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A mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene

Nick Bultinck,1, ∗ Shubhayu Chatterjee,1, ∗ and Michael P. Zaletel1, 2

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Motivated by the recent observation of an anomalous Hall effect in twisted bilayer graphene, we use
a lowest Landau level model to understand the origin of the underlying symmetry-broken correlated
state. This effective model is rooted in the occurrence of Chern bands which arise due to the coupling
between the graphene device and its encapsulating substrate. Our model exhibits a phase transition
from a spin-valley polarized insulator to a partial or fully valley unpolarized metal as the bandwidth
is increased relative to the interaction strength, consistent with experimental observations. In sharp
contrast to standard quantum Hall ferromagnetism, the Chern number structure of the flat bands
precludes an instability to an inter-valley coherent phase, but allows for an excitonic vortex lattice
at large interaction anisotropy.

Moiré graphene systems are a class of simple van der
Waals heterostructures [1] hosting interaction driven low-
energy physics, making them an exciting platform to ad-
vance our understanding of correlated quantum matter.
In twisted bilayer graphene (TBG) with a small twist
angle between adjacent layers, interaction effects are en-
hanced by van Hove singularities coming from 8 nearly
flat bands around charge neutrality (CN) in the Moiré-
or mini-Brillouin zone (mBZ) [2–21]. Observation of cor-
related insulating states when 2 or 6 of the 8 TBG flat
bands are filled confirms the importance of interactions
[22–28].

Recent experiments indicate that certain magic angle
graphene devices have large resistance peaks at ν = 0, 3,
with the latter featuring an anomalous Hall (AH) ef-
fect detected via hysteresis in the Hall conductance as
a function of the out-of-plane magnetic field [29]. The
Hall conductance is of order e2/h but not yet quantized.
Some have detected an meV-scale gap at CN, and a hys-
teretic behaviour of the Hall conductance with applied
field at ν = −1 [30]. In this work we discuss how the
breaking of the 180-degree rotational symmetry (C2z)
by a partially aligned hexagonal boron-nitride (h-BN)
substrate could explain these observations. A variety of
works [31–37] have found that h-BN opens up a band
gap at the Dirac points of graphene whose magnitude
depends on the graphene / h-BN alignment angle, reach-
ing ∆AB ∼ 17meV [37] to ∼ 30meV [35, 36] at perfect
alignment. Notably, even in seemingly unaligned devices
with little or no observable h-BN induced Moiré poten-
tial, band gaps of several meV are still observed [36, 37].
In TBG, the substrate can likewise gap out the band
Dirac points at the K± points of the mBZ, splitting the
bands as 8 = 4+4 to create a gap at CN. We find that for
certain sublattice splittings the resulting flat bands have
Chern number C = ±1. This makes the TBG case sim-
ilar to ABC stacked trilayer graphene, where under an
appropriately directed electric field the flat bands have
Chern numbers ±3 [38].

∗ N.B. and S.C. contributed equally to this work.
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FIG. 1: The effect of sublattice splittings ∆t and ∆b on the
spinless single-valley Moiré Hamiltonian (SVMH). (a) Band

structure around CN for ∆t = 15 meV and ∆b = 0. The flat band
above (below) CN has Chern number C = −1 (C = 1). (b) Phase
diagram of the SVMH for different ∆t and ∆b. Phases are labeled
by the Chern number C of the flat τ = + conduction band. Blue
(red) transition lines are characterized by a Dirac cone at the K−

(K+) point of the mBZ.

Accounting for the C2z-breaking substrate, the basic
structure of the problem is as follows. The gap at CN al-
lows us to focus only on the four nearly degenerate con-
duction (valence) bands for fillings above (below) CN,
i.e, ν > 0 (ν < 0). These four Chern bands are uniquely
labeled by their valley τ = +,− and spin s =↑, ↓; time-
reversal switches the valley index and enforces opposite
Chern numbers for bands from opposite valleys. Since
a |C| = 1 band is topologically equivalent to a Landau
level (LL), the problem is roughly analogous to a spinful
bilayer quantum Hall problem with one flux quanta per
unit cell, but with opposite layers (valleys) experiencing
opposite magnetic fields. The LLs are degenerate, but
as in a quantum Hall ferromagnet (QHFM)[39] at inte-
ger filling the electrons may open a gap by spontaneously
polarizing into a subset of these LLs, or a coherent super-
position of them. In conventional quantum Hall bilayers
at filling ν = 1, interactions generically drive inter-layer
coherence, e.g., the exciton condensate [40, 41]. But the
twist here is the opposing Chern numbers of the two val-
leys. We find that the Chern number structure provides a
topological reason for penalizing a coherent state: an ex-
citon condensate between C = 1,−1 bands is analogous

ar
X

iv
:1

90
1.

08
11

0v
4 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

4 
A

pr
 2

02
0



2

to a superconductor in a strong magnetic field, which
forces vortices into the order parameter, reducing the
gain in the correlation energy. Hence, a spontaneously
valley-polarized (VP) state is stable and exhibits AH
effect with Hall resistance ∼ h/e2 (QAH if completely
spin and valley polarized). Further, pinning of valley-
polarization by an out-of-plane Bz due to a large orbital
g-factor explains the presence of the Rxy hysteresis loop
observed in Ref. [29].

The possibility of spin and valley polarization and/or
quantum anomalous Hall physics and chiral edge states in
TBG has been discussed previously in Refs. [38, 42–50],
albeit from a different perspective. We also note that a
recent self-consistent Hartree-Fock (HF) treatment of the
continuum model exhibits spontaneous C2zT breaking at
CN, though the resulting Chern numbers were C = ±2
[46].

Substrate-induced Dirac mass and Chern numbers– We
model the effect of the h-BN substrate [31] by including
in our band calculations a uniform but C2z breaking A-
B sublattice splitting ∆t and ∆b on the top and bottom
layer respectively (see [51] for details). While h-BN may
also introduce a Moiré potential, its magnitude falls off
much more rapidly with alignment angle than ∆t/b [37].
For our calculations we used a twist angle θ ≈ 1.05◦, and
have taken a phenomenological corrugation effect into ac-
count by using a larger AB/BA inter-layer hopping w1 as
compared to the AA/BB inter-layer hopping w0. Taking
w0/w1 = 0.85 results in flat bands separated from the
dispersing bands by an energy gap of approximately 20
meV (for zero sublattice splittings).

With sublattice splitting, the phases of the τ = + val-
ley (or K-valley of monolayer graphene) Moiré Hamilto-
nian for different parameter regimes of ∆t and ∆b are
shown in Fig. 1. We find four different regions where
both Dirac cones in the mBZ are gapped because of the
sublattice splittings. In these regions, there are two iso-
lated flat bands. We find that these four regions have
bands with Chern numbers [52] C = ±1 or C = 0, and
are separated from each other by a Dirac point at ei-
ther the K− or K+ point in the mBZ. In Fig. 1 we show
the Chern number of the flat band for the τ = + valley
above (below) CN in green (orange). The Chern number
for the flat bands from the τ = − valley can be obtained
by time-reversal.

The location of the C = ±1 phases can be understood
from the fact that for small ∆t = ∆b > 0 or ∆t = ∆b <
0, the leading order effect of the sublattice potentials
is to generate Dirac masses with the same sign at both
the K− and K+ points of the mBZ. Because both Dirac
cones in a single valley have the same chirality, this leads
to bands with Chern number ±1, a feature earlier work
dubbed a “flipped Haldane model”[53] (see also [54–56]).
From Fig. 1 we see that even if only one of the layers
has a non-zero sublattice splitting, the strong inter-layer
coupling ensures that both Dirac cones at the mBZ K-
points acquire a mass.These findings can also be inferred
analytically within the “chiral” approximation of tBLG

[57, 58], in which all bands are sub-lattice polarized and
carry Chern number C = στ , where σ denotes sublattice.

