach, described in the text for (Left) 1D and (Right) 3D background models.
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Figure 3.18: (Top) Spectral acceleration at a long and short period and (bottom)
corresponding intraevent variability, using a 1D layered background velocity model.
We also include the comparison with a hybrid broadband approach (SDSU) that
is generated from the low-frequency deterministic synthetics.
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Figure 3.19: Same as Figure 3.18, but using a 3D background velocity model.
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3.11 Appendix

3.11.A Verification of the Two-step Procedure

Here, we compare the accuracy of the two-step procedure, using the slip-rate

time series and normal vectors output from SORD to convert to a moment-rate

time-series for each subfault as the input into AWP. Figure 3.A.1 compares the

SORD and AWP seismograms and frequency, using > 10 points per wavelength

for both AWP and SORD approaches (SORD requires at least this value for ac-

curate wave propagation). We used the Kristekova et al. (2009) approach (a time-

frequency representation) to calculate the envelope and phase misfit between our

models. Envelope misfit (EM) and phase misfit (PM) in the bandwidth 0.2−10 Hz

are within 5% and 2%, respectively, and the corresponding goodness-of-fit values

are above 9 in the scale used in Kristekova et al. (2009), classified as an excel-

lent fit. This demonstrates that the 2-step procedure for the dynamic-kinematic

simulations has sufficient accuracy for our purposes here.
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Figure 3.A.1: (a) Comparison of fits obtained between dynamic and wave-
propagation codes, SORD and AWP respectively, for (a) 3-component time-series
low-passed to 10 Hz and (b) Fourier spectra. This station is 9 km along the
fault-parallel direction and 9 km perpendicular from the hypocenter in an elastic
homogeneous background model.
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3.11.B Accuracy of Small-scale Heterogeneity Implemen-

tation

With the continued movement towards higher resolution and modeling of

higher frequencies, it is important to verify that the accuracy of 3D simulations

is still acceptable. Galis et al. (2013) found that similarities decrease with fre-

quency and epicentral distance between several codes, including AWP. They found

that significant variability in both phase and amplitude as the standard deviation

of velocity perturbations increase, suggesting that the numerical representation

of material heterogeneity in different codes exerts non-neglible effects on ground

motion simulations in heterogenous media. Here, we compare our staggered-grid

finite-difference wave-propagation code (AWP) with that of a semi-analytical tech-

nique (FK) (Zhu and Rivera, 2002) and a summation by parts approach (SW4)

that uses local material properties, where unlike with staggered grid methods, no

averaging is required (Sjögreen and Petersson, 2012). We start with simple models

(homogenous and layered velocity structures) to develop a baseline value for the

fits, and move toward a fully 3D model including small-scale heterogeneity. We an-

alyze ground motion that extends up to 7-8 Hz (depending on the minimum shear

wave velocity) and compare synthetic waveforms at a station at 25 km from the

source. We design our simulation domain to be sufficiently large to have minimal

reflections from the boundary during the simulated time.

We use a double-couple point source equivalent to right-lateral slip with a

strike = 90◦, dip = 90◦, and rake = 0◦ at a depth of 1.8 km, using the cosine-bell

moment-rate function:

˙M(t) =

{
M0(1− cos(2πt/T ) 0 < t < T

0 otherwise
, (3.3)

with T = 0.2 sec and M0 = 1016 N m, equating to a Mw = 4.6 earthquake. The

source is averaged across two depth points in AWP, since the shear stress σxy in

our scheme is located one-half grid point below the target grid location. As the

horizontal components of the staggered-grid are located 1/2 point below the free

surface, we also average the horizontal components of the receiver stations to be
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closer to the target geometry (Gottschämmer and Olsen, 2001). Neither of these

approaches need to be used in either SW4 or the FK technique, as they either

interpolate the source or station location on the fly, or can compute the solution

at the target location.

First, we compare the computed time histories obtained with a purely elastic

(infinite Q) homogenous model to determine the accuracy of the FD solutions for

the prescribed model parameters. Here we set vp = 6000 m/s, vs = 3464 m/s,

and ρ = 2700 kg/m3. For all models we use a vertical correlation length of 150 m

and a Hurst exponent of 0.05. Figure 3.B.1 shows seismograms and the Fourier

spectra for each component of a surface station located at a horizontal distance of

25 km from the source with an azimuth of 53.13◦ from North. The seismograms

have been band-passed between 0.2 and 10 Hz using a fourth-order, zero-phase

Butterworth filter. We used the time-frequency representations of misfit between

two seismograms classified as envelope misfit (EM) and phase misfit (PM) as in

Kristekova et al. (2009) to determine the fits quantitatively. Figure 3.B.2 compiles

the results comparing the 3 models, showing that both the arrival times of all

major phases are reproduced with phase error and peak amplitudes are matched

with relative error less than 2%. Fourier spectral amplitudes are nearly identical

in the two solutions. The Rayleigh wave (7-8.5 s, radial and vertical components),

is free of visible spurious oscillations and reproduces the wavenumber-integration

solution with considerable precision.

Next, we use the layered model profile plotted in Figure 3.1 as the medium

and compare the seismograms in Figure 3.B.3. Figure 3.B.4 shows that the fits,

again, are very good, with small values of misfit, even with the low velocity lay-

ers near the surface. The level of misfit is only significantly larger within the

transverse component for AWP compared to the FK solution. Next, we use the

same background layered velocity model, and superimpose small-scale heterogene-

ity, constrained to lie within only the vertical direction. This is done so that the

FK solution can still be calculated, now complicated by heterogeneity at every

depth point, and including narrow velocity inversions. Figure 3.B.5 shows that the

seismograms are even more complicated, but the solutions are still very similar.
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Figure 3.B.6 finds EM and PM values only slightly larger than that of a simple

layered model. Finally, we include 3D small-scale heterogeneity, superimposed on

a homogenous background model. We cannot compare with an analytical solution

here, but since both SW4 and AWP had similar levels of fit in the simpler models,

we deem it appropriate to compare them to one another as a proxy for solution

accuracy. Figure 3.B.7 and 3.B.8 show the corresponding results, indicating very

comparable fits, and EM and PM within a 6-7% level of agreement. Figure 3.B.9

and 3.B.10 plot the envelope and phase misfits, respectively, as a function of time

and frequency. The misfit is only slightly larger than the values found in the sim-

