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Distance verification for classical and quantum
LDPC codes

Ilya Dumer, Alexey A. Kovalev, and Leonid P. Pryadko

Abstract

The techniques of distance verification known for general linear codes are re-applied to quantum stabilizer
codes. Then distance verification is addressed for classical and quantum LDPC codes. New complexity bounds for
distance verification with provable performance are derived using the average weight spectra of the ensembles of
LDPC codes. These bounds are expressed in terms of the erasure-correcting capacity of the corresponding ensemble.
We also present a new irreducible-cluster technique that can be applied to any LDPC code and takes advantage of
parity-checks’ sparsity for both classical and quantum LDPC codes. This technique reduces complexity exponents
of all existing deterministic techniques designed for generic stabilizer codes with small relative distances, which
also include all known families of quantum LDPC codes.

Index Terms – Distance verification, complexity bounds, quantum stabilizer codes, LDPC codes, erasure
correction

I. INTRODUCTION

Quantum error correction (QEC) [1], [2], [3] is a critical part of quantum computing due to the fragility of
quantum states. Two related code families, surface (toric) quantum codes [4], [5] and topological color codes [6],
[7], [8], have been of particular interest in quantum design [8], [9]. Firstly, these codes only require simple local
gates for quantum syndrome measurements. Secondly, they efficiently correct some non-vanishing fraction of errors,
below a fault-tolerant threshold of about 1% per gate. Unfortunately, locality limits such codes to an asymptotically
zero code rate [10] and makes a useful quantum computer prohibitively large. Therefore, there is much interest in
feasible quantum coding with no local restrictions.

Low-density-parity-check (LDPC) codes [11], [12] form a more general class of quantum codes. These codes
assume no locality but only require low-weight stabilizer generators (parity checks). Unlike locally-restricted codes,
they also achieve a finite code rate along with a non-zero error probability threshold, both in the standard setting,
and in a fault-tolerant setting, when syndrome measurements include errors [13], [14]. However, quantum LDPC
codes are still much inferior to their classical counterparts. Namely, all existing quantum LDPC codes with bounded
stabilizer weight [15], [16], [17], [18], [19], [20], [21], [22], [23] have code distances d that scale at most as

√
n lnn

in length n, unlike linear scaling in the classical LDPC codes. Many of the existing quantum constructions also
exhibit substantial gaps between the upper and lower bounds for their distances d. In particular, the recent quantum
design of [21] yields the orders of n and

√
n for these bounds. Finding the exact distances of such codes is thus

an important open problem.
This paper addresses various numerical algorithms that verify code distance with provable performance for the

classical LDPC codes, quantum stabilizer codes, and quantum LDPC codes. Given some ensemble of codes, we wish
to verify code distances for most codes in this ensemble with an infinitesimal probability of failure. In particular,
we will discuss deterministic algorithms that yield no failures for most codes in a given ensemble. We also address
probabilistic algorithms that have a vanishing probability of failure. This high-fidelity setting immediately raises
important complexity issues. Indeed, finding the code distance of a generic code is an NP-hard problem. This is
valid for both the exact setting [24] and the evaluation problem [25], [26], where we only verify if d belongs to
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some interval [δ, cδ] for a given constant c ∈ (1, 2). In this regard, we note that all algorithms discussed below still
have exponential complexity in block length n, if the average code distance grows linearly in a given ensemble.
Below, we consider both binary and q-ary codes and wish to achieve the lowest exponential complexity qFn for
distance verification of classical or quantum LDPC codes.

We analyze complexity exponents F in three steps. Section III establishes a framework for generic quantum
codes. To do so, we revisit several algorithms known for classical linear codes. Then we re-apply these techniques
for quantum stabilizer codes. Given the complexity benchmarks of Section III, we then address binary LDPC codes
in Section IV. Here we can no longer use the generic properties of random generator (or parity-check) matrices.
Therefore, we modify the existing algorithms to include the LDPC setting. In particular, we show that only a
vanishing fraction of codes may have atypically high complexity. These codes are then discarded. As a result,
we re-define known complexity estimates in terms of two parameters: the average code distance and the erasure-
correcting capacity of a specific code ensemble. To estimate this capacity, we use the average weight spectra,
which were derived in [27] for the original ensemble of LDPC codes and in [28] for a few other LDPC ensembles.
Our complexity estimates hold for any ensemble given its erasure-correcting capacity or some lower bound. More
generally, these algorithms perform list decoding within distance d from any received vector y, whereas distance
verification does so for y = 0.

Here, however, we leave out some efficient algorithms that require more specific estimates. In particular, we
do not address belief propagation (BP) algorithms, which can erroneously end when they meet stopping sets, and
therefore fail to furnish distance verification with an arbitrarily high likelihood. Despite this, the simulation results
presented in papers [29] and [30] show that list decoding BP algorithms can also be effective in distance verification.

In Section V, we consider quantum stabilizer LDPC codes. These codes use some self-orthogonal quaternary code
C and its dual C⊥. This self-orthogonality separates quantum LDPC codes from their conventional counterparts.
One particular difference is a low relative distance of the existing constructions, the other is a substantial number
of short cycles in their graphical representation. The latter fact also complicates BP algorithms. For these reasons,
our goal is to design new algorithms that are valid for any LDPC code including any quantum code. To do so, we
use the fact that verification algorithms may seek only irreducible [14] codewords that cannot be separated into two
or more non-overlapping codewords. This approach yields a cluster-based algorithm that exponentially reduces the
complexity of all known deterministic techniques for sufficiently small relative distance d/n, which is the case for
the existing families of quantum LDPC codes. This algorithm also generalizes the algorithm of [14] for nonbinary
LDPC codes.

Consider a q-ary (`,m)-regular LDPC code, which has ` non-zero symbols in each column and m non-zero
symbols in each row of its parity-check matrix. Let h2(x) be the binary entropy of x ∈ [0, 1]. Our main results are
presented in Propositions 7 and 8 and can be summarized as follows.

Proposition 1. Consider any permutation-invariant ensemble C of q-ary linear codes with relative distance δ∗. Let
θ∗ denote the expected erasure-correcting capacity for codes C ∈ C. For most codes C ∈ C, the code distance
δ∗n can be verified with complexity of order 2Fn, where F = h2(δ∗)− θ∗h2(δ∗/θ∗). For any q-ary (`,m)-regular
LDPC code (classical or quantum), the code distance δ∗n can be verified with complexity of order 2Fn, where
F = δ∗ log2(γm(m− 1)) and γm grows monotonically with m in the interval (1, (q − 1) / ln q).