Metal - valley polarization competition– In this work,
we focus only on the four flat conduction bands above
the CNP (the highlighted band in Fig. 1 and its valley
and spin counterparts). In the supplement, we numeri-
cally justify this for TBG, showing that ∆t ∼ 15 meV
(∆b = 0) creates a 30 meV gap between valence and con-
duction bands [51]. To phenomenologically model the
effect of interactions in this set of bands we adopt a low-
est Landau level (LLL) description. We can map the
Chern bands to a LLL by constructing the Wannier-Qi
states [51, 59, 60]. In the following, we use an approx-
imation where the Wannier-Qi states of the flat bands
are replaced by the continuum LLL wave functions of a
two-dimensional electron gas. Physically, this amounts
to neglecting the inhomogeneous Berry curvature in the
Chern bands. The AH effect and edge transport reported
in Ref. 29 can be explained if there is one VP hole per
Moiré unit cell. From the data in Ref. [29] is not possi-
ble to exclude a spin-unpolarized, gapless phase. If the
spins do polarize however, the underlying mechanism is
expected to be the same as in conventional QHFM [39],
and is not sensitive to the opposite Chern numbers of
the two valleys. Therefore, in the analysis below we
ignore spin and focus on the mechanism of valley po-
larization. Considering the uniform repulsive nature of
the projected Coulomb interaction and the numerical ev-
idence against stripes in the LLL [61], we disregard the
possibility of interaction-induced charge density waves,
and focus on the competition between valley-polarized,
inter-valley coherent and metallic phases. For this we
need to introduce two parameters in our LLL toy model:
the bandwidth and the interaction anisotropy. To achieve
a non-zero bandwidth we use a square lattice potential,
that sidesteps the complexities of a hexagonal lattice and
allows analytical progress.

We consider a torus of length Lx (Ly) in the x (y)
direction, with a magnetic field perpendicular to the sur-
face. We choose units in which LxLy = 2πNφl

2
B ≡ Nφa2,

where Nφ is the number of flux quanta piercing the torus,

and lB = (~/eB)−1/2 is the magnetic length. In partic-
ular, we will take Lx = Nxa and Ly = Nya, with Nφ =
NxNy. Next to the magnetic field, we also add a peri-
odic potential VP (x, y) = w(cos(2πx/a) + cos(2πy/a)),
such that there is exactly 2π flux in each unit cell. The
potential is invariant under translations over a in both
the x and y-direction, which means that the momenta
kx = n 2π

Nxa
and ky = n 2π

Nya
(n ∈ Z) are good quantum

numbers.
We are interested in the physics in the LLL with Chern

numbers C = 1,−1. The electron creation operator

projected in these subspaces takes the form ψ†±(x, y) =

1√
LylB

√
π

∑
k e

iky− 1

2l2
B

(x∓kl2B)2

c†±,k, where we have cho-

sen the Landau gauge which explicitly preserves (contin-
uous) translation symmetry in the y-direction, such that
k = 2πn/Ly = 2πn/Nya with n ∈ {0, 1, . . . , NxNy}. We
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now proceed in analogy to Ref. 62, and define the Bloch

states c†±,(kx,ky) = c†±,k as

c†±,k =
1√
Nx

Nx−1∑
n=0

e±ikx(ky+nQ)l2Bc†±,ky+nQ , (1)

where Q =
√

2π/lB = 2π/a. The density operator in the

LLL n±(q) =
∫

dr e−iq·rψ†±(r)ψ±(r) takes the form

n±(q) = F (q)
∑
kx,ky

e±iqykxl
2
Bc†±,k−q/2c±,k+q/2 , (2)

where the form factor is given by F (q) = e−q
2l2B/4.

In the Bloch basis, the Hamiltonian term associ-
ated with the periodic potential takes the diagonal

form Hp =
∑

k εk(c†+,kc+,k + c†−,kc−,k), with εk =

−we−π/2[cos(kxa) + cos(kya)].
We are interested in the effect of density-density in-

teractions on the LLL electrons moving in the periodic
potential, described by the following Hamiltonian:

Hi =
1

2Nφ

∑
q,τ,τ ′

Vτ,τ ′(q) : nτ (q)nτ ′(−q), (3)

where we neglect the small inter-valley scattering terms
[51]. We will consider a general repulsive interaction of
the form V (q)F 2(q) = u0(q)(1 + τx) + u1(q)(1 − τx).
In analogy to quantum Hall ferromagnetism [39, 40, 63]
and related strongly coupled systems [64, 65], at half-
filling of the two bands we expect that the main effect
of Hi is to introduce a valley Hund’s coupling between
the electrons resulting in an insulating ground state. On
the other hand, the kinetic term Hp coming from the
periodic potential favors a metal over the VP insulator.
To study the competition between these two phases, we
perform a HF analysis using Slater determinants with

correlation matrix 〈c†τ,kcτ ′,k′〉 = δτ,τ ′δk,k′Θ(ετF−εk), such

that
∑
τ

∑
k Θ(ετF − εk) = Nφ. The possibility of inter-

valley coherent states is addressed in the next section.
For each Slater determinant, we define the corresponding
valley polarization Pv as Pv = (N+ − N−)/Nφ, where
N+ (N−) is the number of electrons in the + (−) valley.
Without loss of generality, we restrict to Pv > 0.

We first consider an isotropic (u1(q) = 0) dual-
gate screened Coulomb potential with LLL form fac-

tors u0(q) = 2πUe−q
2l2B/2 tanh (d|q|)/|q|, and screen-

ing length d = a. Using this interaction potential, we
calculated the HF energy EHF [51]. We find that for
W/U . 0.6, where W ≡ 4we−π/2 is the bandwidth, the
completely VP state indeed has the lowest energy. When
W/U ≈ 0.6, the valley polarization Pv of the optimal
Slater determinant jumps and starts decreasing contin-
uously, indicating a first-order Mott transition from the
VP insulator to an itinerant valley-ferromagnet. Around
W/U ≈ 2.0, Pv continuously goes to zero and a conven-
tional metallic phase sets in [51].

Inter-valley coherence and exciton vortex lattice– In
bilayer QH ferromagnets, the insulating layer-polarized

state is unstable to a uniform exciton condensate or inter-
layer coherent state in presence of infinitesimal interac-
tion anisotropy u1(q) > 0 [40]. The situation here is
different as even with u1(q) = 0, there is no SU(2) val-
ley symmetry because of the Chern number mismatch.
The VP state therefore only breaks discrete symmetries,
indicating there will be no instability of this insulat-
ing state. Another, more physical, way to understand
the absence of an exciton condensation instability is to
use an analogy with type II superconductors. Because
electrons in bands with an opposite Chern numbers ef-
fectively see opposite magnetic fields, an electron-hole

condensate ∆(r) = 〈c†+,rc−,r〉 will behave like a charge
2e superconducting order parameter in a perpendicular
magnetic field. However, in our scenario a Meissner-like
effect, corresponding to uniform amplitude of the exciton
order parameter, is ruled out from the outset. Rather,
the magnetic field must leak through vortices in the ex-
citon order parameter, leading to an excitonic vortex lat-
tice phase. In this section, we show that both the VP
insulator and the unpolarized metal are energetically fa-
vorable to the exciton vortex lattice, for sufficiently small
interaction anisotropy u1(q).

