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Abstract

We derive simple analytical formulae for the renormalization group running of neutrino masses,
leptonic mixing angles and CP phases, which allow an easy understanding of the running. Particularly
for a small angl®, 3 the expressions become very compact, even when non-vanishing CP phases are
present. Using these equations we investigate: (i) the influence of Dirac and Majorana phases on
the evolution of all parameters, (ii) the implications of running neutrino parameters for leptogenesis,
(iif) changes of the mass bounds from WMAP and neutrinoless dgutikcay experiments, relevant
for high-energy mass models, (iv) the size of radiative correctiomg4@nd6d,3 and implications
for future precision measurements.

0 2003 Elsevier B.V. All rights reserved.

PACS 11.10.Hi; 12.15.Ff; 12.60.Jv

1. Introduction

The Standard Model (SM) agrees very well with experiments and the only solid
evidence for new physics consists in the observation of neutrino masses. Compared to
guarks and charged leptons they are tiny, for which the see-saw mechanism [1-4] provides
an attractive explanation. The parameters which enter into the neutrino mass matrix
usually stem from model predictions at high-energy scales, such as theMgale of
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(M. Lindner), mratz@mail.desy.de (M. Ratz).
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grand unification. The measurements and bounds for neutrino masses and lepton mixings,
on the other hand, determine the parameters at low energy. The high- and low-energy
parameters are related by the renormalization group (RG) evolution, so that low-energy
data yield only indirect restrictions for mass models or other high-energy mechanisms like
leptogenesis [5]. It is well known that the model independent RG evolution between low
energy and the lowest see-saw scale can have large effects on the leptonic mixing angles
and on the mass squared differences, in particular if the neutrinos have quasi-degenerate
masses [6—23]. RG effects may even serve as an explanation for the discrepancy between
the mixings in the quark and the lepton sector [24].

The RG equations (RGEs) for the neutrino mass operator and for all the other
parameters of the theory have to be solved simultaneously. The mixing angles, phases
and mass eigenvalues can then be extracted from the evolved mass matrices. Both steps
are, however, non-trivial and can only be performed numerically in practice. In order
to determine the change of the parameters under the RG flow in a qualitative and, to a
reasonable accuracy, also quantitative way, it is useful to derive analytical formulae for
the running of the masses, mixing angles and phases. This was done in [10] assuming
CP conservation and in [11] for the general case. We modify the derivation of [11] by a
step which simplifies the formulae that arise after explicitly writing out the dependence
on the mixing parameters. These results are exact, and they make it easier to derive
simple approximations in the limit of smafh3. These approximations are very useful
in understanding the RG evolution of the phases and the phase dependence of the
evolution of other parameters. For example, we find that the phases show significant
running. Consequently, vanishing phases at low energy appear unnatural unless exact CP
conservation is a boundary condition at high energy, which seems unlikely, since the
CP phase in the quark sector is sizable. The presence of CP phases at low energies has
significant impact on observations [25-27].

The outline for the paper is: in Section 2 we present analytical formulae for the
RG evolution of the neutrino masses, leptonic mixing angles and phases, where an
expansion in the small angl s is performed. This leads to very simple and in most
cases accurate formulae which are compared with numerical results. Section 3 is devoted
to phenomenological consequences for leptogenesis, the WMAP bound, the effective
neutrino mass relevant for neutrinoless double beta decay and precision measurements
of 613 andas.

2. RG evolution of leptonic mixing parametersand neutrino masses

In this study, we will focus on neutrino masses which can be described by the lowest-
dimensional neutrino mass operator compatible with the gauge symmetries of the SM. This
operator reads in the SM

1 ¢ -
L= Zrer it e“pat! e ¢, +hoc., (1)
and in its minimal supersymmetric extension, the MSSM,

1
LYSM = Weloo + . = —Zier s 02 + e @
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Fig. 1. Vertex from the dimension 5 operator which yields a Majorana mass matrix for the light neutrinos.

kg¢r has mass dimensionl and is symmetric under interchange of the generation indices
f and g, ¢ is the totally antisymmetric tensor in 2 dimensions, aﬂﬁdis the charge
conjugate of a lepton doublet, b, ¢, d € {1, 2} are SU2)_ indices. The double-stroke
lettersl andh denote lepton doublets and the up-type Higgs superfield in the MSSM. After
electroweak (EW) symmetry breaking, a Majorana neutrino mass matrix proportional to
emerges as illustrated in Fig. 1.

The above mass operator provides a rather model-independent way to introduce
neutrino masses as there are many possibilities to realize it radiatively or at tree-level
within a renormalizable theory (see, e.g., [28]). The tree-level realizations from integrating
out heavy singlet fermions and/or Higgs triplets naturally appeatr, for instance, in left-right-
symmetric extensions of the SM or MSSM and are usually referred to as type | and type Il
see-saw mechanisms.

The energy dependence of the effective neutrino mass matrix below the scale where the
operator is generated (which we will calf; in the following) is described by its RGE. At
the one-loop level, this equation is given by [29-32]

d
d_'; =CY)Y) K+ Ce(Y]Y,) + ax, 3)

wherer = In(u/ o) andp is the renormalization scal@nd where

1672

c=1 in the MSSM

Cz—g in the SM (4)
In the SM and in the MSSMy reads

asm=—3g5+2(y2+ y5 +y2) + 6(yF + 5 + 2+ Y2+ I +¥E) +x.  (59)

aAMSSM = — ggf — 685+ 6(y7 + y2+ 7). (5b)

HereY, (f € {e, d,u}) represent the Yukawa coupling matrices of the charged leptons,
down- and up-type quarks, respectivaly,denote the gauge couplirfgand x the Higgs
self-coupling in the SM. We work in the basis whéteis diagonal.

The parameters of interest are the masses, which are proportional to the eigenvalues of
x and defined to be non-negative, as well as the mixing angles and physical phases of the

1 In the MSSM, the RGE is known at two-loop [33]. In this study, we will, however, focus on the one-loop
equation.
2 We are using GUT charge normalization far.
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Table 1

Experimental data for the neutrino mixing angles and mass squared differences. For the soléysmgiethe

solar mass squared difference, the LMA solution as confirmed by KamLAND is shown. The results stem from
the analysis [35] of the recent KamLAND and the SNO data, the Super-Kamiokande atmospheric data [36] and
the CHOOZ experiment [37]

Best-fit value Range (fof;; € [0°,45°]) C.L.

012 [ded 326 256-420 99%(30)
623 [deg] 45.0 332-450 99%(30)
013 [ded - 0.0-92 90%
Am? | [eV?] 73x107° 4x107°-28x 1074 99% (30)
|AmZm| [6V2] 25x%x 1073 12x103-5x10°3 99% (30)
MNS matrix [34]

Umns = V (012, 613, 023, 8) diag(e™'#2/2, e '%2/2 1), (6)

which diagonalizeg in this basis.V is the leptonic analogon to the CKM matrix in the
quark sector. The parametrization we use will be explained in more detail in Appendix A.
Currently, we learn from experiments that there occur two oscillations with mass squared
differencesAmgOI and Amgtm and corresponding mixing anglés, andé.3, respectively.

For the third mixing angl®13 and the absolute scale of light neutrino masses, there are
only upper bounds at the moment (see Table 1 for the present status).

2.1. Theanalytical formulae

In this section, we present explicit RGEs for the physical parameters. They determine
the slope of the RG evolution at a given energy scale and thus yield an insight into the
RG behavior. The derivation will be discussed in Appendix B. Note that a naive linear
interpolation, i.e., assuming the right-hand sides of the equations to be constant, will not
always give the correct RG evolution. As we will show later, this is mainly due to large
changes of12 and the mass squared differences. In the following, we will negleand
¥ againsty; and introduce the abbreviation

2

— Amzsol’ @
Amim

whose LMA best-fit value is about 0.03. In order to keep the expressions short, we will only

show the leading terms in an expansion in the small afigléor the mixing parameters.

In almost all cases they are sufficient for understanding the features of the RG evélution.

