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Abstract— Challenges in forecasting fleet development and 

deployment are in part due to fuel price uncertainty.  To address 

this issue, a recent study developed an aircraft-specific Leontief 

technology operating cost model (LM) to compare aircraft costs 

under fuel price uncertainty.  This model considers individual 

aircraft types to be Leontief technologies, such that the key 

drivers of cost must be used in fixed quantities.  While asserted in 

the literature that models in this form can more accurately 

predict operating costs, the Leontief specification precludes a 

precise examination of how aircraft size will change due to 

economic forces.  To this end, an econometric operating cost 

model (EM) is developed.  The translog functional form is used to 

capture the effect of the key drivers of cost on jet operating costs 

and also allow for substitution between inputs.  A comparison of 

the LM and EM shows that the Leontief technology assumption 

limits the LM to capturing operating costs in only a snapshot in 

time, while the EM captures the input substitution that occurs 

with factor price changes.  The conclusion that the EM has strong 

predictive potential encourages a strengthening of the model 

towards capturing costs related to passenger preferences.  This 

study takes a total logistics cost approach (TLC) and considers 

passenger value of frequency along with operating cost to be the 

total cost per operation.  The cost-minimizing seat size is smaller 

and more reflective of existing conditions under TLC compared 

with operating cost alone, yet the difference diminishes as fuel 

price increases.  This study highlights the predictive potential of 

econometric cost models and also the importance of considering 

passenger preferences in predicting future aircraft economics.  

Keywords—Jet Aircraft; Operating Cost; Aircraft Size; 

Logistics Cost; Fuel Price; Leontief Technology; Econometric 

Model  

I.  INTRODUCTION 

Challenges in forecasting fleet development and 

deployment are in part due to fuel price uncertainty.  Fuel 

price uncertainty is due to fuel and energy price fluctuations 

and a growing awareness of the environmental externalities 

related to transportation activities, particularly as they relate to 

climate change [1].
1
 The impact of fuel price uncertainty is 

                                                           
1The authors would like to thank the University of California Transportation 
Center for funding support.  

evident in conflicting future fleet forecasts.  The Boeing 

Current Market Outlook predicts the percent of regional jets in 

service will drop by 10 percent in 2028.  This prediction is 

mainly due to predicted surges in the price of fuel as regional 

jets have lower fuel economy per seat than larger jets [2].  An 

increase in single and twin aisle aircraft is predicted over the 

largest jets because of their ability to balance operating costs 

with passenger preferences.  In contrast, a fleet forecast 

performed by MITRE predicts a large increase in the percent 

of regional jets, in part due to surging passenger demand, and 

an increase in the largest aircraft due to cost savings potential 

[3].  The conflicting forecasts showcase the challenge of 

predicting how future fuel prices will affect fleet in the 

aviation system and also the importance of considering 

passenger demand and preferences in the forecasts.  As 

airlines are considering new fleets and manufacturers are 

looking to meet future demands, research on the relationship 

between aircraft size and fuel price and the influence of 

passenger preferences on aircraft comparative costs can assist 

both parties in determining the aircraft type to best meet future 

cost pressures. 

This study will 1. Investigate the potential of two 

operating cost models to capture the effect of fuel prices on 

aircraft economics and 2. Develop a Total Logistics Cost 

model by incorporating passenger preference cost and 

operating cost.  The first cost model presented is an 

econometric operating cost model (hereafter, EM), in that it 

uses econometric methods to model operating costs based on 

airline-aircraft operating cost data.  This model allows for 

detailed analysis on the interactions between the key drivers of 

cost and also allows for operating cost predictions over a 

range of fuel prices.  However, such a process is data 

intensive, and the resulting model is cumbersome due to a 

long variable list.  To this end, the EM developed in this study 

is compared with operating cost models which consider 

aircraft to be Leontief technologies (hereafter, LM) recently 

developed by Smirti and Hansen [4] to study aircraft 

comparative costs under fuel price uncertainty.  The LM sums 

the key drivers of cost and allows for operating cost 

calculation and prediction with limited input needs.  It is 

Please email Megan Smirti Ryerson if you 
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asserted in [5] that models developed in this manner, termed 

engineering models, can lead to a more accurate cost 

functions; this study will explore this assertion by highlighting 

the unique contributions of econometric models and 

examining the relationship between the LM and EM estimates.  