For our LLL model, we can derive an exact expression
for the exciton vortex lattice order parameter ∆(r). To
respect all symmetries of the square lattice, we expect
∆(r) to have vortices at both the lattice sites and the
plaquette centers, leading to a 4π vorticity in each unit
cell. In the analytically tractable limit, we can uniquely
determine ∆(r) up to a translation by demanding its
invariance under the magnetic translations T (ax̂) and
T
(
a
2 (x̂+ ŷ)

)
, connecting the anticipated vortices [51].

In Fig. 2 we plot the magnitude of ∆(r) thus obtained,
from which we clearly see the expected Abrikosov vortex
lattice. Projecting ∆(r) to the LLL Bloch basis wave-
functions φ±,k(r) leads to a diagonal order parameter

∆k = ∆0

∞∑
j=−∞

e−i
π
2 j

2

e−
1
4 (2ky+jQ)2l2B−ikx(2ky+jQ)l2B(4)

where ∆0 represents the overall strength of the exciton
condensate. ∆k has two nodes with identical phase wind-
ing at k = ±(π/2,−π/2), as shown in Fig. 2 [51].

The presence of two zeros in the BZ with the same
phase winding is a topological requirement for the exciton
order parameter, and is not an artifact of our effective
LLL model. In an isolated band a with non-zero Chern
number Ca, the phase of the electron creation operator

c†a,k cannot be chosen to be both continuous and single-
valued over the BZ. In particular, it must wind 2πCa
times along the boundary of the BZ in a continuous gauge

choice. This implies that the phase of ∆k = 〈c†+,kc−,k〉
winds 2π(Ca−Cb) = 4π times along the BZ boundary for
bands from opposite valleys with Ca = 1 and Cb = −1,
which precisely corresponds to winding around two zeros
with identical chirality.
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FIG. 2: The magnitude of the excitonic order parameter in real
(left) and momentum (right) space (for a = 1, ∆0 = 1). The red

circles denote identical phase-winding of ∆k at both nodal points.

We now demonstrate that variational states with an
exciton vortex lattice have higher energy than the VP
state or the metal for small anisotropy u1 in the inter-
action Hi. We consider the Slater determinant ground
state |ψMF 〉 of the mean-field Hamiltonian HMF =∑

k,τ,τ ′ c
†
k,τhτ,τ ′(k)ck,τ ′ , where hτ,τ ′(k) = εk1 + hτz +

Re(∆k)τx+Im(∆k)τy. |ψMF 〉 is characterized by the val-
ley polarization Pv (determined by h) and an exciton vor-
tex lattice of strength ∆0, to be treated as variational pa-
rameters. The correlation matrix evaluated in this state
takes the form of the projector 〈c†τ,kcτ ′k′〉 = Pτ,τ ′(k)δk,k′ ,
which can be used to evaluate the regularized HF energy
density eHF (Pv,∆0) of the variational state for a given
microscopic interaction at a fixed filling ν = 1. We find
that the global minimum of eHF lies at |Pv| = 1 and
∆0 = 0 for the insulator in the limit of flat bands and
isotropic interaction (u1 = 0) [51]. We next show that
the states of interest, with a fixed valley polarization Pv
at filling ν = 1, are stable to the formation of an vor-
tex lattice in presence of small interaction anisotropy.
To do this, we consider the difference in energy density
eHF (Pv,∆0) − eHF (Pv, 0) perturbatively in |∆0| for ar-
bitrary repulsive interaction parametrized by u0 and u1;
a positive difference would indicate that ∆0 = 0 corre-
sponds to an energy minimum. For the polarized phase,
we find

eHF (1,∆0)− eHF (1, 0) =
1

8h2

[ ∫
k,q

u0(q)|∆+ −∆−|2

+

∫
k,q

u1(q)|∆+ + ∆−|2 − 4u1(0)

∫
k

|∆k|2
]
, (5)

where ∆± ≡ ∆k±q/2 [51]. For a uniform exciton con-
densate, ∆k = ∆0 and this energy difference is negative
[51]. However, for an exciton order parameter formed
with electrons and holes from opposite Chern bands,
∇k∆k 6= 0. Therefore, when u1 is sufficiently small
compared to u0 the energy of the state with non-zero
∆k is higher. So the VP state with ∆0 = 0, previously
shown to be the ground state with an isotropic interac-
tion for small W/u0, is indeed robust to small interaction
anisotropy. Analogous computations [51] show that the
unpolarized metal (Pv = 0 = ∆0) is stable to the vor-
tex lattice as well. An approximate phase diagram of

(a)

0.0 0.5 1.0 1.5 2.0
W/U

0.00

0.25

0.50

0.75

1.00

P v

(b)

FIG. 3: (a) Approximate phase diagram of spin-polarized
interacting electrons from opposite valleys in C = ±1 bands. The
phases are (A) fully VP insulator, (B) exciton vortex lattice, (C)
partially polarized metal or itinerant valley-ferromagnet, and (D)
unpolarized metal. Everywhere within phases A and C, Rxy 6= 0.
(b) Metal-insulator competition and the valley polarization Pv for

isotropic interaction.

our model for a short-range (LLL-projected) interaction

anisotropy u1(q) = u1e
−q2l2B/2 is presented in Fig. 3. For

TBG, we expect W/U . 0.2 from the ratio of the band-
width to the Coulomb interaction, and the anisotropy
u1/U . 0.01 to be small [51, 66], indicating a VP phase
consistent with experiments [29, 67]. In the supplement,
we numerically solve the mean-field equations for TBG
on hBN at ν = 3 and confirm that the spin and VP QAH
state is indeed the ground state.

Valley Zeeman effect– Having argued in favor of a VP
state at ν = 3, we turn to the observed hysteresis in
the ν = 3 Hall conductance as a function of out-of-
plane magnetic field Bz [29]. To this end, we com-
pute the orbital gv-factor for the TBG conduction bands.
In a band τ without time-reversal electrons can carry
a momentum-dependent orbital moment mτ,k [68, 69].
Time-reversal ensures that mτ,k = −m−τ,−k, which av-
eraged over the mBZ produces a valley-Zeeman splitting
E = −gv τ

z

2 µBB
z. We find that for ∆b = 0,∆t ∼ 10−30

meV, gv ranges from approximately -2 to -6 [51]. Note
that for Bz > 0, the C = 1 band comes down in energy.
The sign of this effect is in agreement with the Landau
fans of Refs. [29, 67].

Conclusion– We showed that broken inversion symme-
try in TBG due to substrate (h-BN) coupling leads to
two Chern bands per valley. Spontaneous polarization of
holes in spin and valley space then leads to an AH state
at ν = 3. Using a LLL model, a HF analysis establishes a
stable VP state as the ground state when the bandwidth
is small compared to the interaction strength. The op-
posite Chern numbers for the two valleys precludes uni-
form inter-valley coherence. The resultant exciton vor-
tex lattice structure reduces correlation energy gain and
stabilizes valley-polarization. This result agrees with nu-
merical work on a Hubbard model [70].

Note added– Recently, a quantized AHE with net
Chern number C = 1 has been observed for a gapped
insulator at ν = 3 in TBG aligned with h-BN [67], con-
sistent with our theoretical results. Quantized AHE aris-
ing from valley-Chern bands have also been observed [71]
and proposed [72, 73] in other Moiré heterostructures, in



5

accordance with our phenomenological picture of inter-
action in nearly flat bands with opposite Chern numbers.
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periodic potentials in twisted bilayer graphene,” Phys.
Rev. Lett. 109, 186807 (2012).

