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ARTICLE

ENSO impacts child undernutrition in the global
tropics
Jesse K. Anttila-Hughes1, Amir S. Jina 2,3✉ & Gordon C. McCord 4

The El Niño Southern Oscillation (ENSO) is a principal component of global climate variability

known to influence a host of social and economic outcomes, but its systematic effects on

human health remain poorly understood. We estimate ENSO’s association with child nutrition

at global scale by combining variation in ENSO intensity from 1986-2018 with children’s

height and weight from 186 surveys conducted in 51 teleconnected countries, containing 48%

of the world’s under-5 population. Warmer El Niño conditions predict worse child under-

nutrition in most of the developing world, but better outcomes in the small number of areas

where precipitation is positively affected by warmer ENSO. ENSO’s contemporaneous effects

on child weight loss are detectable years later as decreases in height. This relationship looks

similar at both global and regional scale, and has not appreciably weakened over the last four

decades. Results imply that almost 6 million additional children were underweight during the

2015 El Niño compared to a counterfactual of neutral ENSO conditions in 2015. This

demonstrates a pathway through which human well-being remains subject to predictable

climatic processes.
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C limate variability is increasingly recognized as a key
determinant of health outcomes1 and a major concern for
global climate policy and international public health2, with

the Intergovernmental Panel on Climate Change warning that
anthropogenic climate change will very likely increase the fre-
quency and intensity of extreme events3,4. The El Niño Southern
Oscillation (ENSO) is a major source of climate variability known
to affect key social, economic, and health outcomes5–14; however,
the systematic effects that these correlated shifts in the tropical
climate have on global health remain understudied. ENSO’s
adverse large-scale effects have been documented for hundreds of
years15. Given that probabilistic forecasts of ENSO have skill at
predicting conditions months in advance, there is an opportunity
to decouple food insecurity and human nutrition from this pre-
dictable climate process. However, analyses of ENSO’s impacts on
food security have generally focused on a single country or El
Niño episode16,17 and lack global or regional scope to guide
national and international public investments that preempt
adverse effects of ENSO.

ENSO has destabilizing effects on agriculture6,15, economic
production7, and social stability8 throughout areas of the global
tropics that are teleconnected to it. It has been linked to human
health outcomes directly through its effects on vector- and water-
borne infectious diseases9–13, as well as indirectly by decreasing
agricultural yields and increasing food insecurity14 and the like-
lihood of conflict8. ENSO’s adverse effects on yields are particu-
larly acute in the tropics6, where the vulnerable population of
food-insecure children is larger and temperatures are closer to
critical crop collapse thresholds18,19. Our interest is in the total
influence of ENSO variability through all plausible mechanisms—
from agricultural productivity to infectious disease to conflict—
that are known to affect human nutrition, as well as the sys-
tematic differences in ENSO response across places with different
precipitation responses to ENSO, across continents and across
decades.

This paper estimates ENSO’s impacts on human nutrition
throughout the global tropics. We leverage over one million child
anthropometric records spanning four decades and all developing
country regions, building on a growing literature using the
Demographic and Health Surveys to document the effects of
weather variation on child nutrition20–23. We estimate the sys-
tematic effect of ENSO-driven tropical climate variability by
examining the association between annual eastern equatorial
Pacific ENSO state and measures of children’s weight from sur-
veys conducted during that year. Our research design estimates
the change in nutritional status associated with being in a positive
or negative ENSO state compared to a counterfactual of ENSO-
neutral conditions. Our results describe shocks to nutritional
status rather than identifying the average level of health in a
location, which is a complex function of local conditions, such as
infrastructure, policies, and the environment. Children’s anthro-
pometric measures are sensitive to these nutritional shocks due to
their high caloric needs while growing24,25 and provide a sum-
mary measure of contemporary household food security26.
We find that warmer, more El Niño-like ENSO conditions
increase short-term undernutrition in children across the tropics,
with the opposite occurring in places where precipitation tends to
increase during El Niño. These effects are robust to a wide variety
of alternative specifications and approaches and translate into
stunting years later.