pler models, indicating that we are accurately modeling small-scale heterogeneity.
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Figure 3.B.1: 3-component seismograms and spectra for a homogenous model
comparing the FK, AWP, and SW4 approaches.
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Figure 3.B.2: Envelope and phase misfits for a homogenous model comparing
the FK, AWP, and SW4 approaches, corresponding to Figure 3.B.1.
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Figure 3.B.3: Same as Figure 3.B.1, but using a layered model plotted in Figure
3.1.
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Figure 3.B.4: Envelope and phase misfits for a layered model comparing the FK,
AWP, and SW4 approaches, corresponding to Figure 3.B.3.
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Figure 3.B.5: Same as Figure 3.B.1, but using a layered model with superimposed
1D (vertical) small-scale heterogeneity.
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Figure 3.B.6: Envelope and phase misfits for 1D (vertical) small-scale hetero-
geneity superimposed on a layered model comparing the FK, AWP, and SW4
approaches, corresponding to Figure 3.B.5.
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Figure 3.B.7: Same as Figure 3.B.1, but using a homogenous model with 3D
small-scale heterogeneity superimposed, comparing just the AWP and SW4 tech-
niques.
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Figure 3.B.8: Envelope and phase misfits for 3D small-scale heterogeneities su-
perimposed on a background homogenous model comparing the FK, AWP, and
SW4 approaches, corresponding to Figure 3.B.7.
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Figure 3.B.9: Envelope misfit plots for the 3D models shown in Figure 3.B.7.
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Figure 3.B.10: Phase misfit plots for the 3D models shown in Figure 3.B.7.
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3.11.C Log-normality of Residuals

A common assumption in ground motion studies using empirical data is

that the residuals follow a lognormal distribution. Intraevent residuals of spectral

acceleration have been shown to follow a lognormal distribution, e.g. (Jayaram and

Baker, 2008), using residuals from a large collection of earthquakes. Hartzell et al.

(2010) found that their synthetic ground motion amplitudes followed a lognormal

distribution very closely at low frequency. O’Connell (1999) showed that stochastic

variation of velocity various in the upper curst can reproduce the observed lognor-

mal dispersion of peak ground motions. In determining the coefficients of the

GMPEs, the residuals (differences in logarithms) from the prediction are assumed

to be normally distributed.

Several recent studies have found that both synthetic and empirical residu-

als are not distributed according to a lognormal distribution. For example,Yagoda-

Biran and Anderson (2015) found that the deviations were in the central part of

the distribution, where the effect on PSHA shouldn’t be to large. Mcbean et al.

(2015) also found that PGA and PGV from ruptures along a foam rubber stick-

slip model do not following a log-normal PDF. They used the sum of multiple

lognormal CDFS to model PGA and PGV.

Here we analyze the synthetic data to determine if the residuals follow a

lognormal distribution, using just an individual event. After binning the stations

as a function of distance, we calculate the intraevent logarithmic residuals from

the median for each distance bin. By construction, the mean of each distrubution

is zero. We use both histograms and q-q plots to determine the lognormality

of the distribution. The q-q (or quantile-quantile) plot is obtained by plotting

quantiles of the data set against the corresponding quantiles of a theoretical normal

distribution. The data set follows a normal distribution if the normal q-q plot has

a straight line with a slope of 45 degrees, passing through the origin. We also add

on confidence bands to the q-q plot by using the Kolmogorov-Smirnov test for the

null hypothesis, given the size of the data sample. A derivation in the q-q-plot

outside this interval indicates a significant deviation from a normal distribution.

After grouping the bins together, we plot histograms and q-q plots that
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compare quantiles to the standard normal distribution. Figure 3.C.1 shows this

for a spectral acceleration of 3.33 Hz using the 1D layered model with small-

scale heterogeneity superimposed. The number of stations in the analysis used

here was decimated for computational reasons by choosing a random selection of

50,000 stations. It is evident that the residuals do not closely follow a lognormal

distribution, both by analyzing the histogram and the departure from the straight

line in the q-q plot. The confidence bands show that it fails the KS test at the 95%

confidence levels. We note that the inclusion of small-scale heterogeneity slightly

increases the agreement with a log-normal distributution at spectral accelerations

above 1 Hz.

Figure 3.C.2 plots the same quantities, but using the 3D CVM model in-

cluding small-scale heterogeneity. We see that the distribution is very close to

that of a lognormal distribution at 3-4 standard deviations, as well as lying within

the 95% confidence bands. Values of 3 standard deviations and above has little

effect on hazard curves for return periods generally used in engineering design or

at the 10,000-year level employed in the nuclear industry (Huyse et al., 2010). It

seems that the 3D background structure serves to redistribute the ground motion

at both the low and the high frequencies (as seen in Figure 3.6). This may be due

to both the reduction in polarization (as shown in Chapter 4) as well as the loss

of coherence in the wave-guide effect from surface waves generated within the 1D

layered velocity model.

Looking closer at Figure 3.C.1, and comparing with Figure 3.6, we observe

that there appear to be two distinct zones of ground motion, showing up as two

distributions within the histogram, and the departure from the mean value at the

origin in the q-q plot. One way to characterize this would be with a mixture

model, the sum of two normal distributions with different standard deviations.

Previous models have derived amplification factors for ground motion metrics at

low frequencies to explain this azimuthal dependency and distance dependence,

related to the directivity (Somerville et al., 1997, Spudich et al., 2013). We use the

Bayless and Somerville approach published within the PEER 2013 report using

the specifics of our strike-slip fault and plot the directivity amplitude correction
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factor in Figure 3.C.3. Values > 1 correspond to the region of forward directiv-

ity, and < 1, backward directivity. This shows a similar spatial pattern to that

observed in Figure 3.6. We hypothesize that if we ran a suite of ruptures, with

varying hypocenter locations, that the directivity effect in 1D layered models would

average out, and the residuals would more closely follow that of a lognormal dis-

tribution, as in Jayaram and Baker (2008). To test this, we separated the stations

spatially into two groups: forward and backward directivity, corresponding to > 1

or < 1, respectively, as shown in Figure 3.C.3. Figure 3.C.4 plots the correspond-

ing residual distribution in the backward directivity region, and Figure 3.C.5 the

forward region, both using the 1D layered model. It is clear that both distributions

are much closer to the lognormal distribution than in Figure 3.C.1, particularly

for the backward directivity region. As more deterministic models are run in the

future, it will be informative to see if the log-normal assumption holds, potentially

important for determining if bias exists from statistical measures derived from 1D

simulations at high frequencies.
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Figure 3.C.1: (Left) Histogram of spectral acceleration residuals at 3.33 Hz with
corresponding normal distribution and (right) q-q plot for the 1D layered model
with small-scale heterogeneity (5 % σ and CL = 150 m). The blue points map the
normal distribution and the black lines show the 95% confidence interval of the
normal distribution residuals given the size of the data sample.
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Figure 3.C.2: Same as Figure 3.C.1 but using a 3D background model with
small-scale heterogeneity superimposed.
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Figure 3.C.3: Directivity amplitude correction factor from Spudich et al. (2013)
to distinguish regions of forward and backward directivity for the 1D layered strike-
slip model.
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Figure 3.C.4: Same as Figure 3.C.1, but using only the stations located in the
backward directivity regions.
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Figure 3.C.5: Same as Figure 3.C.1, but using only the stations located in the
forward directivity regions.
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Chapter 4