[15] Robin W. Havener, Yufeng Liang, Lola Brown, Li Yang,
and Jiwoong Park, “Van hove singularities and exci-
tonic effects in the optical conductivity of twisted bilayer
graphene,” Nano Letters 14, 3353–3357 (2014), pMID:
24798502, https://doi.org/10.1021/nl500823k.

[16] R. de Gail, M. O. Goerbig, F. Guinea, G. Montambaux,
and A. H. Castro Neto, “Topologically protected zero
modes in twisted bilayer graphene,” Phys. Rev. B 84,
045436 (2011).

[17] Kazuyuki Uchida, Shinnosuke Furuya, Jun-Ichi Iwata,
and Atsushi Oshiyama, “Atomic corrugation and elec-
tron localization due to moiré patterns in twisted bilayer
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I. FLAT BANDS WITH SUBLATTICE SPLITTING

As was shown in Ref. [31–33], the h-BN substrate generates a substantial Dirac mass when it is nearly aligned with
the graphene sheet. We model this by introducing a C2z symmetry breaking sublattice-staggered potential ∆t and
∆b in respectively the top and bottom layer graphene sheet.

For the Moiré Hamiltonian, we consider a commensurate Moiré pattern, obtained from an AA stacked bilayer where
the top and bottom graphene layers are rotated relative to each other along an out-of-plane rotation axis centered at
a hexagon by an angle θ. This gives a Moiré super lattice with microscopic C6z symmetry, which is found to be a
very good approximate low-energy symmetry even for microscopically less symmetric Moiré patterns obtained from
different initial stacking alignments or different rotation axis [53]. We choose to work with a commensurate pattern
in order to use sharply defined Moiré lattice and reciprocal lattice vectors. However, the relevant properties of the
electronic band structure around charge neutrality do not rely on the assumption of commensurability. In figure 4(a)
we show the mono-layer graphene Brillouin zone with our convention for the reciprocal lattice basis vectors and the
high symmetry points K+ and K−.

We now consider following spinless (spin-orbit coupling is negligible) single-valley Moiré Hamiltonian

H(k) =
∑
g1,g2

h++(R(θ/2)(k + X + g1))δg1,g2
+ h−−(R(−θ/2)(k + X + g1))δg1,g2

+
∑
g̃

[
T+−
g̃ δg1,g2+g̃ + T−+

g̃ δg1+g̃,g2

]
(6)

Here, g1 and g2 lie on the Moiré reciprocal lattice, R(θ) is a rotation matrix over angle θ, h++(k) = th(k) + ∆tσ
z

(h−−(k) = th(k) + ∆bσ
z) is the mono-layer graphene Hamiltonian of the top (bottom) layer with hopping strength

t = 2.61 eV and a sublattice splitting ∆tσ
z (∆bσ

z). The mono-layer graphene Hamiltonian is given by

h(k) =

(
0 eik·RA + eik·(RA−R1) + eik·(RA−R2)

e−ik·RA + e−ik·(RA−R1) + e−ik·(RA−R2) 0

)
, (7)

where R1,R2 are the graphene Bravais lattice vectors and RA,RB are the sublattice vectors. X is the position of the
center of the mBZ at the mono-layer K+-points as shown in Fig.4(b). In the commensurate case we are considering
here, X lies on the Moiré reciprocal lattice. The inter-layer coupling is given by the matrices
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a)
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τ = +Γ

M

τ = −

τ = −

b)

XΓ

FIG. 4: (a) The mono-layer graphene Brillouin zone with the two basis vectors G1 and G2 of the reciprocal lattice. We have indicated
the high-symmetry K+ and K− points, where the Dirac cones are located. (b) The mono-layer Brillouin zones of the top and bottom

graphene layer with relative twist angle θ. The vector X points from the common Γ point of the mono-layer Brillouin zones to the center
of the mini-Brillouin zone at the K+ points.

T0 =

(
w0 w1

w1 w0

)
(8)

Tg1
=

(
w0 w1ω
w1ω

∗ w0

)
(9)

Tg2
=

(
w0 w1ω

∗

w1ω w0

)
, (10)

where ω = ei2π/3, g1 = (R(θ/2)−R(−θ/2))G1 and g2 = (R(θ/2)−R(−θ/2))G2. The AB inter-layer hopping strength
is w1 = 98 meV. To phenomenologically incorporate the corrugation of the bilayer system we have used an AA-AB
inter-layer hopping ratio w0/w1 = 0.85.

In Fig. 5 we show the resulting flat bands in the mBZ around charge neutrality of the single-valley Moiré Hamil-
tonian along high-symmetry paths, for different strengths sublattice splittings ∆t and ∆b. The twist angle in these
calculations was θ ≈ 1.05◦. When ∆t = ∆b = 0, the flat bands have Dirac cones at K+ and K− and are separated
from the dispersive bands by an energy gap of approximately 20 meV. If one of the sublattice splittings is non-zero,
both Dirac cones acquire a mass because of the strong inter-layer coupling. In Fig. 5 we also show different plots
with ∆t = 15 meV constant and decreasing negative ∆b to show the two Chern number changing transitions where a
Dirac cone occurs at either K+ or K−.

II. SUPPRESSION OF INTER-VALLEY SCATTERING

We write the single valley Moiré Hamiltonian schematically as

Hτ (k) =
∑
g1,g2

∑
ξ,σ,ξ′,σ′

|k + g1, ξ, σ〉Hτ
(ξ,σ,g1)(ξ′,σ′,g2)(k)〈k + g2, ξ

′, σ′| (11)

=
∑
µ

∑
g1,g2

∑
ξ,σ,ξ′,σ′

|k + g1, ξ, σ〉U
µ
τ,k(ξ, σ,g1)ετµ(k)Uµ∗τ,k(ξ′, σ′,g2)〈k + g2, ξ

′, σ′| ,

where again the vectors gi lie on the reciprocal lattice of the Moiré super lattice. Here, we introduced the notation
that τ ∈ {+,−} represents the different Dirac valleys, located at the high symmetry K−points of the mono-layer
graphene BZ. The sublattice degree of freedom is denoted by σ ∈ {A,B}, and the two graphene layers are labeled by
ξ ∈ {+,−}. The carbon atoms are located at positions r, such that r is of the form r = R(ξθ/2)(mR1 + nR2 + Rσ),
where m,n ∈ Z, R1,R2 are the graphene Bravais lattice vectors and RA,RB the sublattice vectors.