The comparison sheds light on the ability of EM to 

capture input substitution and therefore more accurately reflect 

operating costs and minimum-cost aircraft size under fuel 

price uncertainty.  Therefore, this study also looks to 

strengthen the predictive power of EM by considering a total 

logistics cost function which sums operating and passenger 

costs related to service frequency.  Passenger costs are 

captured through a passenger schedule delay function.  The 

seat capacity which minimizes operating cost alone and the 

total logistics cost is determined for a range of fuel prices and 

distances traveled, to identify the aircraft types which provide 

the lowest costs for a range of future fuel and passenger 

preference scenarios.  

The engineering model developed in [4] follows a long 

line of established aircraft engineering cost model literature 

[6-8].  Reference [4], however, departs from the literature in 

that it takes a total logistic cost approach and develops cost 

models for three representative aircraft using US DOT Form 

41 data: a narrow body Boeing 737-400, an Embraer 145 

regional jet, and an ATR 72-200 turboprop.  Fleets of each 

vehicle category are compared for operating cost alone and 

total logistics cost over a range of fuel prices and distances, 

and the minimum cost fleet mix is determined.  A limitation is 

the consideration of aircraft size as inelastic; as there are 

currently a wide range of aircraft sizes on the market, it is 

possible to consider aircraft size to be elastic.
12

 In an attempt 

to generalize engineering aircraft cost models that are not 

specific to an aircraft type, Swan and Adler [5] develop two 

jet aircraft operating cost models using Boeing and Airbus 

aircraft data only: one for single aisle aircraft and one for 

double aisle aircraft.  Limiting the data source to the two 

airframe manufacturers implicitly limits the aircraft types 

considered to mid-size and large aircraft.  Furthermore, as the 

model is based on aircraft size and distance traveled, the 

model is not able to capture cost changes due to economic 

forces such as fuel price fluctuations.  Additional studies 

considering cost economics of aircraft size related to stage 

length using engineering cost models prior to 1999 are well 

discussed in Wei and Hansen [10].    

Reference [10] develops an econometric operating cost 

model for jet aircraft with elastic aircraft size at the aircraft-

airline level in a departure from the literature discussed to this 

point.  The model includes fuel price as a variable in an 

econometric operating cost model, yet it is not a key variable 

of interest.  Reference [10] find that aircraft economies of 

scale exist, yet attenuate at longer stage lengths.  The variables 

of interest are restricted to those that help investigate 

                                                           
1 It is important to note that this was not always the case.  In a 1986 article, 

Viton [9] expresses an interest in modeling costs with aircraft size as a 

continuous variable yet cites the limited aircraft sizes available during the 
study period as reason to perform an aircraft specific analysis.   

economies of aircraft size – seat size and average stage length 

– and aircraft types that were commonly used in the study 

period of 1987-1998.  The importance of considering a total 

logistic cost function with passenger and operating cost rather 

than individual cost components is demonstrated by 

comparing [10] and [11].  Using a nested logit model, [11] 

finds that an airline‟s market share experiences greater 

increases from increasing vehicle frequency rather than 

aircraft size.  These findings point to the importance of 

balancing airline operating cost and passenger preference costs 

when choosing fleet mix and determining flight schedules.  

Beyond aviation, total cost studies considering a combination 

of operating passenger, and infrastructure costs have a long 

history in urban transportation [12]. 

The remainder of this paper is organized as follows: The 

following section reviews the data collected for the 

development of the EM and the modeling approach.  

Coefficient estimates are presented and interpreted based on 

the objective of the study.  The EM and LM are then used to 

calculate operating costs for a range of aircraft types and fuel 

prices, and the results compared.  Based on the strength of the 

EM, the model is used to predict aircraft operating costs over 

future fuel prices to determine the seat capacity that minimizes 

costs.  Finally, a generalized cost function that sums operating 

and passenger value of service frequency is developed and 

used to perform similar predictions.  

II. ECONOMETRIC OPERATING COST MODEL 

A. Data Description  

There are multiple variables which influence operating 

cost and over which an airline can assert control.  Reference 

[10] includes aircraft size, labor and fuel factor prices, and 

average distance traveled as such variables.  The model 

developed in this study extends these variables to others that 

influence operating cost: average aircraft age, technology age, 

and utilization.  To develop the operating cost model, data 

from the US Department of Transportation (DOT) Form 41 is 

collected.  Form 41 provides quarterly cost data and operating 

statistics broken down per airline and per aircraft type.  Data 

was collected for all quarters between the years 1996 to 2006, 

inclusive.  Data from which factor prices are derived and the 

independent variable, Direct Operating Cost, were collected 

from Form 41 Schedule P-5.2.  This variable is termed 

Operating Cost per Departure (OCD).  Ownership costs 

related to depreciation and rentals were eliminated from this 

total to capture operational costs only.  The data collected to 

develop factor prices includes expenditures on Aircraft Fuels 

and Pilots and Copilots Salaries.  Aircraft operating statistics 

were collected from Form 41 Schedule P05B.
23

 These 

statistics, collected for scheduled and non-scheduled service, 

                                                           
2 It is important to note that aircraft fuels is the actual cost of the fuel, without 

fuel taxes, any additional costs for the act of fueling the aircraft, or other 
charges.  It is not the total cost related to fuel consumption, but rather the 

