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Abstract

Background: Tumors comprise a complex microenvironment of interacting
malignant and stromal cell types. Much of our understanding of the tumor
microenvironment comes from in vitro studies isolating the interactions between
malignant cells and a single stromal cell type, often along a single pathway.

Result: To develop a deeper understanding of the interactions between cells within
human lung tumors, we perform RNA-seq profiling of flow-sorted malignant cells,
endothelial cells, immune cells, fibroblasts, and bulk cells from freshly resected
human primary non-small-cell lung tumors. We map the cell-specific differential
expression of prognostically associated secreted factors and cell surface genes, and
computationally reconstruct cross-talk between these cell types to generate a novel
resource called the Lung Tumor Microenvironment Interactome (LTMI). Using this
resource, we identify and validate a prognostically unfavorable influence of Gremlin-1
production by fibroblasts on proliferation of malignant lung adenocarcinoma cells.
We also find a prognostically favorable association between infiltration of mast cells
and less aggressive tumor cell behavior.

Conclusion: These results illustrate the utility of the LTMI as a resource for
generating hypotheses concerning tumor-microenvironment interactions that may
have prognostic and therapeutic relevance.

Summary
RNA-seq profiling of sorted populations from primary lung cancer samples identifies

prognostically relevant cross-talk between cell types in the tumor microenvironment.

Introduction
Non-small cell lung carcinoma (NSCLC) accounts for ~ 80% of all lung tumors and is

comprised of two major histologic subtypes: adenocarcinoma (~ 60%) and squamous
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cell carcinoma (~ 40%). Despite significant therapeutic efforts, overall 5-year survival

for NSCLC remains a dismal 18% [1]. While therapies that target malignant cells, such

as cisplatinum-based chemotherapy and EGFR inhibitors, have led to improvements in

outcomes, new therapeutic strategies are urgently needed in order to significantly im-

prove survival of most lung cancer patients. Recent advances in tumor immunotherapy

highlight the importance of targeting interactions between malignant and immune cells,

with much effort focusing on the T cell suppressive PD1/CTLA4 axes [2]. Significant

evidence points to additional complex interactions between malignant cells and other

cell types comprising the tumor microenvironment. Experimental and clinical studies

suggest that immune cells as well as endothelial cells and tumor-infiltrating fibroblasts

play significant roles in lung cancer development and progression [3–7]. The molecular

mechanisms underlying these observations are only beginning to be understood. Rapid

progress has been hindered by the reality that these cell subtypes interact in a complex

network (i.e., interactome) consisting of intra- and intercellular communication via jux-

tacrine, autocrine, and paracrine signaling. Elucidating the nature of interactions be-

tween lung cancer cells and cells comprising the tumor microenvironment could guide

the development of novel therapeutic interventions.

Examples of important stromal players in NSCLC include tumor-associated macro-

phages (TAMs) which are a major component of the immune cell infiltrate seen in

solid tumors [8]. Macrophage-tumor cell interactions lead to release of macrophage-

derived cytokines, chemokines, and growth/motility factors which in turn recruit add-

itional inflammatory cells to the microenvironment [9, 10]. Other immune cells com-

monly infiltrating lung tumors that play important roles in tumor biology include T, B,

and NK cells [11–13]. Cancer-associated fibroblasts (CAFs) represent another class of

stromal cells that interact with the malignant cell compartment in lung cancers [14–

17]. Although several studies have found functionally important interactions between

CAFs and lung cancer cells, a comprehensive understanding of their precise role in

lung tumorigenesis remains lacking. These specialized fibroblasts can enhance tumor

progression via multiple pathways, including synthesis of support matrices, production

of promalignancy growth factors, promotion of angiogenesis, secretion of ECM prote-

ases and pro-invasion factors such as hepatocyte growth factor, and production of im-

mune suppressive cytokines [15–17].

The most common approach to studying tumor microenvironment gene expression

has been to profile bulk tumors and look for cell-type-specific gene expression “clus-

ters” in the resulting data. Interpretation becomes difficult when genes are expressed in

multiple cell types. Co-expression of genes in multiple cell types within tumors occurs

frequently. For example, subsets of malignant cells have been found to express genes

such as vimentin and fibronectin-1 that are also expressed by fibroblasts [18]. More re-

cently, it has become possible to perform single-cell RNAseq (scRNAseq) for hundreds

to thousands of cells from a tumor sample [19]. However, the cost is still prohibitive

for large cohorts, and transcriptome coverage is not complete.

Here, we dissociated primary human lung tumor samples directly after surgery,

sorted individual cell subtypes based on the expression of surface markers, and

performed RNA-seq analysis. We computationally identified cross-talk between dif-

ferent cell types in the lung tumor microenvironment, with a specific focus on

prognostically relevant associations. Through the combination of cell purification

Gentles et al. Genome Biology          (2020) 21:107 Page 2 of 22



from primary tumors and gene expression profiling, we have constructed a novel

resource for identifying functional interactions between human lung cancer cells

and their stroma: The Lung Tumor Microenvironment Interactome (LTMI; https://

lungtmi.stanford.edu).

Results
Forty human primary NSCLC tumors were acquired directly from the operating room,

dissociated and sorted based on CD45+EPCAM− (pan-immune), CD31+CD45−EPCAM−

(endothelial cells), EPCAM+CD45−CD31− (malignant cells), and CD10+EP-

CAM−CD45−CD31− (fibroblasts), via our previously published flow cytometry strategy

(Fig. 1a) [20]. We performed RNA-seq profiling on 185 samples from 36 tumors for

which good-quality RNA could be obtained (Additional file 1: Table S1), including un-

sorted bulk RNA from the majority of cases, along with six reference samples distrib-

uted between experimental batches (Stratagene Universal Reference Human RNA).

This yielded an average of 48.6 × 106 fragments per sample (range 3.8–85.4 × 106), with

mean effective mapping rate of 87.2% (range 26.6–97.1%). Out of a total of 28,034

expressed protein-coding genes across all cell types, 5790 (21%) were expressed in all

four and 9918 (35%) were expressed in only one (Additional file 14: Figure S1), indicat-

ing that a large fraction of genes are expressed in specific TMI subpopulations. All pa-

tients were treatment-naïve, and clinical characteristics of the cohort are shown in

Additional file 2: Table S2. Sample SNP profiles were compared to verify identities

(Additional file 14: Figure S2) [21]. After data normalization and summarization of ex-

pression at the gene level, we performed batch correction to remove differences be-

tween flow cells and observed that this generally improved concordance between

transcriptomes from replicates (n = 11; Additional file 14: Figure S3). Multidimensional

scaling (MDS) analysis of the 1000 most variable genes across sorted populations

showed separation of the malignant, fibroblast, immune, and endothelial cells (Fig. 1b).