Validation of Deterministic

Broadband (0-8 Hz) Ground

Motion and Variability from

Ensemble Simulations of Buried

Thrust Earthquakes

4.1 Abstract

We numerically model broadband ground motion (< 7.5 Hz) from blind

thrust scenario earthquakes matching the fault geometry of the 1994 Mw 6.7

Northridge earthquake. Several realizations are modeled by varying the hypocen-

ter location to generate an ensemble of earthquakes and investigate the variability

and characteristics of the ground motion up to 50 km from the fault. We compare

with that of ground motion prediction equations, simple proxy metrics, as well as

strong ground motion records. Our models include small-scale medium complex-

ity, Q(f), as well as nonlinear effects by incorporating Drucker-Prager plasticity,

and using both a 1D layered and a 3D CVM as the background medium. We

find that ground motion generally lies within 1 interevent standard deviation from
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the median GMPEs and is strongly affected by nonlinear effects in regions of low

shear wave velocity. As a result, intraevent variability is significantly reduced at

distances near the source and above > 0.5 Hz. We find that both heterogeneity on

the regional and small-scale is needed to match proxy metrics, such as the correla-

tion of spectral acceleration with period, and ratio of maximum-to-median spectral

acceleration. Small-scale heterogeneity has a negligible effect on spectral accelera-

tions, but significantly increases the cumulative absolute velocity, better agreeing

with observations. Additionally, we find our deterministic simulations have similar

bias when comparing with strong motion data from the Northridge earthquake,

and that 3D structure can have a large impact at both short and long periods. We

also compare our synthetic ground motion at both footwall and hanging wall sites,

but find no clear dependence on Rx.
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4.2 Introduction

Earthquake simulations have become quite accurate at modeling ground

motion at low frequencies, up to 1 Hz or so (e.g. Olsen, 2000; Roten et al., 2011).

Only recently has there been the computational ability to deterministically model

ground motion at significant distances from the source at higher frequencies. The

importance is due to the fact that a building’s response is related to its height;

a rough approximation is 0.1 second period per individual story. Thus, it is ex-

tremely important to model earthquake ground motion prediction at the higher

frequencies, to determine the seismic hazard for short buildings (< 10 stories)

and other structures. To extend ground motion simulation to higher frequen-

cies, the source and medium need to be modeled in a realistic way. Here, we do

this by incorporating small-scale fault geometry and media complexity, as well as

frequency-dependent anelastic attenuation in deterministic earthquake models. In

addition, we incorporate nonlinear effects via Drucker-Prager plasticity.

We previously modeled the ground motion experienced from 3D simulations

incorporating rough-fault topography along a generic strike-slip fault (Chapter 3).

Here, we use a similar approach to study a blind-thrust fault with dimensions

modeled off that of the 1994 Mw 6.7 Northridge earthquake. We use moment-

rate time-series derived from dynamic rupture models simulated using the support

operator method (SORD) as the kinematic source in a finite difference anelastic

wave propagation code (AWP-ODC) with Q(f). We model several realizations of

buried thrust faults with similar moment magnitudes by varying the hypocenter

location. We analyze the ground motion and intraevent variability influenced by

scattering and nonlinear effects up to 50 km from the fault. These simulations

are performed in both a 1D layered model characteristic of a southern California

rock site and a 3D medium extracted from the Southern California Earthquake

Center (SCEC) Community Velocity Model (CVM) version 4.0 including a surface

geotechnical layer (GTL). We validate our simulations with empirical observations

such as Next Generation Attenuation relations (GMPEs), simple proxy metrics,

as well as strong-motion data from the Northridge earthquake up to 7.5 Hz.
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4.3 Background

The 1994 Northridge reverse-faulting event struck San Fernando valley,

about 20 miles northwest of downtown Los Angeles, 17 January, 1994, and was the

most costly American earthquake since 1906. The mainshock was 30 km West-

Northwest of downtown Los Angeles at a focal depth of 19 km, beginning at the

southeastern corner of a dipping fault plane and rupturing up to the Northwest for

about 15 km. It experienced 3 meters of reverse slip along a concealed thrust fault,

with the maximum slip occurring 5 − 10 km Northwest of the hypocenter, with

an estimated seismic moment of 1.2± 0.2 1019 Nm corresponding to Mw 6.7, with

about 10-20 seconds of duration. The ground motion experienced large shaking,

with the ground acceleration being one of the highest ever instrumentally recorded

in an urban area of North America (1.8 g), and had large directivity updip towards

the North. It was a particularly well-recorded earthquake with near-field stations

on both hard-rock and soft-soil sites, including ones experiencing deamplification

at sediment sites.

Ground motion prediction equations (GMPEs) provide the foundation on

which seismic design and construction of the built environments rests, as well as

seismic safety. There are sparse ground motion data for Mw > 6.7 earthquakes

on reverse faults. To supplement empirical observations, simulations provide an

approach to study certain features, that may be rarely observed, due to lack of data

and spatial coverage. Before simulations can be used for engineering applications,

validation is required to demonstrate that simulations have similar characteristics

to real ground motions. This requires that simulations agree with preexisting

relations, in terms of both their median and variability behavior, both as a function

of distance and frequency. The simulations in this study are not meant to give

the all possible ground motion by trying every permutation of parameters, but

rather to highlight the range of behavior that is experienced by including different

components that can become important at frequencies > 1 Hz.

In addition, there are a group of proxy metrics outlined in Burks and Baker

(2014) that are relatively stable for many recorded ground motions. They have

been shown to have little variation in model predictions across a range of tec-
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tonic regimes, magnitude, distance, and site conditions, and among models from

multiple regions or data sets. One of these is SARotD100/SARotD50, the ratio of

maximum to median spectral acceleration measured across period. This is a mea-

sure of the amplitude polarization and is consistent for both dip-slip and strike-slip

earthquakes. Another complementary proxy metric is ε, the correlation of spectral

acceleration residuals at varying periods. It is defined as the normalized difference

between an observed spectral acceleration and the mean predicted natural log of

spectral acceleration from a GMPE. Baker and Jayaram (2008) looked at spec-

tral acceleration values at multiple periods and orientations. They fit the NGA

ground motion database for ε(T ) at differing periods, using the Pearson product-

moment correlation coefficient, finding that intraevent residuals have essentially

identical correlation structure to the total residuals. This correlation, ρ, is related

to the width of peaks and troughs in the spectra, and has been shown to be very

consistent in the frequency range 0.3 − 10 Hz (there are fewer records at longer

periods).

