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Introductory paragraph 33 

Gross primary production (GPP) – the uptake of CO2 by leaves, and its conversion to sugars by 34 

photosynthesis – is the basis for life on land. Earth System Models (ESMs) incorporating the 35 

interactions of land ecosystems and climate are used to predict the future of the terrestrial sink 36 

for anthropogenic carbon dioxide (CO2)
1. ESMs require accurate representation of GPP. But 37 

current ESMs disagree on how GPP responds to environmental variations1,2, suggesting a need 38 

for a more robust theoretical framework for modelling3,4. Here we focus on a key quantity for 39 

GPP, the ratio of leaf-internal to external CO2 (χ). χ is tightly regulated and depends on 40 

environmental conditions, but is represented empirically and incompletely in today’s models. We 41 

show that a simple evolutionary optimality hypothesis5,6 predicts specific quantitative 42 

dependencies of χ on temperature, vapour pressure deficit and elevation; and that these same 43 

dependencies emerge from an independent analysis of empirical χ values, derived from a 44 

worldwide data set of > 3500 leaf stable carbon isotope measurements. A single global equation 45 

embodying these relationships then unifies the empirical light use efficiency (LUE) model7 with 46 

the standard model of C3 photosynthesis8, and successfully predicts GPP measured at eddy-47 

covariance flux sites. This success is notable given the equation’s simplicity and broad 48 

applicability across biomes and plant functional types. It provides a theoretical underpinning for 49 

the analysis of plant functional co-ordination across species and emergent properties of 50 

ecosystems, and a potential basis for the reformulation of the controls of GPP in next-generation 51 

ESMs. 52 

The standard model8 accurately describes the instantaneous environmental and physiological controls 53 

of photosynthesis, whereas empirical LUE models can predict primary production over weeks to 54 

months7,9 (Supplementary Information). The connection between these parallel modelling frameworks 55 

remains unresolved9. Both require independent information to be provided: leaf-internal CO2 partial 56 

pressure (ci) and photosynthetic capacities for carboxylation and electron transport (Vcmax and Jmax) in 57 

the Farquhar model, and environmental response functions in LUE models. There is no accepted 58 

general way to do this for large-scale modelling10,11, and as a result, different implementations of 59 

apparently the same model can give very different answers in different ESMs. 60 

The biochemical reactions of photosynthesis depend on the value of ci
8,12. CO2 diffuses into 61 

leaves through the stomata (microscopic pores in the leaf surface) towards the chloroplasts, where 62 

reducing power derived from solar energy is used to assimilate CO2 into organic forms through the 63 

Calvin cycle. The term ci refers to the partial pressure of CO2 in the intercellular space, which is lower 64 

than the ambient CO2 partial pressure (ca) while photosynthesis is active due to the resistance imposed 65 

by the stomata. The term cc (applying at the chloroplasts, where carbon fixation occurs) is generally 66 

even smaller than ci due to additional resistance to CO2 transport in the mesophyll (a point that we 67 

return to later) but most current models disregard this additional drawdown of CO2. Thus, given 68 

knowledge of ca, the quantity χ = ci/ca becomes a key modelling target. χ is tightly regulated by the fast 69 

(time scale of minutes) responses of both photosynthetic rate and stomatal aperture to environmental 70 

fluctuations. However, current stomatal models used in ESMs account only for the response of χ to 71 



moisture, represented by empirical and non-equivalent formulations13; while satellite-based products 72 

based on LUE do not represent ci at all (Supplementary Information). We propose that a firm basis for 73 

the prediction of χ is an essential first step towards a first-principles representation of terrestrial plant 74 

carbon uptake.  75 

Long-term effective values of χ can be reconstructed from data on leaf stable carbon isotope 76 

ratios (δ13C). Previous analyses of leaf δ13C data have examined relationships with environmental 77 

factors statistically, with many using leaf δ13C as a palaeoclimatic indicator of moisture-related climate 78 

variables only14. Here we predict the environmental responses of χ theoretically, reserving the leaf δ13C 79 

measurements for testing. Our theoretical approach depends on the idea of evolutionary optimality in 80 

balancing the costs of water loss and carbon gain – a long-standing source of hypotheses to account for 81 

stomatal behavior15,16. We derive theoretical dependencies of ‘optimal’ χ (termed χο) on growing-82 

season air temperature, vapour pressure deficit, and elevation above sea level based on the least-cost 83 

hypothesis5,6, which states that plants minimize the combined costs of maintaining the capacities for 84 

carboxylation (maintaining the activity of Rubisco, the primary carboxylating enzyme, and other 85 

photosynthetic proteins) and transpiration (maintaining living tissues to support water transport) 86 

required to achieve a given assimilation rate. We derive effective growing-season values of χ from a 87 

large global compilation of δ13C measurements on leaves of C3 plants17 (Supplementary Figure 1) with 88 

a standard method18, and use these values to test the theory’s predictions. We then invoke the 89 

hypothesis of co-limitation between carboxylation- and electron transport-limited photosynthetic rates 90 

to provide a universal model of GPP in C3 plants, which is shown to unify the Farquhar and LUE 91 

models for C3 photosynthesis. Finally the model is tested against GPP data derived from eddy-92 

covariance flux measurements. 93 

The theory developed in Methods predicts that the quantity logit (χο) = ln [χο / (1 – χο)] should 94 

rise with growth temperature (Tg) by ~ 0.0545 per Kelvin due to increased assimilation costs (the 95 

affinity of Rubisco for CO2 versus O2 declines with temperature) and reduced water transport costs (the 96 

viscosity of water declines). Due to the increase in transpiration costs imposed by increasing vapour 97 

pressure deficit (vpd), logit (χο) also should fall by 0.5 per unit increase of natural log transformed D0 98 

