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Abstract 

Infrared-active optical phonons were studied in olivine LiFePO4 oriented single crystals by 

means of both rotating analyzer and rotating compensator spectroscopic ellipsometry in the 

spectral range between 50 and 1400 cm-1. The eigenfrequencies, oscillator strengths and 

broadenings of the phonon modes were determined from fits of the anisotropic harmonic 

oscillator model to the data. Optical phonons in a heterosite FePO4 crystal were measured from 

the delithiated ab-surface of the LiFePO4 crystal and compared with the phonon modes of the 

latter. Good agreement was found between experimental data and the results of solid-state hybrid 

density functional theory calculations for the phonon modes in both LiFePO4 and FePO4.  

* Author to whom correspondence should be addressed. Electronic mail: stantar@njit.edu
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I. INTRODUCTION

Olivine lithium iron phosphate LiFePO4 (LFP) has attracted considerable attention as one of the 

most promising materials for cathodes in Li-ion rechargeable batteries since its first introduction 

in this role by Padhi et al. [1]. The great interest in LFP can be attributed to its flat discharge 

voltage of 3.4 V vs. Li+/Li, significant theoretical capacity of 170 mAh/g, high thermal stability, 

and environmental sustainability [2,3,4]. At the same time, the low electronic and ionic 

conductivities of LFP result in low cycling capacity at high discharge rate, preventing the 

effective use of these materials in Li batteries [5,6]. It is known that electrochemical insertion or 

removal of Li+ ions proceeds via a first order transformation between LFP and heterosite FePO4 

(FP) phases [1,3]. The precise mechanism of the intercalation process is not well understood [7]. 

The discussed models include: (i) the core-shell model, where the center of the crystal is FP and 

the periphery is LFP during both the charging and discharging processes [1,8]; (ii) nucleation 

growth models, where the new phase is first nucleated and then propagates through the crystal 

[9,10]; and (iii) the single phase model, where LixFePO4 is preserved throughout the range 0 ≤ x ≤ 

1 [11]. Vibrational spectroscopies such as infrared (IR) and Raman are sensitive to Li 

concentration in the LixFePO4 phase and can provide additional information on the intercalation 

process. Indeed, insertion or removal of Li ions changes the crystal field environment of the 

oxygen anions coordinated to the Li sites in the solid and thus influences the vibrational 

properties of the lattice. Furthermore, the diffusion rate of Li ions depends upon the vibrations of 

the lattice (phonons) and the potential minima encountered along the diffusion pathways of the 

cathode material [12]. Recent advances in IR near-field microscopy allow for the study of 

chemical composition of LixFePO4 specimens at the submicron scale when the atomic force 

microscope tip is illuminated with light at frequencies in resonance with the phonon modes of a 

specimen [13]. Thus, a knowledge of the phonon modes of LixFePO4 (0≤x≤1) crystals is 

important for a correct understanding of (de)intercalation processes.  

The Pnma structure of LiFePO4 contains four formula units (28 atoms) per unit cell. As a 

result LiFePO4 possesses 84 normal vibrations, among which 38 are IR active modes 

(14B1u + 10B2u + 14B3u), one of each of which is acoustic, and 36 are Raman active modes 

(11Ag + 7B1g + 11B2g + 7B3g). Optical phonon spectra at the Brillouin zone center have to date 

been measured only in polycrystalline samples by IR [14,15] and Raman spectroscopies 

[14,15,16,17], and calculated by various theoretical methods [13,18,19,20]. Parques-Ledent and Tarte 
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[14] performed a thorough analysis of IR and Raman modes of LFP polycrystalline samples,

including isotopic studies with 6Li-7Li substitution. They demonstrated that the LFP phonon

modes are spectrally separated into two bands: the high frequency band above 750 cm-1

corresponds to internal stretching modes of PO4 anion groups, while the mid-to-low frequency

band below 750 cm-1 corresponds to internal bending modes of PO4 groups combined with

external modes such as rotations and translations. Isotopic shifts were registered for a number of

IR modes providing insight into their relationship with Li ion motions. Further investigations of

the phonon spectra of LixFePO4 as a function of Li concentration (0 ≤ x ≤ 1) was carried out by

Burba and Frech [15]. In particular, they showed that the intramolecular PO4 modes are especially

sensitive to Li extraction from LFP.

While spectroscopic measurements on polycrystalline samples has helped establish the 

general pattern of phonon modes in LixFePO4 compounds, an accurate determination of the 

parameters of the phonon modes, such as symmetry, frequency, oscillator strength and 

broadening, can be achieved only by measurements on oriented single crystals. So far such 

measurements have been hindered mainly by the small sizes of available samples. Here we 

present our IR data for large single crystals of LiFePO4 measured along all three principal 

crystallographic directions by means of both rotating analyzer and rotating compensator 

spectroscopic ellipsometry. Although FePO4 crystals were not available in the bulk form, we 

carried out ellipsometric measurements on the ab-plane of a LiFePO4 sample treated with 

bromine solution to chemically extract Li ions from the surface of the sample, thus enabling IR 

measurements of a FePO4 crystal. For the purpose of the ellipsometric measurements such 

delithiated samples were equivalent to thick films of FePO4 on top of LiFePO4 substrate such that 

the film thickness was greater than the penetration depth of light. The ellipsometric 

measurements were complemented with solid-state hybrid density functional theory (DFT) 

calculations of the phonon modes, yielding phonon parameters in a good agreement with the 

experimental data. 

II. EXPERIMENTAL AND THEORETICAL TECHNIQUES

A. Sample growth and preparation

Low-defect LiFePO4 single crystals were grown by flux growth techniques, using 

Li3PO4, LiCl, and FeCl2 as reagents, as described in detail in Ref.[21]. The selected crystals were 
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~ 5×5×4 mm3 in size and of a good optical quality. Crystals were oriented using a Bruker Kappa 

Apex II X-ray diffractometer prior to cutting and polishing them perpendicular to the a and c 

axes for the optical measurements. 

To study optical properties of FePO4 samples, LiFePO4 crystals were treated with a 

solution of bromine in acetonitrile (Br2/CH3CN) to chemically extract Li ions from the near-

surface layers of the samples.  In order to evaluate the efficiency of the delithiation process 

scanning electron microscopy (SEM) images of chemically delithiated LiFePO4 single crystals 

were obtained using JEOL FESEM7500F microscope. These investigations showed vastly 

different reactivity of different crystal facets, with some being virtually unaffected by the 

treatment, and other facets undergoing either mild cracking with ~200-300nm spacing, and some 

chipping completely off. Interestingly, the contact angle of the bromine solution and the crystal 

(i.e. the wetting properties) also depended strongly on the facet. In general, the facets that 

underwent delithiation exhibited large contact angles (>90 degrees) and those that did not, were 

well-wetted.  