II. BACKGROUND

Let C[n, k]q be a q-ary linear code of length n and dimension k in the vector space Fnq over the field Fq. This
code is specified by the parity check matrix H , namely C = {c ∈ Fnq |Hc = 0}. Let d denote the Hamming distance
of code C.

A quantum [[n, k]] stabilizer code Q is a 2k-dimensional subspace of the n-qubit Hilbert space H⊗n2 , a common
+1 eigenspace of all operators in an Abelian stabilizer group S ⊂Pn, −11 6∈ S , where the n-qubit Pauli group
Pn is generated by tensor products of the X and Z single-qubit Pauli operators. The stabilizer is typically specified
in terms of its generators, S = 〈S1, . . . , Sn−k〉; measuring the generators Si produces the syndrome vector. The
weight of a Pauli operator is the number of qubits it affects. The distance d of a quantum code is the minimum
weight of an operator U which commutes with all operators from the stabilizer S , but is not a part of the stabilizer,
U 6∈ S .
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A Pauli operator U ≡ imXvZu, where v,u ∈ {0, 1}⊗n and Xv = Xv1
1 X

v2
2 . . . Xvn

n , Zu = Zu1

1 Zu2

2 . . . Zun
n , can

be mapped, up to a phase, to a quaternary vector, e ≡ u+ωv, where ω2 ≡ ω ≡ ω+1. A product of two quantum
operators corresponds to the sum (mod 2) of the corresponding vectors. Two Pauli operators commute if and only
if the trace inner product e1 ∗ e2 ≡ e1 · e2 + e1 · e2 of the corresponding vectors is zero, where e ≡ u + ωv.
With this map, an [[n, k]] stabilizer code Q is defined by n − k generators of a stabilizer group, which generate
some additive self-orthogonal code C of size 2n−k over F4. [31]. The vectors of code C correspond to stabilizer
generators that act trivially on the code; these vectors form the degeneracy group and are omitted from the distance
calculation. For this reason, any stabilizer code Q has a code distance [31] that is defined by the minimum non-zero
weight in the code C⊥ \ C.

An LDPC code, quantum or classical, is a code with a sparse parity check matrix. A huge advantage of classical
LDPC codes is that they can be decoded in linear time using iterative BP algorithms [32], [33]. Unfortunately, this
is not necessarily the case for quantum LDPC codes, which have many short cycles of length four in their Tanner
graphs. In turn, these cycles cause a drastic deterioration in the convergence of the BP algorithm [34]. This problem
can be circumvented with specially designed quantum codes [35], [19], but a general solution is not known.

III. GENERIC TECHNIQUES FOR DISTANCE VERIFICATION

The problem of verifying the distance d of a linear code (finding a minimum-weight codeword) is related to
a more general list decoding problem: find all or some codewords at distance d from the received vector. As
mentioned above, the number of operations N required for distance verification can be usually defined by some
positive exponent F = lim (logqN)/n as n → ∞. For a linear q-ary code with k information qubits, one basic
decoding algorithm inspects all qRn distinct codewords, where R = k/n is the code rate. Another basic algorithm
stores the list of all qn−k syndromes and coset leaders. This setting gives (space) complexity F = 1 − R. We
will now survey some techniques that are known to reduce the exponent F for linear codes and re-apply these
techniques for quantum codes. For classical codes, most results discussed below are also extensively covered in the
literature (including our citations below). In particular, we refer to [36] for detailed proofs.

A. Sliding window (SW) technique

Consider ensemble C of linear codes C[n, k] generated by the randomly chosen q-ary (Rn× n) matrices G. It
is well known that for n→∞, most codes in ensemble C have full dimension k = Rn and meet the asymptotic
GV bound R = 1− hq(d/n), where

hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x) (1)

is the q-ary entropy function. We use notation cI and CI for any vector c and any code C punctured to some subset
of positions I. Consider a sliding window I(i, s), which is the set of s cyclically consecutive positions beginning
with i = 0, . . . , n− 1. It is easy to verify that most random q-ary codes C ∈ C keep their full dimension Rn on
all n subsets I(i, s) of length s = k + 2

⌊
logq n

⌋
. Let Cs be such a sub-ensemble of codes C ∈ C. Most codes

C ∈ Cs also meet the GV bound, since the remaining codes in Cr Cs form a vanishing fraction of ensemble C.
Also, Cs includes all cyclic codes. We now consider the following SW technique of [37].

Proposition 2. [37] The code distance δn of any linear q-ary code C[n,Rn] in the ensemble Cs can be found
with complexity qnFC , where

FC = Rhq(δ) (2)

For most codes C ∈ Cs, the complexity exponent is F ∗ = R(1−R).

Proof: Given a code C, we first verify if C ∈ Cs, which requires polynomial complexity. For such a code C,
consider a codeword c ∈ C of weight d = 1, 2, . . .. The weight of any vector cI(i,s) can change only by one as
i+ 1 replaces i. Then some vector cI(i,s) of length s has the average Hamming weight v ≡ bds/nc. Consider all

L = n(q − 1)v
(
s
v

)
vectors cI(i,s) of weight v on each window I(i, s). Then we use each vector cI(i,s) as an information set and encode
it to the full length n. The procedure stops if some encoded vector c has weight d. This gives the overall complexity
Ln2, which has the order of qnFC of (2). For codes that meet the GV bound, this gives exponent F ∗.
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Remarks. More generally, the encoding of vectors cI(i,s) represents erasure correction on the remaining n − s
positions. We use this fact in the sequel for LDPC codes. Also, any error vector of weight d generates vector u of
weight v on some window I = I(i, s). Thus, we can subtract any error vector u from the received vector yI(i,s)
and correct d errors in code C.

We now proceed with ensemble Q of quantum stabilizer codes Q [[n,Rn]]. Most of these codes meet the quantum
GV bound [38], [39]

R = 1− 2h4(δ) (3)

Any code Q is defined by the corresponding additive quaternary code C⊥ and has the minimum distance d(Q) =
d(C⊥ \ C). Let Qs denote the ensemble of codes Q, for which C⊥ ∈ Cs. Note that Qs includes most stabilizer
codes.