Results
Estimating the global child nutrition effects of ENSO. We
capture ENSO variation (Fig. 1a) with the widely used NINO3.4
index of equatorial Pacific sea surface temperature27–29, which

spans 5°N–5°S, 170°W–120°W. Children’s weight-for-age z-
scores (WAZ) at the time of survey (Fig. 1b) are calculated using
the National Center for Health Statistics/Centers for Disease
Control and Prevention/World Health Organization (NCHS/
CDC/WHO) International Reference Standard30 intended to
provide a single measure of child nutritional outcomes compar-
able across ages and sexes. We first identify all countries with
local climates teleconnected to ENSO (Fig. 1c) for which DHS
anthropometric data exist. This yields a sample of 1.3 million
children aged 0–4 years interviewed in 186 household surveys
between 1986 and 2018. The sample includes 51 countries con-
taining 38% of the world’s population and 48% of the world’s
under-5 population as of 2018. We assign treatment (i.e., the
ENSO state when the child was surveyed) annually by tropical
year, accounting for typical annual timing in ENSO state
change8,29, by calculating the mean NINO3.4 Sea Surface Tem-
perature (SST) value between May and December of a given year.
We assign that to all children interviewed by DHS during that
period, as well as all children interviewed during the following
year’s January–April months, i.e., before the following year’s
“spring barrier” (see “Methods”).

While a warmer ENSO leads to higher temperature throughout
the tropics, shifts in precipitation patterns lead to some areas
getting wetter than normal while others get drier. We account for
potential differences in the effects of ENSO by estimating separate
responses in subnational regions where precipitation is positively
correlated to warmer ENSO (Fig. 1d) vs. negatively correlated.
Since only 6.4% of our sample lives in regions where warmer
ENSO leads to clear wet anomalies, we largely focus our
discussion on results for the majority of the sample.

The empirical distribution of WAZ is significantly and
substantially different (p < 0.001) between El Niño and La Niña
years, even in the absence of controls (Fig. 2a). A key aspect of
our research design, however, rests on exploiting the temporal
variability of the ENSO cycle. While ENSO follows a variety of
non-random patterns, such as the general progression from El-
Niño state to La Niña state, the timing of event occurrence is
sufficiently stochastic that even state of the art models have
limited prediction skill beyond 6 months into the future31. We
thus use variation in ENSO anomalies—measured as a deviation
from long-run average conditions—in order to statistically isolate
the effect of variation in ENSO state on child malnutrition.
Following standard practice in the climate impacts literature32,
we purge the estimates of potentially confounding average
differences33,34 between countries and within them based on
rural and urban areas using fixed effects/indicator variables for
spatial location, detrend the data by major world regions using an
annual trend, remove monthly seasonality by major world regions
using month fixed effects, and include country-specific controls
for mother’s age at child’s birth and total years of mother’s
education. Our results correspond to comparing children
surveyed at different times in the same country but under
different ENSO conditions, while appropriately detrending the
data and controlling for average health differences across
countries and regions.

ENSO’s effects on contemporaneous nutrition. We estimate
that a 1 °C increase in the ENSO index is associated with 0.03σ
(p= 0.02) average decrease in WAZ after detrending the data and
controlling for location-specific unobservable confounders and
mother characteristics (Table 1). We allow the relationship
between ENSO and WAZ to vary flexibly (Fig. 2b) and find that
the negative association remains across the distribution of ENSO
values. The result is substantively similar across a broad range of
model specifications (Supplementary Table 1) and across other
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outcomes reflecting recent nutrition, including weight-for-height
and body mass index (BMI; −0.04σ/°C and p < 0.01 for both
measures). Using WHO z-score classification thresholds, warmer
ENSO increases the prevalence of underweight (below −2σ in
weight-for-age) significantly by 0.6 percentage points per 1 °C
(p < 0.05). We find that the risk of wasting (below −2σ in weight-
for-height) is similarly positive but not significant (0.3 p.p./°C,
p= 0.21), consistent with higher measurement error in height
measurements due to the difficulty of measuring child height/
length compared to weight35,36, which decreases the precision of
our estimates. All of these patterns are reversed in the minority of

places in our sample (6.4%) where warmer ENSO is correlated to
wet anomalies. The heterogeneity in results across regions of wet
and dry anomalies points toward the importance of agriculture in
mediating the ENSO–nutrition link, though others (e.g., conflict)
cannot be ruled out.