4.4 Method

4.4.1 Dynamic Simulations

We dynamically model the source based on parameters pf the 1994 Mw 6.7

Northridge earthquake using the Support Operator Rupture Dynamics (SORD)

code up to 8 Hz. The rupture geometry is specified in Figure 4.1. Following Wald

et al. (1996), the dimensions of the fault follow that of the Northridge rupture: a

width of 17.5 km and down-dip length of 24.5 km, with a strike of 122 and dip of

40 degrees. The fault is composed of 1.7 million subfaults that follow a self-similar

fractal distribution from wavelengths of 80 meters up to the length of the fault,

similar to the method in Shi and Day (2013). It used an average rake of 105 degrees

with the depth to top of the rupture of 5 km. This was run in a characteristic hard

rock site profile, similar to Chapter 3.

We model additional realizations of dip-slip scenarios by varying the hypocen-

ter location and fault topography to generate an ensemble of earthquakes. The
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hypocenter locations are varied and selected from plausible nucleation points on

the fault, at depths near the base of the fault. Figure 4.2 plots the final slip for

the three rupture models, and Figure 4.3 shows the three hypocenter locations and

corresponding peak slip rates. We will refer to these throughout the chapter as

Events 1, 2, and 3.

4.4.2 Kinematic Simulations

We use the slip-rates from the dynamic simulations and convert them to

double-couple point sources to generate broadband moment-rate time series for

input into our wave-propagation code, AWP-ODC. This allows an extension of

ground motion to much further distances from the fault because of the increased

computationally efficiency. Additionally, we can include complexities within the

media that currently SORD doesn’t support. More details about this approach

are discussed in Chapter 3. Figure 4.A.1 shows a figure of the comparison of the

wave-propagation between SORD and AWP, showing that this technique remains

accurate for a dipping fault and layered velocity structure. Figure 4.4 plots the

model domain chosen for this study, including nearby strong ground motion sta-

tions located within and near the study area.

We ran simulations in both 1D and 3D background velocity models both

with and without small-scale medium complexity, with varying statistical param-

eters, based on the approach outlined in Chapter 3. Figure 4.5 plots an example

of the media heterogeneity at the surface for one choice of a random seed for the

background 1D-layered model, using a grid spacing of 20 m. We simulate 100-140

s (depending on the velocity model) of ground motion and store time series over

a regular grid of points on the free surface at a resolution of 80 m. Our 3D back-

ground velocity models are extracted from the CVMSi.426, where the 3D velocity

structure of the Los Angeles basin is relatively well known. In geotechnical engi-

neering, it is generally accepted that the major part of ground-shaking is related to

the upward propagating body waves, because of the bending of seismic rays towards

the surface. We ran tests with and without a geotechnical layer (GTL), and found

that the GTL significantly increased the ground motion response outside valleys
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and basins with respect to the original CVMSi4.26 model, due to the reduction in

otherwise unrealistic high velocities. Figure 4.6 plots the shear-wave structure at

the surface with and without the superposition of small-scale media heterogeneity

for the 3D model including the GTL. We set the minimum shear velocity to 500

m/s, which allows analysis up to 5 Hz in our 3D models. We clamp the velocities

after adding the heterogeneities; this produces a small bias in the heterogeneities

to only be positive near the surface in the shear-wave velocity. However, this is

not likely significantly affecting the ground motion, as it is typically only the top

1-2 grid points that are affected.

Roten et al. (2012) showed the overprediction of near-fault GMPE values

is largely eliminated after a correction of the broadband synthetics for nonlinear

soil effects is applied, reducing SAs from the simulations by up to 70%. Here, in

addition to media complexity and anelastic attenuation structure, we run nonlinear

simulations that include plasticity. Roten et al. (2014) found that larger strains

induced by long-period waves emitted from the San Andreas Fault may give rise

to nonlinear behavior from the shallow sedimentary rock underlying the basins.

Recent simulations of the ShakeOut scenario for an elasto-plastic medium predict

long-period ground motions that are 30 − 70% lower compared to viscoelastic

solutions in the Los Angeles Basin. This reduction probably becomes even more

important at higher frequencies.

We combined our Q(f) code (Withers et al., 2015) with that of a medium

governed by Drucker-Prager plasticity (Roten et al., 2014) to obtain viscoelasto-

plasticity, where yielding occurs in shear via a return map algorithm. The off-fault

material responds elastically until stresses exceed a Drucker-Prager yield condition,

after which viscoplastic deformation occurs. We included this as an additional com-

ponent within our CVM simulations, assuming a NNE-SSW direction of the major

principal stress for computation of the initial stress tensor (representative of re-

gional stress fields in central and southern California) and assuming fluid pressure

at all depths. This approach uses the Hoek-Brown criterion for fracture rock mass

based on the Geological Strength Index (GSI), where we set the cohesion and fric-

tion angle values based on a sandstone. We store the quantity η which represents
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the accumulated inelastic strain due to yielding.

4.5 Results

We validate our synthetic ground motion by first looking at spectral accel-

eration as a function of periods and cumulative absolute velocity, comparing with

with that of GMPEs derived from empirical observations. We then investigate

the consistency of our simulations compared with that of simple proxy metrics,

to highlight the importance of different components within our models. Finally,

even though our simulations are not designed to fit the specific slip asperities of

the Northridge earthquake, we compare our forward simulations to strong ground

motion records.

4.5.1 Spectral Acceleration

We extract spectral acceleration medians and variability information from

leading recent Next Generation Attenuation (NGA) West 2 relations (Abrahamson

et al., 2014; Boore et al., 2015; Chiou and Youngs, 2014; Campbell and Bozorgnia,

2014) for both 1D and 3D background velocity models. The most important factor

controlling the amount of strong shaking in one event is the distance of the site

from the fault plane. Different GMPE models rely on one or more parameters

used to describe this, to name a few: rrup, the closest distance to rupture plane,

rx, the horizontal distance to top of rupture, and rJB, the horizontal distance to

the surface projection of the rupture. We calculate these parameters, in addition

to the others needed for the GMPE relations, at a resolution of a 80 m grid in our

model. The averaged value for the 4 GMPEs is plotted in Figure 4.7 for both a

1D and 3D background model for a spectral acceleration at a period of 0.3 s. The

Boore et al. (2015) model is only dependent on the Joyner-Boore distance, so it

is symmetric about the projection of the fault rupture plane. The other models

are dependent on rrup and rx, so they have more asymmetric patterns, with higher

responses towards the upper region of the simulation domain.