Corollary 1. The code distance δn of any quantum stabilizer code Q[[n,Rn]] in the ensemble Qs can be found
with complexity 2nFSW , where

FSW = (1 +R)h4(δ) (4)

For most codes in ensemble Qs, code distances d can be found with the complexity exponent

F ∗SW = (1−R2)/2 (5)

Proof: For any quantum stabilizer code Q[[n, k]], we apply the SW procedure to the quaternary code C⊥.
Since code C has size 2n−k in the space Fn4 , its dual C⊥ has the effective code rate 1

R′ =
(
1− n−k

2n

)
= (1 +R)/2

which gives complexity 2nFSW of (4) for a generic stabilizer code Q. Due to possible degeneracy, we also verify
that any encoded vector c of weight d does not belong to code C. Most generic codes Q [[n,Rn]] also belong to
ensemble Qs and therefore satisfy the quantum GV bound. The latter gives exponent (5).

Note that classical exponent F ∗ = R(1 − R) achieves its maximum 1/4 at R = 1/2. By contrast, quantum
exponent F ∗SW achieves its maximum 1/2 at the rate R = 0.

B. Matching Bipartition (MB) technique

Proposition 3. The code distance δn of any quantum stabilizer code Q[[n,Rn]] can be found with complexity
2nFMB , where

FMB = h4(δ). (6)

For random stabilizer codes that meet the quantum GV bound (3),

F ∗MB = (1−R)/2. (7)

Proof: Similarly to the proof of Corollary 1, we consider any stabilizer code Q [[n,Rn]] and the corresponding
code C⊥. For code C⊥, we now apply the algorithm of [41], [42], which uses two similar sliding windows, the
“left” window I`(i, s`) of length s` = bn/2c and the complementary “right” window Ir of length sr = dn/2e. For
any vector e of weight d, consider vectors e` and er in windows I` and Ir. At least one choice of position i then
yields the average weights v` = bd/2c and vr = dd/2e for both vectors. For each i, both sets {e`} and {er} of
such “average-weight” vectors have the size of order L = (q − 1)d/2

(n/2
d/2

)
.

We now calculate the syndromes of all vectors in sets {e`} and {er} to find matching vectors (e`, er), which give
identical syndromes, and form a codeword. Sorting the elements of the combined set {e`} ∪ {er} by syndromes
yields all matching pairs with complexity of order L log2 L. Thus, we find a code vector of weight d = δn in any
linear q-ary code with complexity of order qFn, where

F = hq(δ)/2. (8)

For q-ary codes on the GV bound, F ∗ = (1−R)/2. For stabilizer codes, the arguments used to prove Corollary 1
then give exponents (6) and (7).

Note that the MB-technique works for any linear code, unlike other known techniques provably valid for random
codes. For very high rates R → 1, this technique yields the lowest complexity exponent known for classical and
quantum codes.

1This construction is analogous to pseudogenerators introduced in Ref. [40].
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C. Punctured bipartition (PB) technique

Proposition 4. The code distance δn of a random quantum stabilizer code Q[[n,Rn]] can be found with complexity
2nFPB , where

FPB = 2(1+R)
3+R h4(δ) (9)

For random stabilizer codes that meet the quantum GV bound (3),

F ∗PB = (1−R2)/(3 +R) (10)

Proof: We combine the SW and MB techniques, similarly to the soft-decision decoding of [43]. Let s =
d2nR/(1 +R)e > k. Then for most random [n, k] codes C, all n punctured codes CI(i,s) are linear random [s, k]-
codes. Also, any codeword of weight d has average weight v = bds/nc in some window I(i, s). For simplicity,
let s and v be even. We then apply the MB technique and consider all vectors e` and er of weight v/2 on each
window I(i, s). The corresponding sets have the size

Ls = (q − 1)v/2
(
s/2
v/2

)
.

We then select all matching pairs (e`, er) with the same syndrome. The result is the list {e} of code vectors of
weight v in the punctured [s, k] code CI(i,s). For a random [s, k] code, this list {e} has the expected size of order

Lv = (q − 1)v (sv) /q
s−k

Each vector of the list {e} is re-encoded to the full length n. For each d = 1, 2, . . ., we stop the procedure once
we find a re-encoded vector of weight d. The overall complexity has the order of Lv +Ls. It is easy to verify [43]
that for codes that meet the GV bound, our choice of parameter s gives the same order Lv ∼ Ls and minimizes
the sum Lv + Ls to the order of qF∗n, where

F ∗ = hq(δ)R/(1 +R) = R(1−R)/(1 +R). (11)

To proceed with quantum codes Q[[n,Rn]], observe that our parameter s again depends on the effective code rate
R′ = (1+R)/2. For stabilizer codes, this change yields exponent (9), which gives (10) if codes meet the quantum
GV bound.

For codes of rate R → 1 that meet the GV bound, the PB technique gives the lowest known exponents F ∗PB
(for stabilizer codes) and F ∗ (for classical q-ary codes). However, no complexity estimates have been proven for
specific code families.

Finally, consider the narrower Calderbank-Shor-Steane (CSS) class of quantum codes. Here a parity check matrix
is a direct sum H = Gx ⊕ ωGz , and the commutativity condition simplifies to GxG

T
z = 0. A CSS code with

rankGx = rankGz = (n − k)/2 has the same effective rate R′ = (1 + R)/2 since both codes include k′ =
n − (n − k)/2 = (n + k)/2 information bits. Since CSS codes are based on binary codes, their complexity
exponents F (R, δ) can be obtained from (2), (8), and (11) with parameters q = 2 and R′ = (1 + R)/2. Here we
can also use the GV bound, which reads for CSS codes as follows [44]

R = 1− 2h2(δ). (12)

D. Covering set (CS) technique

This probabilistic technique was proposed in [45] and has become a benchmark in code-based cryptography since
classical paper [46]. This technique lowers all three complexity estimates (4), (6), and (9) except for code rates
R → 1. The CS technique has also been studied for distance verification of specific code families (see [47] and
[48]); however, provable results [49], [50] are only known for generic random codes.