In all cases except for the running of the Dirac phas¢he limit 613 — 0 causes no

difficulties, the subtleties arising férwill be discussed in Section 2.4.1. We furthermore

definem; () := v%;(t)/4 with v = 246 GeV in the SM ow = 246 GeVx sing in the

MSSM and, as usualym? ,:= m3 — m? and AmZ,,:= m3 — m3. Note that our formulae

3 The exact formulae, from which we have derived the analytical approximations presented here, can be
obtained from the web pad#tp://www.ph.tum.de/~mratz/AnalyticFormulae/
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cannot be applied if one of the mass squared differences vanishes. For a discussion of RG
effects in this case, see, e.g., [7-9,22,38]. With these conventions, we obtain the following

analytical expressions for the mixing angles:

) Cy2 | Im1e'?1 + moe'92|?
bro=—3 21 = Sin V12553 5 +0(613), (8)
sol
. Ccy? . . m3
f13= —% sinP12SiNHp3——————
Y A N W)
x [m1codgr —8) — (1+ ¢)mocospy — 8) — {m3c088 | + O (b13), 9)
. Ccy? . 1 [ 2 i 2 5 mie¥t 4+ mal?
3= ———-sinXy c5olmoe'?? +mgl® + 55— =
23 3072 23Am&21tm 12| 2 3| 12 1+¢
+ 0 (013). (10)

Note that in order to apply Eq. (9) to the cag = 0, wheres is undefined, the analytic
continuation of the latter, which will be given in Eq. (25), has to be inserted.Adgs)
terms in the above RGEs can become importaé{4fis not too small and in particular if
cancellations appear in the leading terms. For example, this is the cdse foks| = 7

in (8), as we will discuss below in more detail. The RGE for the Dirac phase is given by

. Cy2 stV Oy
=t 4 221504 9(hy3), 11
3222 015 T Ec2’ T (613) (11)
where
5D = sinWyosinWog— 2
Amgtm(l‘i‘g)
x [misin(r — 8) — (1 + £)masin(gz — 8) + ¢m3sins], (12a)
50 _ m1mas3,Sin(p1 — ¢2)
= 2
Amsol
, [m1cosDpzsings  mac3,sin(28 — ¢2)
+m3312 2 2
Amgm(1+¢) Amgm
2 - .
m1c5,SiN(28 — 1)  moCOS Dr3Sin
+m3c§2[ 23 LEARE A <p2:|- (12b)
Amgm(1+¢) Amgim

For the physical Majorana phases, we obtain

. Cy2 m1S2 singr + (1+ é‘)mzcz sings
1= {ma COS Dpg—12 5 12
A Amgn(1+¢)
m1macZ 535 Sin(e1 — @2)

} + 0 (613), (13)

2
Amsol
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2

. C mis2,sing1 + (14 ¢)mac2, sing,
G = 4y; {m3 COS Dpg——12 > 12
2 2 i
mimass,85,SIN(p1 — @2)
4 PU22as PR T @ } +0(019). (14)
Amsol

We would like to emphasize that the above expressions do not contain expangions.in

their  dependence is exact. In many cases, they can be further simplified by negecting
against 1 without losing much accuracy. Note that singularities can appearéhs-

terms at points in parameter space where the phases are not well-defined. For the masses,
the results fory, = y, = 0 but arbitraryd,3 are

16721 = o + Cy?(252,523 + F1) ma, (15a)

167 %m0 = [o + Cy2(2c3p5%5 + F2) |ma, (15b)

16n%m3 = [+ 2Cyrzc%3c§3]m3, (15¢)
whereF; and F» contain terms proportional to s,

F1 = —s13Sin 2125in 223C085 4 2525¢2,¢25, (16a)

Fp = 5135iN 2125IN 230088 + 252552,c5,. (16b)

These formulae can be translated into RGEs for the mass squared differences,

d
872 EAmgm = ocAmgm + Cyrz[2s§3(m%c%2 - m%S%z) + Fsol], (17a)
d
8r2 " Amgtm = O(Amétm + Cy3[2m§053c§3 - 2m%c%2s§3 + Fatm], (17b)
where
Fsoi= (m% + m%)sls sin 2912sin 2923C0S8 + 2.9%3053(m%s%2 — m%c%z), (18a)
Faim= —mgsl3sin 2912Sin 2923C0S8 — 2m§s:|2_3s]2_2653. (18b)

2.2. Generic enhancement and suppression factors

From Egs. (8)—(14) it follows that there are generic enhancement and suppression
factors for the RG evolution of the mixing parameters, depending on whether the mass
scheme is hierarchical, partially degenerate or nearly degenerate. We have listed these
factors in the approximation of smadhz in Table 2. They can be compensated by
cancellations due to a special alignment of the phases. For example, an opposite CP parity
of the first and second mass eigenstate,|igg + ¢2| = 7, results in a maximal suppression
of the running of the solar mixing angle, which has been pointed out earlier in papers like
[11,13,17,39]. Nevertheless, Table 2 allows to determine which angles or phases have a
potential for a strong RG evolution. Obviously, the expressions e not applicable for
013 = 0. This special case will be discussed at the end of Section 2.4.1.

Let us consider some numerical values in order to estimate the size of RG effects. The
SM t Yukawa coupling isSM = /2/vm, & 0.01. Thus, the typical factor in the formulae
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Table 2

Generic enhancement and suppression factors for the RG evolution of the mixing parameters. A ‘1’ indicates
that there is no generic enhancement or suppression. ‘n.h.” and ‘p.d.(n.)’ denote the hierarchical and partially
degenerate mass spectrum in the case of a normal hierarchw.e, Am2  or Am2 | < m2 < Am3y,. i.h.

and ‘p.d.(i.)’ denote the analogous spectra in the inverted casemes Am2 | or Am2,, < m3 < Am3y,
Finally, ‘d. means nearly degenerate masses3;, < m?2 ~m% ~ m3 ~m

612 f13 023 8 @i
n.h. 1 VT 1 vy NG
pd(n) ﬂ’l% mq 1 mq 9,1_"_ ﬂ’l% ﬂ’l%
Amgy VamZm VamZm 13 Amgy Amgo|
i.h. ¢t 0(013) 1 c—ll ¢t
p.d.(i.) ¢l _m3 1 m3__ g1y -1 -1
‘/Amgtm ,/Amglm 13
d. m? m? m? m? 9—1+ m? m?
Amsol Ama2lm Amaztm Amaztm 13 Amszol Amszol
for the mixing angles and phases amounts to
3 2
- 4y L ~05x10°C, (19)
T
In the MSSM it changes to
y2
32; 5 ~0.3x 107°(1+tarf g). (20)
If the running was purely logarithmic, it would yield a factor of
M 1013
Nt ~ln— ~25 (22)
Mz 102

for M1 = 1013 GeV. If we assume that the solar and atmospheric angle are large and
that the phases do not cause excessive cancellations, then multiplying the above two
contributions with the enhancement facidn, from Table 2 yields a rough estimate for

the change of the angles and phases due to the RG evolution,

ARG~ 107°(1 + tarf B) Tenn (22)

Of course the factor 4 tarf 8 has to be omitted in the SM. It is immediately clear that even
inthe MSSM with very large tag no significant change occurs if the enhancement factor is

1 or less—except maybe fé13, where even a change by @ould be interesting. However,

for quasi-degenerate neutrinos large enhancement factors are possible. As an example,
let us estimate the size of the absolute neutrino mass scale (the ‘amount of degeneracy’)
needed for a sizable RG changetes, say 01 ~ 6°. In the SM, this require$enn~ 10%,
corresponding to a neutrino mass of the order of 1 eV, which is excluded by WMAP and
double beta decay experiments. On the other hand, in the MSSM this mass scale can easily
be lowered to about.Q eV with tang as small as 8.
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2.3. Discussion and comparison with numerical results

We now study in detail the running of the mixing angles and masses, in particular
the influence of the phases. The RG evolution of the phases will be studied separately in
Section 2.4. We solve the RGEs for the neutrino mass operator and for the other parameters
numerically and compare the results with those obtained from the analytical formulae of
Section 2.1. For the numerics we follow the ‘run and diagonalize’ procedure, i.e., we first
compute the running of the mass matrix and then extract the evolving mass eigenvalues and
mixing parameters. The algorithm used for this is described in Appendix A. As an example,
we consider the MSSM with tgh = 50, a normal mass hierarchy for the neutrinos,
m1 = 0.1 eV for the mass of the lightest neutrino, and a mass of about 120 GeV for the light
Higgs. These boundary conditions are given at the electroweak scale, i.e., we calculate the
evolution from low to high energies. Below the SUSY-breaking scale, which we take to be
1.5 TeV, we assume the SM to be valid as an effective theory and use the corresponding
RGEs. Above, we apply the ones of the MSSM.