(the vpd that would be obtained at standard atmospheric pressure under the same temperature and H2O 99 

mole fraction). With increasing elevation the saturated vapour pressure of water remains constant while 100 

the actual vapour pressure (all other factors constant) declines, implying increased transpiration costs; 101 

while the partial pressure of O2 also declines, increasing the affinity of Rubisco for CO2 and implying 102 

reduced assimilation costs19. These two effects combine to yield a reduction of logit (χο) by ~ 0.0815 103 

per km elevation (z). The theoretical model for χo can therefore be written in a linearized form: 104 

ln [χο/(1–χο)] ≈ 0.0545 (Tg – 25) – 0.5 ln D0 – 0.0815 z + C        (1) 105 

These predicted effects of each variable are shown here to be quantitatively consistent with the 106 

corresponding partial effects (that is, effects of each variable with the others held constant) 107 

independently inferred from the leaf χ data by multiple regression (Fig. 1, Table 1). Fitting this 108 

equation (with fixed coefficients) to the data provided an estimate of C = 1.189, close to the value of 109 



1.168 obtained with variable coefficients (Table 1). This constant is directly related to β, the ratio of 110 

carboxylation to transpiration cost factors at 25˚C, by equation (12) in Methods. The coefficients in 111 

equation (1) were computed for standard conditions (Tg = 25 ˚C, D0 = 1 kPa, z = 0 km). The coefficient 112 

for elevation is sensitive to relative humidity (RH) at standard pressure, however, and becomes 113 

arbitrarily large as RH approaches 100%. The value of –0.0815 was computed at RH = 50%. As 114 

predicted, the fitted (negative) slope of ln [χ / (1 – χ)] with elevation increases with RH, most steeply at 115 

high RH (Fig. 1).  116 

 χo values from equation (1) are consistent with observed χ across biomes (r = 0.51) (Fig. 2). 117 

Highest values are in hot, wet, low-elevation sites (tropical forests), lowest in cold and/or dry and/or 118 

high-elevation sites (deserts, polar and alpine vegetation). χo ranges globally from 0.4 to almost 1.0 119 

with a typical value of 0.77 (Supplementary Figure 2). The reduction from the equator towards mid-120 

latitudes is due to increasing aridity while that in high latitudes is due to declining temperatures 121 

(Supplementary Figure 3).  122 

 Using a published dataset of CO2 and water exchange measurements20, we confirmed 123 

(Supplementary Table 1) that the partial effects of temperature and vpd on instantaneous gas exchange 124 

are also consistent with equation (1). No elevation effect was found, however, probably due to the 125 

limited elevation range in this dataset.  126 

 So far, we have implicitly assumed infinite mesophyll conductance and, therefore, that the 127 

ratio (χc) of CO2 partial pressure at the chloroplasts (cc) to ca equals the ratio of ci to ca. In Methods we 128 

show that the optimal value of χc has the same environmental dependencies as χo, with an additional 129 

dependency on the ratio of gs to gm. Values of χc were estimated from the leaf data using a process-130 

based model for 13C discrimination. Data analysis confirmed the predicted environmental responses of 131 

logit (χc), but with a lower estimate of C = 1.097 (Supplementary Table 2) as expected, since finite gm 132 

implies χc < χ. The agreement between observed and predicted χc was slightly improved compared to 133 

that of χ (Supplementary Table 2, Supplementary Figure 4). 134 

The co-ordination or co-limitation hypothesis, stating that the two photosynthetic processes of 135 

carboxylation and transport are coupled such that photosynthetic rates limited by those two processes 136 

are equal under typical daytime conditions, provides the next step towards a universal model of 137 

GPP21,22. The hypothesis implies adjustment of Vcmax in time and space to match environmental 138 

conditions22 and predicts environmental responses of GPP in the field that are necessarily different 139 

from those observed in laboratory experiments which are typically conducted at light saturation, with 140 

no time for acclimation. Extensive field measurements also point to an optimal maximum rate of 141 

electron transport, Jmax, that maximizes the photosynthetic benefits minus the costs of maintaining the 142 

electron-transport chain (Supplementary Figure 5)23. We can thereby eliminate both Vcmax and Jmax as 143 

independent predictors, to derive a first-principles model for C3 photosynthesis on weekly or longer 144 

time scales that has the mathematical form of a LUE model, but is nonetheless consistent with the 145 