actual cost of fuel.  The fuel tax exclusion has little impact as the tax on 

commercial aviation fuel was constant and minimal through at the study 
period at $0.044/gallon. 
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include gallons of fuel used; available seat miles; revenue 

aircraft miles, departures performed; and block hours, or the 

sum of hours an aircraft spends from gate to gate.  From these 

prices and statistics, the unit price of fuel (UPF), the unit price 

of labor (PIL), average stage length (ASL), and aircraft seat 

capacity (Seat) are derived.   

As the variable Seat is a key component of the study, a 

more detailed description of the derivation is presented.  Many 

airlines operate identical aircraft types with different seat 

capacities determined by their business models.  For example, 

a legacy carrier looking to lure business passengers may 

operate an aircraft with fewer seats and more differentiated 

service classes, while a low cost carrier may use a one-class 

configuration.  To exclude any cost impacts to operating 

different configurations of the same aircraft, each aircraft type 

is assigned the weighted average seat size for that aircraft 

type.  The resulting seats range from 49 to 360 seats for 

twenty three unique aircraft types (Table I).  

TABLE I.  AIRCRAFT MODELS USED IN OPERATING COST ANALYSIS  

Year of 

Introduction 

Aircraft Model Seats 

1992 Canadair RJ-200/ER/-440 49 

2001 Canadair RJ-700 68 

2002 Embraer EMB-170 72 

1982 BAE-146-200 88 

1988 BAE-146-300 91 

2004 Embraer EMB-190 100 

1997 Boeing B-717-200 111 

1990 Boeing B-737-500 113 

2003 Airbus A318 114 

1996 Airbus A319 123 

1998 Boeing B-737-700/700LR 128 

1988 Boeing B-737-400 143 

1988 Airbus A320-100/200 148 

1998 Boeing B-737-800 150 

2001 Boeing 737-900 169 

1996 Airbus A321 170 

1982 Boeing B-767-200/ER 178 

1983 Boeing B-757-200 184 

1998 Boeing B-757-300 222 

1986 Boeing B-767-300/ER 231 

1995 Boeing 777-200/20LR/233LR 282 

1997 Boeing B-767-400 286 

1989 Boeing B-747-400 360 
 

Data on aircraft age and utilization is collected from Form 

41, Schedule B-43, which includes the total number of each 

aircraft model in service per airline and the year the airline 

began to operate them. The aircraft utilization (UTIL) 

variable, the block hours per quarter operated for each airline-

aircraft pair, was derived from these statistics, as well as the 

average length of time an airline operates a particular aircraft 

type (AvgAge).  Collected from publicly available sources 

was the first year of entry in service across domestic airlines 

for a specific aircraft type; this data was used to calculate the 

technology age (TechAge) of the aircraft, or years that elapsed 

in between 2006 and the first year of aircraft service.   

To capture the materials price, the Producer Price Index is 

collected from the Bureau of Labor Statistics; a similar 

method is employed in the work of [13] as well as [14] to 

develop airline cost functions.  Instead of converting each year 

of data into constant dollars, this study follows [14] and uses 

the Producer Price Index as both a proxy for materials cost and 

also a gauge of changes in the economy and inflation.  

Similarly, a time trend variable is included to capture changes 

in operating cost over time.  

To determine any data reporting inconsistencies, the data 

was cleaned with assistance from Database Products, the 

distributor of Form 41 data.  The variables derived from the 

data sources are presented in Table II.  

TABLE II.  OPERATING COST MODEL VARIABLE DESCRIPTION 

Variable 

Code 

Variable Description (Units) 

Dependent Variable 

OCD  Total aircraft operating expenses per departure ($)  

Independent Variables 

t  Time trend variable 19961: t=1….20064: t=44  

Seat  Average seats per departure (Seats)  

Util Block hours in year-quarter t (Utilization metric) (Hours)  

ASL Average stage length (Miles)  

Pil Pilot salaries per block hour ($)  

PPI  Producer price index (Proxy for materials price and service)  

UPF  Unit price of fuel ($/Gallon)  

AvgAge  Average years of aircraft operation by airline (Years) 

TechAge  Aircraft technology age (Years) 

  

The twenty six airlines (legacy, regional, and low cost) 

present in this study are shown in Table III.   