Importantly, for Hτ (k) we define the momentum k relative to the center of the mini-Brillouin zone located at the
mono-layer Kτ -points of top and bottom layer. In the second line we diagonalized the Moiré Hamiltonian using the
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FIG. 5: Flat bands for the single-valley Moiré Hamiltonian at a twist angle θ ≈ 1.05◦ for different values of the sublattice splittings ∆t

and ∆b. The intralayer hopping is t = 2.61 eV, the AA/BB inter-layer hopping w0 = 82 meV and the AB/BA inter-layer hopping is
w1 = 98 meV. (a) Flat bands without sublattice splitting. The high-symmetry paths in the mBZ along which the band spectrum is

shown are indicated. There are Dirac cones with small Fermi velocity at the K+ and K− points of the mBZ. (b)-(f) Evolution of the flat
bands for ∆t = 15 meV and different values of ∆b. When ∆b is zero, a non-zero ∆t ensures that both Dirac cones acquire a mass. For

decreasing negative values of ∆b, there are two Chern number changing transitions where a Dirac point occurs at either K+ or K−.

unitary matrices U . Because we are interested in one band per valley, we drop the µ band index and associate τ with
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the band label. In this notation, we write the flat band states in each valley as

c†k,τ,s =
∑
g

∑
ξ,σ

Uτ,k(ξ, σ,g)ψ†k+g+τK,ξ,σ,s (12)

=
∑
r

∑
g

Uτ,k(ξ, σ,g)ei(k+g+τX)·rψ†r,s (13)

≡
∑
r

φτ,k([r])ei(k+τX)·rψ†r,s (14)

≡
∑
r

φ̃τ,k([r])eik·rψ†r,s . (15)

Here we have introduced the notation r = [r] + t, where [r] is the part of r lying in the Moire unit cell centered at
the origin and t are Moire lattice vectors. To clarify the notation in going from Eq. (12) to Eq. (13), recall that the
position label r contains the information contained in the labels ξ and σ via the relation r = R(ξθ/2)(mR1+nR2+Rσ).
The index s refers to spin. Inverting the above expression now gives us the electron raising operator at position r
projected in the two flat bands:

ψ†r,s =
∑
k,τ

e−ik·rφ̃∗τ,k([r])c†k,τ,s (16)

With the projected electron raising operator, which we simply rewrite as ψ†t,[r],s, we now define

n[r](q) =
∑
s

∑
t

e−iq·tψ†t,[r],sψt,[r],s (17)

=
∑
s

∑
τ,τ ′

∑
k

φ∗τ,k([r])φτ ′,k+q([r])ei(q+(τ ′−τ)X)·[r]c†k,τ,sck+q,τ ′,s (18)

Using the above expression we can write the microscopic Coulomb interaction projected into the flat bands as

Hi =
∑
q

∑
[r],[r′]

Vq([r]− [r′]) : n[r](q)n[r](−q) : (19)

=
∑
q

∑
s,s′

∑
τ1,τ ′1,τ2,τ

′
2

∑
k,k′

V k,k′

τ1,τ ′1,τ2,τ
′
2
(q)c†k,τ1,sc

†
k′,τ2,s′

ck′−q,τ ′2,s′ck+q,τ ′1,s
, (20)

where

Vq([r]− [r′]) =
∑
t

eiq·tV (t + [r]− [r′]) , (21)

and V (r− r′) is the microscopic Coulomb interaction. The projected interaction coefficients are given by

V k,k′

τ1,τ ′1,τ2,τ
′
2
(q) =

∑
[r],[r′]

φ∗τ1,k([r])φτ ′1,k+q([r])ei(τ
′
2−τ2)X·[r]e−iq·([r]−[r′])Vq([r]− [r′])φ∗τ2,k′([r

′])φτ ′2,k′−q([r′])ei(τ
′
1−τ1)X·[r]′

(22)
Now it is important to remember that φτ,k(r) =

∑
g Uτ,k(ξ, σ,g)eig·r. Because for the flat band states Uτ,k(ξ, σ,g)

decays fast with |g|, φτ,k(r) varies slowly within the Moiré unit cell. So if V (r − r′) is sufficiently long-range (like
Coulomb), then the sums over [r] and [r′] will suppress the terms with τ1 6= τ ′1 and τ2 6= τ ′2. For this reason, we
restrict to the dominant density-density terms in our effective Landau-level problem.

III. CONSTRUCTION OF WANNIER-QI STATES

Because the single-valley flat bands split by the one-sided staggered potential have Chern number ±1, one cannot
construct exponentially localized Wannier functions for these bands [75]. However, using the right gauge choice it is
possible to construct Wannier functions that are exponentially localized along one direction. Using these quasi-one
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dimensional Wannier states there exists a natural mapping from the lattice system to a Landau-level system, as
pointed out by Qi in Ref.[60]. Here we review this mapping in the context of TBG.

Consider a system with periodic boundary conditions along two directions, which we refer to as the x and y-
directions. Using the flat band states as defined in the previous appendix, we construct the superlattice Wannier-Qi
functions as follows:

d†x0,ky,τ,s
=
∑
kx

e−ix0kxeiατ (k)c†k,τ,s (23)

=
∑
r

∑
kx

eiατ (k)φ̃τ,k([r])e−ix0kxeik·rψ†r,s (24)

=
∑
[r]

∑
t′

(∑
kx

e−i(x0−t′x)kxeiατ (k)φ̃τ,k([r])

)
eikyt

′
yψ†[r]+t′,s (25)

≡
∑
[r]

∑
t′

Wτ,x0,ky (r)eikyt
′
yψ†r,s . (26)

Here, eiατ (k) ensures an optimal gauge choice such that the functions Wτ,x0,ky (r) are exponentially localized in the x-
direction around the lattice position x0. We now imagine adiabatically threading 2π flux through the hole of the torus,
such that the flux is felt by a particle moving on closed path in the y-direction. Because of the Chern number |C| = 1,
this adiabatic process will change the polarization in the x-direction by one ‘polarization quantum’ [76, 77], which
means that the centers of the Wannier functions all shift by one Moire lattice vector along the x-axis (the direction
in which they shift depends on the sign of the Chern number). This implies that Wτ,x0,ky+g(r) = Wτ,x0+τtx,ky (r),
where g is the norm of the Moiré reciprocal basis vectors. Therefore, we can use k ≡ ky + τg as a single label for our
Wannier-Qi states Wτ,k(k) (for each ky ∈ [0, g], there is one Wannier function with a particular value for x0 in each
Moiré unit cell). One can now straightforwardly map the Chern band to a LLL, by replacing each Wannier-Qi function
Wτ,k(r) by the corresponding LLL Gaussian wave function. One of the main approximations in using the LLL states
instead of the Wannier-Qi states of the twisted bilayer is that we ignore any Berry-curvature inhomogeneity.

IV. EXCITON VORTEX LATTICE IN THE LOWEST LANDAU LEVEL

The perpendicular magnetic field seen by the exciton order parameter ∆(r) = 〈c†+,rc−,r〉 induces a vortex lattice in
the order parameter. Since ∆(r) essentially behaves like a charge q = 2e object in a magnetic field, the solution to this
vortex lattice may be obtained by solving the Ginzburg Landau (GL) equation for ∆(r). For analytical tractability,
we focus on vortex lattice solution of the linearized GL equation. Our solution is exact only at the upper critical
field Hc2 of the corresponding superconductor, but we expect our results to be valid more generally. In this limit,
the problem reduces to the solving the Schrodinger equation for a single particle of charge 2e. In the Landau gauge
A = Bxŷ, this solution is given by

∆(r) =
∑
k

Cke
ikye

− 1
2ξ2

(x−kξ2)2
, ξ =

lB√
2

(27)

The exciton vortex lattice we consider has 2π flux through each plaquette of the square lattice of side a, i.e,
a2 = 2πl2B . Since each elementary vortex carries a flux of π, we therefore expect two elementary vortices within
a plaquette. Inspired by the computation of similar vortex patterns for the superconducting order parameter in
Ref. [62], we choose the vortex lattice wavefunction to be symmetric under magnetic translations T1 = T (aŷ) and
T2 = T

(
a
2 (x̂+ ŷ)

)
. Note that the magnetic translation operators for a particle of charge q in a magnetic field B

satisfy the following algebra:

TR TR′ = eiqB·(R×R
′)/~ TR′ TR (28)

