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Abstract

yu3/t/e_.

In order to perform high-throughput DSP computations, that are predominantly vec
tor or array based, it is essential that the memory organization satisfy both the storage
and the performance requirements of the design. In this report, we present an algorithm
to select a memory organization, in addition to selecting a pipeline and other datap
ath components, given performance constraints. We also conduct experiments to give a
quantitative measure of the impact of memory selection on DSP design.
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1 Introduction

DSP systems such as filters, FFTs and especially, image processing routines, can be

characterized as high-throughput, computation-intensive systems, where the computations

are most often vector or matrix based. In order to perform these high-throughput com

putations, the datapath typically contains a large number of functional units, possibly of

different areas and speeds, and a set of memory components, that together satisfy both the

storage and the performance requirements of the design. Additionally, DSP designs are usu

ally pipelined into several concurrently executing stages, so as to achieve higher throughput

values at lower costs.

DSP synthesis thus includes three important tasks. The first task, defined as component

selection, is responsible for deciding the number and type of operators to be used in the

design. This selection is made from a realistic library containing multiple implementations

per operator type. The aim of this task is to select components such that performance

constraints are satisfied at the lowest possible cost. Thus, fast components are selected

only when necessary for critical operations, whereas the slower components are used for less

critical operations.

The second task is responsible for selecting a memory organization that best satisfies the

storage and performance requirements of the design. By a memory organization, we refer

not only to the number and type of different memory components used, but also to their

interconnection. For instance, a memory organization may consist of four 1-port memories

connected in an interleaved fashion, so as to increase the access rate four times than that of a

single memory component. Once again, the memories are selected from a library containing

several different memory types (characterized by the bitwidth, number of words, number

of ports, access delay, and cost), with the aim of satisfying performance constraints at the

lowest possible cost.

Finally, the third task refers to pipelining, where the design is partitioned into concur

rently executing stages. This results in a higher component utilization, and hence, a higher

throughput for the same cost.

It is obvious that these three tasks are interdependent. For instance, the selection of

components and a memory organization are dependent on each other, since the memory

feeds data to functional units such that its production rate is the same as the consump

tion rate of the datapath. Similarly, pipelining and component selection are dependent on

each other, since division into "equal-delay" stages depends on the delay of the selected

components.



In this report, we present an algorithm that selects components, a memory organization,

and a pipeline, so as to minimize the cost of the entire system while satisfying throughput

and latency constraints. Though we describe the complete algorithm in the report, we

concentrate on the impact of memory synthesis on the design.

The rest of the report is organized as foUows. In the next section we give an overview of

our design approach and the memory synthesis task we perform. In Section 3, we compare

our work with previous work done in the area of memory synthesis and DSP synthesis.

We then briefly explain our model of pipelined systems. This is followed by a formal

problem definition in Section 5 and a description of the memory organizations and memory

generation in Section 6. The complete algorithm is described in Section 7. We present

results on several examples in Section 8 and finally conclude the report in Section 9.

2 Our approach

Component selection and pipelining are essential tasks for synthesizing high-performance

applications. In a previous paper [4], we presented an algorithm for datapath pipelining

and component selection, where the components were restricted to functional units such as

adders and multipliers. In this report, we extend the algorithm to include the selection of

memories and address generators (required to generate the sequence of addresses of words

to be read/written to a memory).

Our approach for component and memory selection along with pipelining is summarized

in Figure 1. (A more formal definition of the problem is presented in Section 5). The

algorithm takes as input a a component library, a memory library, and throughput

and latency constraints. Nodes in the VTQ represent operations and edges represent data

dependencies. The component library contains functional units such as adders, multipliers,

and address generators with different area and delay characteristics. The memory library

contains memories with different word, bit, port, access delay, and area characteristics. As

the algorithm proceeds, the component selection task makes requests for components with

certain type, delay, and cost characteristics. Similarly, the memory selection task makes

requests for memories with a set of characteristics, in terms of the bitwidth, number of words,

number of ports, delay, and cost. Note that this request, unlike the request for components,

is made to a memory generator, and not directly to the memory library. The memory

generator first checks to see if a memory with the required characteristics is available in the

memory library, and if such a memory is unavailable, the memory generator combines two

or more memories from the library in different ways to achieve the given characteristics.
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generation.
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selection and pipelining, with memory

The selection tasks are followed by pipelining, and the three tasks are repeated iteratively,

eventually resulting in a mapped and pipelined VTQ that satisfies constraints and is of

minimum cost.

