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ARTICLE

Non-equilibrium crystallization pathways of
manganese oxides in aqueous solution
Wenhao Sun1, Daniil A. Kitchaev 2, Denis Kramer 3 & Gerbrand Ceder1,2,4

Aqueous precipitation of transition metal oxides often proceeds through non-equilibrium

phases, whose appearance cannot be anticipated from traditional phase diagrams. Without a

precise understanding of which metastable phases form, or their lifetimes, targeted synthesis

of specific metal oxides can become a trial-and-error process. Here, we construct a theo-

retical framework to reveal the nanoscale and metastable energy landscapes of Pourbaix (E-

pH) diagrams, providing quantitative insights into the size–dependent thermodynamics of

metastable oxide nucleation and growth in water. By combining this framework with classical

nucleation theory, we interrogate how solution conditions influence the multistage oxidation

pathways of manganese oxides. We calculate that even within the same stability region of a

Pourbaix diagram, subtle variations in pH and redox potential can redirect a non-equilibrium

crystallization pathway through different metastable intermediates. Our theoretical frame-

work offers a predictive platform to navigate through the thermodynamic and kinetic energy

landscape towards the rational synthesis of target materials.
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Transition metal oxides drive the functionality of an enor-
mous range of technological materials; spanning battery
cathodes, catalysts, fuel cells, magnetic media, and more.

The breadth of transition metal oxide applications largely stems
from the diversity of their electronic, optical, and magnetic
properties, which can be tuned as a function of the crystal
structure and metal oxidation state1. Understanding how to
rationally synthesize metal oxides in desired phases, with desired
oxidation states, is central towards unlocking the full potential of
transition metal oxide design. The manganese oxides are a
remarkable example of structural and oxidation-state diversity,
spanning more than 30 phases over oxidation states from Mn2+

to Mn7+2. This broad structural diversity makes manganese
oxides relevant for a variety of applications; for example, the
spinel λ-MnO2 phase is an important lithium-ion battery cath-
ode3; ramsdellite-MnO2 is used in alkaline batteries4; and Mn3+

containing phases, such as Hausmannite Mn3O4 and bixbyite
Mn2O3, are precursors to water-splitting catalysts5–8. The pre-
cipitation and dissolution of various manganese (oxy)hydroxides
also play important roles in redox-active biogeochemical pro-
cesses, such as mediating oceanic O2/H2S cycles9, microbial
metabolic cycles10, and soil chemistry11. Unfortunately, the
structural diversity of the manganese oxides also results in a
myriad of possible crystallization pathways in solution, which
often leads to poor phase-control during crystal growth. Although
synthesis recipes to specific manganese oxide phases have been
identified and cataloged5,12, a comprehensive understanding of
the thermodynamic and kinetic processes that drive phase-
selection during aqueous crystallization remains elusive.

Previously, we found that spectator ions can be important
MnO2 structure-directing agents, as intercalation of aqueous alkali
cations such as Li+, Na+, K+, etc. can stabilize the metastable α-
MnO2, δ-MnO2, and λ-MnO2 polymorph frameworks at off-
stoichiometric compositions13. However, precipitation of manga-
nese oxides often proceeds by Ostwald’s ‘Rule of Stages’14, where a
variety of metastable manganese oxides and oxyhydroxides
nucleate and grow prior to the formation of the equilibrium
phase15,16. These non-equilibrium crystallization pathways can
occur both with17,18, and without19 impurity ions in solution.
Further complicating the matter, small variations in precursor
choice and solution redox conditions can change which metastable
phases are observed, as well as their lifetimes, even when the final
equilibrium product remains unchanged20. Understanding how
solution chemistry influences structure-selection along a non-
equilibrium crystallization pathway would enable the rational
design of aqueous synthesis routes; either towards desirable
metastable phases, or away from long-lived metastable byproducts
and towards the synthesis of a desired equilibrium phase21,22.
Importantly, a predictive understanding of hydrothermal synthesis
developed on the manganese oxides could be broadly generalized
and applied to other transition metal oxide systems.