Let C[n, k] be some q-ary random linear code with an r × n parity check matrix H , r = n − k. Consider
some subset J of ρ ≤ r positions and the complementary subset I of g ≥ k positions. Then the shortened
code CJ = {cJ : cI = 0} has the parity-check matrix HJ of size r × ρ. We say that matrix HJ has co-rank
b (HJ) = ρ− rankHJ . Note that b (HJ) = dimCJ , which is the dimension of code CJ .
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Proposition 5. The code distance δn of a random quantum stabilizer code Q[[n,Rn]] can be found with complexity
2nFCS , where

FCS = h2(δ)−
(
1−R
2

)
h2

(
2δ

1−R

)
(13)

Proof: First, consider a q-ary code C[n, k]. We randomly choose the sets J of r positions to cover every
possible set of d < r non-zero positions. To do so, we need no less than

T (n, r, d) =

(
n

d

)
/

(
r

d

)
sets J . On the other hand, the proof of Theorem 13.4 of [51] shows that a collection of

T = T (n, r, d)n lnn (14)

random sets J fails to yield such an (n, r, d)-covering with a probability less than e−n lnn. It is also well known
that most r × n matrices H (excluding a fraction

(
n
r

)−1 of them) yield small co-ranks

0 ≤ bJ ≤ bmax =
√

2 logq
(
n
r

)
(15)

for all square submatrices HJ , |J | = r.

Given an (n, r, d)-covering W , the CS procedure inspects each set J ∈W and discards code C if dimCJ > bmax.
Otherwise, it finds the lightest codewords on each set J . To do so, we first perform Gaussian elimination on HJ

and obtain a new r × r matrix HJ that has the same co-rank b (HJ) . Let HJ include r − bJ unit columns
ui = (0 . . . 01i0 . . . 0) and bJ other (linearly dependent) columns gj . All r columns have zeroes in the last bJ
positions. If bJ = 0 in trial J, then CJ = 0 and we proceed further. If bJ > 0, the CS algorithm inspects qbJ − 1
linear combinations (LC) of columns gj . Let LC(p) denote some LC that includes p columns gj . If this LC(p) has
weight w, we can nullify it by adding w unit columns ui and obtain a codeword c of weight w+ p. The algorithm
ends once we find a codeword of weight w + p = d, beginning with d = 2.

For codes that satisfy condition (15), the CS algorithm has the complexity order of n3qbmaxT (n, r, d) that is
defined by T (n, r, d). For any q, this gives complexity 2nF with exponent

F = (1−R)
[
1− h2 (δ/(1−R))

]
(16)

For a stabilizer code [[n,Rn]], we obtain (13) using the quaternary code C⊥ with the effective code rate R′ =
(1 +R)/2.

For stabilizer codes that meet the quantum GV bound (3), exponent FCS of (13) reaches its maximum Fmax ≈ 0.22
at R = 0. Their binary counterparts yield exponent (16) that achieves its maximum 0.119 at R ≈ 1/2.

Discussion. Fig. 1 exhibits different complexity exponents computed for stabilizer codes that meet the quantum
GV bound. The CS technique gives the best performance for most code rates R < 1, while the two bipartition
techniques perform better for high code rates R, which are close to 1. Indeed, equations (7) and (10) scale linearly
with 1−R, unlike the CS technique that yields a logarithmic slope, according to (13).

More generally, the above algorithms correct the received vector y into the list of codewords located at distance
d from y. In this regard, they are similar to the maximum likelihood decoding of vector y within a given distance.
For example, given an error syndrome h 6= 0, MB technique still forms the sets of vectors {e`} and {er}. It also
derives the syndromes h(e`), but uses the syndromes h(er) + h on the right half. Similarly, some SW trials will
correctly identify errors on the information blocks and then perform error-free re-encoding. For the CS algorithm,
we also make a slight adjustment and inspect all combinations LC(p)+h. Each combination LC(p)+h of weight
w gives an error of weight p+w. It is also important that every trial of the CS algorithm needs only the syndrome h
instead of the received vector y. Thus, this algorithm can perform syndrome-based decoding of quantum stabilizer
codes.
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Fig. 1. Complexity exponents of the four generic decoding techniques applied to quantum codes that meet the quantum GV bound (3).
SW: sliding window, (5), MB: matching bipartition, (7), PB: punctured bipartition, (10), and CS: covering set, (13).

IV. DISTANCE VERIFICATION FOR LDPC CODES

Below, we consider two ensembles of binary (`,m)-LDPC codes with m ≥ ` ≥ 3. Codes in these ensembles
are defined by the binary equiprobable r × n parity-check matrices H . In ensemble A(`,m), matrices H have all
columns of weight ` and all rows of weight m = `n/r. This ensemble also includes a smaller LDPC ensemble
B(`,m) originally proposed by Gallager [27]. For each code in B(`,m), its parity-check matrix H is divided into `
horizontal blocks H1, . . . ,H` of size r

` ×n. Here the first block H1 consists of m unit matrices of size r
` ×

r
` . Any

other block Hi is obtained by some random permutation πi(n) of n columns of H1. Below, we use an equivalent
description, where block H1 also undergoes a random permutation π1(n). Ensembles A(`,m) and B(`,m) have
similar spectra and achieve the best asymptotic distance for a given code rate 1− `/m among the LDPC ensembles
studied to date [28].

For brevity, we say below that a linear code C with N non-zero codewords has null-free size N . We also say
that code ensemble C is permutation-invariant (PI) if any permutation of positions π in any code C ∈ C again
gives a code π(C) ∈ C. In particular, LDPC ensembles are in this class. For any subset of positions J of size
ρ = θn, consider all shortened codes CJ ∈ CJ . Then for any PI ensemble C, all shortened ensembles CJ have the
same expected null-free size Nθ given any J of size θn. By Markov’s inequality, for any parameter t > 0, at most
a fraction 1

t of the shortened codes CJ have null-free size exceeding tNθ on any subset J .
Note that for LDPC codes, parity checks form non-generic sparse matrices HJ . Therefore, below we change the

approach of Section III. In essence, we will relate the size 2bJ of codes CJ to the erasure-correcting capacity of
LDPC codes. In doing so, we extensively use average weight spectra derived for ensemble B(`,m) in [27] and for
ensemble A(`,m) in [28]. This analysis can readily be extended to other ensembles with known average weight
spectra. The following results are well known and will be extensively used in our complexity estimates.