B. Ellipsometry technique

The rotating analyzer ellipsometry (RAE) and rotating compensator ellipsometry (RCE) 

measurements were carried out on the U4IR beamline of the National Synchrotron Light Source 

(NSLS) at Brookhaven National Laboratory (BNL). The ellipsometry setup, described in detail 

in Refs. [22,23], allowed us to measure the optical phonon spectra in the range between 50 and 

2000 cm-1 with a spectral resolution of 0.7 cm-1. All measurements described in this paper were 

taken at room temperature. The ellipsometer setup at the U4IR beamline consists of a Bruker 

v66i spectrometer equipped with beamsplitters and detectors for different spectral ranges, and 

two corresponding sets of linear polarizers and optical retarders. For the spectral range below 

500 cm-1 we used a LHe 4 K bolometer, a Ge-Mylar beamsplitter, polyethylene wire grid linear 

polarizers, and Si retarders. A LHe-cooled CuGe detector, a KBr beamsplitter, and KRS5 wire 

grid linear polarizers were used for the spectral range between 400 cm-1 and 2000 cm-1. In this 

paper, our main interest is in the optical phonons between 100 cm-1 and 1200 cm-1, so both sets 

of optical elements were necessary. A significant overlap between the two spectral ranges 

allowed for a smooth merge of the measured optical spectra in the region from 400 to 500 cm-1. 

The angle of incidence (AOI) of the light upon the sample was 75° for all ellipsometric 
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measurements, a value close to the Brewster angle of ~70° for the low-frequency spectral range 

of LiFePO4. In what follows, we use a standard ellipsometry convention for the Cartesian x, y, z 

coordinate system: z is perpendicular to the reflecting surface of the sample, x is parallel and y is, 

correspondingly, perpendicular to the reflection plane. 

The main advantage of ellipsometry in comparison with conventional reflectivity 

measurements is the possibility to measure both real and imaginary parts of the pseudo-dielectric 

function ( )  . In RAE the spectra ( )   are related to AOI and measurable ellipsometric 

angles ( )  and ( )  as follows: 

2( )
2 2 2

( )

1 tan ( )
( ) sin sin tan

1 tan ( )

i

i

e

e





    






   
        

, (1) 

where tan ( ) ( ) / ( )p sr r     is the ratio of Fresnel’s coefficients or reflection amplitudes, 

( ) ( ) ( )p s        is the phase difference between s- and p -polarized light, and   represents 

the AOI. Note here that RAE can measure only cos( ) , while the sin( )  remains undetermined.  

RCE is known to be more robust than RAE due to a better stability against experimental 

errors caused by depolarization of reflected light and back-side reflection from the measured 

samples. The latter is significant only in the transparency spectral range at low frequencies, i. e., 

below the optical phonon frequencies.  RCE also has a powerful experimental capability to 

measure both cos( )  and sin( ) , which results in simultaneous measurement of several 

additional non-trivial components of the 4×4 Mueller matrix (MM) of the sample; the latter 

connects the Stokes polarization vectors for incoming INS


 and outgoing OUTS


 reflected light. In

contrast to full MM ellipsometry, RCE permits for the measurement of a truncated 4×3 Mueller 

matrix with nontrivial components M21, M33, and M43. For each frequency  of the measured 

spectra, the Mueller matrix ˆ ( )M   is defined as ˆ( ) ( ) ( )OUT INS M S   
 

. In the following, the 


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experimental data for RCE will be presented in terms of the normalized Mueller matrix 

components 11( ) ( ) / ( )ij ijm M M    that are even more robust against systematic experimental 

errors than 11( )M   due to self-normalization by the total reflectivity given by the 11( )M 

spectrum. The measured experimental spectra ( )ijm  , which vary from −1 to +1, are related to 

the model parameters for an anisotropic dielectric function ( )   via analytical formulas that are 

well known and presented in Ref. [24]. 

C. Density functional theory calculations

Calculations of the Brillouin zone center (Γ-point) phonon frequencies, mode displacement 

patterns and oscillator strengths for bulk LiFePO4 and FePO4 were performed within the 

CRYSTAL09 linear combinations of atomic orbitals code [25,26]. The basis sets used comprise a 

series of atom-centered Gaussian primitive functions grouped into contractions of the form 

(7s,2p,1d) / [1s,2sp,1d] for Li; (10s,4p,1d) / [1s,2sp,1d] for O; (16s,8p,1d) / [1s,3sp,1d] for P; 

and (20s,12p,5d) / [1s,4sp,2d] for Fe, where the values in parentheses denote the number of 

Gaussian primitives, and the values in square brackets denote the contraction scheme. The basis 

sets were taken from the CRYSTAL09 online repository, and were unmodified from their use in 

a wide range of materials bearing similar site charges [27]. The hybrid B3LYP exchange-

correlation functional was used throughout [28,29,30]. Prior to commencing the phonon 

calculations, the crystal structures of LiFePO4 and FePO4 were fully optimized using 

convergence tolerances of 10-10 atomic units (AU) for total energy, 5×10−6 AU for root mean 

square (RMS) atomic gradient and 2×10−5 AU for RMS atomic displacement. The Pnma space 

group symmetry of the primitive cells was enforced throughout both structural optimizations, 

and ferromagnetic alignments of the unpaired Fe spin moments were assumed in all cases. Note 

that no significant effects upon the phonon parameters are expected due to ordering of the Fe2+ 

magnetic moments, given that antiferromagnetism appears only at low temperatures below TN = 

50 K in this material [31]. To show the dependence of computed phonon properties on cell 

volume, phonon calculations on both materials were also performed using fixed experimental 

cells (with fully optimized atomic positions) obtained from neutron diffraction at 300 K [32]. 

Reciprocal space was sampled upon Monkhorst-Pack meshes with shrinking factors 4 × 8 × 8 for 
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both phases, yielding 75 k-points in the irreducible Brillouin zone. Phonon calculations 

proceeded within the finite atomic displacement approach using a central difference method to 

compute the first derivatives of the atomic gradients [33,34]. Atomic displacements of magnitude 

0.005 AU along the Cartesian directions were used. Tests with varying displacement magnitudes 

yielded no significant variation in phonon properties. The crystal symmetry of the unperturbed 

lattice was used throughout to assist in filling the force constants matrix. The oscillator strengths 

were obtained via calculations of the atomic dynamical charge tensors [35] within a Wannier-

Boys localization approach [36]. The mode atomic displacement patterns were analyzed by means 

of a building unit decomposition, which provides a systematic classification of the modes in 

terms of the external (rigid unit motions) and internal (unit distortive motions) contributions of 

LiO6, FeO6 and PO4 units, as appropriate.  