According to classical nucleation theory, a metastable phase
can precipitate first from a supersaturated solution if it has a
lower nucleation barrier than the stable phase23–25, The nuclea-
tion barrier takes the form:

ΔGc /
ηγð Þ3

ð�RT ln σÞ2 ð1Þ

where ηγ is the shape-averaged surface energy, ΔGBulk ¼�RT ln σ is the bulk thermodynamic driving force for crystal-
lization, and σ is the supersaturation. A metastable phase exhibits
a smaller ΔGBulk for its formation than the stable phase, but the
metastable phase can still dominate the kinetics of nucleation if
this smaller driving force is further compensated by a lower
surface energy26–28. Calorimetry experiments have shown that

many bulk metastable polymorphs have lower surface energies
than their corresponding stable phases29, and that surface energy
differences between divalent (MO), trivalent (M2O3), and spinel
(M3O4) metal oxides can shift redox equilibria at the nanoscale
by orders of magnitude in oxygen fugacity30. Incorporating the
influence of surface energies on solid-aqueous equilibria at the
nanoscale is therefore central towards rationalizing the non-
equilibrium crystallization pathways of transition metal oxides in
water.

In this work, we extend E-pH diagrams, also known as Pour-
baix diagrams, to capture the size-dependent thermodynamics of
metastable oxide nucleation and growth. First, we construct a
thermodynamic grand potential for a metal oxide being acted
upon by an external water reservoir with given pH and redox
potential, which provides a free-energy axis to Pourbaix diagrams.
This free-energy axis is then generalized to incorporate surface
energies, enabling the construction of size-dependent Pourbaix
diagrams, which capture how particle size influences solid-
aqueous equilibria at the nanoscale—where nucleation initiates.
The Pourbaix free-energy axis also visualizes how changes in E
and pH shift the metastable energy landscape, altering the bulk
thermodynamic driving forces between reactant and product
phases. By combining the Pourbaix potential with classical
nucleation theory, we show that even when crystallization starts
from the same precursor and ends with the same equilibrium
phase, minor variations in E and pH can qualitatively change
which metastable phases form on the crystallization pathway. Our
theoretical framework offers a predictive platform to map how
experimental parameters influence non-equilibrium crystal-
lization pathways in redox-active systems, and represents an
important step towards a predictive theory of materials synthesis.

Results
A thermodynamic grand potential for Pourbaix diagrams.
Traditionally, Pourbaix diagrams are constructed by using the Nernst
equation to calculate E-pH boundaries between aqueous phase sta-
bility regions31. However, Pourbaix diagrams constructed by this
approach do not have a free-energy axis, which makes it challenging
to incorporate surface energies and other forms of thermodynamic
work into solid-aqueous stability analyses. Adding a free-energy axis
for Pourbaix diagrams can also facilitate the evaluation of thermo-
dynamic driving forces between precursors and crystallization pro-
ducts32, for example, when a Mn2+(aq) precursor is under E-pH
conditions where it is metastable with respect to the nucleation of
solid MnO2. To add a free-energy axis to Pourbaix diagrams, here we
use a thermodynamic grand potential33,34, that corresponds to an
aqueous ion precursor or metal oxide precipitate in open exchange
with a water reservoir at a given pH, redox potential, and dissolved
metal ion concentration. Because these are the natural variables of the
Pourbaix diagram, we refer to this thermodynamic grand potential as
the Pourbaix potential.

We construct the Pourbaix potential, Ψ, by a Legendre
transformation of the Gibbs free energy with respect to the
oxygen chemical potential, µO; the hydrogen chemical potential,
μH; and redox potential, E, under a constraint of water-oxygen
equilibrium. Details of this Legendre transformation can be found
in the Methods section, and the final expression for the Pourbaix
free energy, normalized by number of metal atoms, is expressed
as:

Ψ ¼ 1
NMn

G� NOμH2O

� �
� RT � lnð10Þ � 2NO � NHð ÞpH

�
� 2NO � NH þ Qð ÞEÞ

ð2Þ

Where G is the molar Gibbs formation free energy; NM, NO, and
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NH is the composition of the metal oxide/ion; and if the phase is
an aqueous ion, the charge, Q, normalized by e− per formula unit.
Using the Pourbaix potential, the relative free-energies between
metal-containing phases of different compositions can be
compared directly, without needing to explicitly evaluate redox
reactions.