2.3.1. RG evolution of 612

From Table 2, we see that the solar angjlg generically has the strongest RG effects
among the mixing angles. The reason for this is the smallness of the solar mass squared
difference associated with it, in particular compared to the atmospheric one, which leads
to an enhanced running for quasi-degenerate neutrinos and for the case of an inverted mass
hierarchy. Furthermore, it is known that in the MSSM the solar angle always increases
when running down fromM; for 613 = 0 [20]. This is confirmed by our formula (8).
From the termim1e'%t + m2e'#2|2 in Eq. (8), we see that a non-zero value of the difference
|1 — @2| of the Majorana phases damps the RG evolution. The damping becomes maximal
if this difference equalsr, which corresponds to an opposite CP parity of the mass
eigenstatesi1 andmy. This is in agreement with earlier studies, e.g., [11,13,17,39].

Let us now compare the analytical approximationdgr of Eq. (8) with the numerical
solution for the running in the case of nearly degenerate masses, which is shown in
Fig. 2 in detail. The dark-gray region shows the evolution with LMA best-fit values for
the neutrino parameterg; 3 varying in the interval0°, 9°] and all CP phases equal to
zero. The medium-gray regions show the evolution|§ar— ¢»| € {0°, 9C°, 18C°, 270},

013 € [0°,9°] and § € {0°,9(°, 18C°, 270}, confirming the expectation of the damping
influence ofp1 andg. The flat line at low energy stems from the SM running below
Msusy, which is negligible as we have seen earlier. Note that the numerics never yield
negative values af2 due to the algorithm used for extracting the mixing parameters from
the MNS matrix, which guarantees91, < 45° (see Appendix A.3 for further details).

As can be seen from the relatively broad dark-gray band in the figure) the)-term
in the RGE is quite important here. The dominant part of this term is

Cy? ma+my 01— @2
Y =—L " "sinX,3c0s
3212 mos — m1 23
X (cos D12C0S8 cos(pl — 2 + sind sin #1 ; <p2) - 013. (23)
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Fig. 2. RG evolution ofd12 in the MSSM with tar8 = 50, a normal mass hierarchy anty = 0.1 eV. The
dark-gray region shows the evolution with best-fit values for the neutrino param@tges[0°, 9°] and all CP

phases equal to zero. The medium-gray regions show the evolutidgferps| = 0°, |¢1 — ¢2| € {90°, 27C°}

and|g1 — ¢o| = 18C°. They emerge from varying;3 € [0°, 9°] and$ € {0°, 90°, 180°, 270°}. The light-gray

regions can be reached by choosing specific values for the CP phases different from the ones listed above. The
dashed line shows the RG evolution withy — ¢5| =0, 613 = 9° and$ = 180°. Note that for the numerics we

use the convention wheég-, is restricted to the intervdD°, 45°], so that the angle increases again after reaching

0. The dotted line shows the evolution withy — 2| = 90° andf13 = 0°.

Clearly, the RG evolution ob12 is independent of the Dirac phageonly in the
approximatiorp13 = 0. The largest running, wher, can even become zero, occurs for
013 as large as possible{Q § = = andg1 — g2 = 0. In this case the leading and the next-
to-leading term add up constructively. It is also interesting to observe that d2éie)
effectsf12 can run to slightly larger values. The damping due to the Majorana phases
is maximal in this case, which almost eliminates the leading term. Then, all the running
comes from the next-to-leading term (23).

In the inverted schemen1 > m> — m1 always holds, so that large RG effects are
generic, i.e., always present except for the case of cancellations due to Majorana phases.
For a normal mass hierarchy with a small, the running of the solar mixing is of course
rather insignificant.

Finally, we would like to emphasize that it is not appropriate to assume the right-hand
sides of Egs. (8) and (23) to be constant in order to interp@élgteip to a high-energy
scale, since non-linear effects especially from the running of@'m@dAmgol cannot be
neglected here. This is easily seen from the curved lines in Fig. 2.

2.3.2. RG evolution of 613

The analytical approximation fék 3 is given in Eq. (9). As already pointed out, in order
to apply it to the casé;3= 0, wheres is undefined, the analytic continuation of the latter
has to be inserted. It will be given in Eq. (25) in Section 2.4.1, where the phases are treated
in detail. The comparison with the numerical results in Fig. 3 shows that allgvey the
angle runs linearly on a logarithmic scale to a good approximation. Thus, using Eqg. (9)
with a constant right-hand side yields pretty accurate results. Yith ¢», significant RG
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a5 | .

03 (1)

30 ¢t

15 + ,
Q

613 (1), no CP phases

8 [°]

2 4 6 8 10 12
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Fig. 3. RG evolution of13 and6,3 in the MSSM with tar8 = 50, a normal mass hierarchy and = 0.1 eV.

The dark-gray region shows the evolution with best-fit values for the neutrino parangetees[0°, 9°] and all

CP phases equal to zero. For thg case, we just obtain a thick gray line at the bottom of the gray region. The
light-gray regions show the evolution, which is possible, if arbitrary CP phases are allowed.

effects can be expected for nearly degenerate masses. This is confirmed by the light-gray
region in Fig. 3.

The fastest running occurs i1 — g2 = 7 and ¢1 — § € {0, 7}, so that the terms
proportional ton1 andm» in the RGE are maximal and add up. Interestingly, cancellations
between the first two terms in the second line of Eq. (9) appeanfer ¢, in particular if
all phases are zero. If so, the leading contribution to the evoluti®nzaé suppressed by
an additional factor of . This suppression is in agreement with earlier studies, for instance
[21,39], where it was discussed for the CP-conserving gaseg, = wr, which implies an
opposite CP parity afz3 compared to the other two mass eigenvalues. Such cancellations
cannot occur for a strong normal mass hierarchy, since then the evolution is dominated by
the term proportional te:, in Eq. (9).

Besidesps3 runs towards smaller values in the MSSM with zero phases and a normal
hierarchy, because1 < m2, so that the second line of the RGE is negative. This yields the
dark-gray region in Fig. 8.As 613 can always be made positive by a suitable redefinition
of parameters, the sign 6fs is irrelevant fordy3 = 0.

For an inverted hierarchy, the situation is reversed, sineg,, is negative then. For
a smallms, the running is highly suppressed in this case, because the leading term is
proportional toms. Then the dominant contribution comes from #€13)-term unless
013 is very small as well.

Future experiments will probably be able to probe &ih 3 down to 1074, correspond-
ing to#13~ 5 x 103 ~ 0.3°. Consequently, even RG changes of this order of magnitude
could be important, since a low-energy value smaller than the RG change would appear
unnatural. This will be discussed in more detail in Section 3.3.

4 The relatively large slope of its upper boundary is due to@i@,3) contribution to the RGE.
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2.3.3. RG evolution of 823

The analytical RGE fof»3 can be found in Eq. (10). Again, the comparison with the
numerical results (see Fig. 3) shows that to a good approximation the angle runs linearly on
a logarithmic scale abovésysy. The sign ofAmgtm is very important here. For a normal
mass spectrum, the leading term is always negative in the MSSM, sé:thdécreases
with increasing energy, while for an inverse spectrum the situation is exactly reversed, so
thatf,3 becomes larger than 4% one starts with the LMA best-fit value at low energy.

From Eq. (10) we expect that switching on the phagesnd g, always reduces the
running off,3 for nearly degenerate masses. This is confirmed by the light-gray region
in Fig. 3. The damping is much less severe for a hierarchical mass spectrum, since either
m1 andmy or m3 are very small then. However, in these cases the running is generally
expected to be rather insignificant, since according to Table 2 the enhancement factor is
only 1.

2.3.4. RG evolution of the neutrino mass eigenvalues

The running of the mass eigenvalues is significant even in the SM or for strongly
hierarchical neutrino masses due to the faatdn the RGEs (15). Clearly, the evolution
is not directly dependent on the Majorana phases [11]. This can be understood from
Egs. (B.13) and (B.19), which show that only the moduli of the elements of the MNS matrix
enter intorm;. Besidesyiz does not depend afy since only the moduli of the elements of
the third column of the MNS matrix are relevant in this case. Of course, there is an indirect
dependence on the phases, as these influence the running of the mixing angles.