standard model of C3 photosynthesis: 146 



GPP  =   φ0 Iabs m √[1 – (c*/m)2/3]             (2) 147 

where  148 

m  =  (ca – Γ*)/{ca + 2Γ* + 3Γ*√[1.6 η* D0 β
–1 (K + Γ*)–1]}       (3) 149 

 Here φ0 is the intrinsic quantum yield (1.02 g C mol–1)24, Iabs is the absorbed photosynthetic 150 

photon flux density (PPFD, mol m–2
 s

–1), Γ* is the photorespiratory compensation point (Pa), K is the 151 

effective Michaelis-Menten coefficient of Rubisco (Pa), η* is the viscosity of water relative to its value 152 

at 25˚C, β  ≈ 240 from the constant C in equation (1), and c* is proportional to the unit carbon cost for 153 

the maintenance of electron transport capacity, ≈ 0.41 (estimated from observed Jmax:Vcmax ratios). 154 

Although not explored here, GPP of C4 plants under field conditions can be represented using a 155 

modification of equations (2) and (3), given that C4 plants boost CO2 around the chloroplasts to high 156 

levels while operating at a lower φ0.  157 

For C3 plants, the LUE is the product of φ0, m and the square-root term in equation (2). Thus 158 

GPP is proportional to Iabs, which can be calculated as the product of incident PPFD and remotely 159 

sensed green vegetation cover. LUE is less than the potential maximum (φ0) due to limitations by CO2 160 

(m) and electron transport capacity (the square-root term) leading to global mean reductions by 25% 161 

and 43%, respectively. Supplementary Figure 6 shows how the predicted global pattern of potential 162 

maximum GPP by C3 plants is modified by those constraints.  163 

 Predicted monthly GPP compares well with monthly GPP derived from CO2 flux 164 

measurements (Fig. 3). Predicted global total annual GPP is 120 Pg C, within the accepted range25. The 165 

model captures the variation in observed GPP within and among different biomes as well as or better 166 

than other LUE models26 (Supplementary Information, Supplementary Table 3). This level of 167 

predictability, achieved with only two free parameters (β and c*) that are estimated from independent 168 

observations, suggests that variations in χ and LUE that are commonly represented by biome-specific 169 

parameters could be explained more parsimoniously as a consequence of optimal plant responses to the 170 

climates in which different biomes occur.  171 

 Enhanced LUE and GPP are predicted with increasing ca, the magnitude of the enhancement 172 

varying with climate. A meta-analysis of 12 Free Air Carbon dioxide Enrichment experiments showed 173 

that with CO2 increased by about 200 ppm, LUE and instantaneous water use efficiency increased by 174 

12.2 ± 9% and 54.3 ± 17%, while the ratio Vcmax/Jmax and stomatal conductance changed by –4.9 ± 175 

2.8% and –20 ± 3%27. The model-predicted mean changes in these quantities in turn (Supplementary 176 

Information) are 17.2%, 55%, –22.4% and –15%. This analysis also showed a slight (non-significant) 177 

CO2-induced reduction in χ, consistent with the prediction of a slight decline by equation (9). 178 

Considering finite gm slightly enhances the LUE increase and reduces Vcmax/Jmax decrease due to CO2 179 

enrichment but has no effect on the responses of water use efficiency and gs. The model’s 180 

overestimation of the CO2 effect on Vcmax/Jmax requires further analysis: for example we note that 181 

increased leaf temperature due to stomatal closure under CO2 enrichment would impose a strong 182 

positive effect on Vcmax/Jmax (~ 4% per K), potentially compensating the CO2 effect.  183 



 Consideration of finite gm (substituting χc for χo) affects the interpretation of β, which is 184 

reduced to ≈ 200 and now incorporates both the ratio of cost factors and the ratio of gs to gm. This 185 

modification reduces global annual GPP by 2.5% and marginally improves the agreement with 186 

observations (r = 0.742, RMSE = 68.69 g C month–1). 187 

 The spread of χ and GPP values around the model predictions may reflect variation in β and c* 188 

which have so far been assumed constant. It will be worthwhile to explore their possible dependencies 189 

on plant functional traits. For example, the unit cost of transpiration is expected to depend on plant 190 

hydraulic traits, including the density and permeability of conducting tissue, plant height and the 191 

isohydry-anisohydry continuum, which together with soil moisture determines the maximum water 192 

potential difference between soil and leaf5. We found no significant difference in χ between woody and 193 

non-woody plants; the differences in 13C discrimination among conventionally defined plant functional 194 

types (PFTs) were predicted correctly by climate and elevation alone (Supplementary Figure 7). 195 

Nonetheless, we did find a significant difference between gymnosperms and angiosperms (20% higher 196 

water cost in gymnosperms suggested by the global carbon isotope dataset: Supplementary 197 

Information) which could be explained by the narrower conducting elements of gymnosperms, and is 198 

consistent with the observed high intrinsic water use efficiency of conifer forests28. The unit cost of 199 