To apply this grand potential to the Mn–H2O system, we use
the thermochemical dataset shown in Table 1. Although it is
possible to compute Gibbs formation energies for both aqueous
ions and solid-state phases using ab initio methods35,36,37, bulk
formation free energies for most of the relevant aqueous and
solid-state Mn–O–H phases are known experimentally (Supple-
mentary Table 1), which we use in this work. Missing formation
energies for the bulk metastable phases β-MnOOH, R-MnO2, and
γ-MnO2 are supplemented using DFT-SCAN calculations38,
which we have previously shown to give an accurate description
of the energetic ordering and enthalpy differences between
polymorphs for the manganese oxides39. Formation energies for
these three metastable compounds are obtained by referencing
the free-energy difference of the metastable polymorph against
the ground-state phase of the same composition. For Feitknech-
tite β-MnOOH, whose structure is not known, we first performed
an ab-initio structure prediction by hydrogenating various
layered MnO2 phases, as shown in Supplementary Figs. 1 and
2, resulting in a structure with good agreement with experimental
XRD patterns (Supplementary Fig. 3), and similar to the recently
resolved β-NiOOH phase (Supplementary Fig. 4)40. Further
discussion of the β-MnOOH structure prediction process is
detailed in Supplementary Note 1.

To construct a Pourbaix diagram, each phase is represented by
a Pourbaix free-energy surface, Ψ(E,pH); as defined in Eq. (2).
Example Pourbaix potentials for the manganese oxide system can
be found in Supplementary Note 2. The lowest-energy concave
envelope formed by the intersection of all competing free-energy
surfaces defines the stable phases and their phase boundaries, as
shown in Fig. 1a. By projecting these stability regions onto the E-
pH plane, the conventional Pourbaix diagram is retrieved, as
shown in Fig. 1b. Metastable phases, which do not typically
appear on Pourbaix diagrams31, can be visualized in Ψ-E-pH
space, as highlighted in Fig. 1c. By computing the intersection of
metastable Pourbaix free-energy planes with the planes of the
aqueous ions, one can visualize the full aqueous region where a
stable or metastable compound is electrochemically supersatu-
rated. In Fig. 1d, we outline phase boundaries for metastable β-
MnOOH, γ-MnOOH, R-MnO2, and the full supersaturation
region for Mn3O4. Figure 1d shows numerous regions with
overlapping metastable phase boundaries, for example, at
conditions corresponding to neutral aerated water (E ~ 0.5 V,
pH~ 7)41. Precipitation of manganese oxides under these
conditions would tread the bulk stability regions of numerous
thermodynamically-competitive phases.

Nanoscale Pourbaix diagrams. From bulk energies alone, one
cannot distinguish which of the multiple competing metastable
phases in Fig. 1d actually precipitates first during crystallization.
Calorimetry experiments have shown that metastable oxides can
be stabilized at the nanoscale if they have lower surface energy
than the equilibrium phases29. Because all materials nucleate and
grow through the nanoscale, this nanoscale stabilization of
metastable oxides should be intimately related to structure
selection during materials formation. The Pourbaix potential is a
free-energy expression, meaning it can be easily generalized to
incorporate surface energies by adding the conjugate variables γA
as:

ΨðRÞ ¼ ΨBulk þ
1
R

� �
ηργ ð3Þ

Where γ is the surface energy, R is an ‘effective’ particle radius—
representing the specific surface area in units of Area/Volume, η
is the unitless shape factor (Area/Volume2/3) of the equilibrium
particle morphology, and ρ is the volume normalized per mole of
metal.

We compute surface energies for all solid manganese oxide and
oxyhydroxides using DFT slab calculations, prepared using the
efficient creation and convergence scheme we developed in
refs. 42,43, and computed using the SCAN metaGGA functional44.
For each phase, we enumerate the low-index surfaces and their
unique terminations, which are used in the Wulff construction to
determine their equilibrium particle morphologies, as shown in
Fig. 2a. The morphology-averaged surface energies for the
MnOxHy phases are shown in Table 1. Our DFT-computed
surface energies of bixbyite Mn2O3 and pyrolusite β-MnO2 are
found to be within the error bars of the hydrated surface energies
as experimentally measured by Birkner and Navrotsky45,
providing confidence that DFT can calculate accurate surface
energies in the manganese oxide system. Further details on
surface calculations and surface energy data can be found in
Supplementary Note 3.

The size-dependent Pourbaix potential, Ψ(E, pH, 1/R), exists in
a four-dimensional thermodynamic space, and can be projected
onto the pH–1/R axes at fixed E, or the E–1/R axes at fixed pH, to
construct size-dependent Pourbaix diagrams. To highlight
the energetic competition between manganese oxide phases at
the nanoscale, Fig. 2 shows two example Mn–H2O nanoscale-
Pourbaix diagrams; one varying in redox potential at a fixed pH=
11, and one varying in pH at a fixed redox potential of E=+0.5 V.