Comparing the 2015 El Niño to large-scale nutrition inter-
ventions. The several degree variation in ENSO cycle implies that
it is a meaningful source of variation in population nutrition in
the tropics. To give context to the size of these effects, we provide
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Fig. 1 Defining the sample of teleconnected children. a ENSO time series. El Niño or La Niña highlighted in red or blue, respectively. El Niño and La Niña
states are defined as follows: when the maximum of a 3-month rolling mean of monthly Oceanic Niño Index (ONI) values is >0.5 °C (Niño-like) or <
−0.5 °C (Niña-like) compared to a moving reference climatology following NOAA CPC guidelines38. b Weight-for-age z-score distribution over time in
teleconnected countries (n= 1,253,176 children from 51 surveys). Box plots indicate median (middle white line), 25th, 75th percentile (box), and 5th and
95th percentile (whiskers) as well as outliers (single points). Country composition within each year is different, as a rotating sample of countries is
surveyed in each year under the DHS program. c Pixel-level monthly correlation of surface temperature (1980–2010) from the UDEL climate dataset and
2-month lag of NINO3.4 Sea Surface Temperature (SST) in teleconnected locations. Teleconnections are defined as pixels where the local temperature
shows ≥3 statistically significant months of correlation with the second month lag of NINO3.4 SSTs. Country boundaries indicate sample countries (those
having at least 50% of the population living in locations where local temperature is significantly correlated with the second month lag (t – 2) of the
NINO3.4 SST index for at least 3 months of the year and with at least two Demographic and Health Surveys measuring anthropometrics). d Pixel-level
monthly correlation of precipitation (1980–2010) and 2-month lag NINO3.4 SST. There is substantial heterogeneity in how precipitation is affected by
ENSO, with areas of both positive and negative correlation. Country boundaries again show sample countries.
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illustrative order-of-magnitude calculations of the scale of public
health interventions needed to offset undernutrition on the scale
we estimate was caused by the 2015 El Niño, using published
effect sizes of nutritional interventions37. According to our
results, the 1.92 °C increase in the detrended mean NINO3.4
index during the 2015 El Niño event38, one of the largest on
record, likely caused average WAZ in the representative child of
our sample countries to decrease by 0.078σ based on the average
treatment effect estimated in Supplementary Table 5 column 1.

The human scale of this impact is large given that the under-5
population in our sample countries was 311 million in 2015. By
calculating the effect size of the 2015 El Niño summed over all
children and dividing by the mean effect size for each nutrition
intervention, Fig. 3 shows that offsetting the effects of the 2015 El
Niño would require approximately 134 million children receiving
multiple micronutrient supplementation (confidence interval (CI)
75–193 million) or 72 million (CI 33–105 million) receiving
provision of complementary foods or 72 million (CI 26–118)
receiving nutrition education. The effect of the 2015 El Niño is
also equivalent to the WAZ reduction from moving 46 million
children from urban to rural areas, based on our model results.
Using the same 1.92 °C increase and the coefficient in Supple-
mentary Table 5 column 4, the 2015 El Niño increased risk of
being below the WHO threshold for underweight by 1.9 per-
centage points, i.e., an increase of nearly a tenth of the current
population rate of 24%. This corresponds to an additional 5.9
million children being driven into underweight status.

Robustness and implications of ENSO impacts. Our main result
is consistent across alternative specifications, observation
weighting, and ENSO variable definitions, as well as across age
categories within the sample (Supplementary Tables 1–4). Results
are robust to a variety of model specifications controlling for
plausible observable and unobservable factors (Supplementary
Table 1). While our main results weigh observations so that
interpretations are the effect of ENSO on a child in the average
country, we also calculate effect on the average child in all sample
countries in order to estimate global effects (Fig. 3), and we show
that results are consistent if no observation weights are used
(Supplementary Table 2). Alternative indicators for ENSO state
yield similar results (Supplementary Table 3), with positive
deviations from the mean ENSO state decreasing anthropometric
z-scores and negative deviations from the mean ENSO state (La
Niña events) reducing undernutrition (opposite patterns occur in
the few places where precipitation increases with ENSO SST).
Coefficients for alternate definitions of ENSO are not statistically
distinguishable from our main effect. Supplementary Table 4
estimates the effects of ENSO allowing for different effects by
child age categories of 0–5, 6–11, 12–23, 24–35, and
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Fig. 2 Negative effects of ENSO on child weight-for-age. a Distribution of
detrended weight-for-age z-scores (WAZ) during years classified as El
Niño (red) and La Niña (blue) according to NOAA definition using NINO3.4
SSTs, with means of each distribution shown. b Epanechnikov kernel-
weighted local polynomial (bandwidth 0.7) estimate of Table 1. Model
1 showing conditional association of WAZ with ENSO, differentiating
countries where precipitation is negatively correlated with ENSO for
>3 months in the year over >50% of country area (green) and where it is
positively correlated (orange). 95% confidence intervals are shown for the
estimated curves. Controls include fixed effects (indicators) for each
country; country-specific mother’s age at child’s birth, total years of
mother’s education, and rural vs. urban indicator; as well as UNICEF world
region-specific linear trends in survey year and fixed effects for the month
of interview. Histograms represent the number of observations in each
precipitation correlation subsample. c Effects of ENSO on WAZ within each
decade (blue) and UNICEF world region (green) in the sample
(n= 1,253,176 children from 51 surveys), estimated using only locations
with non-positive precipitation teleconnections. Dots signify point
estimates, bars signify 95% confidence intervals, and gray shaded region
and dashed line show main effect from Table 1. The 95% confidence
intervals for each decade are: 1980s: [−0.070, 0.011], 1990s: [−0.086,
−0.002], 2000s: [−0.063, 0.026], 2010s: [−0.047, 0.021]; and for each
region are: Latin America [−0.087, −0.026], Sub-Saharan Africa [−0.050,
0.003], South Asia [−0.086, 0.006].
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36–59 months. With few exceptions, coefficients are consistent in
sign and magnitude across age groups for each outcome variable
and with the corresponding coefficient in Table 1.