Next, we analyze the ground motion from simulations for each hypocenter
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location. Figure 4.8 plots the GMRotD50 (Boore, 2006) at a period of 0.3 s for all

three hypocenter locations as well as their average using 1D layered models, both

with and without small-scale heterogeneity. We have set Qs0 = vs ∗0.05 and Qp0 =

2∗Qs0, where vs is in m/s, and a Q(f) model with a power-law exponent of 0.8, with

a transition frequency of 1 Hz, as deemed appropriate in Chapter 3 for Southern

California. We use a vertical correlation length of 150, Hurst exponent of 0.05,

horizontal to vertical stretching factor or 5, and a σ = 5%. It is evident that there

are some qualitative similarities to the spatial patterns in Figure 4.7, but significant

differences as well. It is clear that because the hypocenters are located at depth,

there is significantly larger ground motion updip, peaked near the intersection of

the projection of the fault to the surface. This is not too surprising, as the 1D

models don’t include the 3D long wavelength structure that can serve to break up

the directivity at high frequencies. This is analyzed further in the Discussion, as a

function of Rx, the distance perpendicular to strike. There are differences between

the three hypocenter locations, particularly evident in the favored direction of

ground motion. For example, Event 1, with a hypocenter location in the bottom-

right corner of the fault has strong amplitude directed up dip and left of the fault,

while the opposite pattern is evident for Event 2 with a hypocenter located in the

bottom-left corner. The average of the three models smooths out some of the peaks

and troughs observed in the spatial patterns. Presumably, if hypocenters were

distributed more equally along the fault, ground motion patterns would be similar

to Figure 4.7. The addition of small-scale heterogeneity serves to redistribute the

energy on the local scale, shifting regions of low and high ground motion. This is

in contrast to the bilateral strike-slip event, seen in Chapter 3, due to the style of

faulting. Here, the rupture propagates updip to the surface with a shorter path (

and thus scattering plays less of a role) and is distributed in narrow lobes around

the fault.

We ran multiple simulations with varying correlation lengths for each model.

Some of these simulations are highlighted in Figure 4.9, where we compare the

ground motion in a quantitative way by analyzing spectral acceleration and in-

traevent variability for three distance bins within our model. We have chosen to
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use Rrup to group stations as a function of distance from the fault, as it is a better

predictor of the ground motion and allows for more variability near the fault (Rrup

and rx allowing for more asymmetric patterns) than the rJB distance (which is

symmetric about the projection to the surface of the fault rupture plane). The av-

erage ±1 interevent standard deviations are included as well, by using the range of

GMPEs as the median ground motion. We plot each event separately, to isolate the

influence of including multiple rupture models. We find that the median ground

motion changes very little across all rupture models, with and without small-scale

media heterogeneity, with the exception of some small differences at high frequen-

cies farthest from the fault. Any features that are noticed on the spatial maps

plotted in Figure 4.8 are lost here when binning multiple stations together as a

function of distance. As mentioned in Chapter 3 adjusting for Vs30 values when

adding in heterogeneity makes almost no difference when binning a large number

of stations, as we do here. We note that the simulated SAs are generally within one

standard deviation from those predicted by the NGA relations, and are generally

within the variability of the 4 GMPE medians. The power-law exponent of 0.8

performs well, as the level of ground motion is fairly constant across period and

the distance range studied here. The largest deviation from the GMPE trends is

seen at the higher periods, in the range of 3−10 seconds, but this is also the region

where there are few observational constraints for dip-slip ruptures.

We see that the variability is fairly constant between events for distances

near the source, but increases at larger distances. Event 1 has variability very near

that of the GMPE range as a function of period, and only a slight reduction at

larger distances when including small-scale heterogeneity. The correlation length

has only a limited effect on both the ground motion or variability, becoming most

significant above 1 Hz. Events 2 and 3 have reduced variability at the larger

distances, lower than that of the empirical observations. This is as expected from

Figure 4.7, where there is much smaller ground motion in the lower-right corner

of the model domain for Event 1, causing the variability at that range of Rup to

be higher than that of Events 2 and 3. The average of the three simulations is

somewhat lower than predicted by the GMPEs; this could be partly due to the
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simplified velocity structure used in a 1D layered model, where we expect similar

values to single-station standard deviation.

Next, we compare ground motion from a medium including a 3D veloc-

ity structure extracted from the CVM as the background velocity model. Figure

4.10 plots the spectral acceleration at 0.3 s for Event 1, comparing models with

and without small-scale media heterogeneity, as well as plasticity. It is seen that

a much more complex pattern of ground motion is generated form the 3D back-

ground structure, which causes additional scattering and distribution of seismic

waves. It is evident that ground motion is still favorably generated towards the

top-left corner of the model. Reduced source directivity is evident, along with

likely basin-edge amplification. Figure 4.10 shows that heterogeneity slightly re-

duces the bands of energy located along velocity interfaces, and smears out energy

across small spatial domains. We note that there are relatively large regions of

high SA that are largely reduced when plastic effects are included, more similar

to the level recorded in the event. Figure 4.11 plots the reduction in SA at 0.3

s experienced for a model with and without plasticity, showing that at this high

frequency, ground motion is reduced by as much of 70%. This region is mainly in

the area located near the surface projection of the fault, but also exits in a lobe

extending perpendicular to the strike on the footwall. Comparing the reduction

plots with the total accumulated strain also in Figure 4.11, points out the distance

significance of models including plasticity. Permanent deformation decreases with

increasing distance from the rupture. Even though there is still significant reduc-

tion at 30-40 km from the fault, there is little or no strain accumulation in these

regions. This indicates that nonlinear effects on ground motion can cause signifi-

cant reductions at distances beyond where ground motion is reduced directly due

to damping.

Figure 4.12 plots results for models using the 3D background CVM, for

stations located within the basin, defined as where the depth to Z1.0 (the depth

where Vs reaches 1 km/s) is less than 100 m. This results in a somewhat biased

spatial pattern of stations, having more stations located on the hanging wall than

the footwall (see Figure 4.6). Thus, even though ground motion is expected to be
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higher because of low velocity sediments, the distinction between median ground

motion is small, as seen from the ground motion pattern in Figure 4.10. We observe

similar levels of median ground motion as compared to GMPEs, again with small-

scale heterogeneity playing a small role. The biggest difference between models is

at the closest distance, where nonlinear effects strongly reduce the ground motion,

particularly at shorter periods, to lie within the median GMPE range. We can

only look up to 5 Hz here, due to the accuracy of our finite difference algorithm

based on the minimum shear wave velocity in our model. The differences between

events are more noticeable at distances near the fault, where changes in the sources

slip-rate patterns are more significant.

The variability in the 3D models has similar characteristics as seen in the

1D models: there is a reduction at shorter distances moving from shorter to longer

periods, and Event 1 tends to have the highest variability at distances far from the

source. A key feature to point out is that because of the reduced ground motion

at distances near the fault with nonlinear models, the variability is significantly

reduced, from above 0.8 logarithmic units, down to 0.5 and below. It is in this

distance range that strong ground motion stations are lacking significant observa-

tions. Features such as this will become very important as simulations continue to

advance and describe the predictable behavior of faulting.