Surface energy contributions drive three major effects at the
nanoscale. First, because surface energy is always positive, the
stability regions of all solid phases shrink relative to the aqueous
ions as particle size is decreased. Phases that can be stabilized at

Table 1 Thermochemical data for Mn–H2O solids

Phase ΔGo
f at 25 °C (eV/formula) Source Surface energy (J/m2) Source

Mn3O4 −13.300 Hem (1983)20 0.96 Birkner (2012)45

α-Mn2O3 −9.132 Hem (1978)60 1.36 This work
Mn(OH)2 −6.381 Hem (1983)20 0.47 This work
β-MnOOH −5.670 This work 0.53 This work
α-MnOOH −5.763 Fritsch (1997)47 0.65 This work
γ-MnOOH −5.780 Hem (1983)20 0.84 This work
R-MnO2 −4.767 Kitchaev (2015)39 1.33 This work
γ-MnO2 −4.787 Kitchaev (2015)39 1.44 This work
β-MnO2 −4.821 Hem (1983)20 1.55 This work
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small particle sizes will require smaller fluctuations during
nucleation to grow beyond the critical nucleation radius. These
nanoscale Pourbaix diagrams can therefore be used as proxies to
estimate E-pH conditions where nucleation and crystal growth
initiates most readily. Second, as measured by Birkner and
Navrotsky, the surface energies of the stable manganese oxide
solids are ordered γMn3O4

<γMn2O3
<γβ�MnO2

45 As particle size
radius is reduced, our nanoscale Pourbaix diagrams show an
enlargement of the Mn3O4 stability field and reduction of the β-
MnO2 stability field, effectively corresponding to shifts in
oxidation-reduction equilibria at the nanoscale30. Previously,
the precipitation of non-equilibrium oxides have been attributed
to kinetic limitations in the transport of oxygen or electron
reactants16,20,46. Our size-dependent Pourbaix diagrams show
that formation of non-equilibrium phases can also have
thermodynamic origins, whereby nanoscale shifts in redox
equilibria influence the surface work involved in forming nuclei,
in turn modifying the kinetics of nucleation.

Third, as shown in Table 1, we calculate the surface
energies of MnOOH polymorphs to be ordered
γβ�MnOOH<γα�MnOOH<γγ�MnOOH, and for the MnO2 poly-
morphs γR�MnO2

<γγ�MnO2<γβ�MnO2. The bulk energies of these
phases are ordered in the opposite direction, which lead to the
aforementioned polymorph stability crossovers at the nanos-
cale. These inverse relationships between bulk stability and

surface energy within each composition may originate from
the fact that a metastable structure has less cohesive energy
than a stable phase, which implies a lower energy of cleavage
—e.g., a lower surface energy. Interestingly, the MnOOH
phases are all calculated to have significantly lower surface
energies than the MnO2 phases, even in isostructural
manganese oxide frameworks, such as between γ-MnOOH/
β-MnO2, and α-MnOOH/R-MnO2

47. This can be rationalized
by the H atoms on the cleaved MnOOH surfaces passivating
what would otherwise be broken bonds on the bare
isostructural MnO2 surfaces. The low surface energies of
these MnOOH phases rationalize why MnOOH compounds
readily precipitate in solution, even though they are measured
by calorimetry to be thermodynamically unstable on the bulk
Pourbaix diagrams, as shown in Fig. 1b.

Crystallization pathways in redox-active systems. Multistage
crystallization initiates from a metastable precursor, and cascades
down in free-energy to the equilibrium phase by a series of phase
transformations. To compute a crystallization pathway using the
Gibbs free energy, one would evaluate the most favorable series of
downhill reactions through a complicated redox reaction network
involving the exchange of hydrogen, oxygen, and electrons48.
However, under the Pourbaix grand potential, all redox reactions
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at a given aqueous E, pH and ion concentration are evaluated
implicitly, meaning one can directly construct a one-dimensional
free energy ordering between phases of varying composition. By
using the Pourbaix free energy as the electrochemical super-
saturation in classical nucleation theory, we arrive at a pre-
liminary theoretical framework to evaluate transition metal oxide
crystallization pathways in aqueous solution. Using this frame-
work, we demonstrate that subtle variations in E and pH can
modify which metastable phases occur on the multistage oxida-
tion pathway of Mn2+(aq), even when these reactions occur
within the same β-MnO2 stability region of the Pourbaix diagram.