Let α = `/m = 1−R. For any parameter β ∈ [0, 1], the equation

(1 + t)m−1 + (1− t)m−1

(1 + t)m + (1− t)m
= 1− β (17)

has a single positive root t as a function of β. Below we use the parameter

q(α,β) = α log2
(1 + t)m + (1− t)m

2tβm
− αmh2(β), (18)

where we also take q(α,β) = −∞ if m is odd and β ≥ 1 −m−1. Then Theorem 4 of [28] shows that a given
codeword of weight βn belongs to some code in A(`,m) with probability P (α,β) such that

lim
n→∞

1
n log2 P (α,β) = q(α,β) (19)



8

Lemma 1. For any given subset J of size θn, where θ ≤ 1, codes CJ(`,m) of the shortened LDPC ensembles
A(`,m) or B(`,m) have the average null-free size Nθ such that

lim
n→∞

1
n log2Nθ = f(θ) (20)

where

f(θ) = max
0<β<1

{q(α, βθ) + θh2(β)} (21)

Proof: For any set J of size θn, consider codewords of weight βθn that have support contained on J . For
any β ∈ (0, 1], codes in AJ(`,m) contain the average number

Nθ (β) = P (α, βθ)

(
θn

βθn

)
(22)

of such codewords of weight βθn. Then

1

n
log2Nθ ∼

1

n
max
β<1

log2 Nθ (β) ∼ max
β<1
{q(α, βθ) + θh2(β)} (23)

which gives asymptotic equalities (20) and (21).
In the sequel, we show that verification complexity is defined by two important parameters, δ∗ and θ∗, which

are the roots of the equations

δ∗ : h2(δ∗) + q(α, δ∗) = 0

θ∗ : f(θ) = 0.
(24)

Discussion. Note that δ∗ is the average relative code distance in ensemble A(`,m). Indeed, for θ = 1, equality
(22) shows that the average number of codewords Nθ(β) of length n and weight βn has the asymptotic order

1
n log2N(β)∼h2(β) + q(α,β) (25)

Parameter θ∗ bounds from below the erasure-correcting capacity of LDPC codes. Indeed, f(θ) < 0 in (21) and
Nθ = 2nf(θ) → 0 for any θ < θ∗. Thus, most codes C ∈ A(`,m) yield only the single-vector codes CJ(`,m) ≡ 0
and correct any erased set J of size θn. The upper bounds on the erasure-correcting capacity of LDPC codes are
also very close to θ∗ and we refer to papers [52], [53], where this capacity is discussed in detail.

More generally, consider any PI ensemble C of q-ary linear codes. We say that θ∗ is the erasure-correcting
capacity for ensemble C if for any ε > 0 the shortened subcodes CJ of length θn, n→∞, have expected size Nθ

such that {
Nθ → 0, if θ ≤ θ∗ − ε
Nθ ≥ 1, if θ ≥ θ∗ + ε

(26)

Without ambiguity, we will use the same notation θ∗ for any lower bound on the erasure-correcting capacity (26).
In this case, we still have asymptotic condition Nθ → 0 for any θ ≤ θ∗ − ε, which is the only condition required
for our further estimates. In particular, we use parameter θ∗ of (24) for the LDPC ensembles A(`,m) or B(`,m).

For any code rate R = 1− `/m, δ∗ of (24) falls below the GV distance δGV (R) of random codes (see [27] and
[28]). For example, δ∗ ∼ 0.02 for the A(3, 6) LDPC ensemble of rate R = 1/2, whereas δGV ∼ 0.11. On the other
hand, θ∗ also falls below the erasure-correcting capacity 1 − R of random linear codes. For example, θ∗ = 0.483
for the ensemble A(3, 6) of LDPC codes of rate 0.5. In our comparison of LDPC codes and random linear codes,
we will show that the smaller distances δ∗ reduce the verification complexity for LDPC codes, despite their weaker
erasure-correcting capability θ∗ for any code rate R.
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A. Deterministic techniques for the LDPC ensembles.

Proposition 6. Consider any PI ensemble of codes C with the average relative distance δ∗ and the erasure-
correcting capacity θ∗. For most codes C ∈ C, the SW technique performs distance verification with complexity of
exponential order qFn or less, where

F = (1− θ∗)hq(δ∗) (27)

Proof: We use the generic SW technique but select sliding windows I = I(i, s) of length s = (1− θ∗ + ε)n.
Here ε > 0 is a parameter such that ε→ 0 as n→∞. For a given weight d = δ∗n, we again inspect each window
I(i, s) and take all L punctured vectors cI(i,s) of average weight v = bδ∗sc . Thus,

1
n logq L∼

1
n logq(q − 1)v

(
s
v

)
∼ (1− θ∗ + ε)hq(δ∗)

For each vector cI(i,s), we recover symbols on the complementary set J = I of size (θ∗−ε)n, by correcting erasures
in a given code C ∈ C. This recovery is done by encoding each vector cI(i,s) into C and gives the codeword list
of expected size Nθ. Thus, codes C have the average complexity of n3NθL combined for all n subsets I. Then
only a fraction n−1 of such codes may have a complexity above n4NθL. This gives (27) as ε→ 0.

We proceed with the MB technique, which can be applied to any linear code. For q-ary codes, the MB technique
gives the complexity exponent F =hq(δ∗)/2. Combining Propositions 3 and 6, we have

Corollary 2. Distance verification for most LDPC codes in the ensembles A(`,m) or B(`,m) can be performed
with the complexity exponent

F = min{(1− θ∗)h2(δ∗), h2(δ∗)/2} (28)

where parameters δ∗ and θ∗ are defined in (24).

The PB technique can also be applied to LDPC codes without changes. However, its analysis becomes more
involved. Indeed, syndrome-matching in the PB technique yields some punctured (s, k) codes CI(i,s), which are no
longer LDPC codes. However, we can still use their weight spectra, which are defined by the original ensemble C
and were derived in [54]. Here we omit lengthy calculations and proceed with a more efficient CS technique.

B. CS technique for LDPC ensembles

Below we estimate the complexity of the CS technique for any LDPC code ensemble. Recall from Section III-D
that for most linear random [n, k] codes, all shortened codes CJ of length n − k have non-exponential size 2bJ .
This is not proven for the LDPC codes or any other ensemble of codes. Therefore, we modify the CS technique to
extend it to these non-generic ensembles. In essence, we leave aside the specific structure of parity-check matrices
HJ . Instead, we use the fact that atypical codes CJ with large size 2bJ still form a very small fraction of all codes
CJ .