TABLE III.  AIRLINES USED IN OPERATING COST ANALYSIS 

Airlines 

American AirTran 

Alaska JetBlue 

Continental Midwest 

Delta Independence Air 

Northwest Trans World 

United Air Wisconsin 

USAir Atlantic Southeast 

Southwest Comair 

America West Horizon 

National Skywest 

ATA Hawaiian 

Pinnacle Aloha 

Frontier Spirit 

B. Econometric Operating Cost Model Specification and 

Estimation Results 

The model specification used is a demeaned translog 

model to estimate the operating cost per departure (OCD) (1).  

The translog model is widely used in cost modeling (for 

example, [10, 13, 14]); as a second order Taylor series 

expansion about the mean, it is able to approximate many 

different model specifications.  The variables in the model are 

defined by two indices that are the unique identifier of one 
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observation: k indicates a unique airline code and aircraft type 

combination and q indicates year and quarter.   

There are four groups of independent variables in the 

model.  The first, α, is a time-invariant and aircraft airline 

group-invariant constant.  The second, τt, is the time trend 

variable (t) and the coefficient to be estimated (τ).  The third, 

Ak, are the airline-aircraft fixed effects, which capture the 

unobserved airline-aircraft effect.  The variables X
j
kq represent 

the value of independent variable j for a given (k, q) 

combination (where j and l are indices representing the N=8 

independent variables that vary with a particular k).  

Independent variables j =1,2,…6 are transformed with the 

natural logarithm (Seat, Util, ASL, Pil, PPI, UPF) and 

independent variables j =8, 9 not transformed with the natural 

logarithm (AvgAge, TechAge).  Parameters ωj and δj are to be 

estimated.    

The model is demeaned such that the dependent variable 

and the independent variables which vary across a given k are 

estimated about their mean values.  This enables 

straightforward interpretations of the results: the average 

effect of each independent variable j is immediately evident 

from each parameter estimate ωj.  

𝒍𝒏 𝑶𝑪𝑫𝒌𝒒 − 𝒍𝒏 𝑶𝑪𝑫𝒌𝒒                
 

= 𝜶 + 𝝉𝒕 + 𝑨𝒌 +  𝝎𝒋

𝑵

𝒋=𝟏

  𝑿𝒌𝒒
𝒋

− 𝑿𝒋    +   𝜹𝒋𝒍

𝑵

𝒍≥𝒋

 𝑿𝒌𝒒
𝒋

− 𝑿𝒋    

𝑵

𝒋=𝟏

 𝑿𝒌𝒒
𝒍 − 𝑿𝒍    + 𝜺𝒌𝒒 

 
 

This is a panel data set as there are k airline-aircraft 

groups over a set of year-quarters q.  Because the elements of 

k are not constant across years, the panel is unbalanced.  To 

estimate the model, a fixed effects mean-difference model is 

used, where the fixed effects are captured by Ak.  Each 

observation in a particular group m (where m ∈ k) is estimated 

about the mean of group m.  This method ensures consistent 

estimates of ωj and δjl, however, the method precludes 

estimation of the time-invariant regressors Ak.  As the data is 

over 44 time periods, the estimation method also corrects for 

autocorrelation present across airline-aircraft pairs.  Finally, an 

examination of residuals shows heteroskedasticity across 

groups, and therefore generalized least squares with 

heteroskedastic-robust standard errors estimation is used 

ensuring consistent standard errors.  

Table IV contains estimation results for the EM.  The 

coefficient estimates generally have the expected signs and 

most are significant at the five or one percent level.  The 

evaluation of operating cost economies of aircraft size 

(represented by the variable Seat) and fuel price (represented 

by the variable UPF) begins with the first order coefficient on 

aircraft size, .44.  This implies operating cost economies of 

aircraft size; a one percent increase in aircraft size would 

increase operating cost by .44 percent.  The second order term 

of Seat is positive (.27) and implies that aircraft economies of 

scale attenuate for aircraft sizes larger than the average size.  