Since ∆(r) is a charge q = 2e order parameter, we have qB · (R1 ×R2)/~ = (2e)B(a2/2)/~ = 2π implying that T1

and T2 commute with each other. Being magnetic translation operators, they commute with the free Hamiltonian of
a particle of charge q. Since our goal is to express ∆(r) in the Bloch basis, where the eigenstates of particles with
charge q = e are invariant under the square lattice translations T1 = T (aŷ) and T3 = T (ax̂), we also choose the phases
of T1 and T2 such that T3 = T 2

2 T −1
1 is identically satisfied. Consistent with these conditions, we find that

T1 = e−iapy/~ ; T2 = eiπ/2eiay/l
2
Be−ia(px+py)/(2~) (29)
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Now we impose the magnetic translation symmetry requirements on ∆(r). For T1, we have

T (aŷ)∆(r) =
∑
k

Cke
−ikaeikye

− 1
2ξ2

(x−kξ2)2
= ∆(r) =⇒ k = kj =

2πj

a
= jQ for j ∈ Z (30)

where we have defined Q = 2π/a. Therefore, we can write

∆(r) =

∞∑
j=−∞

Cje
ikjye

− 1
2ξ2

(x−kjξ2)2
(31)

For T2, we have, using 2πl2B = a2 or equivalently a = Ql2B ,

T2∆(r) =

∞∑
j=−∞

Cje
iπ/2e−ikjaei(kj+a/l

2
B)ye

− 1
2ξ2

(x−(kj+a/l
2
B)ξ2)2

=

∞∑
j=−∞

Cj e
iπj+iπ/2 eikj+1ye

− 1
2ξ2

(x−kj+1ξ
2)2

= ∆(r) =⇒ Cj e
iπj+iπ/2 = Cj+1 =⇒ Cj = ei

π
2 j

2

C0 (32)

Therefore, we have the following form of ∆(r):

∆(r) = C0

∞∑
j=−∞

ei
π
2 j

2

eikjye
− 1

2ξ2
(x−kjξ2)2

(33)

We can now find the projection of ∆(r) on the single particle Bloch wave-functions. We focus on the lowest Landau
level since we are only interested in C = ±1 bands. We define

∆00(k,k′) =

∫
dr ∆(r)φ∗+,k(r)φ−,k′,(r) (34)

where φ±,k(r) are the Bloch wave-functions defined in Eq. (1) in the main text. Given the symmetry of ∆(r) under
magnetic translations T1 and T3, we expect it to be diagonal in Bloch space. Indeed, we find that ∆00(k,k′) = ∆kδk,k′ ,
where

∆k = ∆0

∞∑
j=−∞

e−i
π
2 j

2

e−
1
4 (2ky+jQ)2l2Be−ikx(2ky+jQ)l2B (35)

where ∆0 = C0√
2

is a measure of the overall strength of the exciton vortex lattice order parameter.

We can recast ∆k in terms of the Jacobi theta function as follows

∆k = ∆0e
(kx−iky)2l2B−k

2
xl

2
B ϑ3

(
z = −kx − iky

Q
; τ =

e−iπ/4√
2

)
with ϑ3(z; τ) =

∞∑
n=−∞

eiπτn
2+i2πnz . (36)

The Jacobi theta function has zeros at z = m + nτ + 1/2 + τ/2, where m,n ∈ Z. Restricting to the first BZ, we
find that ∆k = 0 at k = ±k0, with k0 = (π/2,−π/2). Further, a power series expansion about the zeros shows
that ∆±k0+q = ±A(qx − iqy) + O(q2) (for some A ∈ C), indicating that both nodes have the same chirality. The
presence of these two nodes in the BZ, which is a topological requirement of ∆k arising from hybridization of bands
with C = ±1, is confirmed by plotting the absolute value of ∆k in Fig. 2 in the main text.

The nodes in the exciton order parameter are intimately related to the Dirac cones of the C2zT -symmetric single-
valley Moiré Hamiltonian, and the associated Wannier obstruction [53–56, 78–80]. To see this, consider a free fermion
Hamiltonian with two bands that are isolated from the other bands, such that the momentum space Hamiltonian
projected onto the two isolated bands takes the form

H(k)
∣∣
+,− = (εk − µ)|u+,k〉〈u+,k| − (εk − µ)|u−,k〉〈u−,k|

+∆k|u+,k〉〈u−,k|+ ∆∗k|u−,k〉〈u+,k| , (37)

where |u±,k〉 are the periodic parts of the Bloch states in the two-band subspace. The dispersion of the two bands

is given by ±
√

(εk − µ)2 + |∆k|2 (for simplicity, but without loss of generality, we use a particle-hole symmetric
projected Hamiltonian). We consider the situation where |u±,k〉 has Chern number ±1, i.e. 1

2π

∫
k
∇ × A± = ±1,
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where A± = −i〈u±,k|∇|u±,k〉. Using the same reasoning as for the exciton order parameter, and the fact that the
Hamiltonian has to be periodic over the Brillouin zone, we conclude that ∆k has two zeros in the Brillouin zone
around which its phase winds by 2π. Now imagine tuning µ from minus infinity to plus infinity. In this process the
Chern number of the lowest energy band changes from +1 to −1, which is only possible if the energy gap between
the two bands closes for intermediate values of µ. From the band dispersion, we see that this gap closing will occur
precisely at the momenta where the zeros of ∆k are located. At these points, the nodes in ∆k give rise to Dirac cones
with the same chirality.

V. ANALYTICAL HARTREE-FOCK ENERGETICS FOR THE LOWEST LANDAU LEVEL MODEL

In this section, we compute the Hartree-Fock (HF) energy in a variational Slater determinant state for the Hamil-
tonian H = Hi +Hp, which we recall for completeness.

Hp =
∑
k,τ

εk c
†
τ,kcτ,k , where εk = −W

4

[
cos

(
2πx

a

)
+ cos

(
2πy

a

)]

Hi =
1

2Nφ
,
∑
q,τ,τ ′

Vτ,τ ′(q) : nτ (q)nτ ′(−q) : , where Vτ,τ ′(q) = u0(q)

(
1 1
1 1

)
+ u1(q)

(
1 −1
−1 1

)
(38)

In Eq. (38), u0(q) is the symmetric part of the interaction, while u1(q) represents the anisotropy. We evaluate 〈H〉 for
a variational Slater determinant state, which can capture the fully valley polarizd Chern insulator, the unpolarized and
partially polarized metallic states, and the exciton condensate (both uniform and a vortex lattice) in different limits.
Our variational state |ψMF 〉 may be taken to be the Slater determinant ground state of a mean field Hamiltonian of

the form HMF =
∑

k,τ,τ ′ c
†
k,τhτ,τ ′(k)ck,τ ′ , where

hτ,τ ′(k) =

(
εk + h ∆∗k

∆k εk − h

)
(39)

Such a state |ψMF 〉 is characterized by two variational parameters, the polarization Pv (determined by h) and the
strength of the excitonic order parameter ∆0. In the |h| � max{|εk|} and ∆k = 0 limit, our Slater determinant state
is thus fully valley polarized with |Pv| = 1, while for h = ∆k = 0 we have an unpolarized metal. For h 6= 0 and
∆k = 0, the state is a partially polarized metal with different chemical potential for the τ = ± valleys. For h = 0
and ∆k 6= 0, the state is an excitonic condensate or vortex lattice (depending on the precise structure of ∆k), with
Pv = 0 fixed by the discrete z → −z symmetry of HMF . The most general state will have both h and ∆k non-zero.