III. RESULTS AND DISCUSSION

A. Phonon modes of LiFePO4

Figure 1(a-i) shows normalized spectra of the Mueller matrix components 12 ( )m  , 

33( )m  , and 43( )m   (blue curves) for LiFePO4 crystals measured using RCE at T=300 K for 

three different sample orientations with respect to the experimental setup: ||a x  and ||b y ; ||b x  

and ||a y ; and ||c x  and ||b y . The strong sharp features in the spectra correspond to transverse 

optical (TO) phonons. Due to relatively high values of the dielectric constant at the resonance 

with phonons and the proximity of the AOI=75° to the Brewster angle, the main contributions to 

each spectrum originate primarily from the TO phonons that are polarized along the x-direction 

for each experimental configuration. Thus, to determine the optical phonon frequencies for all 

three crystallographic axes a, b, and c, one needs at least three measurements with ||a x , ||b x , 

and ||c x , exactly as shown in Figure 1. In addition to the primary contribution from the TO 

phonons polarized along x, the Mueller matrix spectra also contain features originating from the 

reststrahlen bands in the proximity of the LO phonon frequencies that are polarized along the y 

and z directions.  

The Mueller matrix representation for the experimental optical phonon spectra is not 

conventional in the condensed matter community. A more common way to present experimental 

data is via a pseudo-dielectric function ( )  . In the case of an isotropic bulk sample, ( ) 
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would coincide with the dielectric function, but for strongly anisotropic samples such as 

LiFePO4, ( ) 
 
depends on the AOI and contains contributions from phonons polarized along 

all three crystallographic axes, a, b, and c. Still, for the same reasons as outlined above for the 

Mueller matrix spectra, each spectrum of ( )   has a dominant contribution from the phonons 

polarized along the corresponding x axis. Figure 2(a-c) shows experimental spectra of ( )   

measured for three experimental configurations with ||a x , ||b x , and ||c x . The low-frequency 

part of the ( )   spectra in Fig. 2 (below 450 cm-1) has been directly converted from the 

experimental Mueller matrix spectra ( )ijm   shown in Fig. 1. The high-frequency part of the 

( )   spectra in Fig. 2 (above 450 cm-1) has been obtained from RAE measurements [see Eq. 

(1)]. The reststrahlen bands result in unusual spectral features with negative values of pseudo 

2( )   and inverted Lorentz oscillator forms in 1( )  , as can be seen, for example, at ~1100 

cm-1 in Figs. 2(a) and 2(c).

The difference between the RAE and RCE ellipsometry measurements is illustrated in 

Fig. 3(a,b) where we show a comparison between real and imaginary parts obtained with these 

two realizations of the ellipsometry technique. For the high-frequency part ( 230   cm-1) 

both approaches return similar spectra, while for the low-frequency part ( 230   cm-1) the 

differences are more notable: the real part 1( )   is lower and the imaginary part 2( )   is 

significantly higher in RAE than in RCE spectra. We note that the broad background in 

2 ( )   in the low-frequency part of the spectrum, being essentially constant at approximately 

10, is not physical because our samples are known to be transparent at frequencies sufficiently 

far below the lowest phonon mode. This systematic error in the RAE measurements is due to 

several factors, such as sample diffuse scattering, back-side reflection, and detector dark-

current contributions to the measured intensities. From the formal point of view, the quality of 

RAE data at low frequencies is affected by proximity of ( )   to zero, which  automatically 

enhances all systematic errors of the measurements. In RCE measurements most of the 

aforementioned systematic errors are automatically eliminated due to the presence of higher 

order Fourier coefficients in the standard ellipsometry data conversion. Note again that all of 

our phonon data at  cm-1 were obtained from RCE spectra. An additional difference 500 
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between RAE and RCE can be seen for the sharp feature at ~ 200 cm-1 marked with a star in 

Figure 3(a,b). This peak originates from the reststrahlen bands of two phonons at ~ 200 cm-1 

polarized along the b and c-axes. The phase ( )  would require careful consideration in such 

a non-trivial situation featuring an anisotropic dielectric function, and can be properly treated 

only via advanced simulation tools of the type described below. 

To decouple the dielectric contributions along x and z in each measurement, we fit the 

experimental RCE spectra 12 ( )m  , 33( )m  , and 43( )m  , as well as the RAE spectra ( )  , 

using an anisotropic dielectric function model for ˆ( )  : 

2

, 2 2
1

2

, 2 2
1

2

, 2 2
1

( )   0       0

ˆ( ) 0      ( )    0

0          0   ( )

( ) ,

( ) ,

( ) .

a

b

c

K
k k
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k k k

L
l l

b b
l l l

N
n n
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n n n

S

i

S

i

S

i

 
   

 
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   

  
   
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








 
   
  


 

 


 

 


 

 







 (2) 

Here the contribution of phonons polarized along the a(b,c) axis to the corresponding diagonal 

component ( , ) ( )a b c   of the dielectric function tensor is described by a set of Lorentz oscillators, 

where ( , )k l n  is the TO phonon frequency, ( , )k l nS  is the phonon oscillator strength, and ( , )k l n  is 

the phonon broadening;  represents the dielectric constant at frequencies above the optical 

phonons ( 1300   cm-1). As was pointed above, the main contribution to each spectrum ( ) 

originates from the TO phonons that are polarized along the x-direction of the experimental 

configuration. From visual inspection of the measured spectra we were able to identify K=11, 

L=9, and N=12 TO phonon modes polarized along the a, b, and c axes, respectively and, as a 

result, construct initial set of Lorentz oscillators for the model. A locally written program based 

on the  Berreman matrix propagation method for anisotropic magneto-electric media was 

used to fit the model to the experimental data.37 The results of the fit are shown by red dotted 

curves in Figs. 1(a-i) and 2(a-c). It is clear that the Berreman method provides an accurate 

, ( , )a b c

4 4
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description of most of the negative features in the 2( )   spectra, indicating that the phase of 

the reflected light [or, equivalently, sin ( ) ] has been calculated correctly even for the 

reststrahlen bands. 