There are economies of fuel price found, and the second order 

effects show that as fuel prices deviate positively from the 

mean these cost economies of fuel price decrease.  Finally, the 

interaction term between fuel price and aircraft size, 0.085, 

shows that as fuel prices increase, economies of scale due to 

aircraft size diminish slightly.  In sum, economies of scale 

attenuate at larger aircraft sizes and at higher fuel prices, 

which confirms the assertion that “increases in fuel efficiency 

are harder to achieve in a larger plane” [15].   

TABLE IV.  JET AIRCRAFT EMPIRICAL RESULTS 

Variable  

Parameter 

Estimate 

Standard  

Error 
Constant -0.129***  0.025 

t 0.002***  0.001 

Seat 0.436***  0.062 

ASL 0.775***  0.041 

Pil 0.346***  0.024 

UPF 0.364***  0.026 

Util -0.056***  0.025 

PPI 0.036 0.163 

AvgAge+ 0.037***  0.004 

TechAge+ 0.009***  0.002 

Seat*Seat 0.273***  0.05 

ASL*ASL 0.131***  0.013 

Pil*Pil 0.045***  0.003 

Util*Util -0.020***  0.006 

UPF*UPF 0.161***  0.026 

AvgAge+*AvgAge+ 5.7*10-4*  3.0*10-4  

TechAge+*TechAge+ 4.5*10-4***  2.0*10-4 

Seat*ASL -0.187***  0.062 

Seat*Pil -0.129***  0.033 

Seat*Util -0.0247 0.0285 

Seat *PPI 0.2845 0.2164 

Seat*UPF 0.085***  0.037 

Seat*AvgAge+ -0.027***  0.007 

ASL*UPF -0.005 0.025 

ASL*Pil 0.0117 0.0212 

ASL*Util -0.0436*** 0.0179 

ASL*PPI 0.0356 0.1492 

ASL*AvgAge+ 0.0015 0.0039 

Pil*Util -0.0190 0.0127 

Pil*PPI -0.0215 0.0696 

UPF*Pil -0.103***  0.021 

Pil*AvgAge+ 0.0084*** 0.0032 

PPI*AvgAge+ 0.0313* 0.0170 

AvgAge+*UPF -0.014***  0.003 

UPF*PPI -0.565***  0.185 

Util*UPF -0.021 0.019 

Util*PPI 0.1700*** 0.0748 

Util *AvgAge+ -0.0077*** 0.0030 

TechAge+*Seat -0.0004 0.0049 

TechAge+*ASL -0.0011 0.0037 

TechAge+*Pil -0.0011 0.0022 

TechAge+*UPF 3.54*10-3 2.27*10-3 

TechAge+*Util -0.0057*** 0.0021 

TechAge+*PPI 0.0166 0.0138 

TechAge+*AvgAge+ -0.002***  4.5*10-4  

N obs  1657 

N groups  66 

***Variables are significant at the 1% level  
**Variables are significant at the 5% level  

*Variables are significant at the 10% level  
+Variables are not natural log  
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The negative sign on the interaction term between 

distance traveled (represented by the variable ASL) and fuel 

price confirms that there are more scale economies over longer 

distances due to fuel consumption.  As the cruise phase is the 

most efficient from a fuel consumption perspective, this is the 

expected result. This finding is further reinforced by the 

interaction term between aircraft size (Seat) and distance 

traveled (ASL), which shows that at longer distances traveled 

there are strong economies of operating cost due to aircraft 

size.  

While previous studies have excluded the technology age 

(TechAge) and the average age (AvgAge) variables, the model 

estimates show that the inclusion of these variables is 

warranted by their significant effect.  The negative interaction 

term between average age and fuel price is unexpected, and 

could be explained by airline comfort with aircraft.  As an 

airline learns how to operate an aircraft with experience, it 

learns the optimal fuel level and optimal flying speeds and 

altitudes.  Such benefits are found by Southwest Airlines and 

their one aircraft type fleet [16].  The interaction of technology 

age and fuel price is not statistically significant, yet the sign of 

the coefficient tells us that as an aircraft ages it is more 

impacted by fuel prices.  The interaction between aircraft size 

and average aircraft age shows that smaller aircraft show the 

signs of age more quickly, as a larger aircraft has more cost 

economies due to size than a smaller aircraft of the same age. 

III. COMPARISON OF OPERATING COST MODEL RESULTS 

UNDER FUEL PRICE UNCERTAINTY 

This section will use the EM to calculate operating costs 

for a range of inputs and compare these results with the LM.   