Vcmax may be influenced by the costs of nitrogen uptake, which are likely higher (favouring investment 200 

in water transport) on less fertile soils. We tested for and detected a significant negative response of χ 201 

to soil pH, which indexes one dimension of soil fertility29, accounting for an additional 5% of variance 202 

in χ. Predicted responses of the ratio Jmax/Vcmax to temperature and CO2 made with the simplifying 203 

assumption of a universally constant c* appear to be supported by observational evidence, but should be 204 

analysed with a more extensive dataset. 205 

 This simple model’s predictive skill suggests a route towards an improved predictive 206 

understanding and modelling approach for terrestrial carbon and water cycling while providing a new 207 

theoretical framework for the analysis of both environmental and plant morphological influences on 208 

photosynthetic traits. By making testable predictions of such influences based on quantifiable benefits 209 

and costs, the evolutionary optimality approach may lead to a more robust basis for understanding and 210 

modelling both the co-ordination of plant traits among species, and biological controls of the emergent 211 

functional properties of ecosystems as represented in ESMs.  212 

Full Methods and any associated references are available in the online version of the paper. 213 

Author Information Correspondence and requests for materials should be addressed to H.W. and C.P. 214 

(wanghan_sci@yahoo.com, peng.changhui@uqam.ca) 215 
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Table 1 | Summary statistics for the environmental dependencies of χ (the ratio of leaf-internal to 320 

ambient CO2 partial pressure). Logit-transformed values of χ derived from the global leaf stable 321 

carbon isotope dataset using a standard method18 were regressed against the difference between 322 

growing-season mean temperature Tg and 25˚C (ΔTg, ˚C), the natural logarithm of growing-season 323 

mean vapour pressure deficit at standard atmospheric pressure (ln D0, kPa), and elevation (z, km). 324 

Theoretical values, shown for comparison, are partial derivatives of logit-transformed predicted 325 

‘optimal’ χ with respect to each predictor, evaluated for standard conditions (Tg = 25 ˚C, D0 = 1 kPa, z 326 

= 0 km). 327 

328 

Predictor Theoretical value Fitted coefficient Confidence intervals 

2.5%            97.5% 

 Multiple 

R2 

ΔTg 0.0545 0.0515 0.0456 0.0575  0.391

ln D0 −0.5 −0.5478 −0.6111 −0.4846   

z −0.0815 −0.1065 −0.1315 −0.0815   

intercept 1.189 1.1680 1.0464 1.2896   



Figure 1 | Partial residual plots from the regression of logit-tranformed values of χ (the ratio of 329 

leaf-internal to ambient CO2 partial pressure) derived from the global leaf stable carbon isotope 330 

dataset against environmental predictors. Tg: growing-season mean temperature. ln D0: the natural 331 

logarithm of growing-season mean vapour pressure deficit at standard atmospheric pressure. z: 332 

elevation. Inset shows elevation responses for relative humidity (RH, %) classes with error bars 333 

showing 95% confidence intervals, compared to predicted responses (black dots) evaluated at the 334 

centre of each RH class.   335 



Figure 2 | Site-mean values of the ratio of leaf-internal to ambient CO2 partial pressure (χ). 336 

Predictions (χo) are from the theoretical model driven by three environmental predictors (equation 1). 337 

Observations (χ) are from the global leaf stable carbon isotope dataset. Mean and standard deviation 338 

are shown for each biome. Biome types were assigned based on BIOME430 for consistency except for 339 

‘wetland’ and ‘alpine’ types, which were assigned from source publications. The solid line is the 340 

regression through the origin; the dashed line is the 1:1 line. r: Pearson correlation  between  observed 341 

and predicted values; RMSE: root-mean-squared error of prediction.   342 



Figure 3 | Monthly gross primary production (GPP) at flux sites. Predictions from equations (2) 343 

and (3); observations based on CO2 flux data in the FLUXNET archive. The solid line is the regression 344 

through the origin; the dashed line is the 1:1 line. r: Pearson correlation  between  observed and 345 

predicted values; RMSE: root-mean-squared error of prediction.    346 



Methods  347 

Theory for the environmental controls on χ 348 

Optimality hypotheses to account for the environmental responses of stomata have a long history, with 349 

pioneering contributions especially by Cowan and Farquhar and Givnish15,16. Cowan and Farquhar 350 

hypothesized that stomata act to maximize marginal carbon gain (assimilation, A) while minimizing 351 

marginal water loss (transpiration, E), i.e. ∂E / ∂A = λ where λ is a parameter representing the ‘marginal 352 

carbon cost of water’. This approach successfully addresses many observed features of stomatal 353 

behaviour but leaves the value of λ undefined and, as noted by Givnish, does not explicitly consider the 354 

costs of maintaining photosynthetic capacity. These limitations are avoided by the least-cost 355 

hypothesis, which states that plants should minimize the combined carbon costs (per unit of 356 

assimilation) of maintaining the required capacities for carboxylation and transpiration. This hypothesis 357 

was first proposed explicitly by Wright et al.6, and applied in the context of the standard model of 358 

photosynthesis8 by Prentice et al.5 who defined the following optimality criterion for χ: 359 

a.∂(E/A)/ ∂χ + b.∂(Vcmax /A)/ ∂χ = 0                                   (4) 360 

Here, a and b are dimensionless cost factors for E and Vcmax respectively.  361 

The coordination hypothesis states that Vcmax of leaves at any level in the canopy acclimates spatially 362 

and temporally to the prevailing daytime incident PPFD (the absorbed photosynthetic photon flux 363 

density) in such a way as to be neither in excess (entailing additional, futile maintenance respiration), 364 

nor less than required for full exploitation of the available light21,22,31. In other words, under typical 365 

daytime conditions when most photosynthesis takes place, the Rubisco-limited photosynthetic rate is 366 

equal to electron-transport limited photosynthetic rate (A=AC=AJ). Therefore, Rubisco-limited 367 

photosynthesis in the standard biochemical model8 can be rewritten as a prediction of Vcmax / A: 368 