Apart from the MSSM with large taf, the running of the mass eigenvalues is virtually
independent of the mixing parameters, siacis usually much larger thayf. In the SM,
the Higgs mass influences the running via the self-couplirghe heavier the Higgs, the
larger the RG effects. Thus, except for large gan the MSSM, the running is given by
a common scaling of the mass eigenvalues [17], which is obtained by negle¢tany
integrating Eq. (15),

t
1
mi(t) ~ eXp[@ / de a(r)]n’ti(to) =:5(1, 10)m;(to). (24)
fo

We plots in the SM and in the MSSM for various parameter combinations in Fig. 4.
The three SM curves correspond to different Higgs masses in the current experimentally
allowed region at 95% confidence level, 114 G€Vi g < 200 GeV [40].ny = 180 GeV

is the value for which the self-couplingstays perturbative up to 10Gev, i.e.,.x <1,
andmpy = 165 GeV is the minimal mass for which is positive up to 18 GeV, so

that the vacuum is stable in this region (see, e.g., [412%8))the MSSM, we choose

my = 120 GeV for the light Higgs mass, since the allowed range is further restricted by the
upper limit at about 130 GeV here, and since it influences the evolution of the RG scaling
only marginally as long adsysy and M differ only by a few orders of magnitude.

5 In some models (see, e.g., [43] for a viable modelyan be larger, in particular M, <« 1016 Gev.
A negative value of. at high-energy implies a metastable vacuum.
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Fig. 4. Scaling of the masses under the renormalization group in the SM and MSSM. The mixing parameters are
chosen to be the LMA best-fit values (cf. Table 1), but they influence the running only marginally. We further used
a SUSY-breaking scal#/sysy =1 TeV. The upper curves show the evolution in the SMiigf = 114 GeV,

mpy = 165 GeV andny = 180 GeV, the lower ones correspond to the MSSM forgan 10 and ta8 = 50

with m g = 120 GeV. These plots apply for all mass eigenvalues, except for largeitathe MSSM where the

scaling ofmg is shown (using zero phases). Note also that a different SUSY-breaking scale changes the scaling
factor in the MSSM.

Moreover, further uncertainties due to threshold corrections and the unknown value of the
SUSY-breaking scale can be equally important as the one due to the unknown Higgs mass.
The RG enhancement of the masses is smallest §f tar10.

As already mentioned, substantial deviations from the common scaling arise in the
MSSM for large tarB. There is a plethora of effects which can be understood with the
aid of (15) and (17). In order to give an interesting example, we show the evolution of the
mass eigenvalues formin = 0.19 eV (wherenmin = min{m1, mo, m3}) in the MSSM with
tang = 50 in Fig. 5. A particular interesting effect is that for an inverted mass spectrum
the property Am2,,| > AmgoI possibly does not survive the RG evolution. In other words,
what looks like a normal mass hierarchy at high energies turns out to become an inverted
hierarchy at low energies (cf. Fig. 5(b)). From the dependence orftleems (cf. Egs. (16)
and (18)), we find that this effect can disappedris large.

2.3.5. RG evolution of Am2,

The RGE for the solar mass squared difference is given in Eq. (17b). In the SM and
the MSSM with small ta@, the running is due to the common scaling of the masses
described in the previous section and thus virtually independent of the mixing parameters.
For large ta8 and nearly degenerate masses, the influence of CP phases, in particular
the Dirac phase, is crucial. The numerical example in Fig. 6 confirms this expectation and
furthermore shows thatm2,, runs dramatically. On the one hand, it can grow by more
than an order of magnitude. As we have seen in Fig{xﬁzéol can even get larger than
|Am§tm|. On the other hand, it can run to 0 at energy scales slightly beyond the maximum
of 10'° GeV shown in the figure. For large t&n Am2 ;< m? and not too smakss, the
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Fig. 5. Running of the light neutrino masses for a normal and an inverted mass hierarchy,gng 0.19 eV
in the MSSM with tar8 = 50 andMsysy = 1 TeV. The mixing parameters are chosen to be the LMA best-fit
values. The phases are zero in this example. In the invertedAsa’r%?fa?)1 becomes greater themmgtml.
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Fig. 6. RG evolution ofAmgol in the MSSM with targ = 50, a normal mass hierarchy and = 0.1 eV. The
dark-gray region shows the evolution with LMA best-fit values for the neutrino parametgrs[0°, 9°] and alll

CP phases equal to zero. The light-gray regions show the evolution, which is possible, if arbitrary CP phases are
allowed.

first term in Fso) is essential for understanding these effects, since it is proportional to the
sum of the masses squared rather than the differencé.+ar andd;3 near the CHOOZ
bound, its sign is negative and its absolute value maximal, which causes the evolution of
AmgOI towards zero. FoB8 = 0, the sign becomes positive, so that the running towards
larger values is enhanced, which explains the upper boundary of the light-gray region in
Fig. 6.

2.3.6. RG evolution of Am?,
From the numerical example in Fig. 7, we see mmgtm can be damped by the phases,
but not significantly enhanced. Depending on the CP pha‘seétm grows by about 50—
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Fig. 7. RG evolution ofAmgtm in the MSSM with the same input parameters as in Fig. 6.

95%. Analogously to above, the maximal damping is mainly due to the first tefiyin

so that it occurs for largé;3 ands = 0. Compared to the case of the solar mass squared
difference, the influence d@fis generically smaller here, becz;lus:aqgmn/mi2 is larger and
because the phase-independent terms in the RGE do not nearly cancel.

2.4. RG running of the Dirac and Majorana phases

Most earlier studies of RG effects either neglected phases or concentrated on the special
case of a Majorana parity, where one or both of the Majorana phases. ake have
seen that they can have a dramatic influence on the running of the masses and mixings.
Moreover, many effects are affected by phases, e.g., neutrinoless double beta decay, or
require phases, e.g., leptogenésis.

Of course, if the phases are given at some scale, they also change due to the RG
evolution. We now discuss the running of the phases themselves and give numerical
examples. In general, a significant evolution of the phases is expected for nearly degenerate
and inverted hierarchical mass patterns, since the RGEs (11)-(13) contain the ratios
mlmz/Amgol.

2.4.1. RG evolution of the Dirac phase

The running of the Dirac phaskis given by Eq. (11) foty, = y, = 0. An interesting
possibility is the radiative generation of a Dirac phase by Majorana phases [11]: a non-
zerod is produced by RG effects, since some of the terms in the RGE (11) do not vanish

6 Clearly, the phases relevant for leptogenesis are those of the ‘right-handed’ sector and, therefore, in general
not directly related to the phases considered here [44,45]. However, as the left-handed sector with its, in principle,
observable phases is related to the right-handed one by the see-saw relation, it is reasonable to assume that non-
vanishing right-handed phases imply non-z&r@, and/org,. An explicit relation which supports this point of
view is specified in, e.g., [46].
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Fig. 8. Radiative generation of a Dirac phase in the MSSM withgtan30 and a normal hierarchy. Here the
running is from high to low energy, i.e., the boundary conditions are given at the see-sawéssisaleero
there but large adfz. The other starting values afg> = 18°, 013 € {1°,3°,6°}, o3 = 34°, mq = 0.17 eV,

AmZm=38x10"3eV2, Am2 | =57 x 1074 eV?, g1 = 16°, gp = 14C°.

for § — 0. Fig. 8 shows an example. The most important term in this context is the first
one ind©@. As it is proportional to sit1 — @), the effect is suppressed fpg = ¢,. For
small but non-zero values @f3, the term involvings~? also contributes significantly
because of the factai)rl_31. For 1 = @2, this contribution is suppressed as well, since the
parts proportional taz1 andm, respectively, nearly cancel.

In the case of an inverted hierarchy with famarying between 30 and 50, Dirac phases
of about 15 to 30 can be generated. Now the term involvisig? receives an additional
suppression from the small value af, so that the subleading effects described above
become unimportant. Hence, the runningaé independent of13 and depends only on
the difference of the Majorana phases to a very good approximation.