Figure 4.13 plots median and variability as a function of period similar to

Figure 4.12, but for rock sites, where Z1.0 > 100 m. We note the constant trend

that the medians are slightly underpredicted at larger distances from the source.

This is due to the spatial bias mentioned earlier, where there are fewer stations on

the hanging wall where ground motion is lower. The variability remains near that

of GMPEs, due to the large variation of points on the hanging wall and footwall

of the fault.

4.5.2 Cumulative Absolute Velocity

Looking at metrics besides spectral acceleration can emphasize different

components both in terms of median values and variability levels. Here we choose

the cumulative absolute velocity (CAV), defined as the integral of the absolute
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value of the acceleration time series, as a metric to compare with ground motion

data. Campbell and Bozorgnia (2012) developed a GMPE for both Arias Intensity

(AI) and CAV, based on their previous 2008 GMPE model form. CAV includes

the cumulative effects of ground motion duration, and has a smaller standard

deviation than AI due to the difference in the square rather than absolute value of

acceleration, thus having a higher predictability (Campbell and Bozorgnia, 2010).

The model takes into account amplification due to basin structure; here we compute

the geometric mean of the two as-recorded horizontal components of the synthetic

simulations, and compare with the GMPE model predictions. Figure 4.14 plots

CAV for 1D-layered model medians and variability. It is evident that models

without small-scale heterogeneity underpredict the GMPE models, here by over

two interevent standard deviations. This is because scattering greatly increases the

energy in the later parts of the time series at high frequencies, which influences

the acceleration. It is observed that the correlation length can have an impact

on the level of CAV, with shorter values causing a higher median CAV. The best

value for heterogeneity from this figure indicates that small-scale heterogeneity

superimposed on a 1D layered velocity model performs best with a correlation

length of 150 m. The variability is seen to be fairly similar between models with and

without small-scale structure and different events, with the trend slowly increasing

as a function of distance at a level below that of the empirical observations.

Figure 4.15 and 4.16 plots predicted and synthetic CAV for basin and rock

sites, respectively, defined again based on Z1.0. The 3D CVM structure has signifi-

cantly increased the median values of CAV, and small-scale heterogeneity increases

it even further. While plasticity decreases median values, incorporating both plas-

ticity and small-scale heterogeneity is seen to best match the decay as a function of

distance. There are no large clear systematic differences in the intraevent variabil-

ity; it is seen to fluctuate around the expected range for basin sites, while being

event-dependent for rock sites.
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4.5.3 SARotD100/SARotD50

We analyze the ratio of maximum to median response across orientations for

both 1D and 3D models, superimposing each component separately to determine

its importance. Figure 4.17 plots both SARotD100/SARotD50 and its intraevent

variability compared with the predicted values from Shahi and Baker (2014). It is

seen that the median value for 1D models with no complexity is roughly constant,

around a 1.32 ratio for the entire range of periods studied here. Adding in small-

scale heterogeneity significantly reduces the short period range, above 2 s, but is

still much larger than that of empirical observations. When using a 3D CVM,

however, the 2-10 s period range lies right along that expected from data. Adding

in small-scale heterogeneity further reduces the shorter periods into the expected

range as well, indicating that both small-scale and large-scale media variation is

needed to match that of this proxy metric. We found that 1D simulations with

1000m vertical and 5000 m horizontal correlation lengths did not reduce the ratio at

longer periods, as the CVM model does here. The reason is likely that both sharp

interfaces interacting with long wavelengths in the 3D background model, and

statistical variations at shorter wavelengths combine to reduce the polarization of

waves to be more equally distributed, reducing the ratio. It is seen that plasticity

decreases the fit at short periods, but still lies within the expected range when

small-wavelength heterogeneity is included.

We find that 1D models have lower variability than that expected from

observations. 3D CVM simulations find better agreement with data, with little

variations among different components included within the simulations. The re-

sults here are consistent across multiple source models, showing very little variation

across the three events used in this study.

4.5.4 ε

Here we analyze another proxy metric, the correlation of ε across multiple

periods, seen to be very stable for varying reference GMPEs. ε is defined as the

normalized difference between an observed spectral acceleration and the mean

predicted natural log of spectral acceleration of a GMPE. Here, between-event
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variations average out because all ground motion is from the same event. Figure

4.18 plots ρ for both a long and short reference period. We analyze the results in the

same progression as SARotD100/SARotD50, from 1D models up to more complicated

3D models. We find that at both short and long periods, the correlation in a narrow

bandwidth is near that of predicted observations. As frequency increases from the

reference frequency however, 1D models have significantly higher values of ρ than

predicted. Moving to 3D models, we find that nearby frequencies now have reduced

correlation, bringing them closer to observations. There is a large reduction in

correlation when including small-scale heterogeneity. This is not surprising, as

random velocity structure serve to rid neighboring frequencies of large correlations.

The trends have an upward trend starting at about 3 s period, however, for a short

reference period. This is likely due to the overlap of deterministic and stochastic

structure thats needs to be more carefully defined, since the correlation agrees at

the longer reference period. The correlation would likely reduce even further if

lower values of velocity were included in the simulations, allowing more variation

in the shear-wave velocity in the near surface.

4.5.5 Bias

We can also compare our synthetic results with that of observed ground

motions for a specific event. Even though our simulation was not designed to

match the Northridge earthquake specifically, there are many similarities that make

it useful to compare the synthetics with the response spectrum of strong-motion

data recorded within our model domain, corrected for the minimum Vs of 863

m/s. We used a scaling factor of 1.34 to decrease the size of Event 1 to that of

the estimated moment of the Northridge earthquake (1.3 x 1019Nm), and plot the

psuedospectral acceleration bias versus distance for stations located within our

model region, as shown in Figure 4.2. Figure 4.19 plots the bias (ln[data/model]),

depicting the median, 95% confidence interval, and standard deviation for both 1D

models with and without heterogeneity, and a 3D CVM model run with clamping

performed at 863 m/s, to match the corrected data. We see that 1D layered models

have positive residuals indicating an underprediction with respect to the empirical
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model. The addition of small-scale heterogeneity makes little effect on the bias,

but including 3D structure reduces this considerably, reducing the zero-bias level

to lie within or near the ± 1 σ interval of the recorded motions. This potentially

has important implications for the limitation of using 1D layered velocity models

when trying to model specific earthquakes.