Vcmax /A = (χca+K)/(χca – Γ*),                         (5) 369 

Fick’s law of diffusion applied to both H2O and CO2 allows prediction of E/A: 370 

E/A = 1.6(D/ca)/(1–χ)                          (6) 371 

where D is vapour pressure deficit. Initially neglecting Γ* for simplicity (i.e. assuming χca >> Γ*), 372 

substituting equations (5) and (6) in (4) and taking derivatives, the optimal value of χ satisfies: 373 

1.6(aD/ca)/(1–χ)2 – bK / χ2ca  =  0                                   (7) 374 

The solution to equation (7) provides the required optimal value (χo): 375 

χo = ξ/(ξ+√D), where ξ = √(bK/1.6a)           (8) 376 

Omitting the assumption χca >> Γ* yields the more exact form: 377 



χo = Γ*/ca + (1 – Γ*/ca) ξ/(ξ+√D), where ξ = √[b(K+Γ*)/1.6a]                                  (9) 378 

The parameter ξ expresses the sensitivity of χo to D. The ratio of stem respiration to transpiration 379 

capacity (a) depends (among other things) on the viscosity of water. The ratio of mitochondrial 380 

respiration to carboxylation capacity (b) is generally taken as constant8. As only the ratio b/a (not the 381 

individual terms b and a) affects χο, we will later use the composite parameter β to denote the value of 382 

b/a at 25˚C.  383 

Given the particular form of equation (8), logit transformation simplifies the derivation of its 384 

sensitivities to environmental variables, as follows: 385 

logit (χo) = ln [χo/(1 − χo)] =  ½ ln b − ½ ln a + ½ ln K  − ½ ln D − ½ ln 1.6       (10) 386 

The dependencies of a (through the viscosity of water η) and K (through the Michaelis-Menten 387 

coefficients of Rubisco for carboxylation (Kc) and oxygenation (Ko)) on temperature (T), and the 388 

dependency of K (through Po, the partial pressure of O2) and D on elevation, are denoted by f1(T), f2(T), 389 

g1(z) and g2(z). The elevation effect here includes the effect of the vapour pressure decline because 390 

humidity statistics in the 3D-gridded datasets used for global analysis do not account for it. Thus, we 391 

substitute D with D0 (the vpd that would be obtained at standard atmospheric pressure under the same 392 

temperature and H2O mole fraction). Equation (10) is then equivalent to: 393 

ln [χo/(1 − χo)] = – ½ ln f1(T) + ½ ln f2(T) + ½ ln g1(z) − ½ ln D0 − ½ ln g2(z) + C,                 (11) 394 

where C = ½ (ln b – ln aref + ln Kref − ln 1.6) = ½ (ln β + ln Kref − ln 1.6)                         (12) 395 

aref and Kref are the values of a and K under standard conditions (T = 298 K, z = 0). Equation (11) 396 

predicts the coefficient of ln D0 as –0.5.  397 

Temperature dependency of a 398 

The parameter a is directly proportional to η, according to equation (11) in ref. 5. The temperature 399 

dependency of η can be well approximated by the Vogel equation32: 400 

η  =  10–3 exp [A + B/(C + T)]                                    (13) 401 

where A = −3.719, B = 580 and C = −138. Thus, the sensitivity of η to temperature is given by: 402 

(1/η) ∂η/∂T  =  ∂ ln η/∂T = −B/(C + T)2                                   (14) 403 

allowing the response of η to T, within the physiologically relevant range, to be well approximated by 404 

an exponential response to ΔΤ = T – 298 K relative to a reference value at T = 298 K (ηref): 405 

 f1(T) = η/ηref  ≈ exp [−B/(C + T)2 ΔΤ ]                            (15) 406 



Temperature and elevation dependencies of K 407 

K (in partial pressure units) is given by: 408 

K  =  Kc (1 + Po/Ko),                                        (16)                                     409 

Po can be expressed as a simple function of elevation (in km) using a standard approximation for the 410 

decline in atmospheric pressure with elevation33: 411 

Po  = 21000 exp (− 0.114 z)                                         (17)                                   412 

The Arrhenius relationship describing the response of a biochemical rate parameter (x, such as Kc and 413 

Ko) to temperature can be expressed as: 414 

∂ ln x/∂T  =  (ΔH/R).(1/T2)                                 (18) 415 

where R = 8.3145 J mol–1 K–1 and the activation energies ΔH are 79.43 kJ mol–1 for Kc and 36.38 kJ 416 

mol–1 for Ko, denoted as ΔHc and ΔHo, respectively, from in vivo determinations34.  417 