Proposition 7. Consider any PI ensemble C of q-ary linear codes with the average relative distance δ∗ and
the erasure-correcting capacity θ∗. For most codes C ∈ C, the CS technique performs distance verification with
complexity of exponential order 2Fn or less, where

F = h2(δ∗)− θ∗h2(δ∗/θ∗) (29)

Proof: We now select sets J of s = θn positions, where θ = θ∗ − ε and ε→ 0 as n→∞. To find a codeword
of weight d in a given code C ∈ C, we randomly pick up T = (n lnn)

(
n
d

)
/
(
s
d

)
sets J. For any J, the shortened

code ensemble CJ has the expected null-free size Nθ → 0. Let CJ(b) ⊂ CJ be a sub-ensemble of codes CJ(b) that
have null-free size qb − 1 for some b = 0, . . . , θn. Also, let αθ(b) be the fraction of codes CJ(b) in the ensemble
CJ . Then

Nθ =

θn∑
b=0

(
qb − 1

)
αθ(b) (30)

For each code CJ(b), we again apply Gaussian elimination to its parity-check matrix HJ of size r × s. Similarly
to the proof of Proposition 5, we obtain the diagonalized matrix HJ , which consists of s − b unit columns ui =
(0 . . . 01i0 . . . 0) and b other columns gj . To find the lightest codewords on a given set J , we again consider all
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qb − 1 non-zero linear combinations of b columns gj . For any given code CJ(b), this gives complexity of order
Dθ(i) ≤ n3 + rb(qb − 1) ≤ n3(qb − 1). Taking all codes CJ(b) for b = 0, . . . , θn on a given set J , we obtain the
expected complexity

Dθ =
θn∑
b=0

n3(qb − 1)αθ(b) = n3Nθ (31)

Thus, the CS algorithm has the expected complexity Dave = n3TNθ for all T sets J . Then only a vanishing fraction
Nθ/n of codes C have complexity D ≥ n4T, which gives the exponent F ≤ lim 1

n log2
(
n4T

)
of (29) for most

codes.
Discussion. Note that Propositions 6 and 7 employ PI code ensembles C. This allows us to consider all sets J

of θn positions and output all codewords of weight d for most codes C ∈ C. If we replace this adversarial model
with a less restrictive channel-coding model, we may correct most errors of weight d instead of all of them. Then
we also remove the above restrictions on ensembles C. Indeed, let us re-define Nθ as the null-free size of codes
CJ averaged over all codes C ∈ C and all subsets J of size θn. Then we use the following statement:

Lemma 2. Let ensemble C have vanishing null-free size Nθ → 0 in the shortened codes CJ of length θn as
n → ∞. Then most codes C ∈ C correct most erasure subsets J, with the exception of vanishing fraction

√
Nθ

of codes C and subsets J.

Proof: A code C ∈ C fails to correct some erasure set J of weight θn if and only if code CJ has NJ(C) ≥ 1
non-zero codewords. Let Mθ be the average fraction of such codes CJ taken over all codes C and all subsets J.
Note that Mθ ≤ Nθ. Per Markov’s inequality, no more than a fraction

√
Mθ of codes C may leave a fraction

√
Mθ

of sets J uncorrected.
Finally, we summarize the complexity estimates for classical binary LDPC codes in Fig. 2. For comparison, we

also plot two generic exponents valid for most linear binary codes. The first exponent

F = min{R(1−R), (1−R)/2} (32)

combines the SW and MB algorithms, and the second exponent (16) represents the CS algorithm. For LDPC codes,
we similarly consider the exponent (28) that combines the SW and MB algorithms and the exponent (29) that
represents the CS algorithm for the LDPC codes. Here we consider ensembles A(`,m) or B(`,m) for various
LDPC (`,m) codes with code rates ranging from 0.125 to 0.8. With the exception of low-rate codes, all LDPC
codes of Fig. 2 have substantially lower distances than their generic counterparts. This is the reason LDPC codes
also achieve an exponentially smaller complexity of distance verification despite their lower erasure-correcting
capacity.

V. IRREDUCIBLE-CLUSTER (IC) TECHNIQUE

The complexity estimates of Sec. IV rely on the average weight distributions of binary (`,m)-regular LDPC codes
and hold for most codes in the corresponding ensembles. Here we suggest a deterministic distance-verification
technique, which is applicable to any q-ary (`,m)-regular LDPC code, quantum or classical. First, we define
irreducible codewords.

Definition 1. Given a linear q-ary code Cq, we say that a codeword c is irreducible if it cannot be represented as
a linear combination of two codewords with non-overlapping supports.

Our technique is based on the following simple lemma.

Lemma 3. [14] A minimum-weight codeword of a linear code Cq is irreducible.

IC algorithm: general description. Let a q-ary (`,m)-regular LDPC code be defined by a list L of parity checks
b with supports Jb of size m. The following algorithm finds an irreducible codeword c of weight d. The algorithm
performs multiple runs and includes a variable number ω ≤ d − 1 of steps in each run. The initial step i = 0
of each run is given a position j0 = 0, . . . , n − 1 and the symbol cj0 = 1. The input to each consecutive step i
includes some previously derived sub-vector c(Ji) with its support Ji. It also includes the ordered sublist Ni⊂ L
of all parity checks b unsatisfied by sub-vector c(Ji). Then step i extends vector c(Ji) with some non-overlapping
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Fig. 2. Complexity exponents for the binary codes meeting the GV bound and for some (`,m)-regular LDPC codes as indicated. “SW or
MB” stands for deterministic techniques from Eq. (28) for LDPC codes, or Eq. (32) for codes meeting the GV bound, and CS stands for
covering set technique, Eq. (29) for LDPC codes, or Eq. (16) for codes meeting the GV bound.

subset c(Ii) of vi new non-zero symbols. The extension Ii, c(Ii) is chosen to make the first parity check b(1) ∈ Ni
satisfied on the extended support Ji+1 = Ji ∪ Ii :∑

j∈Ji

b
(1)
j cj +

∑
j∈Ii

b
(1)
j cj = 0 (33)

The result is the extended vector c(Ji+1) and the new list Ni+1 of parity checks unsatisfied by c(Ji+1). Clearly,
Ni+1 excludes parity check b(1). It may also drop some other checks in Ni, which were satisfied in step i, but may
include new parity checks, which become unsatisfied due to the newly added symbols. Note that a parity check
dropped in step i may later re-appear in some list Ns, s > i + 1. Each run must satisfy restrictions (33) for all
steps and end with d symbols, thus ∑ω

i=1 vi = d− 1 (34)

Each run ends with a complete selection list {Ii, c(Ii) | i = 0, ..., ω} and gives a codeword of weight d if the list
Nω+1 is empty. For a quantum stabilizer code, we also verify the restriction c ∈ C⊥ r C. Given no codeword of
weight d, we proceed with a new run, which employs a new selection list. We will now limit possible choices of
all vectors c(Ii).