Table I summarizes the experimental values for parameters of the TO phonons for all 

three orthorhombic cell axes a, b, and c. There are total of 32 TO phonons listed in Table I 

(K=11, L=9, and N=12). The number of phonons predicted for the Pnma symmetry cell of 

LiFePO4 is 35 (K=13, L=9 and N=13). So it is possible that some weak phonons with oscillator 

strengths less than approximately 0.02 cannot be resolved by these measurements due to a 

complicated optical response of the anisotropic crystal, particularly in a situation where a weak 

phonon polarized along one axis falls close in frequency to a separate strong phonon polarized 

along an orthogonal axis. The , ( , )a b c  values, which are determined by high energy electronic 

transitions, are 2.8±0.1 for all three a, b, and c axes (see Table I). The combined contribution of 

the oscillator strengths of the optical phonons and , ( , )a b c  result in the low-frequency (THz 

spectral range) values of (0) 8.1a  , (0) 7.3b   and (0) 7.6c   for a, b, and c axes 

correspondingly (see Table I).  

Figure 4 shows anisotropic dielectric function model for LiFePO4 crystals calculated 

using the fit parameters from Table I for tensor components ( )a  , ( )b  , and ( )c   in Eq. (2). 

The real and imaginary parts are shown in blue and red curves, respectively. The optical phonon 

peaks are marked with frequency labels. As expected for a properly calculated dielectric model, 

2 ( ) 0    across the whole spectral range for all three crystal axes and 2 ( ) 0    for the low 

frequency range well below the TO phonons.  

B. Phonon modes of FePO4

Although heterosite FePO4 crystals were not available in bulk form, we carried out 

ellipsometric measurements on a LiFePO4 sample treated with bromine solution (Br2/CH3CN) to 

chemically extract Li ions from the near-surface layers of the sample, providing a reasonable 

model of a FePO4 crystal. Figures 5(a) and 5(b) show a SEM image of LFP single crystal which 

has been immersed into the bromine solution. While some facets demonstrate clear signs of 

reaction, such as small peels and cracks, other facets are left practically intact revealing a strong 
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anisotropy of reactivity of the LFP facets with the bromine solution. Of the (100) and (001) 

facets of the studied LFP single crystal, only the (001) facet actively reacted with bromine 

solution providing us with a model of the FePO4 (001) plane.  

The FePO4 phonon modes were measured on the (001) plane of the delithiated LFP 

sample in the spectral range from 450 to 2000 cm-1 by means of RAE. The pseudo-dielectric 

functions ( )   measured in two experimental configurations ( ||a x , ||b y ) and ( ||b x , ||a y ) 

are shown in Figs. 6(a) and 6(b), respectively. For comparison, the pseudo-dielectric functions 

( )   of LiFePO4 sample measured in ||a x  and ||b x  configurations are also shown in Figs. 

6(a) and 6(b), respectively. Preliminary fit of the dielectric response from the delithiated ab-

surface allowed us to estimate the changes of the phonon mode frequencies upon delithiation. 

The biggest difference between LFP and FP samples is observed for the high frequency phonons 

above 800 cm-1 associated with vibrations of PO4 anion groups. The frequency of the strong B3u 

mode polarized along the a-axis is blue-shifted by 72 cm-1 from 1028 to 1100 cm-1 upon 

delithiation [see Fig.6(a)], while the frequency of one of the strong B2u modes polarized along 

the b-axis is red-shifted by 21 cm-1 from 930 to 909 cm-1 [see Fig.6(b)]. Also, the oscillator 

strength of the weak B3u phonon positioned at 946 cm-1 increased from 0.005 to 0.09 while its 

frequency upshifted by 8 cm-1 in delithiated sample as compared to LFP [see Fig.6(a)]. For the 

lower-frequency phonons (between 450 and 800 cm-1) the largest changes are observed for the 

modes at ~550 cm-1. The B3u mode at 572 cm-1 broadens by a factor of 2 and downshifts by 

10 cm-1 upon Li removal [see Fig.6(a)] while the B2u mode at 543 cm-1 also broadens and 

downshifts by 22 cm-1 [see Fig.6(b)]. We note that due to the absence of the experimental data 

for the dielectric response from the c-axis of the delithiated sample our preliminary fit of the FP 

sample cannot properly model features originating from the c-axis LO frequencies. In particular 

there is a possibility that the strong feature at 1100 cm-1 in the spectra of the FP sample in Fig. 

6(a) stems from the c-axis LO frequency while the a-axis phonon is responsible for the shoulder 

at ~1070 cm-1. To answer these questions additional experimental data for the c-axis dielectric 

response of delithiated sample is required in the future. 

C. DFT phonon calculations
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The TO phonon mode frequencies and oscillator strengths computed by solid-state hybrid 

DFT are presented for the fully optimized and fixed 300 K experimental cell (with optimized 

atomic positions) structures of LiFePO4 in Table I. The fractions (%) of the mode eigenvectors 

corresponding to external (ext; i.e. rigid) motions of the FeO6, PO4 and LiO6 units are also shown 

for the fully optimized case, providing a convenient classification of the modes. Where modes 

are strongly internal (int; i.e. unit distortive), the atomic species dominating the motion are also 

shown where such an attribution can be clearly made. A general crossover might be expected 

from ext dominated motions at low frequency to int motions at high frequency. This is broadly 

borne out, save for the Li rattling motions, which are strongly internal but appear at low 

frequencies, suggesting that Li ions are rather loosely bound in the crystal, likely confined by 

spatially complex and significantly anharmonic potentials. Evidence for this also comes from the 

computed oscillator strengths, which tend to show larger structural sensitivity for the Li rattling 

modes. Given that the dynamical charge tensors obtained from the fixed cell and fully optimized 

phonon calculations do not vary significantly, this suggests that the eigenvectors of the rattling 

modes show acute sensitivity to rather small changes in crystal structure. More generally, the 

phonon frequencies of the fully optimized structure are higher than those computed using the 

fixed experimental cell by an average of 11.6 cm-1 across all three axes. This can be 

straightforwardly understood as being due to the small volume contraction in the fully optimized 

lattice, amounting to 2.3 % of the 300 K experimental value of 291.76 Å3, leading to slightly 

stiffer bonds and higher vibrational frequencies. 