A. Econometric Operating Cost Model Analysis   

Using the coefficient estimation results presented in Table 

IV and other assumed inputs, operating cost per seat mile over 

a range of stage lengths for pairs of aircraft sizes and prices of 

fuel is calculated.  The operating cost calculation is done by 

estimating the cost functions at certain specified values.  The 

results presented will be parametric over fuel price and stage 

length; combinations of these two variables will be specified 

inputs.  The PPI and time trend variable will be set at the 2006 

value, and the values reported will be in 2006 dollars.  For 

labor costs, a simple univariate linear model that relates the 

dependent variable, the unit price of labor, to the independent 

variable, seats is developed.  The following is the resulting 

equation, with all coefficients significant at the 5 percent level. 

Pil = 140.1 + 1.78 * Seat (2) 

For the remaining variables, the average factor prices and 

aircraft operating statistics for Delta Airlines will be used.  

Fig. 1 presents the results.
34

 There is a unique minimum 

operating cost per seat mile for each aircraft size, dependent 

on the average stage length flown and the fuel price.  For 

constant fuel price, as the distance flown increases, the aircraft 

                                                           
3 Fig. 1 presents four representative stage lengths for ease of presentation.  

size which minimizes operating cost per seat mile increases.  

This finding is consistent with the negative interaction term 

between seats and average stage length.  For a constant 

distance flown, as fuel price increases, the aircraft size which 

minimizes operating cost per seat mile increases; while the 

interaction term between seats and fuel price is positive, the 

interaction between labor and fuel price is negative.   

 

Figure 1.  Operating cost per seat mile vs. seats for representative fuel prices.  

B. Leontief Technology Operating Cost Model Comparison  

This section will investigate the difference in predicted 

values between the LM and EM developed in section II of this 

study.  The LM was developed by Smirti and Hansen [4] using 

average values from the same data set used in the current 

study, but for the year 2007.  In [4], three specific aircraft 

types are chosen for cost calculation, two of which are jet 

aircraft: an ERJ 145 regional jet (50 seats) and a Boeing 737-

400 narrow body (141 seats).  The key drivers of cost 

including fuel costs, labor costs, and maintenance costs are 

summed based on statistical relationships between fuel burn 

and distance traveled and travel time and distance traveled.
45

 

The values  presented in [4] are reported in Table V.  Using 

the same methodology as in [4], the cost coefficients for a 

mid-sized aircraft, the narrow body Boeing 757-200 are 

determined so the comparison can cover aircraft with ranges 

up to 3000 miles.  The values calculated for the Boeing 757-

200 are reported in Table V.  

                                                           
4 It should be noted that [4] also includes airport charges as part of the 

operating costs; these are eliminated for this analysis because they are not part 

of the direct operating costs. 
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To perform the comparison of LM and EM results, three 

key inputs are necessary: fuel price, distance traveled, and seat 

size.  The seat size input is only necessary in the EM: the three 

set seat sizes for the aircraft in the LM are used.  Three 

representative fuel prices: $0.50/gallon, $3.00/gallon, and 

$5.00/gallon are used and stage lengths between 100 and 3000 

miles are used as the additional inputs.
56

  

TABLE V.  OPERATING COST PER DEPARTURE EQUATIONS 

 Coefficient Value 

Aircraft 

Category 

Fuel Price 

(f) 

Distance*Fuel 

Price 

(d*f) 

Distance 

(d) 
Fixed 

B757-200 5.1*102 2.0 2.5 9.4*102 

B737-400 2.7*102 2.1 2.6 8.8*102 

ERJ 145 1.9*102 1.9 1.2 4.8*102 
 

The LM estimates, developed using the inputs and the 

values in Table V, are compared with the EM estimates 

calculated in Section III(A).  For comparison, the values are 

plotted against each other for the three aircraft types in Fig. 2.  

Fig. 2 shows a relatively linear relationship along the 45-

degree equality line between the LM and EM for the three 

aircraft at each fuel price.   However, there is under prediction 

by the LM present at low fuel prices and over prediction by 

the LM for high fuel prices.  This is due to the technology 

assumptions behind the EM and LM.  The LM considers 

aircraft to be a Leontief technology, in that all inputs must be 

used in fixed proportions.  The EM model allows substitution 

between inputs when factor prices change.   