There was no separation between individual populations isolated from adenocarcinoma

versus squamous cell carcinoma by MDS. We next performed unsupervised hierarch-

ical clustering analysis on the same 1000 genes and again observed clear separation of

profiles from the different sorted cell types (Fig. 1c). With one exception (T29 CD31+),

replicates were immediately adjacent to each other in the sample-wise dendrogram.

Within the malignant population, adenocarcinomas clustered apart from SCC as ex-

pected. The one tumor in our cohort that was called NSCLC NOS (Not Otherwise Spe-

cified) based on histopathology clustered with adenocarcinoma, whereas three other

tumors T9 (adeno-squamous), T23 (fetal), and T37 (invasive mucinous adenocarcin-

oma) clustered with SCC. In supervised analysis, 1168 genes were differentially expres-

sion between malignant cells from adenocarcinoma versus SCC tumors (local FDR <

1%) with 931 being more highly expressed in adenocarcinoma, and 237 being lower

(Additional file 3: Table S3). Distinguishing genes included classic basal keratins

(KRT5, KRT6A, KRT6B, KRT13, KRT14) that along with TP63 were more highly

expressed in SCC (Fig. 1d). Conversely, NKX2-1 and mucins (MUC1, MUC5B) were

more highly expressed in adenocarcinoma, as were ROS1 and CLDN3.

One potential limitation of experimental strategies that involve dissociation and sort-

ing of cells is that these procedures could distort their transcriptomes prior to RNA-

seq profiling. To permit analysis of this phenomenon, we also performed RNA-seq on
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bulk tissues that were frozen immediately after surgical dissection (Additional file 1:

Table S1). We then compared the “ground truth” bulk transcriptional profile of each

sample to the computationally reconstructed one defined by combining the profiles of

individual populations weighted according to their relative abundance in the tumor.

The latter was defined by deconvolving the bulk transcriptomes using CIBERSORT [22,

Fig. 1 a Schema for dissociation, flow-sorting, and RNA-seq profiling. b Multidimensional scaling analysis of
transcriptomes of cell types sorted from surgically resected primary human NSCLC tumors. Axis units are
arbitrary. Cell types are depicted by colors as in 1a. c Unbiased hierarchical clustering of sorted samples. d
Top 25 most differentially expressed genes between malignant cells from adenocarcinoma and SCC. e
Comparison of bulk vs reconstituted transcriptomic profiles. Shown are average values across all samples for
each gene measured by RNA-seq. Panel below shows functional enrichment of genes higher in bulk for
tissues that were not sorted for profiling. f Average percentage difference in immune cell types
deconvolved in bulk vs sorted CD45+ populations showing enrichment of activated mast cell profiles by
sorting, and conversely loss of plasma cells. g CIBERSORT deconvolution of immune populations in
adenocarcinoma (pink) and SCC (light blue) identifies similarities and differences in immune cell types that
are relatively depleted (below diagonal) or enriched (above diagonal) by dissociation and sorting. MC+ =
activated mast cells; PC = plasma cells; M2 =M2-polarized macrophages; MemB =memory B cells; CD8 =
CD8 T cells; Eos = eosinophils
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23], with the sorted sample transcriptomes used to construct a signature matrix (Add-

itional file 14: Figure S4 and Additional files 4 and 5: Tables S4 and S5). Reconstructed

profiles largely recapitulated bulk profiles (R = 0.97, Fig. 1e, and Additional file 6: Table

S6). We further explored these differences by ranking all genes by their difference be-

tween bulk and reconstructed profiles, and compared these to an atlas of body tissues

using the Nextbio Correlation Engine [24]. Off-diagonal genes higher in bulk were ones

archetypally expressed on cell populations that were not isolated by sorting, including

muscle- and nerve-related genes (Fig. 1e, Additional file 6: Table S6). To further isolate

the effects of dissociation and sorting, we applied CIBERSORT to the bulk tumors and

the sorted immune samples using our previously validated signature matrix of 22 im-

mune cell types (LM22; [22]) and compared deconvolution results. Relative proportions

of infiltrating leukocytes were similar across adenocarcinoma and SCC in both our

RNA-seq data and previously published microarray studies (Additional file 14: Supple-

mentary Figure 5). Direct comparison of deconvolution results based on bulk vs sorted

immune cells showed that some immune subtypes had higher or lower inferred propor-

tions in sorted immune cells, suggesting that they were more sensitive to dissociation

and/or sorting (Fig. 1f,g). These included lower than expected levels of plasma cells in

immune sorted populations, and higher levels of activated mast cells and eosinophils.

Plasma cells are systematically lost during flow sorting, whereas activation/degranula-

tion of mast cells might be triggered by sorting. Taken together, these results suggest

that our experimental strategy left the transcriptomes of most populations largely in-

tact, but identify specific populations that are sensitive to flow sorting. These findings

are likely also relevant for scRNA-seq analyses.

The LTMI reveals a complex transcriptional landscape of secreted ligands and their

receptors across NSCLC tumor sub-populations

To identify avenues for cross-talk between cell types in adenocarcinoma and SCC, we

integrated the LTMI data with the FANTOM5 resource of ligand-receptor interactions,

and the PRECOG resource of prognostic associations between bulk gene expression

and overall survival (Fig. 2a) [25, 26]. We examined the potential complexity of cell-cell

interactions by comparing the number of populations in which a ligand was expressed

with the number of populations in which its cognate receptor was expressed, using

TPM >10 as a threshold, to be consistent with the criteria used by FANTOM5 (Fig. 2b

and Additional file 7: Table S7). In both NSCLC histologies, the most frequent pattern

was many-to-one, where all four sorted populations expressed a ligand, but only one

population expressed its receptor; however, this pattern was not statistically signifi-

cantly more prevalent than others (p = 0.11 and p = 0.18 respectively in adenocarcinoma

and SCC by chi-squared test). In general, both ligands and receptors could be seen to

be uniquely or ubiquitously expressed, suggesting that transcriptional regulation of cel-

lular crosstalk is occurring at the level of both ligand and receptor activity.