Turning to examine the phonon parameters in detail, for the B3u symmetry phonons 

polarized along the a-axis, the main discrepancy in oscillator strength between calculations and 

experiment occurs for the modes at 242 and 345 cm-1. For the first of these, a predominantly Li 

rattling mode, the fixed cell calculated S value underestimates experiment by 0.92 (where 

oscillator strengths are dimensionless), and the discrepancy worsens with use of the fully 

optimized structure. Meanwhile, the experimental 345 cm-1 mode is assigned to the calculated 

304 and 370 cm-1 phonons, and the sum of the calculated S values, at 0.63, significantly 

overestimates the experimental value of S = 0.05. Neither of the calculated S values shows 

appreciable structural sensitivity. The weak 370 cm-1 mode comprises predominantly Li rattling 

motions, while the eigenvector of the stronger 304 cm-1 mode is more complex, involving 

significant external and internal contributions. The S value of 0.29 for the experimental 484 cm-1 
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mode is in good agreement with the sum 0.28 for the assigned calculated 459 and 522 cm-1 

modes, and, again, neither of the component values changes much with structure.  

Examining the B2u symmetry phonons polarized along the b-axis, the main discrepancy 

arises for the low frequency 194 cm-1 mode, where the calculated S value exceeds experiment by 

1.44, although agreement does improve slightly with the use of the optimized cell, bringing the 

overestimate down to 1.11. The S values of the experimental modes at 346 and 420 cm-1 are 

significantly under- and overestimated, respectively, by the DFT calculation, but the total 

oscillator strength in this spectral region is in good agreement at S = 0.74 from experiment and S 

= 1.04 from the calculation. Neither of the DFT S values shows appreciable structural sensitivity.  

Finally, for the B1u symmetry phonons polarized along the c–axis, the main discrepancy 

arises for the experimental 229 cm-1 mode, where the calculated S value overestimates 

experiment by 1.96. However, this mode shows a very large structural sensitivity, where use of 

the optimized cell brings the overestimate down to 0.91. Another significant difference arises for 

the experimental 189 cm-1 mode, where the calculated S value underestimates experiment by 

0.94, although use of the optimized cell again improves agreement, bringing the underestimate 

down to 0.76. The 260 cm-1 mode also shows strong structural sensitivity, with a difference in S 

value of 0.61 between fixed and optimized cells. No mode comparable to the experimental 372 

cm-1 phonon arises from the calculation, although we note this is a broad spectral feature, while

the calculated 950 cm-1 mode is absent from the experimental spectrum, in keeping with its

vanishing oscillator strength. The experimental 631 cm-1 mode is assigned to a combination of

the calculated 582 and 650 cm-1 modes, with a total oscillator strength dominated by the latter

phonon.

The obtained agreement between our experimental ,expi  and calculated ,thi  values for 

all phonon frequencies can be summarized by the average relative difference parameter 

  1

,th ,exp ,exp
1

K L N

i i i
i

K L N   
 





     that is equal to 0.051 for the experimental cell 

and 0.068 for the optimized cell approaches for LiFePO4 crystal. Although this agreement is not 

perfect, we consider this result acceptable taking into account the nontrivial behavior of Li in the 

LiFePO4 crystal lattice, such as its rather weak bounding to the crystal and a significant 
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anharmonicity of Li crystal potentials. Several approaches may be implemented in the future to 

improve the agreement between theory and experiment. One of them is to measure Raman-active 

phonons and compare both Raman- and IR-active phonons to the corresponding DFT results. 

Another approach would be to account for the antiferromagnetic (AFM) ordering of Fe2+ spins 

along b in the LiFePO4 [31]. Recently this approach has been successfully implemented in Ref. 

[20] for theoretical analysis of the phonons in inelastic neutron scattering experiments in

LiFePO4 polycrystals.

The DFT calculations qualitatively reproduce the effects of delithiation to FePO4 on the 

spectra. The TO phonon mode frequencies and oscillator strengths computed for the fully 

optimized and fixed 300 K experimental cell (with optimized atomic positions) structures of 

FePO4 are shown in Table II. For the high frequency phonons, the strong experimental B3u mode 

at 1028 cm-1 is blueshifted on delithiation by 48 and 18 cm-1 in the fixed experimental cell and 

fully optimized calculations, respectively, as compared with an experimental blueshift of 72 cm-

1. The strong experimental B2u mode at 930 cm-1 is redshifted on delithiation by 22 and 33 cm-1

in the fixed experimental cell and fully optimized calculations, respectively, as compared with an

experimental redshift of 21 cm-1. The weak experimental B3u mode at 946 cm-1 is blueshifted on

delithiation by 25 and 11 cm-1 in the fixed experimental cell and fully optimized calculations,

respectively, as compared with an experimental blueshift of 8 cm-1. Also, the calculations

accurately reproduce the increase in oscillator strength from 0.003 to 0.09 on delithiation in both

structures, as compared with an experimental increase from 0.005 to 0.09. For lower frequency

phonons, the redshift of the experimental B3u mode at 572 cm-1 on delithiation is overestimated at

51 and 62 cm-1 in the fixed experimental cell and fully optimized calculations, respectively, as

compared with an experimental redshift of 10 cm-1. Finally, the weak experimental B2u mode at

543 cm-1 is redshifted on delithiation by 33 and 34 cm-1 in the fixed experimental cell and fully

optimized calculations, respectively, as compared with an experimental redshift of 22 cm-1. The

comparison of experimental and calculated changes to phonon mode frequencies upon

delithiation of the ab-surface of the LFP sample is summarized in Table III.

IV. CONCLUSIONS

We report the first study of the optical phonons in LiFePO4 oriented single crystals. The 

majority of the optical phonons have been identified for  three orthorhombic a, b, and c axes. The 
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phonon modes of a chemically delithiated FePO4 sample were also measured along the a and b 

axes. The biggest difference between LiFePO4 and FePO4 samples was observed for the high 

frequency phonons above 800 cm-1, which are related to distortive vibrations in the PO4 anion 

units. Good agreement was found between the experimental data and the results of solid-state 

hybrid DFT calculations for the phonon modes in both LiFePO4 and FePO4. The experimental 

and theoretical data presented here will be useful for further analysis of the Li (de)intercalation 

process as well as for future studies of the phonon spectra in a broad class of Li-based materials 

for rechargeable battery applications.  
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TABLE I. Experimental and calculated (both experimental and optimized cells) parameters for 
TO phonons polarized along the a, b, and c axes for LiFePO4, T=300 K. The phonon frequency 

0  and broadening   are in cm-1, the oscillator strength S is in units of  . The fractions (%) of 

the mode eigenvectors corresponding to external (ext; i.e. rigid) motions of the FeO6, PO4 and 
LiO6 units are shown for the fully optimized case. The experimental and calculated values for 

  and quasi-static (0)  are listed at the bottom for all three axes.  