The LM was developed at a time when the operators of a 

737-400 were paying an average of $2.01/gallon; the operators 

of a 757-200 were paying an average of $1.99/gallon, and 

operators of the ERJ 145 were paying an average of 

$1.22/gallon.  The average fuel price for Delta Airlines in 

2006, the year of the projection data for the EM, is $2.08 per 

gallon of jet fuel.  It therefore follows that when the EM and 

LM are estimated at fuel prices close to this $2.00/gallon 

average, the EM predictions and the LM predictions will be 

close.  For fuel prices above this average, the LM should have 

higher estimates than the EM.  This is because the EM allows 

for input substitution: as fuel prices increase, airlines will take 

steps to use fuel more efficiently by leveraging other inputs, a 

technical infeasibility of the LM.  This hypothesis is 

confirmed in Fig. 2. 

IV. OPERATING COST AND TOTAL LOGISTICS COST 

COMPARISON  

The EM proves to be a useful predictor of operating cost, 

as it is able to capture costs in the current and future 

environment.  To this end, the EM is improved by adding to it 

a passenger cost component.  Schedule delay, or the concept 

                                                           
5 As the ERJ 145 has a range of 1,550 miles, the operating cost estimation is 

not performed for distances further than 2000 miles.  The B737-400 has a 

range of 2,255 miles, and the cost estimation is not performed for distances 
further than 2,500 miles. 

that passengers place a value on the difference between 

desired arrival time and actual arrival time is well known to 

airlines and manufactures.  This generalized cost model 

incorporates schedule delay and is termed the Total Logistics 

Cost (TLC) function.  In this section, this model is used to 

compare the aircraft sizes that optimize operating cost alone 

and TLC for a range of fuel prices.  

 

 

 
Figure 2.  Leontief technology vs. econometric operating cost model results.  

A. Total Logistics Cost Analysis   

As the consideration of operating cost alone does not 

capture the entire motivation behind fleet adoption and 

utilization decisions, this study develops a generalized cost 

function including operating cost and passenger schedule 

delay cost.   To capture schedule delay costs, two relationships 

must be determined, one between vehicle size and frequency 

and the other between frequency and schedule delay.  

Reference [17] develops a relationship for frequency and 

schedule delay based on flight frequency, which accounts for 

schedule peaking.  Equation (4) shows the schedule delay 

function g(fi) in hours based on a frequency function (3).  The 
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equation for flight frequency (fi) is determined by the market 

density, or the passenger flow per day between a given origin 

and destination per day (q); the aircraft seat capacity (s); and 

the load factor, or the percent of seats occupied per departure 

(l).  
The resulting schedule delay, g(fi), can be multiplied by 

the weighted average of schedule penalties for business and 

non business travelers, λSD ($15.77/hour [18]).  Delays in 

either direction (early or late) are considered equally onerous. 

 

fi = q / (l * s) (3) 

g(fi) = 5.7 / fi (4) 

B. Determining of Minimum Cost Seat Capacity for 

Operating Cost and Total Logistics Cost   

1) Minimum Operating Cost Seat Capacity  

To find the seat size which minimizes operating cost per 

seat mile, the operating cost function (1) is minimized for each 

stage length and fuel price combination.  The results are 

shown in Table VI.  For a constant stage length, the seat size 

which minimizes operating cost per seat mile increases with 

fuel price, yet at a decreasing rate.  Certainly, as fuel price 

increases, the cost economies of aircraft size are stronger; 

while this is evident, the aircraft sizes in Table VI are much 

larger than those seen today.  As noted in the previous 

subsection, passenger preference for level of service, or 

schedule frequency, is an important component of airline 

decision of aircraft deployment.   

TABLE VI.  SEAT SIZE CORRESPONDING TO THE MINIMUM OPERATING 

COST PER SEAT MILE FOR A RANGE OF FUEL PRICES AND STAGE LENGTHS 

    UPF   

 
      0.5 1 3 5 

A
S

L
 

100 143 148 157 161 

500 255 271 297 310 

1000 332 354 393 413 

1500 387 414 464 489 

2000 431 476 526 552 

2500 470 506 572 606 

3000 504 544 617 654 

 
 

 

2) Minimum-Total Logistics Cost Seat Capacity  

The aircraft seat size that minimizes the generalized cost 

function, the TLC, over a range of fuel prices and stage 

lengths is the seat size that minimizes the operating cost 

function plus g(fi)* λSD.  Table VII shows the aircraft seat size 

that minimizes TLC over a range of fuel prices and stage 

lengths.  Three representative market densities are chosen: a 

relatively low market density of 250 passengers/day, a 

medium market density of 750 passengers/day, and a high 

market density of 3000 passengers/day.  The load factor is set 

to one.  The values in the tables on the left side are the 

solutions to the minimization of the TLC and the values in the 

table on the right are the percent difference between seat 

capacities before and after the inclusion of schedule delay. 