Additively irreducible selection. We say that a new selection I, c(I) of non-zero symbols is additively irreducible
(AI) for a parity-check b if any non-empty subset I ′ ⊂ I satisfies restriction∑

j∈I′ bjcj 6= 0 (35)

From now on, any selection list {Ii, c(Ii) | i = 0, ..., ω} must also satisfy restrictions (35) in each step i. We proceed
with the following observations.

A. If an AI vector satisfies parity check b(1), then no smaller subset c(I ′) can do so. Indeed, let restrictions (33)
hold on the sets I and I ′ ⊂ I. Then we obtain equality

∑
bjcj = 0 on the subset I r I ′, which contradicts (35).

We also see that for any reducible vector c(I) that satisfies the current check b(1), there exists its sub-vector c(I ′),
which also satisfies b(1).

B. We may process parity checks one-by-one. Indeed, irrespective of the order in which parity checks are
processed, the codewords will satisfy all parity checks after w steps. We may also set cj0 = 1 in a linear code C.
Our brute-force algorithm begins with a correct choice of j0 for some runs and then exhausts all possible irreducible



12

selections. Thus, in each step, one of the runs begins with a correct subvector c(Ji) and then adds some correct
AI subvector c(Ii).

C. The algorithm may terminate only at some codeword of weight d. More generally, the algorithm can return
all (non-collinear) irreducible vectors up to some weight D.

D. If some run fails in step w, we can return to step w−1 and exhaust all choices of vectors c(Iw−1). Similarly,
we can return to step w−2 and so on. This back-and-forth version slightly reduces the overall complexity; however,
it will keep its asymptotic order.

Let Nv(q, b) denote the number of q-ary vectors c(I) of length v that satisfy restrictions (33) and (35). Clearly,

Nv(q, b) ≤ (q − 1)v−1 (36)

Below, we use notation Nv(q) since we will prove that all parity checks b give the same number Nv(q, b) ≡ Nv(q).
Note also that the AI restriction (35) drastically limits the number Nv(q) for small q. For example, a binary parity
check b(1) is satisfied in (33) only if v is odd; however, any string of v ≥ 3 ones includes a subset of two ones
and contradicts the AI property (35). Thus, v = 1 for q = 2 and Nv(2) = 1.

We now proceed with complexity estimates. First, we employ a trivial upper bound (36). We further reduce this
number in Lemma 4.

Let δa,b be the Kronecker symbol, h = d − 1 and t = m − 1. Recall that each run is defined by some set
{Ii, c(Ii) | i = 0, ..., ω} . Given restriction (34), the number of runs is bounded from above by the quantities

Sh(m, q) ≡
∑
ω≥1

∑
vi∈{1,2,...,t}

δh,v1+...+vω

ω∏
i=1

Nvi(q)
(
t
vi

)
(37)

which have the power-moment generating function

g(z) = 1 +

∞∑
h=1

Sh(m, q)z
h =

∞∑
ω=0

[T (z)]ω = [1− T (z)]−1, (38)

T (z) ≡
t∑

h=1

zhNh(q)
(
t
h

)
. (39)

We can now derive the coefficients Sh(m, q). This can be done by the Chernoff bound, similarly to the estimates
of [27] or by the combinatorial technique of [28]. Instead, we use another simple technique that employs contour
integration and gives the exact formulas for the coefficients Sh(m, q) along with their exponential orders. Namely,
let the denominator 1 − T (z) in (38) have s ≤ t distinct roots zr, r = 0, 1, . . . , s − 1, with ordered magnitudes
ρ = |z0| ≤ |z1| ≤ . . . ≤ |zs−1|. Then coefficients Sh(m, q) can be derived by a contour integration over a circle of
radius ε < ρ around the origin,

Sh(m, q) =
1

2πi

∮
dz

zd
1

1− T (z)
= −

s−1∑
r=0

Res

(
1

zd[1− T (z)]
, zr

)
(40)

where Res(f(z), a) is the residue of f(z) at a. For large weights d, the exponential order of Sh(m, q) is defined by
the root z0, which has the smallest magnitude ρ. Next, note that z0 = ρ > 0 is strictly positive and non-degenerate,
since the coefficients of T (z) are non-negative. In this case,

Res

(
1

zd[1− T (z)]
, z0

)
= − 1

zd0T
′(z0)

(41)

where T ′(z) is the derivative of the polynomial T (z); it is non-negative at z = z0. This gives the exponential bound

Sh(m, q) ≤ cρ−d +O(|z1|−d) ∼ c[γm(m− 1)]d (42)

with the complexity exponent γm ≡ 1/[(m− 1)ρ].
We now employ upper bound (36). In this case, equality (39) gives the polynomial

T (z) =
1

q − 1

{
[(q − 1)z + 1]t − 1

}
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which has the roots
zr = (q1/te2πir/t − 1)/(q − 1), r = 0, 1, . . . , t− 1

Thus, the asymptotic expansion (42) yields the constant

c =
1 + (q − 1)ρ

qt
=
q1/(m−1)

q(m− 1)

and the complexity exponent

γm =
q − 1

(m− 1)
(
q1/(m−1) − 1

) ≤ γ∞ =
q − 1

ln q
(43)

As a side remark, note that the larger values vi > 1 reduce the number of terms in the product taken in (37);
therefore, they contribute relatively little to the overall sum Sh(m, q). It is for this reason that a simple bound (36)
can yield a reasonably tight estimate (43).

Our next step is to reduce the exponent γm by limiting the number Nv(q, b). Let Mv(q) denote the set of q-ary
vectors c(I) of length v that satisfy the restrictions∑

I′

cj 6= 0 for all I ′ ⊆ I (44)

Let Av(q) be the size of Mv(q) and vmax be the maximum length of vectors in Mv(q).

Lemma 4. The number Nv(q, b) of q-ary vectors c(I) of length v, which satisfy restrictions (33) and (35) in a
Galois field Fq, does not depend on a parity check b and is equal to Av(q)/(q − 1). For any q = 2u, vmax = u
and Nv(q) = (q − 2) · . . . · (q − 2v−1). For a prime number q, vmax = q − 1.