The reason why we support memory generation and not component generation is twofold.

Firstly, while component generators are available, memory generators are not. Thus, we

can use existing component generators to increase the number of components in our li

brary, making it unnecessary for our algorithm to generate these components. However,

since memory generators are not available we are faced with a very limited set of memory

components. Thus, we try and increase the variety of memories by combining two or more

memories in different ways. The second reason for supporting memory generation is that

DSP applications are, in general, memory intensive and they place different requirements

on the bitwidth, number of words, number of ports and access delay of memories. Hence,

in order to obtain cost-optimal designs it is essential to generate memories that fit these

requirements as closely as possible.

In this report, we present the complete algorithm for the selection of components, mem

ories, and a pipeline, although we explain the memory selection and memory generation

tasks in greater detail.



3 Previous work

Having outlined our approach, we now differentiate ourselves from previous research, both

in the area of memory synthesis and the area of DSP synthesis.

Memory synthesis can be defined as the task of mapping scalar or array variables to

storage elements such as registers, register files, and memories, so as to satisfy constraints

(such as throughput) and optimize a given costfunction (such as storagearea). This problem

can be looked upon as a sequence of three tasks. Task 1 consists of mapping variables to

registers. In general, algorithms performing this task evaluate the lifetime of variables and

then map variables with non-overlapping lifetimes to the same register in such a way as to

reduce the total number of registers. Examples are the left-edge algorithm by Kurdahi [12]

and the edge-coloring algorithm by Stok [20].

After variables have been mapped to registers. Task 2 decides the grouping of these

registers into "virtual" memories. We refer to these memories as virtual since they represent

an ideal grouping of variables and the task of actually realizing them from real memory

components stiH remains. In order to perform Task 2, it is essential to determine the access

patterns of the variables. By access patterns we refer to the clock states in which a variable

is read or written. The variables are grouped such that, at any given time, there are no

more variable reads and/or writes than the number of available read and write ports.

Several algorithms have been proposed to perform Task 2. The algorithm presented

in [22] uses a clique partitioning formulation to group registers to single-port memories.

MIMOLA [16] groups registers to multi-ported memories without considering the effect of

interconnect delays while the algorithms in [5] and [2] use a 0-1ILP formulation and consider

interconnect delays while grouping variables to multi-ported memories. The MeSA [19]

algorithm and algorithms proposed by the IMEC [6], [7], [18] and Phillips [14], [23], [15]

groups perform Task 2 specifically for array variables.

The output of Task 2 consists of a set of virtual memories characterized by a bitwidth,

number of words, number of read and write ports and an access delay. Task 3 consists of

realizing these virtual memories from a given library of memory components such that the

cost of the realized memory is minimized. Our algorithm performs this task, combined with

component and memory selection and pipelining.

In addition to our algorithm, we are aware of one other algorithm by Karchmer and

Rose [11] that solves a limited form of Task 3. Given a set of virtual memories each

characterized by the 3-tuple <depth (number of words), bitwidth, access time> and given

a real memory also characterized by the same 3-tuple, this algorithm maps the virtual



memories to one or more real memories so as to minimize the cost of the final memory

organization. The major diflFerence between our work and [11], is that we solve the problem

of memory generation with component and memory selection and pipelining, whereas they

solve the memory generation problem in isolation. Furthermore, they offer a limited solution

since they can only generate larger memories from one type of component, whereas we can

generate larger and faster memories from different types of components. For instance, they

can map an array of size 10 to 2 memories of size 5 each; however, if the access time

requirement is, say 10 ns, their algorithm is unable to map this requirement to memories of

delay greater than 10 ns. They can only provide a solution for a memory of delay less than

10 ns. By using techniques such as interleaving, we can do the mapping with memories of

any delay. Other differences include their use of only one real memory type, whereas we

place no restrictions on the available memory types.

Having put our work in perspective with previous research in memory synthesis, we now

compare our approach to DSP synthesis with the IMEC and Phillips (Phideo) approaches.

Phideo performs datapath synthesis, memory synthesis and finally address generator

synthesis in sequence, one after the other while we combine these three tasks since they

are all inter-related and the synthesis of one of them depends on the other. We believe

this results in more cost-efficient designs. Secondly, Phideo uses single implementations

for functional units and address generators whereas we use multiple implementations of

components in a design, such that fast components are used on critical paths and the

slower components on non-critical paths. Thirdly, Phideo uses a limited memory library

with only two memory components: type 1 has 1 R/W port while type 2 has 2 R/W ports.