Before we turn to the evolution of the Majorana phases, let us discuss some further
properties of the RGE fo# that are also valid beyond the special case of a radiative
generation of this phase. To start with, the most important ters depends only on
the difference of the Majorana phases. Consequently, the evolution is expected to stay
roughly the same if both phases change by the same value. A comparison with numerical
results shows that this is true only to a first approximation. If one startsgwith 0 and
increments it step by step, the runninga$ increasingly damped. The main reason for this
is the second term in square bracketsin (the one proportional te:,), whose sign is
opposite to that of the leading term & ¢,. This term grows withp, while the previous
one (proportional taz1) does not change much as longgass close to 99. The situation
can be very different for smaller valuesdag. Now the initial rise of§ is enhanced, so that
it can become larger thapp. Then the sign of the aforementioned second term in square
brackets changes, so that it no longer damps the evolution but amplifies it.

With a strong normal hierarchy, RG effects are usually tiny. The running of the Dirac
phase is one of the few examples where this is not always the case. Due to the terms
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proportional to@{sl in the RGE, a significant evolution is possible for snéal. However,
one has to keep in mind that a measuremeidtisfvery hard in this case.

Regardless of the mass hierarchy, the litag — O is dangerous, because in this case
the RGE (11) diverges. However, we can show thegmains well-defined: the derivative
of the MNS matrixU is given by (B.9)U = U - T, whereU andT are continuous. Hence,
Uia(t) describes a continuously differentiable curve in the complex plane. Consequently,
613 andé are continuously differentiable even féws = 0, if § is extended continuously at
this point. Note that restricting the parameters to certain ranges can nevertheless result in
discontinuities. For example, if the RG evolution cauggsto change its sign and if we
demand < 013 < /2, then there will be a kink in the evolution 6f3 and§ will jump
by =. However, even in the presence of such artificial discontinuities there must still be
finite one-sided limits fo andé as613 approaches 0.

The limit for § is determined by the requirement thitremains finite. Then the
divergence 019{31 has to be canceled by, For g1 = > = 0, this obviously implies
8 =0o0ré=mx.Inthe general case, a short calculation yields

m1C0Sp1 — (14 §)maCOSp2 — {m3
m1Sing1 — (14 ¢)maSsings '

Due to the periodicity of cot, there are two solutions differingsycorresponding to the
different limits on the two sides of a node &fs.

cotd =

(25)

2.4.2. RG evolution of the Majorana phases
While the RGEs for the Majorana phases are somewhat lengthy, there is a simple
expression for the running of their difference for sn#a,
) . Cy2m mo . .
1 — g2 = —2 T2 cos Diosin? Oa3sin(er — 92) + O (012). (26)

2 2
4m Amsol

It shows that for9;3 = 0, the phases remain equal, if they are equal at some scale.
Obviously, 91 — ¢2 > 0 for ¢1 > @2 and vice versa, which means that the difference
between the phases tends to increase with increasing energy. In other words, a large
difference at the see-saw scale becomes smaller at low energy. An example is shown in
Fig. 9.

If 1 — @2 is not too small, a non-zermd 3 tends to damp its running. This is due to a
term in the RGE fokp1 whose sign is opposite to that of the leading one in Eq. (26) and
which is proportional to sifl;3cotf12. This term can grow important éf;2 becomes small
with increasing energy.

For g1 = @2 the evolution of the Majorana phases is suppressed, since the leading terms
in the RGEs (13) and (14) are zero then. However, for largeg tR& effects are still
important. Non-linear effects caused by the decrease of the solar and atmospheric mixing
angles are essential here, as the initial slope of the curves is extremely small due to the
suppression by sih 3 and cos #23. For613 = 5°, the second line in the RGE and the terms
proportional to sif13 are about equally important for the running@f The evolution of
@2 is virtually independent of1 3, since the respective terms are not multiplied bydgat
which again can become large as the energy increases because of the dimihigHing
by tanf12, which remains smaller than 1.
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Fig. 9. Running of the Majorana phases in the MSSM with a normal hierarchg,$ab0, ¢ = 75°, po = 70°,
013 =0,m1 =0.15 eV, and LMA best-fit values for the mass squared differertagesandé,3 at M. RG effects
are substantial, and the differenge — @5 increases with increasing energy.

In principle, it is also possible to generate Majorana phases radiatively, if the CP phase
is non-zero. However, it follows from the discussion in the previous paragraph that this
only happens via terms proportional to &ias.

3. Some applications

The discussed RG effects obviously have important implications whenever masses and
mixings at different energy scales enter the analysis.

3.1. Relating the leptogenesis parameters to observations

One of the most attractive mechanisms for explaining the observed baryon asymmetry
of the universeypp = (6.51“8:3) x 10710 [47], is leptogenesis [5]. In this scenarigg is
generated by the out-of-equilibrium decay of the same heavy singlet neutrinos which are
responsible for the suppression of light neutrino masses in the see-saw mechanism. The
masses of the heavy neutrinos are typically assumed to be some orders of magnitude below
the GUT scale.

Though the parameters entering the leptogenesis mechanism cannot be completely
expressed in terms of low-energy neutrino mass parameters, it is possible to derive bounds
on the neutrino mass scale from the requirement of a successful leptogenesis [48]. Since,
as we demonstrated in Section 2.3.4, the neutrino masses experience corrections of about
20-25% in the MSSM or more than 60% in the SM, we expect the corrections for such
bounds to be sizable.
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The maximal baryon asymmetry generated in the thermal version of this scenario is
given by [48-50]

X~ 0.96 x 10~ 26y (27)

ks is a dilution factor which can be computed from a set of coupled Boltzmann equations
(see, e.g., [51]). In [48], an analytic expression for the maximal relevant CP asymmetry
was derived,

e"™(my, ma, m1) = %(UA/QTW;Z |:1— %<1+ %)UZ], (28)
which refines the older bound

3 M AmGim+ Am,

167 (v/+/2)2 ms

and is valid for a normal mass hierarchy in the SM as well as in the MS@ilis defined
by

7' (m1, m3) =

(29)

- (m;ng)ll
m=——
M1

with mp ~ Y, being the neutrino Dirac mass and typically lies betweanand ms. It

can be constrained by the requirement of successful leptogenesis because it controls the
dilution of the generated asymmetry. The authors of [48] introduced the ‘neutrino mass
window for baryogenesis’ which corresponds to the region irviitpeM1 plane allowing

for successful thermal leptogenesis. The shape and size of the ‘mass window’ depends on

m= ,/mf—km% +m§, i.e., it becomes smaller for increasing andm > 0.2 eV is not
compatible with thermal leptogenesis.

The calculations relevant for leptogenesis, however, refer to processes at very high
energies, and therefore the RG evolution of the input parameters has to be taken into
account [52]. The correct procedure would be to assume specific values for the neutrino
mass parameters at low energy, taking into account the experimental input, evolve them to
the scaleVf1 and test the leptogenesis mechanism using these values. As the full calculation
is beyond the scope of this paper, we present the evolution of the relevant mass parameters,
i.e., the light neutrino masses, to the leptogenesis ddaland estimate the size of the
error arising if RG effects are neglected.

As discussed in Section 2.3.4, there are basically two cases which have to be
distinguished, the case of the SM or the MSSM with smallgaand the case of the
MSSM with large tars.

In the first case, running effects can be understood to arise due to the rescaling of the
light neutrino mass eigenvalues under the renormalization group. From Eq. (29) it is clear
that the maximal CP asymmetry scales like the masses. This statement also holds for the

(30)

7 To use these formulae in our conventions for the inverted scheme, one would have to replace
(mq,m2,m3) — (m3,my,my).
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Fig. 10. Radiative enhancementmfand the CP asymmetry in the MSSM. We show only the case of a normal

mass hierarchy, since an inverted hierarchy yields virtually the same plot. We assume a SUSY-breaking scale
Msysy = 1 TeV, a leptogenesis scale of YoGeV, and zero phases. The mixing angles and mass squared
differences are the LMA best-fit values. We defipg := a’lnax(lolo GeV)/e"™(M7). Inthe case of degenerate

masses (see the right part of plot (b)g]ax can run stronger than the mass eigenvalues since the mass squared
differences can have a stronger dependence on the renormalization scale than the squares of the mass eigenvalues
(cf. Fig. 5).

asymmetry from Eq. (28), ifin1 is a linear combination of the light mass eigenvalues.
Hence, the RG yields an enhancement of the CP asymmetry of between 10% and 80%,
which can be read off from Fig. 4. These effects are almost completely independent of the
low-energy CP phases. On the other hand, the dilution fagtisrexpected to become tiny
since larger mass eigenvalues imply larger Yukawa couplings, which makes the washout
more efficient. This expectation is substantiated by the fact/ihatvhich controls an
important class of washout processes, also increases under the renormalization group, i.e.,
it scales like the masses. As a detailed numerical calculation of the dilution factor is beyond
the scope of this paper, we refer to [51], from which we see that in the region of interest,
i.e., the edge of the mass window,decreases exponentially. From this behavior, which is
also in accordance with the analytic approximations (see, e.g., [53,54]), we expect that the
neutrino mass window for baryogenesis will rather shrink than become larger when RG
effects are properly taken into account.