TABLE VII.  SEAT SIZE CORRESPONDING TO THE MINIMUM TOTAL 

LOGISTICS COST COST PER SEAT MILE FOR A RANGE OF FUEL PRICES, STAGE 

LENGTHS, AND MARKET DENSITIES 

Market Density = 250 Passengers per Day 

    

UPF   

 

UPF   

0.5 1 3 5 

 

0.5 1 3 5 

A
S

L
  

  

100 40 43 52 59 

 

-72% -71% -67% -63% 

500 69 74 91 105 

 

-73% -73% -69% -66% 

1000 92 99 124 144 

 

-72% -72% -68% -65% 

1500 112 120 152 176 

 

-71% -71% -67% -64% 

2000 129 139 176 205 

 

-70% -71% -67% -63% 

2500 144 157 198 231 

 

-69% -69% -65% -62% 

3000 159 173 219 256 

 

-68% -68% -65% -61% 

Market Density = 750 Passengers per Day 

    

UPF   

 

UPF   

0.5 1 3 5 

 

0.5 1 3 5 

A
S

L
  

  

100 61 65 78 88 

 

-57% -56% -50% -45% 

500 105 113 140 160 

 

-59% -58% -53% -48% 

1000 141 152 190 218 

 

-58% -57% -52% -47% 

1500 170 184 231 266 

 

-56% -56% -50% -46% 

2000 180 213 267 307 

 

-58% -55% -49% -44% 

2500 228 239 300 345 

 

-51% -53% -48% -43% 

3000 250 263 331 381 

 

-50% -52% -46% -42% 

Market Density = 3000 Passengers per Day 

    

UPF   

 

UPF   

0.5 1 3 5         

 

0.5 1 3 5 

A
S

L
  

  

100 96 102 117 127 

 

-33% -31% -25% -21% 

500 166 179 214 237 

 

-35% -34% -28% -24% 

1000 180 239 288 320 

 

-46% -32% -27% -23% 

1500 282 287 347 385 

 

-27% -31% -25% -21% 

2000 320 328 397 441 

 

-26% -31% -25% -20% 

2500 354 365 441 490 

 

-25% -28% -23% -19% 

3000 385 398 482 535 

 

-24% -27% -22% -18% 
 

 

 
Figure 3.  Seat size corresponding to minimum TLC per seat mile for a range 

of fuel prices, stage lengths, and market densities.  

For all three market densities, the seat capacity that 

minimizes the TLC is reflective existing aircraft fleets.  This is 

clear from Fig. 3, which shows the seat capacity which 

minimizes four scenarios of cost (operating cost alone, and the 

TLC function for the three market densities).  Holding fuel 
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price and stage length constant, as market density increases, 

the aircraft size which minimizes TLC increases. Higher 

demand necessitates larger aircraft sizes (Fig. 3); we would 

also expect this trend to appear if we were to decrease λSD (6).  

By comparing the upper and lower panels of Fig. 3, it can 

be seen that an increase in stage length leads to an increase in 

seat size which minimizes cost per seat mile, holding fuel 

price and market density constant.  Finally, across common 

market densities and stage lengths, as fuel price increases, the 

percent difference decreases.  This is because in the 

generalized cost function, the operating cost becomes the 

dominant cost. 

V. CONCLUSIONS 

This study helps shed light on airline choice of aircraft 

size; as airlines are not looking to minimize operating cost 

alone but rather considering profit and market share, a strong 

weight is put on passenger preference when considering 

aircraft deployment.  The difference observed in the minimum 

cost aircraft with the incorporation of passenger costs points to 

the importance of considering multiple costs when evaluating 

aircraft types.  Results of this study show that the 

consideration of passenger preferences erodes as fuel price 

increase and that high fuel prices rationalize the use of larger 

aircraft in fleet composition despite higher passenger costs.  

Therefore, if fuel prices were to include other costs such as 

environmental taxes, the advantage of larger aircraft would be 

evident to airlines and airframe manufacturers.  

This study also highlights the predictive potential of 

econometric operating cost models.  The Leontief technology 

operating cost model has many strengths: transparency, few 

inputs, and the ability to provide predictions at a snapshot in 

time.  The econometric model, in comparison, is shown to 

make predictions at a point in time and also capture how an 

airline might adapt to changes in factor prices.  Both models 

play an important role in the aviation cost modeling space.  

However, this study shows the strengths of econometric cost 

models and their ability to provide consistent estimates and 

deep insight into current and future aircraft cost economics.  
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