Therefore, the sensitivity of K to temperature from equation (16) is given by: 418 

 (1/K) ∂K/∂T =  [(ΔHc/R)(1/T2) (Po+ Ko) − (ΔHo/R)(1/T2) Po]/(Po+ Ko)                  (19) 419 

leading to: 420 

f2(T) = exp([(ΔHc/R)(1/T2) (Po+ Ko) − (ΔHo/R)(1/T2) Po]/(Po+ Ko) ΔΤ)                  (20) 421 

The sensitivity of K to elevation due to declination in Po can then be derived from equation (16): 422 

(1/K) ∂K/∂z   =  −0.114 Po/(Po + Ko)                      (21) 423 

Therefore,  424 

g1(z) = exp[− 0.114 Po/(Po + Ko)z]                                (22) 425 

Elevation dependency of D 426 

D can similarly be expressed as a function of elevation: 427 

D = es − ea0 exp (− 0.114 z)                           (23) 428 

where es is the saturation vapour pressure and ea0 is the actual vapour pressure that would be obtained 429 

at sea level under the same H2O mole fraction and temperature. Since exp (–0.114z) can be taken as 430 

equal to unity, to a good approximation, within the relevant range of z, the dependency of D on 431 

elevation here approximated as: 432 



∂ ln D/∂z  =  0.114 ea0 /D0   =  0.114 RH /(1 – RH),                         (24) 433 

Therefore, 434 

g2(z)  =  exp {0.114 [ RH /(1 – RH)] z}                             (25) 435 

Note that this theoretically derived elevation effect on D varies strongly with RH, approaching infinity 436 

as RH tends to 1.  437 

Linearized expressions for χo in terms of environmental predictors 438 

Evaluating equations (15), (20), (22) and (25) at standard temperature (T = 298 K, z = 0 and RH0 = 439 

50%) and substituting the resulting expressions in equation (11), we obtain: 440 

ln [χo/(1 − χo)]  =  ½ (0.0864 + 0.0227) ΔΤ – ½ (0.0491 + 0.114) z – ½ ln D0 + C 441 

           =  0.0545 ΔΤ – 0.0815 z – 0.5 ln D0 + C                                (26) 442 

C ≈ 1.189, estimated as the intercept in a generalized linear model (GLM) fitted to the data with 443 

imposed regression coefficients for all three environmental effects in equation (26). This allows us to 444 

estimate β ≈ 240 from equation (12). Therefore, the optimal leaf-internal partial pressure of CO2 can be 445 

derived from the more exact expression for χo (equation 9): 446 

,                                    (27) 447 

Here η* is the viscosity of water relative to its value at 25˚C, representing the effect of changing 448 

viscosity on the value of a. 449 

Testing the theory with global δ13C data 450 

Vascular-plant leaf stable carbon isotope data were compiled from published and unpublished 451 

sources17. Inferred carbon isotope discrimination (Δ) values for 3549 leaf samples of C3 plants were 452 

converted to estimates of χ by a standard equation18: 453 

                                    (28) 454 

where a’ and b’ have standard values 4.4 and 27, representing the diffusional and biochemical 455 

components of carbon isotope discrimination, respectively. The Climatic Research Unit CL2.0 10-456 

minute gridded monthly climatology35 of mean, maximum and minimum temperatures and relative 457 

humidity provided mean temperature (Tg, ˚C) and vapour pressure deficit (D0, kPa) values for the 458 

period with daily mean temperatures > 0˚C. Values of ln [χ/(1–χ)] were fitted using a GLM with ΔTg = 459 

Tg – 25˚C, ln D0, and site-specific elevation (z, km) as predictors. Standard errors estimated by the 460 

ci = ξca + Γ* D

ξ + D
, ξ =

β K + Γ*( )
1.6η*

χ = Δ − a '

b '− a '



GLM were combined quadratically with standard errors for the uncertainty of the effective Rubisco 461 

discrimination parameter b’, the latter obtained by generating 104 normally distributed values of b’ 462 

(mean = 27, standard deviation = 0.27) and repeating the estimation of χ and the GLM fitting 104 times 463 

with different b’ values.   464 

Incorporating finite gm into the least-cost framework and testing with global δ13C data 465 

Mesophyll conductance, the liquid-phase conductance between the intercellular spaces and the 466 

chloroplasts, is assumed arbitrarily large in most large-scale ecophysiological data analysis and 467 

models36, since the mechanisms behind its environmental responses remain unclear. The prediction of 468 

gm still largely relies on empirical relationships37. However, the effect of finite gm can be incorporated 469 

into the least-cost framework naturally due to its impact on carboxylation, and furthermore leads to an 470 

optimal ratio of the chloroplastic to ambient CO2 (χc) under the simplifying assumption that the ratio of 471 

gs (stomata conductance) to gm is independent of environmental factors38-41. 472 

Assuming that the total conductance (g) for CO2 diffusing from the ambient atmosphere to the 473 

chloroplasts is principally controlled by gs and gm: 474 

1/ g = 1/gs + 1/gm                   (29) 475 

Note that gm affects CO2 diffusion for carboxylation, but not H2O diffusion during transpiration. 476 