We identified genes that were significantly differentially expressed in specific cell

types relative to others, separately in adenocarcinoma and SCC, focusing on those that

were over-expressed in a single cell type relative to all others, i.e., uniquely differentially

expressed genes (uDEGs), at FDR < 1% with a minimum twofold difference in expres-

sion (“Materials and methods”). We intersected these with genes coding for putative
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secreted factors and cell surface proteins. Expression levels of these genes are fre-

quently associated with survival outcomes in lung cancer; however, the cell type produ-

cing these factors is often unknown (Additional file 8: Table S8). In both

adenocarcinoma and SCC, the most prolific expressors of uDEG ligands were fibro-

blasts (Fig. 2c, d and Additional file 9: Table S9). Their corresponding uDEG receptors

were most commonly expressed by endothelial and malignant cells (Fig. 2c, d). Malig-

nant cells also highly expressed many ligands, but their receptors were most frequently

also expressed in malignant cells, suggesting autocrine signaling. In adenocarcinoma,

receptor uDEGs for ligands differentially expressed in immune cells were most often

also on immune cells; with a similar pattern seen in endothelial cells. In contrast, in

Fig. 2 a The Lung Tumor Microenvironment Interactome (LTMI) integrates data generated in this study, the
FANTOM5 resource of ligand-receptor pairs, and PRECOG for prognostic associations of genes in bulk tumor
samples. b Potential complexity of inter-cell-type signaling via secreted factors. Ligands or receptors were
defined as significantly expressed in a cell type if they had TPM > 10, as in the FANTOM5 study. c, d
Potential cross-talk between cell types in adenocarcinoma (c) and squamous cell carcinoma (d). Shown are
the number of ligand-receptor pairs where each is a uniquely differentially expressed gene (uDEG) in the
indicated cell type. Arrows X->Y indicate that the ligand is a uDEG in cell type X, while the corresponding
receptor is a uDEG in cell type Y. e ANGPT1 and ANGPT2 compete antagonistically for receptor binding and
have opposite prognostic associations in NSCLC. They are expressed on fibroblasts and endothelial cells
respectively, with expression of their known receptors being predominantly in endothelial cells.
(f) Expression patterns of ligands and receptors pair that are highly expressed (TPM > 10) in single-cell types
(corresponding to the 1–1 entries for adenocarcinoma and SCC in panel (b). Pink indicates ligand whereas
blue indicates receptor. Three rightmost panels are expanded views of the groups indicated in first panel
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SCC, we did not observe a bias towards expression of both ligand and receptor within

immune and endothelial populations.

We noted that the vascular growth signaling angiopoietin genes ANGPT1 and

ANGPT2 were expressed by fibroblasts and endothelial cells respectively whereas the

cognate receptors encoded by TEK and TIE1 were only expressed on endothelial cells.

In bulk tumors, high ANGPT1 expression is associated with good overall survival while

high ANGPT2 is associated with poor survival. Their products function as a rheostat

competing for receptor binding, and the LTMI suggests that this occurs in an intra-

cell-type fashion (Fig. 2e). We further examined the pattern of expression of ligand-

receptor pairs where each was highly expressed in a single cell type (Fig. 2f). One major

group (Group 3) showed a pattern where fibroblasts were prolific expressors of ligands

whose receptors were expressed on every possible cell type, suggesting autocrine and

paracrine signaling. This included BMP (bone morphogenic protein) signaling pathways

involving BMP3 and BMP2 which promote cell growth. Group 2 displayed a prominent

enrichment for NOTCH-related signaling within the endothelial compartments of both

adenocarcinoma and SCC. An enrichment for immune compartment expression of li-

gands/receptors dominated Group 1, with autocrine and paracrine cross-talk potential.

The latter was mainly with endothelial cells (in both adenocarcinoma and SCC) or ma-

lignant cells (in adenocarcinoma only).

Overall, our results indicated potential for highly complex inter-population commu-

nication via ligand-receptor signaling, particularly initiating from fibroblasts to endo-

thelial or malignant cells, and autocrine influences within the malignant compartment.

Identification of clinically relevant cell-type cross-talk using the LTMI

We sought to identify and validate cross-talk between cell types in the LTMI that had

potential clinical relevance (Fig. 2a). To this end, we focused on genes that were associ-

ated with patient survival and that were expressed in a specific cell type as assessed by

RNA-seq. Among the resulting potential interactions, we selected two (GREM1 and

TPSAB1, encoding mast cell tryptase MCT) for experimental validation. These repre-

sented cross-talk between fibroblasts and malignant cells (GREM1), and between im-

mune and malignant cells (TPSAB1).

High expression of Gremlin-1 by fibroblasts correlates with proliferation of lung

adenocarcinoma cells

High expression of GREM1, encoding for the secreted factor Gremlin-1, is associated

with poor overall survival in lung adenocarcinoma but not squamous cell carcinoma

(PRECOG meta-Z: + 4.11 in adenocarcinoma vs − 0.75 in SCC). Our data showed it to

be expressed strongly in fibroblasts from both histologies, but not in other cell types

(Fig. 3a). GREM1 inhibits bone morphogenetic protein (BMP) signaling by binding

BMP ligands and preventing their interaction with their receptors [27]. Additionally,

GREM1 has been shown to bind and activate the vascular endothelial growth factor

(VEGF) receptor Kinase Insert Domain Receptor (KDR, also known as VEGFR2, one of

two receptors for VEGF), which is expressed in endothelial cells of both adenocarcin-

oma and SCC. Interestingly, KDR is also expressed in the malignant compartment in
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Fig. 3 (See legend on next page.)
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adenocarcinoma at threefold higher levels than in SCC (p = 1 × 10− 5, t-test; see also

Fig. 2f).

We next sought evidence for a role for GREM1 in cross-talk between fibroblasts and

malignant cells by using the LTMI to correlate gene expression levels in malignant cells

from adenocarcinoma with the level of GREM1 in fibroblasts from the same tumors.

Expression levels of genes involved in translation initiation, ribosomal biogenesis, and

invasiveness in malignant cells were positively correlated with GREM1 expression in fi-

broblasts from the same patient in adenocarcinoma but not in SCC (Fig. 3b; see also

Additional file 10: Table S10). Genes related to cellular transformation and hypoxia

were also higher when GREM1 was higher in adenocarcinoma, but not SCC. Addition-

ally, higher adenocarcinoma fibroblast GREM1 correlated with lower malignant cell

glucocorticoid metabolism gene expression. Together, these observations suggested that

GREM1 production by fibroblasts might induce a more aggressive malignant cell be-

havior in adenocarcinoma but not squamous cell carcinoma. To further test this, we

evaluated the relationship between fibroblast content and overall survival in TCGA

adenocarcinoma and SCC tumors with CIBERSORT using the signature matrix defined

by our purified cell populations (Additional file 5: Table S5). Patients with a higher in-

ferred proportion of fibroblasts had worse overall survival in adenocarcinoma (p = 0.01

as a continuous variable, likelihood ratio test) but not in SCC (p = 0.83, not shown). An

optimal dichotomization of adenocarcinoma into patients with fibroblast proportion

higher or lower than 17% robustly separated survival curves (p = 0.0004, log-rank test;

Fig. 3c).