For the purposes of population-wide attribution statistics, we
also calculate the average effect of warmer ENSO in the average
country, without separating the sample by whether warm ENSO
leads to dry or wet anomalies (Supplementary Table 5). The
average effect across the sample suggests that warmer ENSO leads
to a 0.04σ/°C reduction in weight-for-age (p= 0.02), and a 1
percentage point increase in prevalence of underweight (p < 0.01).
We also test the use of alternative detrending of the data with
decade fixed effects to guard against the possibility that results are
an artifact of detrending specification (Supplementary Table 6).
The lagged effects of ENSO (Supplementary Table 7) indicates no
persistent effect of ENSO on child weight-for-age, weight-for-
height, or BMI, except in the subsample with positively correlated
rainfall. This is consistent with child weight recovering quickly
once nutrition returns to adequate levels. On the other hand,
child stunting remains affected years after negative shocks from
ENSO (Supplementary Table 8), consistent with height being
slower to respond to health shocks than weight20 and with the
first 2 years of life being the riskiest period for growth faltering
due to scarring25,39.

Supplementary Tables 9 and 10 show that results are robust to
alternative definitions of teleconnection. Supplementary Table 9
extends the main sample to include countries that are
teleconnected with NINO3.4 in terms of precipitation but not
temperature, while Supplementary Table 10 restricts the sample
to include only those countries that have both a significant
teleconnection with ENSO via temperatures and precipitation.
Supplementary Figs. 2 and 3 and Supplementary Tables 12 and 13
explore whether the ENSO state might affect the timing of DHS
surveys within the year and therefore spuriously lead to changes
in child anthropometrics due to seasonality. The timing of DHS
surveys does not vary as a result of ENSO state (Supplementary
Fig. 2 and Supplementary Table 12). ENSO’s effect is evident
regardless of what time of year the child was surveyed
(Supplementary Fig. 3), indicating that effects are not limited to
a specific part of the growing or post-harvest season.

Supplementary Table 14 varies the standard error adjustments
for serial and spatial autocorrelation and shows that results
remain unchanged. Supplementary Table 15 shows that employ-
ing logistic regressions for the dichotomous outcome variables
results in odd ratios with the same qualitative interpretation as
the corresponding linear probability models in Supplementary
Table 1. Finally, teleconnected areas remain unchanged across
different NINO SST indices (Supplementary Fig. 1) and results
hold under a placebo randomization test (Supplementary Fig. 4).

While our estimates of ENSO’s effect on child undernutrition
are robust, there are nonetheless limitations imposed by both the
nature of the data and structure of this research design. DHS
data only selectively report migration, making it difficult to deal
with any possible migration into or out of the sample that might
occur in response to the ENSO cycle. Sufficiently severe ENSO
events may also differentially influence the likelihood of being in
sample, both at local scale, where, e.g., worse-impacted children
may be less likely to end up surveyed due to mortality or illness,
and at larger scales, where events such as civil conflict that are
known to respond to ENSO8 may plausibly inhibit the DHS’s
ability to gather data or ensure data quality. While these aspects
of sample selection may lead to unavoidable biases in our results,
missing more vulnerable populations would likely bias us away
from finding an effect of ENSO on health. Moreover, the
consistency of the result across specifications and subsamples
suggests that the influence of these limitations on the overall
result is likely small.