4.6 Discussion

The simulations along the blind thrust fault here represented only a small

subset of potential rupture scenarios and velocity structures that need to be ex-

amined to more fully vet our approach. We found similar trends with period for

the range of models used here, which is expected because they share common slip

distributions, rupture areas, rupture speeds, and rise times. The interevent stan-

dard deviation of ground motion from the ensemble of earthquakes with different

hypocenter locations here is very small, but will increase when using different rough

fault topographies and a more distributed set of hypocenter locations. Additional

dynamic rupture models should cover a range of different magnitudes and fault-

ing mechanisms, as well as different fault topographies and varying hypocenter

locations. These would help better determine the accuracy limit of high-frequency

simulations, as well as the interevent variability of our models. A continued study

to look into the significance of the Q − V s relation as well as the effect of media

heterogeneity (varying the Hurst number and standard deviations) may be needed

to help determine questions such as to whether σ is lower for soil rock sites. Deep

soil sites are generally located in basins, and therefore 3D-geometric effects might

be increasing the variability more than soil nonlinearity decreases it. It may be

helpful to look at vertical components as well, which here are high or of similar

amplitude to horizontal motion due to the motion from thrust-faulting scenarios.

4.6.1 Rx Dependence

Another aspect that can be continued to be studied is the hanging wall

(HW) effect, where there is increased ground motion on the hanging wall side of
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the rupture compared to the footwall (Donahue and Abrahamson, 2014). This is

mainly a geometrical effect due to the closest distance metric, and was observed

in the 1994 Northridge earthquake (Abrahamson and Somerville, 1996). Figure

4.20 plots GMPEs and synthetics for low and high frequency SA for both 1D and

3D models along a cross-section perpendicular to the strike, Rx, averaged along

traces lying within the fault. Rx is the horizontal distance from the top of the

rupture to the site, with positive values of Rx defined as on the hanging wall side.

The hanging wall effect reaches the maximum value over the bottom edge of the

rupture. Here the amplitude of the HW effect is smaller at ZTOR = 5 km (depth

to the top of the fault) than for a surface rupturing fault. We see that the ground

motion predicted by GMPEs is sightly higher above Rx = 0 for both low and high

frequencies. Our 1D layered synthetic simulations lie within the GMPE bounds

for a period of 3s, but have a large pulse for 0.3 s in the −5− 0 range of Rx, where

the ground motion projects from the dipping fault to the surface. This feature was

averaged out when looking at ground motion as a function of Rrup since the ground

motion is lower for positive Rx. We see similar trends for the 3D CVM models,

and note a significant reduction at higher frequencies when including plasticity.

We don’t see a strong characteristic hanging wall effect, as seen in the literature.

More simulations should be performed to isolate whether this remains a consistent

feature among rough-fault simulations.

4.7 Conclusions

We have modeled deterministic broadband ground motion along buried dip-

slip events incorporating rough faults. We compared ground motions experienced

in both 1D and 3D background models, including features such as small-scale media

heterogeneity, plasticity via the Drucker-Prager yield condition, and frequency-

dependent attenuation. For our models to be useful for engineering purposes, it is

important that synthetic predictions match that of empirical observations. Here

we found that that the spectral acceleration at various periods from our models

match the distance decay similar to GMPEs. We observe that while the ground
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motion pattern changes, the median ground motion is not affected significantly

when including small-scale heterogeneity, when binned as a function of distance.

We perform a parameter space study by varying statistical parameters and find that

the variability is fairly independent of the correlation length. Heterogeneity serves

to significantly increase the cumulative acceleration velocity, however, bringing it

closer to that GMPEs, particularly when modeling 1D layered velocity models.

We found that unconsolidated deposits may significant amplify the seismic ground

motion during large earthquake, especially at higher frequencies (> 1 Hz), and

ignoring nonlinear effects could result in costly misguidance in earthquake-prone

regions. Additionally, we compare several proxy metrics with our simulations

using the ensemble average, and find that 3D heterogeneity at both the long and

short scalelengths is necessary to agree with data. Specifically, small-scale media

complexity decreases the polarization ratio and correlation across period to that

of similar of observations, indicating the importance of including stochastic-based

media heterogeneity as ground motion prediction extends to higher frequencies.

These components should be included in future simulations to best model the

ground motion from earthquakes. It is shown that broadband simulations are

strongly influenced by source parameters such as the hypocenter, rupture diversity

and extent; more simulations should be performed to determine the extent of

predictability of strong ground motion for both specific and generic events.

4.8 Data and Resources

The southern California velocity model CVM-S 4.26 can be obtained from

SCEC at http://scec.usc.edu/scecpedia/. Most of the data-processing work was

done using MATLAB (http://www.mathworks.com/products/matlab/). Figures

were prepared using MATLAB and the Generic Mapping Tools package

(http://www.soest.hawaii.edu/gmt/). All electronic addresses referenced here were

last accessed October 2014. All other data used in this paper came from published

sources listed in the references.
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Figure 4.1: Rough fault geometry of dip-slip fault with complex geometry mod-
eled off the dimensions of the 1994 Northridge earthquake.
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Figure 4.2: Final slip along the fault (m).
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Figure 4.3: (Top) Maximum slip-rate (m/s) along the 3 different rupture models.
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Figure 4.4: Simulation region location (large rectangle) with strong ground mo-
tion stations indicated by triangles. Small box indicates vertical projection of
rupture plane to surface.
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Figure 4.5: Plot of small-scale media heterogeneity of shear wave velocity at sur-
face for a background velocity model with minimum Vs of 863 m/s. The correlation
length = 150 m, with H = 0.05, and σ = 5%.
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Figure 4.6: Map-view of shear wave velocity extracted from CVMSi.426, including
a GTL layer (left) without and (right) with small-scale media heterogeneity.
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Figure 4.7: Average of 4 GMPE media predictions of SA(g) at a period of 0.3 s
for (left) for 1D-layered model and (right) for the 3D CVM including a GTL layer.
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Figure 4.8: Spectral acceleration of T = 0.3 s in g for (top) models without
small-scale heterogeneity, and (bottom) including small-scale heterogeneity. The
left 3 columns indicate the three hypocenter locations as in Figure 4.4, with the
rightmost column the average of the three.
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Figure 4.9: (Top) Median spectral acceleration and (bottom) intraevent variabil-
ity as a function of period at a short, medium and far distance within our model
domain. ‘Hetero’ refers to small-scale heterogeneity.
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Figure 4.10: Spectral acceleration at 0.3 s (g) for a background CVM model
(left) without small-scale heterogeneity, (middle) including small-scale heterogene-
ity, and (right) including both plasticity and small-scale heterogeneity.
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Figure 4.11: (Left) Reduction of SA % at 0.3 s for Event 1 when including
plasticity within the model. (Right) Final principal plastic strain η at the surface
(log units) corresponding to Event 1 plotted in Figure 4.10. The rectangle and line
depict the surface projection of the fault plane and the projection of the fault to
the surface, respectively.
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Figure 4.12: Similar to Figure 4.8, but using a 3D model with stations located
in the basin.
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Figure 4.13: Same as Figure 4.12, but for rock sites.
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Figure 4.14: CAV versus distance for 1D layered velocity models. ‘Hetero’
refers to small-scale heterogeneity.
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Figure 4.15: CAV versus distance for 3D background CVM velocity models for
basin sites. ‘Hetero’ refers to small-scale heterogeneity.
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Figure 4.16: Same as Figure 4.17 but for rock sites. ‘Hetero’ refers to
small-scale heterogeneity.
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Figure 4.20: Spectral Acceleration (g) versus Rx for averaged profiles within
the fault strike, for (left) 1D layered models, and (right) 3D CVM structures.
(Top) is for period of 3.0 s and (bottom) for 0.3 s. ‘Hetero’ refers to small-scale
heterogeneity.
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4.10 Appendix