Evaluating the covariance matrix for |ψMF 〉 with a chemical potential µ which fixes the filling of the mean-field
bands gives:

〈c†τ,kcτ ′k′〉 = Pτ,τ ′(k) δk,k′ , with Pτ,τ ′(k) =

(
|uk|2Θk,α + |vk|2Θk,β ukvk(Θk,α −Θk,β)
u∗kv

∗
k(Θk,α −Θk,β) |vk|2Θk,α + |uk|2Θk,β

)
where uk = cos

(
θk
2

)
, vk = eiφk sin

(
θk
2

)
, tan(θk) =

|∆k|
h

, eiφk =
∆k

|∆k|
and Θk,α(β) = Θ(µ− Ek,α(β)) (40)

One can indeed check that Pτ,τ ′(k) is a projector matrix, i.e, P 2 = P , as expected for a Slater determinant state. We
use these correlators to evaluate 〈H〉 via Wick’s theorem.

lim
Nφ→∞

EHF

Nφ
=

1

2

∫
k,k′,q

∑
τ,τ ′

V LLττ ′ (q)

(
Pτ,τ (k)Pτ ′,τ ′(k

′)δq,0 − Pτ,τ ′(k− q/2)Pτ ′,τ (k + q/2)δk,k′

)
+

∫
k

εk Tr(P (k))

(41)

where we have taken the thermodynamic limit, set the lattice spacing a = 1 and used the notation
∫
k

=
∫

d2k
(2π)2

to denote integration over the first BZ. We now focus on different limits where we can analytically compute the

regularized energy density eHF (Pv,∆0) ≡ limNφ→∞

(
EHF

Nφ
− u0(0)

2

)
(where we have subtracted the formally infinite

self-energy contribution that is canceled by the positive background) and get physical intuition about the phase
diagram and stability of the different phases.
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A. Competition between metal and valley polarized states

First, we focus on the competition between the metallic state and valley polarized state (setting ∆0 = 0). The
anisotropic part of the interaction u1(q), while crucial for the excitonic order parameter, does not play a prominent
role here other than altering phase boundaries slightly, so we set it to zero for simplicity. In this case, the covariance
matrix takes the form

〈c†τ,kcτ ′k′〉 = δτ,τ ′δk,k′f
τ
k , where fτk = Θ(ετF − εk) (42)

with a separate Fermi energy ετF = µ+ τh for the two bands (τ = ±1). Therefore, the regularized HF energy density
is given by

eHF (Pv, 0) = −1

2

∑
τ

∫
q,k

u0(q)fτk+q/2f
τ
k−q/2 +

∑
τ

∫
k

εkf
τ
k (43)

To intuitively understand the physics, let us consider two extreme limits. For the fully valley polarized state, one of
bands is completely full while the other is completely empty. Hence, Eq. (43) evaluates to

eHF (1, 0) = −1

2

∫
u0(q) +

∫
k

εk (44)

For the unpolarized metal, f+
k = f−k ≡ fk = Θ(−εk). Defining g(q) =

∫
k
fk+q/2fk−q/2, Eq. (43) evaluates to

eHF (0, 0) = −1

2

∫
u0(q)g(q) + 2

∫
k:εk<0

εk (45)

The function g(q) is proportional to the overlap of the Fermi surface with itself when shifted by q. Hence, g(q) has
a maximum value of 1 at q = 0 and decreases with q till q is half a reciprocal lattice vector. Since u0(q) contains

the Landau level projection factor F 2(q) = e−q
2l2B/2, the main contribution to the interaction term comes from g(q)

close to zero, which implies that the unpolarized metal has higher energy than the valley polarized state. In other
words, interaction favors valley polarization. On the other hand, the kinetic term from the periodic potential favors
the metal, as a full dispersing band costs more energy than two half-filled bands.

B. Stability of valley polarized insulator and unpolarized metal to exciton vortex lattice

Following our previous discussion about the metallic phase and the valley polarized insulator, we need to establish
that both these phases are stable to an excitonic phase with non-zero ∆(r) in presence of anisotropy in the interactions
(u1(q) 6= 0). For two C = +1 bands, it is well-known that an infinitesimal anisotropy will drive exciton condensation
with uniform magnitude. As argued in the main text, our excitonic order parameter ∆(r) formed which has electrons
from the C = +1 band and holes from the C = −1 band, will behave like a superconducting order parameter in
presence of a uniform magnetic field. Therefore, we can rule out a uniform exciton condensate, but an exciton vortex
lattice indeed remains a distinct possibility. Below, we argue that such a phase is also energetically more expensive
as long as the anisotropy is small enough.

We start off with the fully valley polarized state, corresponding to a large h. We now add a small ∆k to see if we
gain energy in presence of an arbitrarily weak anisotropy u1, while keeping the filling fixed to half. In this limit, the
lower (β) band is still full while the upper (α) band is empty, so we can write Θk,α = 0 and Θk,β = 1. We can write
the covariance matrix from Eq. (40) as follows:

Pτ,τ ′(k) =
1

2

1− h√
h2+|∆k|2

− ∆k√
h2+|∆k|2

− ∆∗k√
h2+|∆k|2

1 + h√
h2+|∆k|2

 (46)

Using the form of P from Eq. (46) and writing out the terms in Eq. (41) in terms of u0 and u1, we find that (using
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Tr(P (k)) = 1):

eHF (1,∆0) =

∫
k

εk +
1

2

(∫
k

h√
h2 + |∆k|2

)2

u1(0)

−1

2

∫
q,k

[u0(q) + u1(q)]

2

(
1 +

h2√
(h2 + |∆k+q/2|2)(h2 + |∆k−q/2|2)

)

−1

2

∫
q,k

[u0(q)− u1(q)]

4

(∆k−q/2∆∗k+q/2 + ∆∗k−q/2∆k+q/2)√
(h2 + |∆k+q/2|2)(h2 + |∆k−q/2|2)

(47)

To check the stability perturbatively, we expand in powers of |∆0|/h and consider the difference of energy density
eHF (1,∆0) and eHF (1, 0) for the fully polarized state upto quadratic order.

eHF (1,∆0)− eHF (1, 0) =
1

2

∫
q,k

u0(q)

4

|∆k+q/2 −∆k−q/2|2

h2
+

1

2

∫
q,k

u1(q)

4

|∆k+q/2 + ∆k−q/2|2

h2
− u1(0)

2

∫
k

|∆k|2

h2

(48)

The first two terms raise the energy, while the last term lowers the energy of our variational state with respect to
the fully valley polarized state. If both bands had the same Chern number, a spatially uniform ∆ is allowed so that
∆k = ∆0 ∀ k. In this case, the first term in Eq. (48) does not contribute, and we have

eHF (1,∆0)− eHF (1, 0) =
|∆0|2

2

∫
q

(u1(q)− u1(0)) (49)

For a uniform exciton condensate with a spatially uniform ∆, we have ∆k = ∆0 ∀ k. Therefore,

eHF (1,∆0)− eHF (1, 0) =
|∆0|2

2h2

∫
q

(u1(q)− u1(0))

(50)

Since the Landau level projection adds a factor of e−q
2l2B/2 to the bare anisotropy, we have u1(q) < u1(0) ∀ q 6= 0.

This negative difference in energy density precisely corresponds to the instability of the fully valley polarized phase of
the conventional QHFM to uniform intervalley coherence when u1(q) > 0. However, for any vortex lattice structure,
necessitated by topological constraints of hybridizing opposite Chern bands, we have ∆k which is a function of k,
Therefore, when u1 is sufficiently small compared to u0 the vortex lattice state has a higher energy than the parent
insulator, regardless of the exact nature of the microscopic interactions (as long as both are repulsive). This implies
that the fully valley polarized state is robust to the vortex lattice phase.