Table 1 Anthropometric effects of ENSO.

(1) (2) (3) (4) (5)

Weight-for-age Weight-for-height Body mass index Probability below WHO Standard for

Underweight Wasted

May–December mean NINO 3.4 (°C) −0.0251** −0.0377*** −0.0381*** 0.00588** 0.00319
Std. error (0.0105) (0.0130) (0.0132) (0.00264) (0.00251)
p value 0.0234 0.00654 0.00674 0.0329 0.213
95% CI: lower −0.0466 −0.0641 −0.0649 0.00051 −0.00192
95% CI: upper −0.00363 −0.0113 −0.0113 0.0113 0.00829
NINO3.4* I(>50% Pos. Precip.) 0.0733*** 0.0489 0.0370 −0.0195*** −0.00717
p value 0.00239 0.114 0.270 0.000373 0.105

Dependent variable mean −0.931 −0.228 −0.0895 0.204 0.100
Observations 1,253,176 1,205,335 1,206,659 1,253,176 1,205,335
R-squared 0.129 0.093 0.081 0.087 0.040

Child weight-for-age (1), weight-for-height (2), and body mass index z-scores (3), which all measure shorter-run effects of scarce nutrition, are negatively associated with contemporaneous mean
NINO3.4 state (°C), except in areas where precipitation is positively correlated with NINO3.4. Estimates are from OLS regressions with controls consisting of: fixed effects (indicators) for each country;
country-specific mother’s age at child’s birth, total years of mother’s education, and rural vs. urban indicator; as well as UNICEF world region-specific linear trends in survey year and fixed effects for the
month of interview. Standard errors are two-way clustered at the level of tropical year and subnational administrative unit, and observations are reweighted using DHS sample weights and country size
weights in order for estimates to be representative for an average country. (4–5) WHO threshold outcomes show that a warmer ENSO state increases the likelihood of being underweight (below −2σ in
weight-for-age) but shows a weaker, statistically insignificant effect on wasting (below −2σ in weight-for-height). Asterisks indicate statistical significance at the 1% (***), 5% (**), and 10% (*) levels
(two-sided t test, single hypothesis).
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Fig. 3 Interventions required to offset 2015 El Niño. Millions of children
who must be targeted with specific interventions in order to reverse the
effects on malnourishment caused by the 2015 El Niño. Effect sizes
calculated using treatment effects in Bhutta et al.37. Bars represent the
central estimate, with whiskers representing the 95% confidence interval of
these estimates. See supplementary information for details of calculation.
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Discussion
This analysis measures the total effect of ENSO on child nutrition
through all potential measurements and for all affected countries
with available data. The negative relationship between child
nutrition and warm ENSO state does not appear to vary appre-
ciably across space, with the effects for major world regions in the
sample being statistically indistinguishable from our main effect
(Fig. 2c). The fact that the effect of a warmer ENSO state varies by
the direction of precipitation correlation highlights the impor-
tance of precipitation as a mediator in the ENSO–malnutrition
relationship. The importance of precipitation may indicate that
agriculture plays a strong role in linking ENSO to nutrition
outcomes, though we cannot reject the possibility that other
channels play important roles in some locations. Other potential
channels, such as vector-borne diseases, would likely harm health
when precipitation is higher40, as would impacts of flooding. On
the other hand, decreases in rainfall can lead to increased diar-
rheal disease41. Since other channels are not translating into
adverse health outcomes for children in places where precipita-
tion increases during the El Niño state, the improved nutrition
observed in the data in these locations suggests that increases in
agricultural production due to higher rainfall may be a key
channel in the global ENSO–nutrition relationship.