Replacing stomatal with total conductance for carboxylation, equation (6) therefore becomes: 477 

E/A = 1.6 (D/ca) (gs + gm) / [(1 – χc) gm]                     (30) 478 

The leaf-internal CO2 concentration (χca) in equation (5) can then be replaced by the chloroplastic CO2 479 

concentration (χcca):  480 

Vcmax /A  =  (χcca + K)/(χcca – Γ*)                           (31) 481 

Applying the optimality criterion: 482 

a.∂(E/Ac)/ ∂χc + b.∂(Vcmax /Ac)/ ∂χc = 0                 (32) 483 

to equations (30) and (31), the optimal ratio of chloroplast to ambient CO2 (χco) is given by (assuming 484 

χcca >> Γ*): 485 

χco = ξc/(ξc+√D), where ξc = √[bK/1.6a/(1+ gs/gm)] = ξ / √(1+ gs/gm),                       (33) 486 

or, if we relax the assumption  χcca >> Γ*, by: 487 

χco = Γ*/ca + (1 – Γ*/ca) ξc/(ξc+√D), where ξc = √{b(K+Γ*)/[1.6a(1+ gs/gm)]}                          (34) 488 

Here χco is not influenced by gs and gm separately, but by their ratio. The form of the model for χco 489 

resembles that for χo, but the sensitivity parameter ξ is adjusted by a factor √[1/(1+ gs/gm)]. 490 



In the model for χco the ratio of gs to gm is assumed to be independent of environment. Even though 491 

both gs and gm vary with environmental conditions, including light, moisture and temperature, their 492 

covariation under a wide range of conditions supports this assumption at least as a first 493 

approximation38-41. Moreover, data indicate that the value of gs/gm is quite conservative, with a median 494 

of about 1.4 (I.J. Wright, unublished data). The derivation of the environmental dependencies of χco 495 

then follows the same logical steps as that for χ. Further refinement of the model for χco however would 496 

require deeper understanding of the regulation of gs and gm.  497 

The estimated value of the ratio of cost factors b to a at reference temperature is updated to a value of 498 

343 after deducting the term of (gs/gm + 1)–1 from constant C. This time we obtained C based on 499 

observational χc estimated from the global carbon isotope dataset with the “comprehensive” equation in 500 

Ubierna & Farquhar42 but following the first three simplifying  assumptions listed in their Figure 1: (1) 501 

that the ternary effect is negligible; (2) the fractionations associated with Rubisco carboxylation, during 502 

respiration and photorespiration are far less than 1; (3) infinite boundary-layer conductance. We also 503 

assumed leaf dark respiration Rd << A, so that Rd/(Rd + A) ≈ Rd/A. The “comprehensive” equation for Δ 504 

can then be rewritten more simply as: 505 

Δ  =  as (1 – χ) + am (χ – χc) + bχc – eb0 (χc + κ) – fγ                     (35) 506 

Here, as, am, b, e and f are the fractionations associated with diffusion in air (4.4‰), in water (1.8‰), 507 

by Rubisco carboxylation (27 to 30‰), during respiration (0 to –5‰) and photorespiration (8 to 16‰), 508 

respectively. b0 = Rd/Vcmax = 0.0158 , κ = Κ/ca and γ = Γ*/ca.                            509 

Given that the CO2 flux from the outside to the intercellular spaces must be the same as that from the 510 

intercellular spaces to the chloroplast, denoting the ratio of gm to gs as θ, we have: 511 

(1 – χ) gs  =  (χ – χc) θ gs                                             (36) 512 

Therefore: 513 

1 – χ = θ (1 – χc)/(1 + θ)                                 (37) 514 

and 515 

χ – χc  =  (1 – χc)/(1 + θ)                                (38) 516 

Substituting these expressions into equation (35) and solving for χc gives: 517 

 

                                          (39) 518 

We assumed a constant value of θ = 1.4, based on data compiled by IJW, and consistent with values in 519 

the literature43. 520 

χc =
Δ − θas + am

1+θ
+ eb0κ + fγ

b − θas + am

1+θ
− eb0



Given the uncertainties in parameters b, e and f, we chose the values (b = 30, e = 0, f = 16) that 521 

produced the best fit (R2 = 0.5057) in the regression of χc against temperature, ln vpd and elevation 522 

(Supplementary Table 2).  523 

Light-use efficiency model 524 

The model proposed by Wang et al.4 assumed that the electron-transport and Rubisco-limited rates of 525 

photosynthesis (AJ, Ac) as described by the biochemical photosynthesis model8 are coordinated (that is, 526 

A = AJ = Ac) under typical daytime conditions21,22,31, allowing GPP to be predicted from AJ at a monthly 527 

time scale by:  528 

AJ = φ0 Iabs (ci – Γ*)/(ci + 2Γ*)                                                                                                          (40) 529 