Based on the results from the LTMI, we sought to functionally test if GREM1 can

alter behavior of lung cancer cells. Lung cancer cell lines express GREM1 at varying

levels, with ~ 5500-fold range across SCC lines and nearly 13,000-fold across adenocar-

cinomas as measured in the Cancer Cell Line Encyclopedia (Additional file 11: Table

S11) [28]. To test a positive causal association of GREM1 with malignant cell behavior,

we treated adenocarcinoma cell lines with low intrinsic expression of the gene (HCC78

and SW1573) with recombinant GREM1. Treatment with GREM1 increased both 2D

colony and 3D tumorsphere formation by approximately twofold (Fig. 3d, e). Addition-

ally, GREM1 treatment resulted in significantly higher migratory potential using

(See figure on previous page.)
Fig. 3 a GREM1 (encoding the secreted factor Gremlin-1) is highly expressed on fibroblasts in
adenocarcinoma and SCC. Its receptor KDR is highly expressed in endothelial cells of both adenocarcinoma
and SCC, and also in malignant cells from adenocarcinoma but not SCC. b Expression of GREM1 in
fibroblasts is positively correlated with expression of proliferation and invasiveness related genes in
malignant cells in adenocarcinoma (all adjusted p values < 0.05), but not in SCC. c High levels of fibroblasts
inferred in adenocarcinoma from TCGA are associated with less favorable overall survival. d–f Treatment of
low GREM1-expressing adenocarcinoma cell lines HCC78 and SW1573 with recombinant Gremlin-1 protein
resulted in increased number of clones (red), sphere formation in 3-D culture (yellow), and invasion as
evaluated by in vitro trans-well migration assays (magenta). g si-RNA knockdown resulted in decreased
GREM1 expression in both H1755 and H1792 adenocarcinoma cell lines, which normally express it highly. h
Knockdown of GREM1 expression reduced survival in both cell lines that highly express it. i Representative
stain for GREM1 RNA shows expression confined to fibroblasts, that spatially colocate preferentially with
leading edge of malignant cell nests. Malignant cells are highlighted in green. Black bars show closest
malignant cell to each GREM1+ fibroblast. j Western blots showing (left) Gremlin-1 protein levels in CAFs
from primary human NSCLC with low vs high GREM1 RNA levels (alpha-Tubulin control also shown), and
levels of KDR and pKDR at baseline vs after co-culture with GREM1 low (+) and high (+++) CAFs. k Flow
cytometry assessment of KI67 status of malignant cells before and after co-culture with CAFs expressing
different Gremlin-1 protein levels

Gentles et al. Genome Biology          (2020) 21:107 Page 9 of 22



in vitro trans-well migration assays (Fig. 3f). Thus, exogenous GREM1 increases aggres-

siveness of lung cancer cells in vitro.

As noted above, some lung cancer cell lines express high levels of GREM1, suggesting

a potential tumor-promoting autocrine role in a subset of lung cancers. Consistent with

this, we observed a range of GREM1 expression in the malignant cells from human tu-

mors with a small number of outliers expressing significant levels of GREM1 (Fig. 3a).

To test if GREM1 may have an autocrine function in these cells, we knocked down the

transcript in high GREM1 expressing H1755 (which does not express the KDR recep-

tor) and H1792 (which does express KDR) adenocarcinoma cells using siRNA. Knock-

down reduced GREM1 transcript levels by 85% in H1755 and 54% in H1792 (Fig. 3g)

and reduced survival of both cell lines by up to 50% after 8 days (Fig. 3h).

GREM1-expressing fibroblasts are preferentially spatially located adjacent to malignant

cells

We further verified that GREM1 expression was confined to fibroblasts using in situ

RNA hybridization on tumor tissues (Fig. 3i). Interestingly, visual inspection indicated

that fibroblasts expressing GREM1 clustered around nests of cancer cells, suggesting a

potential juxtacrine interaction between these cell types mediated by this pathway. In

order to assess the spatial distribution of GREM1-positive cells, we stained and digitally

imaged four tissue samples from tumors corresponding to very low, low, medium, or

high GREM1 expression. We developed an automated image processing pipeline (“Ma-

terials and methods”) to detect nuclei and classify cells as GREM1 positive vs. negative.

We used this pipeline to quantitatively evaluate our qualitative observation that

GREM1+ cells tend to be physically closer to tumor cells than other stromal cells. We

manually annotated tumor regions in the four images and calculated the distance to

the nearest tumor cell for every stromal cell, both GREM1+ and GREM1−. We then

compared the distribution of these distances for GREM1+ vs. GREM1− using a Mann-

Whitney U test for difference in the mean. For all three samples with GREM1 expres-

sion, the GREM1+ cells were significantly closer on average to malignant cells than

GREM1− cells (p = 3 × 10− 16, 1 × 10− 7, and 1 × 10− 10 for the low, medium, and high tis-

sue samples respectively—no GREM1+ cells were detected in the very low GREM1 ex-

pression image). To further confirm this result, we performed a simulation study,

repeatedly resampling the stroma nuclei as being GREM1+ vs. GREM1− while main-

taining the same number of GREM1+ cells. We used the median distance of the

GREM1+ cells to the nearest tumor cells as a test statistic, T. For all three samples with

GREM1 expression, out of 105 simulations, T was never as small as for the observed

configuration, implying a p value of < 1 × 10− 5 in each case.

Co-culturing of malignant NSCLC cells with GREM1-producing fibroblasts engages KDR

receptor and increases their proliferation

Exogenous GREM1 protein increased the proliferation of adenocarcinoma cell lines,

but might be an indirect effect rather than mechanistic. To better validate the potential

interaction, we co-cultured adenocarcinoma cell lines with primary CAFs expressing

high or low amounts of GREM1. CAFs were obtained from new human NSCLC biop-

sies that were not part of the LTMI cohort, and subjected to RNA-seq analysis
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(“Materials and methods”). We selected CAFs that showed the lowest and highest

amounts of GREM1 expression (Fig. 3j). We stained malignant cells with e-Cadherin

(to guard against cross-contamination from other cell types) and the proliferation

marker KI67. Proliferation was unchanged in malignant cells co-cultured with low-

GREM1 CAFs (14.25% vs 15.8%; Fig. 3k); however, the proportion of KI67+ cells in-

creased from 15.82 to 34.16% in malignant cells co-cultured with high-GREM1 CAFs.