We cannot reject that the relationship between child nutrition
and ENSO has remained appreciably the same across decades.
That there has been little progress in attenuating the food security
effects of ENSO, despite increasing incomes and trade con-
nectivity, implies that the limits to adaptation may be strict, at
least over the income range of countries in the sample. The
international community has set the target of eliminating all
forms of malnutrition worldwide by 2030 as part of the Sus-
tainable Development Goals (SDG) agenda and is making efforts
to establish metrics, monitor, and implement policies to achieve
this goal42. Developing countries deemed to be making insuffi-
cient progress are being pressured to do more43. During
2015–2018, 34% of the children in our sample countries were
underweight, implying that in order to meet the hunger SDG the
percentage of underweight children would have to decrease by 2.6
percentage points per year. Our estimates suggest that ENSO
conditions similar to the 2015 El Niño would eliminate 1 year of
progress toward that goal. Indeed, the 2015 El Niño likely played
a major role in worsening global hunger, and these results sup-
port a view of ENSO driving episodic food insecurity in the
tropics where yields are suppressed during El Niño years even
while global average yields increase due to gains in the extra-
tropics6.

Hunger continues to affect hundreds of millions of people, with
shocks like COVID-19 capable of generating extensive food
insecurity and intense suffering. Our work identifies a component
of global undernutrition that society can predict, and could
contribute to development of hunger early warning systems that
would allow actors to deploy nutrition and humanitarian support
operations in proactive instead of reactive ways. Governments
and agencies engaged in multi-year humanitarian planning and
budgetary frameworks should incorporate ENSO forecasts to
anticipate fluctuations in availability of local vs. global resource
streams needed to ensure progress in fighting malnutrition.
Despite scientific progress characterizing ENSO and documenting
its various channels of influence on society, much remains to be
done to decouple nutrition outcomes in the global tropics from
this predictable interannual phenomenon.

Methods
Climate data. ENSO Time Series Data capturing original monthly values of the
NINO3.4 index are from the NOAA Center for Weather and Climate Prediction38.
Local temperature and precipitation data for the teleconnection analysis are

obtained from the University of Delaware’s terrestrial air temperature and pre-
cipitation datasets44. Data are provided for monthly temperature and precipitation
from 1900 to 2018 on a 0.5° × 0.5° resolution grid of pixels and we use 1950–2014
in our teleconnection analysis.

Household survey data. DHS Children’s Anthropometric Data are from all DHS
surveys containing children’s anthropometric data (186 surveys, 51 countries,
1986–2018). We standardize DHS administrative region names, aggregating to
supersets if any regions changed borders or split during our sample period.

Identifying regions teleconnected to ENSO. We first use the NOAA ENSO time
series data to identify regions of the world where temperature or precipitation is
teleconnected with ENSO, following prior literature8. We designate a country as
teleconnected if its temperature is closely coupled to ENSO, defined as having at
least 50% of the population living in locations where local temperature as reported
in the UDEL global gridded temperature dataset42 at month t is significantly
correlated with the second month lag (t− 2) of the ENSO state (NINO3.4 SST
index) for at least 3 months of the year. We designate teleconnection at country
level since price effects from ENSO in one subnational region would affect all parts
of the country through domestic markets. We note that other NINO indices were
tested for this analysis, and teleconnected land areas are largely unchanged, as
shown in Supplementary Fig. 1. These teleconnected areas are shown in Fig. 1c.

We perform a similar analysis with precipitation, defining a UDEL pixel as
teleconnected if precipitation in month t is significantly correlated with the second
month lag (t− 2) of the ENSO state (NINO3.4 SST index) for at least 3 months of
the year. These teleconnected areas are shown in Fig. 1d. This allows us to
differentiate between places where warmer ENSO leads to dry or wet precipitation
anomalies. We separately estimate effects of ENSO in DHS clusters located in first-
level administrative units (e.g., state/province) where >50% of land area has
≥3 months per year with a statistically significant positive correlation between
precipitation and the second monthly lag of NINO3.4.

Some observations about the patterns of teleconnections are useful. First, we use
temperature to define the teleconnected countries (though we alter these
assumptions in Supplementary Tables 9 and 10) as the pattern of teleconnections is
more contiguous and includes almost all of the areas that also exhibit
teleconnections through precipitation. Second, very few places in the world that are
teleconnected via temperatures have a decrease in average temperature as the
NINO3.4 SST increases. Third, precipitation teleconnections are heterogeneous
across space, and we use this heterogeneity in our main analysis, though only 6% of
our sample falls into an area that has an increase in rainfall as NINO SSTs increase.