Mode 
Experiment Theory (expt. cell) Theory (opt. cell) Theory mode 

description 
(int dominant species)  S S External S 

a 1 141 2.8 0.15 154 0.28 83.4 160 0.23 LiO6 ext 
(B3u) 2 176 4.1 0.09 195 0.09 36.3 204 0.10 FeO6 int (Fe) 

 3 242 19.7 3.8 242 2.88 11.9 265 2.56 LiO6 int (Li) 
 4 262 4.4 0.18 271 0.40 18.8 288 0.13 LiO6 int (Li) 
 5 345 13.7 0.05 304 0.57 43.1 316 0.52 LiO6 ext int 
 6 370 0.06 14.6 378 0.09 LiO6 int (Li) 
 7 484 47 0.29 459 0.21 10.3 483 0.23 LiO6 int (Li) 
 8 522 0.07 5.9 530 0.08 LiO6 int (O) 
 9 572 11.3 0.2 590 0.14 12.6 596 0.13 LiO6 PO4 int (O) 
 10 645 7.1 0.08 672 0.07 9.7 679 0.08 LiO6 FeO6 PO4 int (O) 
 11 946 4.8 0.005 951 0.00 5.8 960 0.00 FeO6 LiO6 PO4 int (O) 
 12 1028 10.8 0.48 1042 0.47 17.6 1052 0.47 PO4 int (P O) 
 13 1094 6.2 0.014 1116 0.02 23.0 1128 0.01 PO4 int (P O) 

b 1 194 3.9 1.15 153 2.59 14.5 174 2.26 LiO6 int (Li) 
(B2u) 2 205 8.6 0.19 202 0.05 7.8 234 0.24 LiO6 int (Li) 

 3 220 14.4 0.79 215 0.72 48.9 216 0.37 LiO6 ext int (Li) 
 4 246 6.7 0.3 273 0.41 35.5 277 0.31 LiO6 int (Li) 
 5 346 12.8 0.44 378 0.28 32.6 389 0.22 LiO6 int (O) 
 6 420 33.7 0.3 412 0.76 6.5 439 0.74 LiO6 int (Li) 
 7 462 18.5 0.41 488 0.32 18.5 498 0.37 FeO6 LiO6 int (O) 
 8 543 6.5 0.22 551 0.14 24.8 554 0.13 PO4 LiO6 int (O) 
 9 930 15.7 0.73 955 0.67 26.9 963 0.68 PO4 int (P O) 

c 1 176 3.0 0.05 188 0.01 33.0 195 0.03 LiO6 FeO6 int (Li Fe) 
(B1u) 2 189 4.4 1.1 215 0.16 64.2 226 0.34 LiO6 ext 

 3 229 7.3 0.37 241 2.33 20.3 261 1.28 LiO6 int (Li) 
 4 260 10.7 0.5 250 0.03 64.3 262 0.64 LiO6 ext 
 5 298 14.6 0.16 309 0.24 12.2 319 0.11 LiO6 int (Li) 
 6 353 13.8 0.76 368 1.05 17.3 381 0.98 LiO6 int (Li) 

372 35.2 0.84 
 7 495 26.8 0.4 471 0.51 9.3 494 0.51 LiO6 int (Li) 
 8 509 17.5 0.09 507 0.12 8.3 517 0.16 LiO6 FeO6 PO4 int (O) 
 9 582 0.01 11.3 588 0.02 LiO6 FeO6 int (O) 
 10 631 8.7 0.16 650 0.17 11.9 657 0.17 LiO6 int (O Li) 
 11 950 0.00 12.9 959 0.00 LiO6 FeO6 PO4 int (O) 
 12 1073 15.1 0.32 1093 0.35 19.8 1104 0.35 PO4 int (P O) 
 13 1158 14 0.02 1158 0.03 20.2 1168 0.04 PO4 int (P) 

0 
0 0
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Experiment:    ≈  ≈  ≈ 2.8  =8.1,  =7.3, =7.6 

Theory (expt. cell): =2.5, =2.6, =2.5 =7.8,  =8.6, =7.6 

Theory (opt. cell): =2.6, =2.6, =2.6  =7.2,  =7.9, =7.2 

,a ,b ,c (0)a (0)b (0)c

,a ,b ,c (0)a (0)b (0)c

,a ,b ,c (0)a (0)b (0)c
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TABLE II. Calculated (both experimental and optimized cells) parameters for TO phonons 
polarized along the a, b and c axes for FePO4, T=300 K. The phonon frequency 0  is in cm-1, the 

oscillator strength S is in units of  . The fractions (%) of the mode eigenvectors corresponding 

to external (ext; i.e. rigid) motions of the FeO6 and PO4 units are shown for the fully optimized 
case. 

Mode 

Theory  

(expt. cell) 

Theory  

(opt. cell) 

Theory mode description 
(int dominant species) 

S External S 

a 1 190 0.16 73.7 184 0.14 PO4 ext 
(B3u) 2 263 0.04 50.7 262 0.07 FeO6 PO4 ext int (Fe O) 

 3 346 0.00 48.9 333 0.00 FeO6 PO4 ext int (O) 
 4 386 3.05 49.4 383 3.09 FeO6 PO4 ext int (O) 
 5 539 0.40 4.1 534 0.35 FeO6 PO4 int (O) 
 6 628 0.00 9.8 623 0.00 FeO6 PO4 int (O) 
 7 698 0.27 13.4 694 0.28 FeO6 PO4 int (P O) 
 8 976 0.09 4.6 971 0.09 FeO6 PO4 int (O) 
 9 1090 0.99 11.7 1070 1.08 FeO6 PO4 int (P O) 
 10 1129 0.14 7.3 1117 0.12 FeO6 PO4 int (O) 

b 1 203 7.12 49.9 198 7.47 FeO6 PO4 ext int (Fe O) 
(B2u) 2 284 0.01 44.7 276 0.00 FeO6 PO4 ext int (O) 

 3 341 0.49 60.5 326 0.41 FeO6 PO4 ext 
 4 443 0.24 29.3 430 0.23 FeO6 PO4 int (O) 
 5 518 0.82 13.9 520 0.74 FeO6 PO4 int (O) 
 6 933 0.84 25.6 930 0.78 FeO6 PO4 int (P O) 

c 1 199 0.94 73.4 197 0.92 FeO6 PO4 ext 
(B1u) 2 254 1.72 65.8 252 1.88 FeO6 PO4 ext 