Varying E and pH within a phase stability region on the
Pourbaix diagram does not change the equilibrium phase, but it
can shift the metastable energy landscape, altering the thermo-
dynamic driving forces between precursors, intermediates and
products. Figure 3 shows a ΔΨMnO2–pH slice of the free energy
planes from Fig. 1a, at a fixed E=+0.5 V, which is representative
of the redox potential in aerated water41. The dashed lines in
Fig. 3 show that ΨMn2+ increases linearly with ln[Mn2+]
concentration, consistent with our traditional intuition regarding
supersaturation. At the redox potential shown in Fig. 3, higher
[Mn2+] activity enlarges the stability region for Mn2O3, and also
increases the supersaturation to β-MnO2.

However, Fig. 3 also shows that the Mn2+(aq) supersaturation
is strongly dependent on pH, which is not obvious from a
Pourbaix diagram or from ideal solution models. Chemically, a
high pH signifies a high concentration of OH– ions, which
provides a thermodynamic driving force for the oxidation of Mn2
+(aq). This oxidation strength can be directly read off of Fig. 3, by

the ΔΨ between for example, a metastable Mn2+(aq) ion and a
metastable MnOOH phase, which increases with increasing pH.
Although not shown in Fig. 3, a similar oxidation driving force is
achievable through positive redox potentials. Not only do E and
pH affect the Pourbaix free-energies of aqueous ions, Equation 2
shows that they also affect the relative ΔΨ between solids of
different NO and NH–in other words, manganese oxides of
different composition. In Fig. 3b, the influence of pH on the free
energy differences between the solids Mn3O4, Mn2O3, and the
polymorphs of MnOOH and MnO2 is visualized. Altogether,
Fig. 3 reveals a dynamic metastable free-energy landscape over
varying electrochemical conditions; a fact that is not readily
apparent in traditional Pourbaix diagrams.

This shifting free-energy landscape can lead to variations in
multistage crystallization pathways, even when starting with the
same precursor and ending with the same equilibrium phase. In
Fig. 4, we construct Pourbaix free-energy orderings of manganese
(oxyhydr)oxide phases at three conditions within the equilibrium
β-MnO2 stability window; at pH= 8, 9.5, and 11, with E=+0.5
V and [Mn2+]= 10−2 M. We compute the oxidation pathway of
Mn2+(aq) under these conditions, using the procedure we
derived in ref. 25, described here briefly:

Starting from the metastable [Mn2+] precursor, we compute the
steady-state nucleation rate, J, to all lower free-energy phases, by

J / exp � ηγð Þ3
ðΔΨÞ2

 !
ð7Þ

where the traditional term for supersaturation, ΔG ¼ �RT ln σ, is
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replaced by the Pourbaix potential, ΔΨ. As shown in the nanoscale
Pourbaix diagrams, many of the metastable manganese oxides and
oxyhydroxides have lower surface energies than the equilibrium
phases. Because the nucleation barrier scales with γ3, a low surface
energy can compensate for a smaller thermodynamic driving
force, ΔΨ, resulting in faster nucleation rates. The induction time
of a nucleation event is proportional to the inverse of the
nucleation rate, τ ~ 1/J, meaning a fast-nucleating metastable
phase can grow and consume Mn2+ ions prior to the induction of
more-stable phases. Even if the metastable phase completes crystal
growth by consuming Mn2+ to equilibrium, ΨMn2+ is still
supersaturated with respect to the more stable phases. The next
lowest-barrier phase nucleates, and this process repeats by
dissolution-reprecipitation in a recursive, energetically-cascading
series of metastable stages down to the equilibrium phase, β-
MnO2

25.
Figure 4a shows the computed Mn2+ oxidation pathways

under the three considered pH conditions. Near the β-MnO2

phase boundary at pH= 8, thermodynamic driving forces are
small; meaning nucleation barriers are high, induction times are
long, and metastable intermediates will be long-lived. From the
balance of surface energies and bulk driving forces, we compute a
crystallization pathway of Mn2+(aq) → Hausmannite Mn3O4 →

Groutite γ-MnOOH → Bixbyite Mn2O3 → Pyrolusite β-MnO2.
This progression is qualitatively comparable to the observed
crystallization pathways in refs. 16,20, which proceeded in
freshwater at 25 °C over the course of eight months. At higher
pH, the increasingly stratified ΔΨ between metastable phases

decreases the induction lifetimes of the transient metastable
phases, and qualitatively changes the crystallization pathways;
forming β-MnOOH and bypassing Mn2O3 at pH= 9.5; and at
pH= 11, forming β-MnOOH and Ramsdellite MnO2.