Selecting a sample of households exposed to ENSO variability. Through the
teleconnection analysis, we choose our main estimating sample. Our treatment
variable of interest is the mean value of the NINO3.4 index between May and
December in a given year. ENSO events typically begin in late northern hemisphere
spring, peak at the year’s end, and decay during the early spring of the following
year. For this reason, the calendar year is not aligned with exposure to this phe-
nomenon, and specifying exposure that occurred in the early spring of one year
would lead to mis-assignment of treatment and biased estimates. We therefore
match survey timing from May of year t to April of year t+ 1 to an ENSO exposure
that captures the mean El Niño or La Niña magnitude in a year (occurring between
May and December). This ensures that the specific timing of ENSO events is
accounted for in our analysis.

Microdata on children’s health are from the DHS. We identify all standard DHS
surveys from teleconnected countries for which children’s anthropometric data are
available, generating a sample of 1,253,176 child-level observations in 186 surveys
from 51 countries between 1986 and 2018 (Supplementary Table 11). We calculate
each child’s anthropometrics using their height and weight following the NCHS/
CDC/WHO International Reference Standard26 intended to provide a single
measure of child nutritional outcomes comparable across ages and genders and
exclude from the analysis the small number of observations (0.56% for WAZ) that
are flagged for having improbable values and those with missing values (0.57%
for WAZ).

Econometric estimates of the impact of ENSO on child nutrition. We estimate
the effect of ENSO on anthropometric measure Yict for child i living in country c in
year t (Table 1) using an equation of the form

Yict ¼ αþ βnNINOt þ βp NINOt � I PosPrecipi

� �h i
þ γXic þ f tUNICEF

� �

þFEcr þ εict ;
ð1Þ

for NINO3.4 anomalies defined as above for the tropical year t in which the
anthropometrics for child i were measured, including country-specific controls Xic

for mother’s education in years, mother’s age at time of child birth, and urban/rural
indicators. f(t) captures detrending and seasonality adjustments to the data for each
of five major UNICEF world regions using both linear year trends and month of
survey fixed effects. We normalize the data by country using fixed effects FEcr
separately identified for rural and urban location within each country. This
research design corresponds to comparing detrended differences in child outcomes
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within the same country, separately for rural and urban areas, under different
global ENSO anomalies. This allows for identification of ENSO’s effect under
minimal assumptions of potential confounding23,31. Standard errors are two-way
clustered at the level of interview year (N= 33) in order to correct for a common
global ENSO shock, as well as at the level of subnational first administrative unit
(N= 532) in order to adjust for serial correlation in anthropometric indicators over
time and space.

Most specifications identify β, the effect of ENSO, separately for children living
in teleconnected areas where El Niño conditions tend to produce wet anomalies
(βp) and those with neutral or dry anomalies (βn). Depending on the specification,
the regression weight observations either to produce an estimate of β that
represents the effect of ENSO on the average country in our sample (that is, using
the DHS sampling weights for observations, normalized such that all observations
across all surveys sum to unity for each country) or an estimate of β that represents
the effects on the average child in the countries of our sample (combining
normalized DHS sampling weights with population weights for each country). In
either case, weights adjust for the fact that countries had different numbers of DHS
surveys with different sample sizes over the time period.

For Fig. 2b, we utilize the Frisch–Waugh–Lovell theorem and first residualize
our outcome, WAZ, and our independent variable, NINO3.4 SST. That is, we run
the following regressions separately for locations with negative/neutral
precipitation correlation and positive precipitation correlation, weighted as in
Eq. 1:

Yict ¼ αþ γXic þ f ðtUNICEFÞ þ FEcr þ εict ð2Þ

NINOt ¼ αþ γXic þ f tUNICEF
� �þ FEcr þ εict ð3Þ

We plot the relationship between these residuals using an Epanechnikov kernel-
weighted local polynomial regression with a bandwidth of 0.7 in the residualized x-
variable.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw survey data are subject to a user agreement and are available at available from the
Demographics and Health Surveys Program at https://dhsprogram.com. The raw ENSO
data are available via NOAA at https://www.cpc.ncep.noaa.gov/data/indices/. The processed
ENSO data are available on Zenodo at https://doi.org/10.5281/zenodo.5208080. The
University of Delaware gridded weather data are available at http://climate.geog.udel.edu/
climate/html_pages/archive.html. All other datasets produced or used in this analysis can be
found at https://doi.org/10.5281/zenodo.5208080.

Code availability
Data were analyzed using Stata 16, QGIS 2.18, and Matlab 2018b. Code45 to replicate all
results is available on Zenodo at https://doi.org/10.5281/zenodo.5208080.
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