In the second case, i.e., in the MSSM for large garwe distinguish between
hierarchical and degenerate mass spectra. In the hierarchical spectrum, the ruefiifg of
is to a high accuracy given by the runningm$,2 so that in this case Fig. 4 yields the
relevant plot. The scaling depends on gamn order to illustrate this dependence, we pick
M1 =10 GeV and plotiie := m (10° GeV) /i (M) in Fig. 10(a) as a function of tah
including small values of this parameter as well. It is clear that m3 so that Fig. 10(a)
also shows the scaling ef"®. Since tar8 = 10 and tar = 50 correspond to extreme
cases, the scaling factor for differevfy can be read off from Fig. 4 by interpolation.

In the case of a quasi-degenerate mass spectrum (and laigg thea CP asymmetry
can run stronger than the average mass scale because, as we already have seen in

8 For an inverted hierarchyy1 has to be used instead, whose evolution is approximately the same as that of
m3 here.
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Sections 2.3.5 and 2.3.6, the mass squared differences can experience a stronger RG
enhancement than the squares of the mass eigenvalues. We show the evolagipna-of
X100 GeV)/e"™(M7) in Fig. 10(b). To produce this plot, we employed (29) and
inserted the running mass parameters. For this combination of parameters, the low-energy
phases do influence the evolution§ by damping its running, and the plot shows the
maximal evolution, which means that the phases are simply set to zero. The running effects
are even larger for the new bound (28), since it is more sensitive to the mass splittings than
the old one. More precisely, for highly degenerate mass spectra it is much smaller than the
old one and the degeneracy can be lifted by running effects. This strong enhancement of
the CP asymmetry may even overcompensate the decrease of the dilution factor for large
tang, so that the parameter region compatible with thermal leptogenesis grows.

Altogether, we have presented the relevant mass parameters at the scale of leptogenesis,
thus making it convenient to take into account RG effects in future studies. Moreover,
we have estimated the impact of the renormalization effects, and found that there are two
effects in opposite directions: the CP asymmetry is enhanced because the mass squared
differences increase, and the dilution of the baryon asymmetry is more effective since the
overall mass scale rises due to RG effects. As the dependence of the dilution factor on
the mass scale is stronger than that of the CP asymmetry, we expect the mass window for
baryogenesis to shrink when RG effects are included in the analysis. An exception is the
case of large tafi, where the situation is more complicated.

Note also that there exist different, non-thermal baryogenesis mechanisms [55] in which
the masses of the light neutrinos may be almost degenerate [56]. In these kinds of scenarios,
RG effects increase the baryon asymmetry, sicmcreases, while the effects from the
expected decrease of the dilution factor do not occur.

3.2. RG evolution of bounds on the neutrino mass scale

The absolute neutrino mass scale at low energy is restricted by low-energy experiments
such as searches fongBs decay and cosmological observations. As usual, the RG
evolution of the results has to be taken into account in order to translate the experimental
results into constraints on high-energy theories.

3.2.1. Neutrinoless double beta decay
The amplitude of 088 decay is proportional to the effective neutrino mass

2 2i8

2 2 2 2
= |n’llC12C13€ #1 + m2851oC13€ $2 + m3sq3€ s (31)

(my) = (my)11= ’Z Ufimi

whereU is the MNS matrix. Instead of inserting the lengthy RGEs for all the quantities in
the second line in order to calculate the RG evolutiokwaf), it is much more convenient

to use Eq. (3), which directly yields

d
dr

As the first term is negligible, the RG change of the effective neutrino mass is basically
caused by the universal rescaling of the neutrino masses alone. It is completely independent

1672 —(m,) = (2Cy? + ) (m,). (32)
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Fig. 11. Extrapolation of the experimental upper limit on the effective neutrino mass g decay,
(my) = 0.35 eV, to higher energies. The SM curves correspond to Higgs masses of 114 GeV, 165 GeV and
190 GeV (from bottom to top). In the MSSM, a light Higgs mass of 120 GeV is used.

of the other neutrino mass parameters, since neither the runnipgiof that of the terms

in « is sensitive to them. Besides, the value of gais not very important here, because
y2 is always tiny andv contains only the up-type quark Yukawa couplings in the MSSM.
However, there is a dependence on the Higgs mass in the SM.

Currently, the best experimental upper limit on the effective neutrino mass is about
(my) < 0.35 eV [57,58], with some uncertainty due to nuclear matrix elements. Fig. 11
shows the running of this limit in the SM and the MSSM. As it is very close to the best-fit
value of the recently claimed evidence for double beta de@ay, = 0.39 eV [59], the
evolution of the latter is nearly identical. The SM plot contains three curves corresponding
to different Higgs masses in the current experimentally allowed region. In the MSSM, the
light Higgs mass is chosen to be about 120 GeV. The running is much more significant in
the SM than in the MSSM because of the contribution of the Higgs self-coupling.

3.2.2. WMAP bound

Combining the observations of the cosmic microwave background by the WMAP
satellite with other astronomical data allows to place an upper bound of abbe\V0
onto the sum of the light neutrino masses [47]. This implies

m; <0.23 eV (33)

for each mass eigenvalue. Analogous to the limit frari®decay in the previous section,

this bound is modified substantially by the RG evolution. This is shown in Fig. 12 for
the eigenvaluens. As discussed in Section 2.3.4, the running of the mass eigenvalues is
not sensitive to the mixing parameters in the SM, but it depends on the Higgs mass. In
the MSSM, the variation of the phases causes a slight modification of the running, but
its order of magnitude is only a few percent even for the larggtased in the plot. The
influence of13is negligible. Interestingly, the evolution of the sum of the mass eigenvalues
is virtually independent of the mixing parameters for nearly degenerate neutrinos both in
the SM and in the MSSM. This can be explained by considering the sum of the RGEs (15).
Formy ~ mp ~ m3, the terms proportional tprz add up to 1, with small corrections of the
order of Am2,,/m? ands3.
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Fig. 12. Extrapolation of the upper limit on the neutrino mass from WMAPS 0.23 eV to higher energies,
represented by the running of the mass eigenvalgeThe SM curves correspond to Higgs masses of 114, 165
and 190 GeV (from bottom to top). In the MSSM, a light Higgs mass of 120 GeV is used.

3.3. Constraints on neutrino properties from RG effects

One may wonder if deviations frorii3 = 0 and 623 = /4 exist which are the
consequence of radiative corrections. Let us assume therefoteiha0 or6,3 = /4 are
given by some high-energy model. Low-energy deviations from the exact values are then
RG effects, which can be compared to the sensitivities of future experiments. Therefore,
we investigate in a model-independent way the size of RG correctiaghg mdé,3 from
the running of the effective neutrino mass operator between the see-saw scale and the
electroweak scale.

3.3.1. Correctionsto 613

As pointed out in Section 2.3.2, it is a rather good approximation to aséigmeconst
in Eg. (9), which leads to an RG evolution with a constant slope depending on the Dirac CP
phases and the Majorana phases andg». Therefore, let us first apply the naive estimate
(22) explicitly to the change df13 in the MSSM for nearly degenerate neutrinos. In this
case, the enhancement faciot/ Am3,,, leads to a generic changedat under the RG that
exceeds the detection limit of future experiments even for moderate valueggofanex-
ample,n, = 0.1 eV and taB = 30 yield a change in sfr2613 of A sir? 2013~ 0.5x 1072,
which is further enhanced by a factor of 4 if the Majorana phases are aligned properly.