LUE is the product of φ0 and the CO2 limitation term of (ci – Γ*)/(ci + 2Γ*) (denoted here by m). 530 

Incorporating the exact equation for ci (equation 27) yields: 531 

           (41) 532 

where 533 

        (42) 534 

Equations (41) and (42) assume that the light response of A is linear up to the coordination point, i.e. 535 

that the maximum electron-transport rate (Jmax) is arbitrarily large. In reality Jmax limitation can be 536 

significant, especially at high temperatures. We therefore modified equation (41) to allow for a non-537 

rectangular hyperbola relationship between A and Iabs
44,45: 538 

        (43) 539 

This does not have the form of a LUE model, because of the non-linear dependence on Iabs. However, 540 

the apparent discrepancy between the non-linear light response observed at short time scales (sub-541 

daily) and the linear light response described by the empirical LUE model on longer time scales 542 

(weekly to monthly) can be resolved if it is assumed Jmax acclimates to Iabs over longer time scales. To 543 

show this, we further assume that (a) there exists an optimal Jmax for given average light conditions that 544 

maximizes the differences between the benefit and cost of maintaining this value of Jmax, which 545 

conceptually includes the maintenance of light-harvesting complexes and the various proteins involved 546 

in electron transport; (b) the benefit is the assimilation rate A, whereas the cost is the product of Jmax 547 

and a parameter c (defined as the unit cost of maintaining Jmax); (c) Vcmax and Jmax vary with 548 

A = ϕ0Iabsm

m = ca − Γ∗

ca + 2Γ∗ + 3Γ∗ 1.6Dη∗

β K + Γ∗( )

A = ϕ0Iabsm
1

1+ 4ϕ0Iabs

Jmax





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2



environmental conditions on a monthly time scale, while the unit costs b and c of maintaining Vcmax and 549 

Jmax respectively are unchanged; and (d) Vcmax and Jmax are related via the coordination hypothesis (Ac = 550 

AJ = A). The optimality criterion for Jmax is then simply:  551 

∂A/∂Jmax = c                                                                                               (44) 552 

Taking the partial derivative of A with respect to Jmax in equation (43) leads to:  553 

c = ∂A

∂Jmax

=
m ϕ0Iabs( )3

4 ϕ0Iabs( )2 + Jmax

4




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2









3
                                                          (45) 554 

Equation (43) can now be rewritten as 555 

A = ϕ0Iabsm 1− 4c

m




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2

3
                                                                                      (46) 556 

This is a key algebraic result because A is now, once again, proportional to Iabs.  557 

Next, applying the coordination hypothesis (Ac = AJ = A): 558 

ϕ0Iabs

ϕ0Iabs( )2 + Jmax

4




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2
=

4Vc max ci − Γ*( )
Jmax ci + K( )m

       (47) 559 

Substituting equation (47) into equation (45) and expanding the CO2 limitation term m, we can express 560 

equation (45) as: 561 

c = ∂A

∂Jmax

= 16 ci + 2Γ*( )2
ci − Γ*( ) Vcmax

Jmax ci + K( )







3

      (48) 562 

Taking typical values of Jmax/Vcmax = 1.8823 and χ = 0.846, we estimate c = 0.103 for standard conditions 563 

(T = 25 °C, z = 0 km, ca=400 ppm), leading to:  564 

A = ϕ0Iabsm 1− c*

m





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2

3

                                                           (49) 565 

where 566 



                                               (50) 567 

and the constant c* is 4 times c, the unit cost of maintaining Jmax. As an indirect test of the assumptions, 568 

the responses of Jmax/Vcmax to temperature and CO2 from equation (48) are compared with observations 569 

(Supplementary Information). 570 

A fuller derivation of χ, χc and light-use efficiency model is provided in Supplementary Information.  571 

GPP data-model comparison 572 

Equations (2)-(3) yielded modelled site-specific monthly GPP values for comparison with values 573 

independently derived from eddy-covariance measurements of CO2 exchange in the Free and Fair Use 574 

subset of the FLUXNET archive, using a consistent gap-filling procedure (Supplementary 575 

Information). The monthly GPP data derived from flux measurements are archived in BitBucket (Data 576 

link: https://bitbucket.org/labprentice/gepisat/src/8d34456aafcd/results) for public access. For the 577 

modelled values, monthly LUE was estimated based on temperature and vapour pressure extracted 578 

from CRU time-series (TS 3.22) data at 0.5˚ resolution47 and site-observed ca. Monthly absorbed PPFD 579 

was estimated as the product of PPFD (0.45 times the WATCH incident surface shortwave radiation48, 580 

divided by 0.22 J μmol–1) and the MODIS Enhanced Vegetation Index (EVI), equated to the fraction of 581 

photosynthetically active radiation absorbed by foliage49. To match the WATCH data resolution, 582 

wherever each site was located, EVI was upscaled from to the 0.5˚ grid cell based on the arithmetic 583 

mean of the 100 valid 0.05º pixels within each pixel at the 0.5º resolution. 584 

Data availability 585 

The global carbon isotope dataset used here is available in GitHub with DOI: 586 

10.5281/zenodo.56950117. 587 
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