4.10.A Verification of the Two-step Procedure

Here we compare the accuracy of the two-step procedure, using the slip-rate

time series and normal vectors output from SORD to convert to a moment-rate

time-series for each subfault as the input into AWP. Figure 4.A.1 compares the

SORD and AWP seismograms and frequency spectra for an example station up-

dip from the hypocenter using a 1D layered model. We are only able to compare

up to 4 Hz, due to the required 10 points per wavelength necessary in SORD

for accurate wave-propagation in this velocity model. Using the Kristekova et al.

(2009) approach to calculate the envelope and phase misfit between our models,

we find envelope and phase misfits less than 5% for all components except for the

fault-normal envelope, which has slightly higher error, most likely due to boundary

reflections occurring late in the time series that are only partially damped within

SORD .
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Chapter 5

Conclusions

5.0.1 Overview

The objective of this thesis was to better constrain seismic hazard in the

bandwidth important for engineering applications by deterministically modeling

broadband seismic ground motion, with application to regions with poor data

coverage. This study helped determine the importance of different components

in broadband ground motion simulations that contribute to the level of seismic

hazard. This included the impact of the source from both a generic strike-slip fault

and a suite of dynamic ruptures occurring along a blind thrust dip-slip fault, as well

as contributions from the medium, such as anelastic attenuation, scattering from

small-scale heterogeneities, and nonlinear effects such as plasticity. The synthetic

ground motion was validated by using empirical data by first comparing with

leading ground motion prediction equations as well as a group of proxy metrics

that a wide range of data has been shown to be consistent with.

Whereas available computational resources have limited previous determin-

istic ground motion studies, this research used the Titan supercomputer’s GPUs

to extend ground motion prediction to higher frequencies using a 3D fourth-order

staggered-grid finite difference method (AWP-ODC) with a grid spacing of 20

m. We deterministically model earthquakes by incorporating realistic fault to-

pography in 3D simulations of earthquake source models and include scattering

effects caused by small-scale velocity and density heterogeneities in the medium
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(that match borehole studies in a statistical sense) affecting the ground motion

intensity. To further increase the accuracy of our model, we have implemented

frequency-dependent attenuation via a power law above a reference frequency.

We model generic strike-slip events and blind thrust earthquakes matching

the fault dimensions of the 1994 Northridge earthquake extending up to 8 Hz.

First, we perform the dynamic rupture propagation using SORD along several

realizations of rough fault topographies. An ensemble of displip scenarios is mod-

eled by varying the hypocenter location that results in similar moment magnitudes.

The slip-rate data is converted to a kinematic source and input into the wave prop-

agation code AWP-ODC, which incorporates frequency-dependent attenuation as

well as Drucker-Prager plasticity. We also include small-scale medium complexity

in both a 1D-layered model and a 3D medium extracted from SCEC CVM-S4 in-

cluding a surface geotechnical layer. The ground motion is analyzed spatially by

binning the ground motion as a function of distance and comparing with GMPEs.

5.1 Summary of findings

We find that the spectral acceleration at various periods from our models

are typically within 1 inter-event standard deviation from the median GMPEs and

compare well with that of recordings from strong ground motion stations at both

short and long periods. At periods shorter than 1 second, Q(f) is needed to match

the decay of spectral acceleration seen in the GMPEs as a function of distance from

the fault, using a Q(f) power-law exponent in the range 0.6 − 0.8. Plasticity is

needed to reduce near-field ground motion to that near observable levels in regions

of near-surface low velocity layers. Small-scale media complexity is observed to

decrease the polarization ratio to that of similar to observations. We find that

when binning stations with a common distance metric that media heterogeneity

can also have a significant impact on the level of ground motion (both decreasing

and increasing it), due to scattering attenuation and redistribution of energy.

Small-scale heterogeneity can significantly affect the intra-event variability

at frequencies greater than ∼ 1 Hz, becoming increasingly important at larger dis-
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tances from the source. The intra-event variability of our simulations in the CVM

is typically larger than that for the observations at frequencies > 1 Hz. However,

this discrepancy tends to decrease when small-scale heterogeneity in the medium

is included in the simulations, suggesting the need for a highly complex velocity

model to fit ground motion variability. Plastic effects in the medium also reduce

the variability, particularly at distances close to the source. The intra-event vari-

ability for the layered model simulations is near observed values of single-station

standard deviation. Also, the agreement of intra-event variability between simu-

lations and observations increases when small-scale heterogeneity is included, in

some cases dramatically reducing the uncertainty. This is particularly important,

because uncertainty in ground motion estimates dominates the overall uncertainty

in seismic risk.

Additionally, we showed that it is important to compare our synthetic

ground motion with alternative metrics, to emphasize the importance of different

components we include within our simulations. An example is the 5-95% duration

of Arias Intensity, where small-scale heterogeneity has a significant effect on the

durations, due to the scattering of energy into the coda. Also, there is a group

of proxy ground motion metrics that a wide range of data has been consistently

shown to agree with. It is important to verify that our simulations are realistic and

comparable to that of these ground motion proxies if they are to be used for future

seismic hazard purposes. One example we used was the the maximum-to-median

spectral acceleration across all horizontal orientations. It was shown that full 3D

complexity in the velocity model, both on the large scale extracted from the CVM

and the small-scale from heterogeneities is needed to match empirical observations.

Other proxies also emphasized the importance of different components to include

within our simulations, for example the correlation of spectral acceleration across

periods and the characteristic pulse period.
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5.2 Future research directions

Future simulations will add potentially even further complexities, e.g. to-

pography, a damage zone along the fault, etc. A goal will be to identify key

components (particularly path and site effects) using the computational simula-

tions that contribute to the uncertainty in ground motion across a bandwidth

appropriate to earthquake hazard assessment, with the goal of better characteriz-

ing and reducing the intra-event variability. Simulations will be designed to first

match recent events, where strong ground motions records exist. After validation

of the approach, the procedure will be applied in regions with poor data cover-

age. A focus will be on simulating ground motion for possible future events, using

existing community velocity models for the region. This well help to better deter-

mine future ground motion and its variability, to better constrain seismic hazard.

With these simulations, characterization of different effects could be implemented

into the framework of ground motion prediction equations to better determine and

constrain ground motion, essential to properly assigning seismic hazard and risk.
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