In order to obtain a more detailed picture, we now apply Eqg. (9) to calculate the RG
correction to the initial valué;3 = 0 between some high-energy scMe, where neutrino
masses are generated, and low energy, i.€.GdV. In this case the initial value of the
Dirac phasé is determined by the analytic continuation Eq. (25). For the examples we take
M =102 GeV. The approximate size of the RG corrections t4 Ba3 in the MSSM is
shown in Fig. 13. In the upper diagram it is plotted as a function oBtand the lightest
neutrino mass:1 for constant Majorana phases = 0 andgo = 7. The lower diagram
shows the dependence of the correctionggmnd g, for tang = 50 andm1 = 0.08 eV
in the case of a normal mass hierarchy. The diagrams look rather similar for an inverted
hierarchy. Analytically, the pattern of the upper plot is easy to understand, and for the lower
one there is a simple explanation as well. Consider partially or nearly degenerate neutrino
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Fig. 13. Corrections t6;3 from the RG evolution between 3@nd 162 GeV in the MSSM, calculated using the
analytical approximations with initial conditiortg 3 = 0 and LMA best-fit values for the remaining parameters.
The upper diagram shows the dependence of tard on the mass of the lightest neutrino for the case of a normal
mass hierarchy and phases= 0 andyo = 7. In the lower diagram the dependence on the Majorana phk@ases
andg» is shown for taB = 50 andm1 = 0.08 eV. The contour lines are defined as in the upper diagram. In order
to apply Eq. (9) to the cagg3 = 0, wheres is undefined, the analytic continuation of Eq. (25) has been used.

masses. Then Eq. (9) yields to a reasonably good approximation

s Cy? . m?
f13~ 35,2 SN 21-sin 2923Am§tm[cos(¢1 —8) —cop2—9)]

—25 . —
Y1+ @2 Sm§01 <P2.

sin
x 2 2

(34)
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Applying an analogous approximation to Eq. (25), it can easily be shown that the first
term in the second line is alwayisl, so that the running is completely determined by the
difference of the Majorana phases. This leads to the diagonal bands in Fig. 13, in particular
the white one corresponding i@ — g2 = 0. If one starts with a small but non-zefgs,

which allows an arbitrary, it turns out that the RG evolution quickly drivégo a value
satisfying Eq. (25), so that the final pattern of Fig. 13 is unchanged.

Planned reactor experiments [60] and next generation superbeam experiments [61,62]
are expected to have an approximate sensitivity ofi2siry of 10-2. From Fig. 13 we find
that the radiative corrections exceed this value for large regions of the currently allowed
parameter space, unless there are cancellations due to Majorana phases,~.e3
(which might be due to some symmetry). If so, the effects are generically smaller than
102 as can be seen from the lower diagram. Future upgraded superbeam experiments like
JHF-Hyper-Kamiokande have the potential to further push the sensitivity to abotit 10
and with a neutrino factory even about f0might be reached.

From the theoretical point of view, one would expect that even if some model predicted
013 = 0 at the energy scale of neutrino mass generation, RG effects would at least produce
a non-zero value of the order shown in Fig. 13. Consequently, experiments with such a
sensitivity have a large discovery potential far. We should point out that this is a
conservative estimate, since if neutrino masses are, e.g., determined by GUT scale physics,
model-dependent radiative corrections in the region betwderand Mgyt contribute
as well [8,9,63-66] and there can be additional corrections from physics above the GUT
scale [67]. On the other hand, if experiments do not meagigethis will improve the
upper bound om13. Parameter space regions where the corrections are larger than this
bound will then appear unnatural from the theoretical side.

3.3.2. Correctionsto 623

We now consider the RG corrections which induce a deviatighofrom /4, even if
some model predicted this specific value at high energy. We apply the analytical formula
(10) with a constant right-hand side in order to calculate the running in the MSSM between
M7 and the see-saw scale, which we takeas= 1012 GeV for our examples. As initial
conditions we assume sm&l3 at M1 and low-energy best-fit values for the remaining
lepton mixings and the neutrino mass squared differences. In leading orée, ithe
evolution is of course independent of the Dirac phse

The size of the RG corrections in the MSSM is shown in Fig. 14. From the upper
diagram it can be read off for desired values ofaand the lightest mass eigenvalugin
an example with vanishing Majorana phases. The lower diagram shows its dependence on
the Majorana phaseg andg; for tang = 50,m1 = 0.1 eV and a normal mass hierarchy.
The diagrams look rather similar in the case of an inverted hierarchy. The effects of the
Majorana phases can easily be understood from Eg. (10). In the regiopwathp, ~
(again, this might be, e.g., due to some symmetry), bagia'¥2 +m3|2 and|m1e'¥t +ms|?
are small for quasi-degenerate neutrinos, which gives the ellipse with small radiative
corrections in the center of the lower diagram. Such cancellations are not possible with
hierarchical masses, but the RG effects are generally not very large in this case, as shown
by the upper plot.
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Fig. 14. Corrections t@»3 from the RG evolution between 3@GeV and 182 GeV in the MSSM, calculated
from the analytical approximation Eg. (10) with initial conditiofiss = 7 /4, small613 = 0 and LMA best-fit
values for the remaining parameters. The upper diagram shows the dependencg andam the masa of
the lightest neutrino for the case of a normal mass hierarchy and ppases, = 0. In the lower diagram the
dependence on the Majorana phagesnde; is shown for the example tgh= 50 andmq = 0.1. Note that for
small6,3 the results are independent of the Dirac phase to a good approximation.

Even if a model predicteébs = /4 at some high-energy scale, we would thus expect
radiative corrections to produce at least a deviation from this value of the size shown in
Fig. 14, so that experiments with such a sensitivity are expected to measure a deviation
of 623 from /4. The sensitivity to sifi2d,3 of future superbeam experiments like JHF—
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Super-Kamiokande is expected to be approximately 1% (see, e.g., [68]). This can now
be compared with Fig. 14. We find that the radiative corrections exceed this value for
large regions of the currently allowed parameter space, where no significant cancellations
due to Majorana phases occur. This means ¢haand g2 must not be too close ta.
Otherwise, the effects are generically smaller as can be seen from the lower diagram.
Upgraded superbeam experiments or a neutrino factory might even reach a sensitivity of
about 05%. As argued for the case @f3, if experiments measues rather close tar /4,
parameter combinations implying larger radiative corrections than the measured deviation
will appear unnatural from the theoretical point of view.

4. Conclusions

We have derived compact expressions which allow an analytical understanding of the
running of neutrino masses, leptonic mixing angles and CP phases in the SM and MSSM.
The results are given directly in terms of these quantities as well as gauge and Yukawa
couplings, and especially for a small anglg the expressions become very simple, even
when non-vanishing CP phases are present. We have extensively compared those formulae
to numerical results and we have found that the RG evolution of the physical parameters
is described qualitatively, and to a reasonable accuracy also quantitatively, very well. We
have shown that Dirac and Majorana CP phases can have a drastic influence on the RG
evolution of the mixing parameters. We have reproduced and illustrated some effects that
were previously described in the literature. As a particularly interesting example, we have
discussed the radiative generation of the Dirac phase from the Majorana phases. Besides,
we have derived new results, for example, concerning the running of the CP phases. Even
though the RG effects for the mixing parameters in the SM are rather small, the RG effects
for the masses are not, and have to be taken into account in any careful analysis which
relates high- and low-energy scales. In the MSSM, especially for largg the evolution
of the mixings and phases can be large.

The RG evolution has interesting phenomenological implications. In the case of
leptogenesis, we have estimated the corrections which arise if the running is appropriately
taken into account and found that the mass window for baryogenesis is likely to shrink
when those corrections are considered. In order to simplify the inclusion of RG effects
in future calculations, we provide the relevant information of the mass parameters at the
leptogenesis scale. Furthermore, we investigated the extrapolation of the upper bounds on
the neutrino mass scale fromgB decay experiments and WMAP to higher-energy scales,
where they become restrictions for model building. Experimentally one fisigts 7 /4,
013~ 0. The deviations frorr /4 and zero may have a radiative origin and we calculated
therefore in a model-independent analysis the RG correctiohgto /4, 613 = 0. With
future precision experiments this may lead to interesting insights into model parameters.