To further test for a causal connection, we evaluated the phosphorylation of the KDR

receptor in malignant cells under these co-culture conditions, via Western blot with

anti-Tyr1175 [29]. Phospho-KDR was not detected in baseline malignant cells, or when

they were cultured with GREM1-low CAFs, but was present when they were cultured

with GREM1-high CAFs (Fig. 3j and Additional file 1: Figure S6). Taken together, these

results support the potential of GREM1 produced by NSCLC CAFs to engage and

phosphorylate the cognate KDR receptor on malignant cells and to induce their prolif-

eration as assessed by KI67 positivity.

Levels of infiltrating mast cells negatively correlate with tumor proliferation in

adenocarcinoma and SCC

To further demonstrate of the utility of the LTMI, we investigated potential associa-

tions between the immune and malignant compartments. We noted that TPSAB1

(Tryptase Alpha/Beta 1) was highly expressed in sorted immune cells from both adeno-

carcinoma and SCC (p < 2.2 × 10− 16 by ANOVA; Fig. 4a) and is favorably prognostic in

both histologies across multiple datasets in PRECOG [25]. Among a panel of 22 differ-

ent immune cell types, TPSAB1 expression was nearly 30-fold more highly expressed

on mast cells (Additional file 14: Figure S7). We performed cross-population enrich-

ment analysis by ranking genes in malignant cells by their correlation to TPSAB1 ex-

pression in immune cells across the cohort (Additional file 12: Table S12). In

adenocarcinoma, high TPSAB1 expression in immune cells correlated with reduced

malignant cell expression of proliferation and cell cycle genes as well as of genes related

to metastasis (Fig. 4b). Few gene sets positively correlated with TPSAB1 expression, but

included olfactory receptor genes and genes downregulated in gefitinib-resistant

NSCLC. In SCC, we again observed negative association of immune TPSAB1 expres-

sion with metastasis and extracellular matrix genes in malignant cells, as well as VEGF

and EGF signaling pathway genes (Fig. 4c). However, interestingly, proliferation genes

in SCC malignant cells positively correlated with immune TPSAB1, in contrast to

adenocarcinoma.

We validated the prognostic relevance of mast cells in NSCLC by immunohistochem-

ical (IHC) staining of a lung tumor tissue microarray (TMA) for MCT (mast cell tryp-

tase, encoded by TPSAB1). The lung TMA (n = 389 samples) was stained for MCT,

and each core was scored for the number of mast cells by a pathologist. Mast cell infil-

tration was similar across NSCLC histologies, but higher in adenocarcinoma in situ

relative to other types (Additional file 14: Figure S8). Within adenocarcinoma, mast cell

counts were significantly higher in Stage 1 vs Stage 3 (p = 0.006 by t-test) but not in

Stage 1 vs Stage 2 or Stage 2 vs Stage 3 (Additional file 14: Figure S8). There was no

difference in mast cell levels across stages of SCC, though the modest sample size (n =

66) limited the statistical power of this analysis.
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Mast cell counts were converted to levels of “high”, “intermediate”, “low”, and “nega-

tive” (“Materials and methods”). In order to validate the relationship of mast cell levels

to tumor proliferation, the same TMA was stained for the proliferation marker KI67

(Fig. 4d, see also Additional file 14: Figures S9 and S10). The proportion of KI67-

positive malignant adenocarcinoma cells was lower in tumors with high vs low/inter-

mediate numbers of mast cells (Fig. 4e; p = 0.003, ANOVA F-test), consistent with the

gene set-based analysis of our sorted RNA-seq data. Negative, low, and intermediate

levels of mast cells all conferred worse overall survival than high mast-cell levels

Fig. 4 a TPSAB1 (encoding Tryptase α/β 1) is highly expressed in immune cells in both adenocarcinoma
and SCC. b, c TPSAB1 expression in immune cells was negatively associated with proliferation and
metastasis-related genes in adenocarcinoma (b), while in SCC there was a negative association with
invasiveness and angiogenesis but a positive association with proliferation. d Representative stains for
cellular proliferation marker KI67, and MCT in samples that had high (top) and low (bottom) expression of
TPSAB1. Shown are × 20 magnification image; see Supplementary Figures 8 and 9 for × 40 and × 60. e
Primary adenocarcinomas with higher numbers of infiltrating mast cells had a lower proportion of KI67-
positive (proliferating) malignant cells (p = 0.003; F-test). f, g High numbers of mast cells in both primary
adenocarcinomas (f) and SCC (g), assessed by tissue microarray staining for mast cell tryptase (MCT), were
associated with better overall survival. Mast cell counts were assigned to pre-defined “none,” “low,”
“medium,” and “high” categories by pathologist
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whether considered across only non-squamous NSCLC (n = 214, Fig. 4f) or SCC (n =

66, Fig. 4g). Multivariable analysis indicated that mast cell levels carried prognostic in-

formation independent of stage (Additional file 13: Table S13), and Kaplan-Meier ana-

lysis within stages I, II, and III separately confirmed that the level of mast cell

infiltration was prognostic across NSCLC and within adenocarcinoma (Additional file 14:

Figure S11).

The LTMI: a resource for exploring lung tumor microenvironment interactions

To facilitate investigation of relationships between transcriptional profiles within the

lung TMI, we developed an online resource, the Lung Tumor Microenvironment Inter-

actome (https://lungtmi.stanford.edu). Users can select from sets of genes that are

prognostic, expressed in a specific population, and/or encode for secreted or surface

factors. Alternatively, a list of genes of specific interest can be entered manually. Given

this set of genes, the LTMI interface can display differential expression between differ-

ent sub-populations in adenocarcinoma and SCC. Correlations can be extracted be-

tween expression levels of these genes in a cell type of interest compared to other cell

types. Gene set enrichment analysis, as performed in this study, can be applied to the

resulting correlative output. A tutorial in the resource is available to recapitulate the re-

sults described here relating GREM1 in fibroblasts to malignant cell transcriptional

programs. During the review process, a new comprehensive resource for ligand-

receptor pairs, CellphoneDB, became available that we also make available within the

LTMI interface [30]. This will be updated in our resource as new versions are released,

while preserving the initial sets of pairs used in the analysis presented here.