Proof: Let two sets of q-ary vectors c(I, b) and c(I,B) of length v satisfy restrictions (33) and (35) for
some parity checks b and B. Then any such vector c(I,B) has its counterpart c(I, b) with symbols cj(I, b) =
Bjcj(I, b)/bj . Thus, the two sets have the same size and Nv(q, b) = Nv(q). We can also specify AI-restrictions
(35) using AI-restrictions (44) for the parity check b∗ = (1, ..., 1) and all subsets I ′ ⊂ I. Now let λ 6= 0 be the
value of the first summand in (33) for some unsatisfied parity check. Consider a subset of vectors in Mv(q) that
satisfy restriction

∑
I cj = −λ. This subset has the size Av(q)/(q− 1) and satisfies both restrictions (33) and (35)

for the parity check b∗. Thus, Nv(q) = Av(q)/(q − 1).
Next, consider the Galois field Fq for q = 2u. Then the sums in the left-hand side of (44) represent all possible

linear combinations over F2 generated by v or fewer elements of Mv(q). Thus, any symbol cj(I) must differ from
the linear combinations of the previous symbols c1(I), ..., cj−1(I). This gives the size Av(q) = (q− 1)(q− 2) · . . . ·
(q − 2v−1) and also proves that vmax = u.

For any prime number q, any sum of s elements in (44) must differ from the sums of t < s elements on its
subsets. Thus, different sums may take at most vmax non-zero values for s = 1, ..., vmax and vmax ≤ q − 1. Then
vmax = q − 1 is achieved on the vector c = (1, ..., 1) of length q − 1.

Lemma 4 shows that the numbers Nv(q) and the lengths vmax differ substantially for different q. Some of these
quantities are listed in Table I for small q. Table II gives some exponents γm obtained for irreducible clusters,
along with the upper bound γ∞ (valid for all clusters) in the last row. We summarize our complexity estimates as
follows.

Proposition 8. A codeword of weight δn in any q-ary (`,m) LDPC code can be found with complexity 2FICn,
where

FIC = δ log2(γm(m− 1)),

γm ∈ (1, γ∞) grows monotonically with m and γ∞ < γ∞ = (q − 1) / ln q.

Remarks. The algorithm presented here for linear q-ary codes generalizes an algorithm described in [14] for
binary codes. It can be also applied to a more general class of q-ary (`,m)-limited LDPC codes, whose parity
check matrices have all columns and rows of Hamming weights no more than ` and m, respectively. This algorithm
is also valid for q-ary CSS codes, and gives the same complexity exponent. However, for q-ary stabilizer codes, the
numbers of additively irreducible clusters (e.g., from Table I) have to be increased by an additional factor of qv,
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v q = 2 q = 3 q = 4 q = 5 q = 8

1 1 1 1 1 1
2 0 1 2 3 6
3 0 0 4 24
4 1 0

TABLE I
NUMBER OF ADDITIVELY-IRREDUCIBLE q-ARY STRINGS OF LENGTH v FOR q = pm .

m q = 2 q = 3 q = 4 q = 5 q = 8

3 1 1.20711 1.36603 1.5 1.82288
5 1 1.29057 1.5 1.73311 2.27727
10 1 1.33333 1.56719 1.85548 2.50514
102 1 1.3631 1.61351 1.94162 2.66259
103 1 1.36574 1.61759 1.94927 2.67647
∞ 1 1.36603 1.61803 1.95011 2.67799

Upper bound
(q − 1)/ ln q 1.44270 1.82048 2.16404 2.48534 3.36629

TABLE II
COEFFICIENT γm OF THE COMPLEXITY EXPONENT δ logq(γm(m− 1)) FOR DIFFERENT m AND q.

N
(stab)
v (q) = qvNv(q). As a result, the complexity exponents in Table II also increase, γ(stab)m = qγm. In particular,

for qubit stabilizer codes, q = 2, we obtain complexity exponent γ(qubit)m = 2.
Also, note that for the existing quantum LDPC codes with distance d of order

√
n, the presented IC algorithm

has the lowest proven complexity among deterministic algorithms. Indeed, exponent FIC is linear in the relative
distance δ, whereas deterministic techniques of Sec. III give the higher exponents F → δ log(1/δ) in this limit.
In this regard, exponent FIC performs similarly to the CS exponent FCS of generic codes, which is bounded by
δ − δ log2(1−R) and is linear in δ.

VI. FURTHER EXTENSIONS

In this paper, we study provable algorithms of distance verification for LDPC codes. More generally, this approach
can be used for any ensemble of codes with a given relative distance δ∗ and erasure-correcting capacity θ∗.

One particular extension is any ensemble of irregular LDPC codes with known parameters δ∗ and θ∗. Note that
parameter θ∗ has been studied for both ML decoding and message-passing decoding of irregular codes [55], [52],
[53]. For ML decoding, this parameter can also be derived using the weight spectra obtained for irregular codes in
papers [56], [57]. Also, these techniques can be extended to ensembles of q-ary LDPC codes. The weight spectra
of some q-ary ensembles are derived in [58], [59].

Another direction is to design more advanced algorithms of distance verification for LDPC codes. Most of such
algorithms known to date for linear [n, k] codes combine the MB and CS techniques. In particular, algorithm [60]
takes a linear [n, k]-code and seeks some high-rate punctured [k + µ, k]-block that has ε � k errors among k
information bits and µ error-free parity bits. The search is conducted similarly to the CS technique. Then the MB
technique corrects ε errors in this high-rate [k+ µ, k]-code. A slightly more efficient algorithm [61] simplifies this
procedure and seeks punctured [k+µ, k]-code that has ε� k+µ errors spread across information and parity bits.
In this case, the optimal choice of parameters ε and µ reduces the maximum complexity exponent F (R) to 0.1163.
Later, this algorithm was re-established in [62], [63], with detailed applications for the McEliece cryptosystem.
More recently, the maximum complexity exponent F (R) has been further reduced to 0.1019 using some robust
MB techniques that allow randomly overlapping partitions [64]. An important observation is that both the MB and
CS techniques can be applied to LDPC codes; therefore, our conjecture is that provable complexity bounds for
distance verification also carry over to these more advanced techniques.
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