We now carry out the previous analysis for the unpolarized metal, the second state of our interest. In this case,
Pv = 0 (obtained by setting h = 0), so the covariance matrix is given by

Pττ ′(k) =
1

2

(
Θk,α + Θk,β eiφk(Θk,α −Θk,β)

e−iφk(Θk,α −Θk,β) Θk,α + Θk,β

)
(51)

In this case, the HF energy density evaluates to

eHF (0,∆0) =

∫
k

εk(Θα,k + Θβ,k)− 1

2

∫
q,k

u0(q) + u1(q)

2
(Θα,− + Θβ,−) (Θα,+ + Θβ,+)

=
1

2

∫
q,k

u0(q)− u1(q)

2
cos (φ+ − φ−) (Θα,− −Θβ,−) (Θα,+ −Θβ,+) (52)

where the labels ± are shorthand for momenta k± q/2. We observe that at a total filling of ν = 1, the Fermi surface
of the β band is identical to the Fermi surface of the α band shifted by Q = (π, π). To prove this, we use εk+Q = −εk
and ∆k+Q = −∆k (as can be seen from the analytical form of ∆k in Eq. (35)).

Eα,k+Q = εk+Q + |∆k+Q| = −εk + |∆k| = −Eβ,k =⇒ Θ(Eα,k+Q) = Θ(−Eβ,k) = 1−Θ(Eβ,k) (53)

This has the very important consequence that the chemical potential µ is fixed to zero at half filling, and the system
behaves like a compensated semi-metal with equally sized electron and hole Fermi surfaces. To analyze the energetics,
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FIG. 6: Fermi surfaces of the α and β bands when ∆k 6= 0, and the regions Si which correspond to their differences with the original
Fermi surface FS0.

it is convenient to define two subsets of the BZ. Let FS0 be the original diamond shaped Fermi surface of the bands
at ∆k = 0, defined by the contours |kx ± ky| = π in the first BZ. Then we define (see Fig. 6)

S1 = {k : k ∈ FS0 and Eα,k > 0}; S2 = {k : Eβ,k < 0 and k /∈ FS0} (54)

Note that k ∈ S1 implies k + Q ∈ S2, so the area of Si (i = 1, 2) in the BZ, which we denote by ASi are equal.
Using these, we compute the kinectic energy term of the vortex lattice phase.∫

k

εk(Θα,k + Θβ,k) =

∫
k

εk(Θk∈FS0
−Θk∈S1

+ Θk∈FS0
+ Θk∈S2

)

= 2

∫
k∈FS0

εk + 2

∫
k∈S2

εk (55)

The second term is positive, and denotes the increase of kinetic energy of our variational state by virtue of distorting
the bands. The interaction term can also be analogously split into contributions coming from the original Fermi
surface, and those coming from Fermi surface distortions. Further, we need to consider the overlap of Fermi surfaces
shifted by a momenta of q, but the Landau level projection factors imply that only the overlap at q ≈ 0 is important
when a � lB . While our lattice has a/lB = 1√

2π
so we are not strictly in this limit, it is nevertheless instructive to

look at, as the Fermi surface overlaps can be succinctly expressed in terms of S1 and S2. Adding all contributions,
we finally find that the energy density difference is given by:

eHF (0,∆0)− eHF (0, 0) = 2

∫
k∈S2

εk +
2u1(l−1

B )AS1

l2B
(56)

where we have approximated u1(q) by u1(l−1
B ) to avoid potential singularities at q = 0. For weakly anisotropic

repulsive interactions, u1 > 0 so both terms raise the energy of the vortex lattice variational state with respect to the
unpolarized metal. For u1 < 0, the first term raises the energy while the second one lowers it. However, in both cases
for a small enough u1, the vortex lattice state still has a higher energy and will not be favorable.

VI. NUMERICAL HARTREE-FOCK ANALYSIS OF MAGIC ANGLE GRAPHENE

To confirm that the physical picture discussed in the main text in terms of a Lowest Landau model indeed applies
to magic angle graphene, we have numerically solved the Hartree-Fock self-consistency equations in the case where
there is a sublattice splitting of 15 meV on the top graphene layer. We used a dual gate-screened Coulomb potential
with a gate distance of 20 nm, and a dielectric constant of ε = 9.5. The twist angle was θ = 1.05◦. The simulations
were done on a 24 × 24 momentum grid, keeping six BM bands per spin and valley. The setup of the simulation is
exactly the same as that in Ref. [81], and we refer to that paper for more details. We would like to point out that
the only assumption that went into the numerics is that the ground state does not break translation symmetry at the
Moire scale – every other type of symmetry breaking is allowed to occur and no bias is introduced.

In Fig. 7, we show the self-consistent Hartree-Fock insulating band spectrum at charge neutrality. It has a large
bandgap of ∼ 30 meV. The four lowest conduction bands, which are the bands we focus on in the main text, also
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FIG. 7: Self-consistent Hartree-Fock band spectrum of twisted bilayer graphene with sublattice splitting ∆t = 15 meV and twist angle
θ = 1.05◦ at charge neutrality (i.e. ν = 0). The active conduction bands, which are approximated by LLL in the main text, are

highlighted. The dashed gray lines is the original BM band spectrum.
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FIG. 8: (a) Self-consistent Hartree-Fock band spectrum of twisted bilayer graphene with sublattice splitting ∆t = 15 meV and twist
angle θ = 1.05◦ at ν = 3. The dashed gray lines is the original BM band spectrum. (b) The same as in (a), but only the bands with spin

up are shown. (c) Only the bands with spin down are shown.

remain very flat and do not touch the remote bands. The bandwidth is of the same order as that of the bare BM
bands. We also find that at charge neutrality, no symmetries are broken spontaneously. Also, if we initialize the
algorithm with the state corresponding to the insulating ground state of the BM model with sublattice splitting, we
find that convergence is achieved after only 5 to 10 iterations, which means that this state is already very close to the
self-consistent solution. Therefore, the bands do not change significantly in going from the BM ground state to the
self-consistent solution.

In Fig. 8, the self-consistent band Hartree-Fock band spectrum is shown at filling ν = 3. In 8(a), the total band
spectrum is shown, while in 8(b) only the spin up bands are shown, and in 8(c) only the spin down bands are shown.
Importantly, we find that system has a clear bandgap, and unbroken valley U(1) symmetry. From Fig. 8 we also
clearly see that one spin and valley polarized band of the eight bands around charge neutrality remains unoccupied.
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This band spectrum therefore agrees with the general physical scenario put forward in the main text.

VII. ORBITAL MOMENT AND VALLEY-ZEEMAN EFFECT

The momentum-dependent orbital moment of electrons in a band labeled by α is given by [68, 69]

mα,k =
e

~
∑
β 6=α

Im
〈uα,k|∂kxH(k)|uβ,k〉〈uβ,k|∂kyH(k)|uα,k〉

εα,k − εβ,k
, (57)

where H(k) is the corresponding Bloch Hamiltonian with eigenstates |uα,k〉 and eigenvalues εα,k. This orbital moment
couples linearly to the out-of-plane component Bz of the magnetic field via the orbital Zeeman term

HOZ,α = −
∑
k

mα,kB
z . (58)

The average orbital g-factor reported in the main text is given by

gv =
2

AmBZ µB

∫
k

m+,k , (59)

where µB is the Bohr magneton and AmBZ is the area of the mBZ.
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