Discussion
As with other malignancies, most research efforts on lung cancer have focused on the

transformed cells themselves. This has led to the identification of important pathways

and individual genes involved in oncogenesis such as EGFR, KRAS, and ALK [31–34].

Significantly less attention has been directed at investigating possible contributions of

the tumor microenvironment to cancer formation, progression, and treatment re-

sponse, although this is a burgeoning area of interest. Here, we developed a unique re-

source by profiling human primary lung tumors that were dissociated and sorted

directly after surgical resection.

Prior applications of computationally derived regulatory networks have used whole

tumor high-throughput data to gain insight into mechanisms underlying hematological

cancers [35–39]. More recently, such computational approaches have been extended to

solid tumors [40–42]. Previous work on profiling the tumor microenvironment has

often been accomplished through the use of laser capture microdissection (LCM) in a

variety of tumors, including those of the breast and lung [43, 44]. However, it is difficult

to separate endothelial cells, fibroblasts, and infiltrating immune cells using LCM and

these are therefore usually lumped as one stromal sample in such studies. Our ap-

proach for gene expression profiling malignant and stromal cells within primary tumors

involves dissociating the tumor tissues and then purifying individual cell subtypes based

on the expression of surface markers. Our approach is thematically similar to previous

work, but we believe is novel due to the size of the cohort studied, the focus on both
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lung adenocarcinoma and SCC, and the use of primary human samples. Choi et al. per-

formed a study in a transgenic mouse model of lung cancer, focusing on three immune

populations plus epithelial cells in a small number of samples, but did not consider the

role of endothelial cells or fibroblasts which we found to be crucial players in the

NSCLC TME [45]. In a related study, Durrans et al. examined gene expression in hu-

man tumor samples including myeloid cells, neutrophils, and epithelial cells but only in

adenocarcinoma, and only from 6 patients [46]. Hence, they did not make any infer-

ences about intercellular crosstalk. An earlier study in breast cancer did not consider fi-

broblasts which, in one of our key findings, are the most prolific expressors of genes

encoding ligands that could mediate crosstalk [47]. Recent works have begun to exploit

scRNA-seq for understanding the TME. One such study by Kumar et al. regressed in-

teractions with tumor phenotypes in mouse models, but did not perform validation

studies [48]. Finally, a seminal paper by Tirosh et al. dissected the landscape of meta-

static melanoma using scRNAseq, but was descriptive in nature and did not attempt to

reconstruct cellular cross-talk or perform validation experiments [49].

By RNA-seq profiling of cell types from lung tumors, we found that GREM1, high

levels of which are associated with worse patient outcomes, is specifically expressed on

fibroblasts in the adenocarcinoma microenvironment. The LTMI identified a positive

association between fibroblast GREM1 expression and malignant cell proliferation

genes. Gremlin-1 has been shown previously to induce proliferation of normal lung

cells and to be over-expressed in adenocarcinoma, but not SCC, compared to normal

lung [50]. However, to the best of our knowledge, neither its fibroblast origin, nor a

specific role in stimulating proliferation of lung cancer lines has been noted. Cancer-

associated fibroblasts (CAFs) represent a major class of stromal cells that interact with

the malignant cell compartment in lung cancers [14]. CAFs appear biologically distinct

from fibroblasts present in benign microenvironments [51]. Although several studies

have found functionally important interactions between CAFs and lung cancer cells

[52–54], the role of Gremlin-1 identified using the LTMI appears to be novel. Adeno-

carcinoma cell lines express GREM1 variably. Si-RNA knockdown in high-expressing

cell lines resulted in reduced proliferation independent of KDR receptor expression.

However, our data suggest that in primary tumors, receptor expression is required. In

support of our computational inference from the LTMI, co-culturing of high-GREM1

expressing CAFs with malignant cells resulted in phosphorylation of the KDR receptor

(encoded by VEGFR2) and increased their proliferation. Interfering with this TME

interaction may therefore represent a novel therapeutic opportunity.

Interactions between malignant cells and infiltrating immune cells are another major

class of microenvironmental interactions within lung tumors. There have been conflict-

ing reports concerning a role for mast cells in cancer, and specifically in lung tumors,

with some finding them to be a favorable prognostic factor, and others adverse [55, 56].

We found similar contradictions when we examined the association of angiogenesis

and inflammation markers in bulk expression data using PRECOG. On the one hand,

VEGFA and VEGFC expression portended worse outcomes in adenocarcinoma (P =

3 × 10− 6 and P = 2 × 10− 6 respectively), whereas the expression of resistin (RETN),

which has been implicated in a wide variety of inflammatory processes [57], was associ-

ated with better survival (P = 8 × 10− 4). Such results illustrate the complexity of pro-

cesses like inflammation, which can have pro-and anti-tumor effects, and the
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limitations in bulk data for disentangling them. Using the LTMI, we identified and vali-

dated a favorable prognostic association of mast cell infiltration in lung tumors. This

finding was consistent with a novel inverse correlation between mast cell infiltration

and numbers of KI67-positive malignant cells. The mechanistic influence of mast cells

on NSCLC malignant cells clearly requires further investigation to understand whether

there are differences in their spatial localization or functional state that might explain

adverse vs favorable associations in different contexts; however, they have been pro-

posed to have cytolytic activity in breast cancer [58].

Limitations of our study include the focus on four pre-defined sub-populations, the

potential impact of cell dissociation and sorting on transcriptional profiles, and the re-

striction to expression data. It is possible that ligands and receptors that we identified

in particular populations could also be present on other cell types that we did not pro-

file. We attempted to allow for this by filtering for correlations of ligand expression

with changes in gene expression of downstream genes in populations expressing the

cognate receptor. Nonetheless, we were able to identify and validate associations be-

tween malignant and stromal cell types. An additional limitation is that we cannot per-

form these analyses within subgroups such as stage or genetic subtype because there

would be insufficient sample sizes to obtain cross-correlations. It is likely that the TME

and its interactions will differ in these contexts, and this represents an important direc-

tion for investigation. In the future, single-cell RNA-seq will increasingly be used to dis-

sect the tumor microenvironment and will allow further resolution of transcriptional

properties of malignant and stromal sub-populations within the TMI. However, it is

not yet practical for large cohorts and still has technical limitations that preclude full

coverage of the transcriptome.

Our LTMI resource is useful for generating hypotheses for subsequent follow-up, but

cannot make definitive causal inferences, which would require more detailed validation

with perturbation experiments. This drawback is common to computational methods

leveraging retrospective primary sample genomic resources. The ultimate output of sig-

naling pathways is whether their downstream pathways are transcriptionally activated.