To conclude, we have obtained analytic formulae which are a useful tool to understand
the RG corrections, relevant whenever parameters at two different energy scales are
compared. This has been demonstrated in the phenomenological applications.
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Appendix A. Definition and extraction of mixing parameters
A.1l. Sandard parametrization

In this section we describe our conventions and how mixing angles and phases can

be extracted from mass matrices. For a general unitary matrix we choose the so-called
standard parametrization

U =diag(¢'’, ¢!, ¢ . v . diag(e 412, e 71v2/2 1), (A1)
where
c12¢13 _ 51213 o osige
V = —c23512 — s23513c12¢"  c23012 — 5235135126 523013 (A.2)
523512 — C23513c12¢"  —s23c12 — C23513512¢"° 23013

with ¢;; ands;; defined as ca%; and sirg;;, respectively.
A.2. Extracting mixing angles and phases

In this standard-parametrization, the mixing anglesand 623 can be chosen to lie
between 0 anet /2, and by reordering the massés; can be restricted to € 612 < /4.
For the phases the range between 0 amd<2required. In order to read off the mixing
parameters, we use the following procedure:

(1) 613=arcsin(|U13]),

|U12]| ;
61p— { Ircta m) if U11#0,

2
@ 5 else

U .
() 3= retar(jpZy). if Uss#0,
3 else
@ Sy =arglza),
(®) 8 =argUsy),

Lﬂﬁlhj(/jilzﬁ

2
€12€13€23513

(6) 5=—arg( 13
512523

+ c12¢23513
), wherei, j € {1, 2, 3} andi # j,

(7 8. =arge?Uss),
®) ¢1=2arde’ Uy,
Q) g2=2arge®U3,).



428 S. Antusch et al. / Nuclear Physics B 674 (2003) 401-433

Here we used the relation

2 s
UjiUijUjiU%; = c1acgeassts(e 'O s12523 — c12¢23513),

which holds fori, j € {1, 2, 3} andi # j. Note that this relation is often used in order to
introduce the Jarlskog invariants [69]

1 % k 1 % k
Jep= §||m(U11U12U21U22)| = §||m(U11U13U31U33)|

1 1 .
= §|Im(U§‘2U23U32U§3)| = > |Clzc%36233m5s12s13§23|. (A.3)

For the sake of a better numerical stability, one can choose any of the three combinations.
In particular, if the modulus of one of tH&; is very small, it turns out to be more accurate
to choose a combination in which this specifig does not appear.

A.3. Leptonic mixing matrix

Since the effective neutrino mass matrix is symmetric, it can be diagonalized by a
unitary matrixU,,

UvaVUU =diagmy, mo, m3). (A.4)

The form of U depends on a prescription how to order the mass eigenvalues. In order to
obtain a mixing matrix which can be compared with the experimental data, the choice of
the prescription is somewhat subtle. From experiment we know that there is a small mass
difference, calledAm?2,, = m? — m?, and a larger one, referred to asn2, = m? — m?2.

By convention, the masses are labeled suchithja$ 3 while eitherk or ¢ equals 3. The
different schemes are depicted in Fig. 15. The mass label 2 is attached to the eigenvector
with the lower modulus of the first component. We are doing this since we want to read off

a mixing angled1, less then 4%

The neutrino mixing matriX/mns can then be read off in the following way:

(1) diagonalize¥,'Y, by U,, i.e.,Y, > Ul - vl . ¥, - U, = diagy2, y2.y?) Wherey§ are
positive for f € {e, u, t};

(2) change the basis accordingto — m),=U! -m, - U,;

(3) diagonalizen),:m|, — Uls - m), - Umns = diagim1, m2, m3) wherem; > 0.

ms3 m2/1
my/2
ma/1
myi/2 ms3
N\ 0 < 0
(a) Normal mass hierarchy (b) Inverted mass hierarchy

Fig. 15. The normal and inverted mass hierarchy.
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Then Uyns contains the leptonic mixing angles which can be read off as described
in Appendix A.2. Note thatn; < m2 < m3 is not necessarily fulfilled, as we already
mentioned before (cf. Fig. 15).

Appendix B. Derivation of the analytical formulae

To derive the RGEs for the mixing parameters, we follow in general the methods of [70].
The RGE fork reads

d
167T2—K=O(K+PTK+KP, (B.5)
dr

where all terms with trivial flavour structure are absorbed.ir can be diagonalized (in
the basis wher&, is diagonal) by a unitary transformation,

4
Ut k()U@t)=D(@t) = 2 diag(m1(1), ma(t), m3(1)). (B.6)
We hence obtain

d . . .
E(U*DUT) = uv*put+u*pUt +U*DUT

1
&5 1Tsz(av*DUT +pPTuput +U*DUTP). (B.7)
Multiplying with U” from the left and withU from the right yields
X . ) 1
UTU*D—}-DUTU—i—D:W[aD—i—P/TD—i-DP’], (B.8)

where we have introduce#’ = UTPU. The next step is defining an anti-Hermitian
matrix T by

d

—U=UT. B.9

o (B.9)
With this definition, we find

N 1 1T / *

D_16712(aD+P D+DP) T"D+ DT, (B.10)

where the anti-hermiticity off was used. Since the left-hand side of this equation is
diagonal and real per definition, the right-hand side has to possess these properties as well,
m; = W(ami + 2Pi/imi) + (T;; — Tﬁ;)ml (B.11)
Note that here and in the following equations, no sum over repeated indices is implied. The
second bracket is purely imaginary, hence it has to cancel with the imaginary part of the
first one,
1

2Imﬂi=ﬁ(lma+2lmPi’i), (B.12)
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and we further confirm Eq. (15) of [11], which translates with our conventions to
1672%m; = (Rea + 2ReP),)m;. (B.13)

Eq. (B.12) differs from Eq. (19) of [11], where the imaginary partoofs not present;
however, this difference is irrelevant in the SM and the MSSM, wheris real. By
comparing the off-diagonal parts of (B.10) we find

1
miTij_T,‘j'mj: _‘]_6712(P/Tm/+ml U) (B.14)

Adding and subtracting this equation and its complex conjugate, we obtaig&gr

mjReP}; +m;ReP],

1672 ReT;j = — , (B.15a)
m; —m;
mi;lmP,. +m;Im P/
16r2imf=———J' U (B.15h)
mi—}—mj

Let us now focus on Hermitia®, which implies HermitianP’, for a moment. Using
ReP’ = ReP’* ReP’ and an analogous relation for IFH we obtain in this case

mi m
1672ImT;j = ——— Im P/, B.16a
=i (B.162)
1672ReT;; = — " Rep/. (B.16b)
m_m]

In order to obtain the renormalization group equations for the mixing angles, we use (B.9),
uto =T. (B.17)

Inserting the standard parametrization (A.1), we can express the left-hand side of (B.17) in
terms of the mixing parameters and their derivatives. Now we can solve for the derivatives
of the mixing parameters. Note that due to the separation of the evolution of the mass
eigenvalues in Eq. (B.13), we have reduced the number of parameters from 12 to 9. The
discussion so far has been very similar to the one of [11]. There, the RG evolution of the
mixing parameters is expressed in terms of the mixing matrix elementg’and

In order to obtain rather short and more explicit formulae, which are, e.g., useful for
deriving the approximations of Section 2.1, we now consider (B.17) and label the mixing
parameters as

{€r} = {012, 013,023, 8. 8¢, 8, 87, 91, 2} (B.18)

We observe that the left-hand side of (B.17) is linea&in Therefore, by solving the
corresponding system of linear equations, we can express the derivatives of the mixing
parameters by the mixing parameters, the mass eigenvalues and the Yukawa couplings.
The resulting formulae are still too long to be presented here but can be obtained from the
web pagénttp://www.ph.tum.de/~mratz/AnalyticFormulae/

Finally, let us record that only the moduli 6f; enter into the diagonal elements Bf,
if P is diagonal,P =diag(P1, P2, P3) (which is the case in the SM and MSSM in the basis
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we have used in the main part), since

Pl = WUy Pyl =) Uk PisjUsi = _|Ujil*P;. (B.19)
ik ik J

Consequently, the evolution of the mass eigenvalues does not directly depend on the

Majorana phases, as claimed in Section 2.3.4.
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