 3 341 0.10 53.1 334 0.13 FeO6 PO4 ext int (O) 
 4 419 0.67 54.2 408 0.64 FeO6 PO4 ext int (O) 
 5 547 0.49 12.5 538 0.48 FeO6 PO4 int (O) 
 6 593 0.09 6.5 592 0.09 FeO6 PO4 int (O) 
 7 661 0.38 12.0 658 0.35 FeO6 PO4 int (O) 
 8 981 0.06 10.0 976 0.06 FeO6 PO4 int (P O) 
 9 1087 0.65 12.7 1074 0.67 FeO6 PO4 int (P O) 
 10 1271 0.01 8.2 1258 0.01 FeO6 PO4 int (P O) 

Theory (expt. cell): ,a = 3.9, ,b =3.4 , ,c =3.5  (0)a =9.0, (0)b  =12.9, (0)c =8.6 

Theory (opt. cell): ,a = 3.9, ,b =3.4 , ,c =3.5 (0)a =9.1, (0)b  =13.0, (0)c =8.7 

0 0
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TABLE III. Experimental and calculated changes to phonon frequencies of the LiFePO4 crystal 
upon delithiation of the ab-surface. Phonon frequencies are in cm-1.  is a difference between 
phonon frequencies in FePO4 (FP) and LiFePO4 (LFP) samples.  

Mode 
Experiment Theory (expt. cell) Theory (opt. cell) 

LFP FP  LFP FP  LFP FP  
a 572 562 -10 590 539 -51 596 534 -62

(B3u) 946 954 8 951 976 25 960 971 11
1028 1100 72 1042 1090 48 1052 1070 18 

b 543 521 -22 551 518 -33 554 520 -34
(B2u) 930 909 -21 955 933 -22 963 930 -33
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FIG. 1. Spectra of the normalized Mueller matrix components 12 ( )m  , 33( )m  , and 43( )m 

(blue curves) for LiFePO4 crystals measured using RCE at T=300 K in three experimental 

configurations: (a,b,c) ||a x  and ||b y ; (d,e,f) ||b x  and ||a y ; (g,h,i) ||c x  and ||b y . The results 

of the fit using Eq. (2) for the parametric description model of the anisotropic dielectric function 

are shown with dash-dot red curves. 
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FIG. 2. Spectra of the real 1( )   and imaginary 2 ( )   components of the pseudo-dielectric 

function measured for LiFePO4 crystals at T=300 K in three experimental configurations: (a) 

||a x  and ||b y , (b) ||b x  and ||a y , (c) ||c x   and ||b y  (blue solid curves). Strong peaks 

correspond to optical phonons. The spectral range between 50 cm-1 and 450 cm-1 is measured 

using RCE, while the spectral range above 450 cm-1 is measured with RAE. The results of the fit 

using Eq. (2) for the parametric description model of the anisotropic dielectric function are 

shown with dash-dot red curves. 
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FIG. 3. (a) Real and (b) imaginary parts of the pseudo-dielectric function for LiFePO4 crystal 

measured with RCE (blue solid curve) and RAE (brown dashed curves) for ||a x  and ||b y . 

The optical phonon peaks polarized along the a axis are marked with wavenumber labels. Note 

the difference between two spectra below 230 cm-1. The spectral feature that originates from a 

phonon at ~200 cm-1, which is polarized along the b axis, is marked with an asterisk. 
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FIG. 4. Spectra of real (blue solid curves) and imaginary (red dotted curves) parts of diagonal 

components (a) ( )a  , (b) ( )b  , and (c) ( )c   of the dielectric function tensor ˆ( )   of 

LiFePO4 calculated using the experimental phonon parameters from Table I. The optical 

phonon peaks are marked with wavenumber labels. 
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FIG. 5. (a) SEM image of a LiFePO4 single crystal which undergone delithiation process by 

being immersed into the bromine solution Br2/CH3CN. While some facets of the sample actively 

reacted with the bromine solution as evidenced by small peels and cracks on the surface, other 

facets are left practically intact implying high anisotropy of the effectiveness of chemical 

delithiation of LiFePO4 facets. (b) Zoom of rectangular region in (a), showing the boundary 

between high and low reactivity facets. 

http://dx.doi.org/10.1063/1.4995282


25 

FIG. 6. Spectra of real 1( )   and imaginary 2 ( )   components of the pseudo-dielectric 

function measured for LiFePO4 (solid blue line) and heterosite FePO4 (dash-dot red line) crystals 

at T=300 K in two experimental configurations: (a) ||a x  and ||b y , (b) ||b x  and ||a y . 

http://dx.doi.org/10.1063/1.4995282


26 

REFERENCES 

1 A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, 1198 

(1997) 

2 A. Yamada, S. C. Chung, and K. Hinokuma, J. Electrochem. Soc. 148, A224 (2001). 

3 A. S. Andersson, J. O. Thomas, B. Kalska, and L. Häggström, Electrochem. Solid-State Lett. 3, 

66 (2000). 

4 B. L. Ellis, K. T. Lee, and L. F. Nazar, Chem. Mater. 22, 691 (2010). 

5 J.-M. Tarascon and M. Armand, Nature 414, 359 (2001). 

6 H. Huang, S.-C. Yin, and L. F. Nazar, Electrochem. Solid-State Lett. 4, A170 (2001). 

7 M. Stanley Whittingham, Chem. Rev. 114, 11414 (2014). 

8 L. Laffont, C. Delacourt, P. Gibot, M. Yue Wu, P. Kooyman, C. Masquelier, and J. Marie 

Tarascon, Chem. Mater. 18, 5520 (2006). 

9 C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Nat. Mater. 7, 665 (2008). 

10 G. Chen, X. Song, T. Richardson, J. Electrochem. Solid-State Lett. 9, A295 (2006). 

11 R. Malik, F. Zhou and G. Ceder, Nat. Mater. 10, 587 (2011). 

12 A. Van der Ven, J. C. Thomas, Q. Xu, B. Swoboda, and D. Morgan, Phys. Rev. B 78, 104306 

(2008). 

http://dx.doi.org/10.1063/1.4995282


27 

13 I. T. Lucas, A. S. McLeod, J. S. Syzdek, D. S. Middlemiss, C. P. Grey, D. N. Basov, and R. 

Kostecki, Nano Lett. 15, 1 (2015). 

14 M. Th. Paques-Ledent and P. Tarte, Spectrochim. Acta 30A, 673 (1974). 

15 Christopher M. Burba and Roger Frech, J. Electrochem. Soc. 151, A1032 (2004). 

16 W. Paraguassu, P. Freire, V. Lemos, S. Lala, L. Montoro and J. Rosolen, J. Raman Spectrosc. 

36, 213 (2005). 