These would be the end point of phospho-signaling. Nonetheless, a variety of validated

computational approaches use the activity of transcriptional targets to infer the activity

of an upstream regulatory protein, in lieu of directly measuring its phosphorylation

state [59, 60], and these methods could be extended to utilize data such as provided in

the LTMI.

In conclusion, we have developed a publicly available resource called the Lung

Tumor Microenvironment Interactome that allows interrogation of potential interac-

tions between cell subpopulations within human lung tumors. We anticipate that this

resource will complement scRNA-seq analyses and facilitate future studies of lung can-

cer biology that will allow identification of novel drug targets for improving treatment

outcomes for this devastating disease.

Materials and methods
Freshly resected surgical tumor samples from patients with NSCLC were dissociated

and sorted as described [20] using A700 anti-human CD45 clone HI30 (pan-leukocyte

cell marker), PE anti-human CD31 clone XWM59 (endothelial cell marker), APC anti-

human EpCAM clone X9C4 (epithelial cell marker), and PE-Cy7 anti-human CD10
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clone XHI10a (fibroblast marker). All antibodies were obtained from BioLegend (San

Diego, CA). Library preparation and sequencing were performed as described previ-

ously. For co-culture experiments, fibroblasts were isolated from fresh human lung

adenocarcinomas obtained immediately after patient resection under IRB approval

(15166) and underwent immediate dissociation for single-cell suspension using a gen-

tleMACS™ dissociator (Miltenyi Biotec) according to the manufacturer protocol. The

single-cell suspension was then plated in a 35-mm dish and fibroblasts expanded for

further use.

Cell lines and reagents

The human lung cancer cell lines were obtained from American Type Culture Collec-

tion. All cell lines were cultured in RPMI-1640, supplemented with 10% FBS and 100

mg/L penicillin/streptomycin, and maintained at 37 °C with 5% CO2. The HCC-78 cell

line was validated by exome sequencing.

Effect of exogenous gremlin-1 in lung adenocarcinoma cells

Recombinant Grem-1 protein (500 ng/ml) was added to lung adenocarcinoma cell lines

(HCC78, SW1573) with low intrinsic GREM1 expression in 2D or 3D culture. The

clones were stained with crystal violet and enumerated at 10–14 days after seeding the

cells. Effect of Grem-1 on lung adenocarcinoma cell migration and invasion were evalu-

ated using in vitro trans-well migration assays. Recombinant Grem-1 protein (500 ng/

ml) was added to lung HCC78 and SW1573 cell lines in 3D culture. Numbers of

spheres were counted 8–10 days after seeding the cells on matrigel.

si-RNA knockdown of GREM1, viability, and clonogenic assays

siRNA (30M) targeted against Grem-1 (siGrem-1) was used to decrease GREM1

mRNA expression in lung adenocarcinoma cell lines with high GREM1 expression

(H1755 and H1792). Viability of si-Grem-1 transfected cells was examined using the

CellTiter 96 Non-Radioactive Cell Proliferation Assay (MTS), according to the manu-

facturer’s protocol (Promega BioSciences). For clonogenic assays (2D), identical number

of cells with or without treatment were reseeded at low density in six-well plates in

triplicate and incubated at 37 °C under 5% CO2. After 10 to 12 days, plates were

washed, fixed in 50% methanol, and stained with 0.1% crystal violet and then the num-

ber of colonies was counted. Evaluation of colony formation was also conducted in 3D

cell culture using matrigel (Corning) and cell culture inserts for 24-well plates (Corn-

ing). After 10 to 12 days, the number of spheres was enumerated under a light

microscope.

In vitro migration and invasion assays

Effect of Grem-1 in the invasion of cells was assayed using the BD BioCoat Matrigel In-

vasion Chambers (BD Bioscience). Each well of a 24-well plate contained an insert with

an 8-mm pore size PET (polyethylene terephthalate) membrane. Inserts coated with a

thin layer of matrigel basement membrane matrix were used to measure the ability of

the cells to invade through the reconstituted basement membrane. 1 × 105 cells were

seeded inside the insert with medium containing 1% serum. High-serum (10%) medium
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was then added to the bottom chamber of 24-well plates to serve as a chemoattractant.

After 24 h, the membranes were washed, stained, then separated with a sterile scalpel

and mounted on a glass slide. The number of migrating cells was counted under a light

microscope.

Co-culture and flow cytometry

HCC827 lung adenocarcinoma cells were co-cultured at 1:1 ratio with primary fibro-

blasts expressing low (+) or high (+++) Gremlin-1. After 24 h, cancer cells were sepa-

rated from the fibroblasts with Anti-Fibroblast MicroBeads (Miltenyi Biotec) according

to the manufacturer’s protocol. A HCC827 monoculture adjusted for the number of

cells was used as control. The sorted cell types were kept at − 80 °C for further analysis.

CC827 monoculture or HCC827:fibroblast co-cultures were rinsed with PBS 1× and

lifted off tissue culture plates using TrypLE (Life technologies, 12605-010). Aliquots of

1 × 106 cells per condition were stained using Zombie Aqua™ Fixable Viability Kit (Bio-

Legend) for 5 min in PBS 1× at RT in the dark before washing with cell staining media

(CSM: 0.5% w/v BSA, 0.02% w/v NaN3 and 2mM EDTA in PBS). Cells were centri-

fuged at 500g for 5 min at 4 °C to pellet cells and then fixed by adding PFA at a final

concentration of 1.6% for 10 min at room temperature. Cells were washed with

eBioscience™ Permeabilization Buffer solution (Thermo Fisher), then centrifuged at

500g for 5 min at 4 °C to pellet cells and PFA was removed. Cells were then incubated

with E-cadherin (PE/Cy7, Biolegend, Clone 67A4, 324,115), CD10 (BV421, BioLegend,

Clone HI10a, 312218), and Ki67 (AF 647, BD Biosciences, clone B56, 558,615) anti-

bodies in the permeabilization buffer for 30 min at 4 °C. After two washes with CSM,

cells were resuspended in 500 μl of CSM and analyzed using a BD LSRFortessa™ X-20

(BD Biosciences). Results were analyzed using Cytobank single-cell analysis software.

Western blot analysis

Total protein extracts were harvested from cell lines and prepared for immunoblotting.