Altogether, these results indicate that hidden above each
equilibrium Pourbaix stability region is a complex metastable
energy landscape, where free-energy differences between compet-
ing phases vary continuously with E and pH. As summarized in
Fig. 4b, these variations can redirect a crystallization pathway
down through different metastable phases, even when crystal-
lization initiates from the same precursor and ends within the
same stability region of the Pourbaix diagram. These findings
rationalize why non-equilibrium crystallization pathways are so
sensitive to solution conditions, and highlight the limitations of
using an equilibrium phase diagram to guide materials
synthesis49.

Discussion
In this work, we constructed a unified theoretical framework that
bridges aqueous electrochemical Pourbaix diagrams, nanoscale
crossovers in phase stability, and classical nucleation theory. This
combined analysis distinguishes the subtle roles of thermo-
dynamics and nucleation kinetics during the multistage crystal-
lization of redox-active transition metal oxides. In the manganese
oxides, we find that surface energy, redox potential and pH all
operate on a similar energy scale of manganese oxide metast-
ability50, and that all three are important thermodynamic drivers
of structure-selection during manganese oxide precipitation.
However, the initial precipitation of a non-equilibrium phase can
consume much of the reaction driving force, leading to long-lived
metastable intermediates and slow nucleation kinetics to the
ensuing lower free-energy phases. This delicate balance between
thermodynamics and kinetics underlies the complicated dynam-
ics of multistage crystallization, where even in the same phase
stability region of a Pourbaix diagram, subtle variations in solu-
tion parameters can change which metastable phases a non-
equilibrium crystallization pathway passes through. Mapping this
metastable energy landscape provides a combined thermo-
dynamic and kinetic foundation for guiding the targeted synthesis
of functional metal oxides.

To conclude, we discuss opportunities to achieve more quan-
titative predictions from this theoretical framework. Is it known
that applied pH and redox potential can influence the interfacial
structure and adsorption dynamics of the electrochemical double
layer27,51,52. A more quantitative understanding of the thermo-
chemistry of the electrochemical double layer, especially as a
function of surface chemistry and electronic structure, will pro-
vide an additional handle to engineer crystallization pathways in
solution. Additionally, solid-solid transformations, for example,
by H-ion or Mn-ion migration within an oxygen sublattice53,54,
could be a competing structure transformation mechanism to
dissolution-reprecipitation55. The energy barriers of ion-diffusion
(units of meV/atomic hop) and crystal nucleation (units of meV/
nucleus) have different units, and therefore the relative kinetics
between these two competing mechanisms cannot be directly
compared. A theoretical framework that can treat dissolution-
reprecipitation and solid-state transformations on equal footing
would enable a more quantitative comparison of the kinetics
between diffusive and displacive phase transformations. Finally,
we emphasize the need for more deliberate measurements of the
redox potential during hydrothermal synthesis, which is an
important measure of the oxygen fugacity in water. The redox
potential can vary with the concentration of dissolved O2 gas, the
presence of oxidizing or reducing counterions, and even the
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relative humidity in air during sample preparation. Careful
potentiometric measurements prior to hydrothermal synthesis is
necessary to calibrate the thermodynamic redox conditions under
which a precipitation reaction is initiated.