17 J. Wu, G. K. P. Dathar, C. Sun, M. G. Theivanayagam, D. Applestone, A. G. Dylla, A. 

Manthiram, G. Henkelman, J. B. Goodenough and K. J. Stevenson, Nanotechnology 24, 424009 

(2013). 

18 S. Q. Shi, H. Zhang, X. Z. Ke, C. Y. Ouyang, M. S. Lei and L. Q. Chen, Phys. Lett. A 373, 

4096 (2009). 

19 S. L. Shang, Y. Wang, Z. G. Mei, X. D. Hui and Z. K. Liu, J. Mater. Chem. 22, 1142 (2012). 

20 P. Goel, M. K. Gupta, R. Mittal, S. Rols, S. J. Patwe, S. N. Achary, A. K. Tyagi and S. L. 

Chaplot, J. Mater. Chem. A 2, 14729 (2014). 

21 Y. Janssen, D. Santhanagopalan, D. Qian, M. Chi, X. Wang, C. Hoffmann, Y. S. Meng, and P. 

G. Khalifah, Chem. Mater. 25, 4574 (2013)

http://dx.doi.org/10.1063/1.4995282


28 

22 T. N. Stanislavchuk, T. D. Kang, P. D. Rogers, E. C. Standard, R. Basistyy, A. M. 

Kotelyanskii, G. Nita, T. Zhou, G. L. Carr, M. Kotelyanskii, and A. A. Sirenko, Rev. Sci. Instr. 

84, 023901 (2013). 

23 T. D. Kang, E. Standard, G. L. Carr, T. Zhou, M. Kotelyanskii, and A. A. Sirenko, Thin Solid 

Films 519, 2698 (2011). 

24 H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 

2007). 

25 R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, C. M. Zicovich-Wilson, 

Zeitschrift Fur Kristallographie 220, 571 (2005). 

26 R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. 

Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, CRYSTAL09 User’s 

Manual (University of Torino, Torino, 2009). 

27 CRYSTAL09 online basis set repository at www.crystal.unito.it 

28 A. D. Becke, J. Chem. Phys. 98, 5648 (1993). 

29 C. Lee, W. Yang, and R. Parr, Phys. Rev. B 37, 785 (1988). 

30 B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989). 

31 R. P. Santoro and R. E. Newnham, Acta Cryst. 22, 344 (1967). 

http://dx.doi.org/10.1063/1.4995282


29 

32 G. Rousse, J. Rodriguez-Carvajal, S. Patoux and C. Masquelier, Chem. Mater. 15, 4082 

(2003). 

33 C. M. Zicovich-Wilson, F. Pascale, C. Roetti, V. R. Saunders, R. Orlando, R. Dovesi, J. 

Comput. Chem. 25, 1873 (2004). 

34 F. Pascale, C. M. Zicovich-Wilson, F. Lopez Gejo, B. Civalleri, R. Orlando, R. Dovesi, J. 

Comput. Chem. 25, 888 (2004). 

35 M. Born, K. Huang, Dynamical Theory of Crystal Lattices, (Oxford University Press, New 

York, 1988). 

36 C. M. Zicovich-Wilson, R. Dovesi, and V. R. Saunders, J. Chem. Phys. 115, 9708 (2001). 

37 P. D. Rogers, T. D. Kang, T. Zhou, M. Kotelyanskii, and A. A. Sirenko, Thin Solid Films 519, 

2668 (2011). 

http://dx.doi.org/10.1063/1.4995282


100 200 300 400 500
−1

0

1
m

ij
(a)

100 200 300 400 500
−1

0

1
(d)

100 200 300 400 500
−1

0

1
(g)

100 200 300 400 500
−1

0

1

m
ij

(b)

100 200 300 400 500
−1

0

1

(e)

100 200 300 400 500
−1

0

1

(h)

100 200 300 400 500
−1

0

1

m
ij

Wavenumber (cm−1)

(c)

100 200 300 400 500
−1

0

1

Wavenumber (cm−1)

(f)

100 200 300 400 500
−1

0

1

Wavenumber (cm−1)

(i)

m
33

m
21

b||x a||y c||x b||y

m
33

m
21

m
33

m
43

m
43

m
43

a||x b||y m
21

http://dx.doi.org/10.1063/1.4995282


-40
-20
0

20
40
60

0 200 400 600 800 1000 1200 1400

 data
 fit

 

a||x b||y

0 200 400 600 800 1000 1200 1400
-20
0

20
40
60
80

(c)

(b) 

2

(a)

-40
-20
0

20
40
60

 

c||x b||y

b||x c||y

Wavenumber (cm-1)

0 200 400 600 800 1000 1200 1400

0
20
40
60
80

 
2

-20

0

20

40

0 200 400 600 800 1000 1200 1400
-20

0

20

40

2

Wavenumber (cm

http://dx.doi.org/10.1063/1.4995282


-40

-20

0

20

40

60
100 200 300 400 500

345 484

262

242

176

 RCE
 RAE

 

141

345 484

262

242

176

 RCE
 RAE

141

(a)

100 200 300 400 500
-20

0

20

40

60

80

Wavenumber (cm-1)

Wavenumber (cm

http://dx.doi.org/10.1063/1.4995282


-20

0

20

40

0 200 400 600 800 1000 1200 1400

1

2

(c)

(b)

176

420
346

220

246

205

194

1094

1028

946645572
484345

262

242

176

 
a

141

(a)

-20

0

20

40

60
930

543462b

0 200 400 600 800 1000 1200 1400
-20

0

20

40

1158

1073
631509495372

353
298

260

229

189

Wavenumber (cm-1)
c

http://dx.doi.org/10.1063/1.4995282


http://dx.doi.org/10.1063/1.4995282


-60
-40
-20
0

20
40
60

500 600 700 800 900 1000 1100 1200

946

954

954

1028

 

  LiFePO4

 FePO4

a||x  b||y

500 600 700 800 900 1000 1100 1200
0

20
40
60
80

100
120

562
572 1100

Wavenumber (cm-1)

1028 1100

572

562

(a)

-40

-20

0

20

40

b||x  a||y

500 600 700 800 900 1000 1100 1200
0

20

40

60

80

521
543

521

909
930

 LiFePO4

 FePO4

Wavenumber (cm-1)

(b) 930

909

http://dx.doi.org/10.1063/1.4995282

	Article File
	1
	2
	3
	4
	5
	6