Membranes were probed with rabbit monoclonal antibodies (Cell Signaling Technol-

ogy) including anti-Phospho-Smad1(Ser463/465)/Smad5 (Ser Ser463/465)/Smad9

(Ser465/467) (D5B10), anti-c-Myc (D84C12), anti-KDR (2979), anti-PhosphoKDR

(Tyr1175, 2478), and anti–β-actin (D6A8), followed by secondary antibodies conjugated

to horseradish peroxidase. β-actin protein levels were used as loading controls. Western

blots were quantified with the Adobe Photoshop Pixel Quantification Plug-In (Richard

Rosenman Advertising & Design).

Quantitative PCR

qRT-PCR analysis was utilized to analyze expression changes of GREM1, MYC,

CDKN1A (encoding p21 protein), and GAPDH. Total RNA was isolated from cells

using the Paris Kit (Ambion). One microgram of total RNA was reverse transcribed

using The High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) as spe-

cified by the manufacturer. qRT-PCR was done using SYBRGreen PCR Master Mix

(Applied Biosystems) and an ABI PRISM 7900 Sequence Detection System (Applied

Biosystems). Primers for PCR amplifications (Table 1) were designed using Primer 3 In-

put (version 0.4.0). Relative mRNA levels were calculated using the 2ΔΔCt method.
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Tissue microarray staining and analysis

The tissue microarray (TMA) was cut into 4-μm-thick sections, deparaffinized, and hy-

drated. For the Ki-67 staining, the TMA slide was subjected to Epitope Retrieval Solution

2 (ER2, Leica) antigen retrieval and stained with a prediluted anti-Ki-67 antibody (Mouse,

Clone MIB-1, Dako #M7240) using an automated immunostainer. For the MCT (mast

cell tryptase; corresponding to TPSAB1 gene) staining, the TMA slide was subjected to

Cell Conditioning 1 (CC1, Ventana) antigen retrieval and stained with a prediluted anti-

MCT antibody (Mouse, Clone G3, Millipore #MAB1222) using an automated immunos-

tainer. Mast cell counts were assigned to pre-defined categories by pathologists as follows:

“none” when 0 mast cells, “low” when 1–9 mast cells, “medium” when 10–30 mast cells,

and “high” when greater than 31 mast cells were present in each entire 0.6 mm core.

Computational analysis

Briefly, paired-end reads were aligned to the human genome (GRCh38) using STAR ver-

sion 2.5.0 [61], with Gencode v23 transcriptome annotation [62] using a two-pass ap-

proach. Alignment files were de-duplicated and further processed using the Genome

Analysis Toolkit (GATK). Expression levels were also quantified using Salmon v0.4.2 [63].

Individual Salmon runs were integrated into a single expression matrix using the tximport

package in R, using TPM (transcripts per million) to summarize to the gene level [64].

Despite the use of the Nugen kit for eliminating ribosomal rRNA, in common with previ-

ous studies [65], we found that a large and variable proportion of reads derived from

mitochondrial rRNA, specifically MT-RNR1 (Mitochondrially Encoded 12S RNA) and

MT-RNR2 (Mitochondrially Encoded 16S RNA). Accordingly, we renormalized the data

matrix by removing these transcripts and rescaling each sample to have TPM sum to 106.

This preserved the relative ranking within each sample but rescales between samples,

eliminating the distorting effect of the two mitochondrial rRNAs without changing the

relative ranking on genes in TPM space. For subsequent analysis, we eliminated genes that

had mean TPM< 1 in all sample subtypes (bulk, fibroblast, endothelial, immune, malig-

nant) in all histologies (adenocarcinoma, SCC, or “other”). For clustering, visualization,

and subsequent analyses, we used the moderated log of TPM, i.e., log2(1 + TPM).

We observed that there were significant batch effects between sequencing lanes based on

Salmon quantification of RNA levels, with the majority of transcripts being significantly as-

sociated with sequencing lane. We applied batch correction at the level of flowcell identity

using ComBat [66], with histology/sub-population as a model matrix, to avoid eradicating

Table 1 Primers used for quantitative PCR

Gene Primers

GAPDH GAPDH-hFw 5′-GAAGGCTGGGGCTCATTT -3′

GAPDH-hRv 5′-GGAGGCATTGCTGATGATCT -3′

Gremlin-1 GREM-hFw 5′-ACTCTCGGTCCCGCTGAC -3′

GREM-hRv 5′- GCTGTGCGGCTCATACTGTC -3′

p21 p21-hFw 5′- CAGGCGCCATGTCAGAAC -3′

p21-hRv 5′- GCTCAGCTGCTCGCTGTC -3′

c-Myc c-Myc -hFw 5′- TACAACACCCGAGCAAGGAC -3′

c-Myc -hRv 5′- GAGGCTGCTGGTTTTCCACT -3′
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biologically meaningful signals. After this step, the lane-level batch effect was largely elimi-

nated. RNA-seq data are available in the Gene Expression Omnibus under accession num-

ber GSE111907 [67]. The lung-TMI website interface (http://lungtmi.stanford.edu) was

built using R/Shiny. In order to assess the spatial distribution of GREM1-positive cells, we

immuno-stained and digitally imaged four tissue samples corresponding to very low, low,

medium, or high GREM1 expression. We developed an automated image processing pipe-

line using the Pillow 2.7.0 fork of the Python Imaging Library to detect nuclei and classify

GREM1 positive vs. negative. This pipeline involved the following:

1. Non-negative Matrix Factorization (using the NMF function from scikit-learn) to

separate the GREM1 and hematoxylin channels.

2. Applying a Laplacian filter with radius 6 to the hematoxylin channel followed by

non-maximum suppression to detect nuclei centers.

3. Applying a Gaussian filter with radius 6 to the GREM1 channel and evaluating at

the nuclei centers, followed by thresholding at 0.1 to detect positive vs. negative

GREM1 expression.

Verification of sample identities

In order to verify that there were no sample swaps during preparation or sequencing,

we performed pairwise comparison of all BAM files using bam-matcher [21]. This tool

uses a set of known common SNPs and computes the overlap between genotypes of

samples. We used the Freebayes genotyping option, a depth threshold of 10 for consid-

ering a position, and the largest available set of common SNPs (n = 7550).

Secreted and surface factors

We compiled lists of genes encoding potential secreted and surface factors from several

sources. For secreted factors, we included the following: known chemokines and cyto-

kines obtained by searching Entrez gene; genes whose SwissPROT function or

localization included “secreted” as a keyword; and an additional list of WNT- and Sonic

Hedgehog genes that we noted were not included among the previous groups. For sur-

face factor genes, we took the computationally inferred list previously described as the

“Surfaceome” [68]. We also incorporated information on ligand-receptor pairs defined

by the FANTOM5 consortium.
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