Methods
A Legendre transform approach to the Pourbaix potential. The Pourbaix
potential, Ψ, is a thermodynamic grand potential, and is constructed by a Legendre
transformation of the Gibbs free energy with respect to the oxygen chemical
potential, µO; the hydrogen chemical potential, μH; and redox potential, E, under a
constraint of water-oxygen equilibrium:

Ψ ¼ G� ∂U
∂NH

� NH � ∂U
∂Q

� Q� ∂U
∂NO

� NO ð8Þ

The partial derivative with respect to charge, Q, is the electrical potential, E; and the
partial derivative with respect to the number of oxygen atoms is the chemical
potential of oxygen, µO. In solution, the derivative with respect to the number of
hydrogen atoms is the chemical potential of a proton µH+ at the reference potential
(E= 0 V vs. SHE) minus the electric work E required to bring the hydrogen atom

into the phase at E. The thermodynamic potential can thus be expressed as

Ψ ¼ G� ðμHþ � EÞ � NH � E � Q� μO � NO ð9Þ

In an aqueous system, µO and µH+ are constrained by the water-oxygen equili-
brium

H2O $ 2 �Hþ þ 1=2 � O2 þ 2e� ð10Þ

which yields

μO ¼ μH2O
� 2 � μHþ þ 2E ð11Þ

The number of metal atoms are conserved in the phase transformations between
metal oxides with different compositions. Thus, Ψ should be normalized by the
number of metal atoms. By substituting Eq. M.4 into Eq. M.2 and normalizing by
number of metal atoms, we obtain the Pourbaix potential:

Ψ ¼ 1
NM

ðG� NOμH2O
Þ þ ð2NO � NHÞμHþ � ð2NO � NH þ QÞE

� �
ð12Þ

The molar Gibbs free energy of a phase, G, is its chemical potential, μi= μio+ RTln
[ai], where μio is given by the standard-state Gibbs formation free-energy, ΔGo

f. An
ideal solid with no defects has an activity of one, and so the RTln[ai] term is zero,
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but the chemical potential of metal ions ideally scales with the natural log of the
metal ion concentration in solution. The chemical potential of protons can be
transformed to pH by the relationship μHþ ¼ �RT � lnð10Þ � pH.

The Pourbaix potential can be further extended to include the thermodynamic
effect of intercalating aqueous impurity ions, as shown in ref. 13,18 for intercalating
Li+, K+, Na+, Mg2+, and Ca2+ into various MnO2 polymorphic frameworks, by
performing another Legendre Transformation on the bulk Gibbs free energy,
replacing G in Eq. (12) by Φ=G – μMNM, where M is the relevant aqueous metal
ion specie.

Bulk formation free energies. As shown in Table 1, bulk formation energies are
obtained from experimental sources for all phases except β-MnOOH, γ-MnO2, and
R-MnO2. For these three metastable compounds, experimental bulk formation free
energies do not exist or are not reliable. Formation free energies of these three
compounds are obtained from DFT, referenced against their equilibrium poly-
morphs γ-MnOOH and β-MnO2. For example,

ΔG�
f ;β�MnOOH ¼ ΔG�

f ;γ�MnOOH þ EDFT
β�MnOOH � EDFT

γ�MnOOH

� �
ð13Þ

Here we assume that the Gibbs free-energy differences between the stable and
metastable polymorphs at 298 K are dominated by enthalpy differences. This is a
reasonable assumption at room temperatures, where the TΔS term between
polymorphic oxides is generally small. The structure of β-MnOOH has not been
previously reported, so we perform an ab initio structure prediction to resolve this
crystal structure, as discussed in Supplementary Note 1.

DFT calculations. DFT calculations were performed using the Vienna Ab-Initio
Software Package (VASP)56. We used the projector augmented wave (PAW)57

method with the strongly-constrained and appropriately-normed (SCAN)58

metaGGA (generalized-gradient approximation) functional. Plane-wave basis
cutoff energies were set at 520 eV for all calculations. Brillouin Zones were sampled
using Gaussian smearing, with at least 1000 k-points per reciprocal atom for bulk
unit cells, and at least 700 k-points per reciprocal atom for surface slabs. Atoms
were initially relaxed until forces were 1E-6 eV/Å. All structure preparations were
performed using the Python Materials Genomic (Pymatgen) package59.

DFT surface calculations. Surface energies of MnOxHy phases are calculated in
density functional theory, using surface slabs generated using the efficient creation
and convergence scheme developed by Sun and Ceder42. For each conventional
bulk unit cell, low-index surfaces are enumerated43, and surface energies are cal-
culated within the SCAN metaGGA functional. Surface energy calculations were
performed on surface slabs at least 15 Å thick and with 16 Å vacuum. Further
details about surface calculations and surface energy data can be found in Sup-
plementary Note 3.

Data availability
All data necessary to support the findings of this study is available in the manuscript or in
the Supplementary Information. Further data and methods can be made available from
the authors upon request.
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