We do not place any restrictions on memory components. Finally, unlike Phideo, we have

integrated our selection and pipelining algorithm with memory generation {Task 3), giving

us the ability to realize our selected memories using different memory organizations such as

horizontal, vertical, and interleaved (described in Section 6.1).

We differ from IMEC for similar reasons. They first perform memory synthesis, then

datapath synthesis, while we do these tasks simultaneously. Their approach works well

for memory-dominating systems, whereas our approach works well for systems in which

memory may or may not be the dominating cost factor. This is because by making all

memory decisions independent of the datapath, they may select a memory which forces the

use of an expensive datapath component, resulting in an overall high cost.

Other differences between IMEC and our work include their use of a more limited

library of memories where all memories have the same access delay. Furthermore, they



do not perform memory generation and hence, do not support the use of different memory

organizations such as interleaved, horizontal and so on. Note that our algorithm for memory

generation can serve as a backend for the memory synthesis tasks performed by the IMEC

and Phillips groups.

4 Model of pipelined systems

Before proceeding with the formal problem definition and algorithm, we would like to

describe the underlying model of pipelined systems. The entire system can be viewed as a

sequence of communicating pipelined FSMDs (Finite State Machine with Datapath). As

an example, consider the MPEG system [21] shown in Figure 2. It consists of six pipelined

FSMDs namely the Decoder, Dequantizer, IDCT, Sum, Predictor and Display. The system

is pipelined, both at the block level (that is within an FSMD) and at the system level (that

is between consecutive FSMDs).

Deaudntizer Display

Figure 2: The MPEG: an example of a pipelined system.

Thus, at the systemlevel, while the Decoder is operating on the ithinput sample (assume

the input sample is an 8 X 8 matrix), the Dequantizer is operating on the (i-l)th input

sample, the IDCT on the (i-2)th, and so on. Similarly, within the Dequantizer, while

stage-1 is operating on the ith input sample (which is, say, one element of the 8x8 matrix),

stage-2 is operating on the (i-l)th sample, and so on.

Figure 3 zooms into the Dequantizer, IDCT, and Sum blocks and it is used to illustrate

the interface between two pipelined FSMDs. The Dequantizer consists of a controller and

a 2-stage pipelined datapath. Its output, Array-A, a 64-element array, is consumed by the

IDCT which consists of a controller and a 3-stage pipelined datapath with two memories.

The output of the IDCT, in turn, is consumed by the Sum block.

In order to maintain the flow of data in the pipeline it is assumed that the consumption
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Figure 3: The interface between pipelined FSMDs.

and production rate of an input is the same. Thus, in Figure 3, the Dequantizer block

produces a sample of the 64-element Array-A, say, every 320 ns and the IDCT consumes it

at the same rate. Similarly, the IDCT produces a sample of Array-C every 320 ns and the

Sum block consumes it at the same rate. This rate is also known as the throughput of the

system. Within, the IDCT however, the rate can be different. For instance, 4 words are

read from MEM_A every 5 ns and 1 word is written into MEM_C every 5 ns.

We make the assumption that all pipelined FSMDs require one sample per input before

they can begin processing data. Thus, each producer FSMD sends a START signal to its

consumer after producing its first output. An FSMD can start after aE its producers have

sent START signals indicating that the first set of input samples is available. Thus, in

Figure 3, the Dequantizer sends a START signal to the IDCT after producing the first set

of 64 Array-A elements. The IDCT then starts and after producing the first sample of

Array-C it, in turn, sends a START signal to the Sum block. After that point, data is

produced and consumed at regular intervals and the START signals need not be asserted

any longer.

We make a further assumption regarding the size of the memory. Each pipelined FSMD

should have sufficient memory to store two sets of samples per input, one the sample being



currently used and the other, the sample being currently produced by the preceding FSMD.

For instance, Mem_A has 128 words where 64 words are used for say, the ith sample of

Array_A being consumed by the IDCT block, and the other 64 words are used for the

{i + l)th sample being produced by the Dequantizer block.

In this report we present an algorithm to select memories, datapath components and a

pipeline for each FSMD.

5 Problem definition

Given:

1. AVTG{V, E) with V vertices oftypeOP (operator), MEM (memory) or AG (address
generator), and E directed edges representing data dependencies.

2. A library CIB of

(a) functional units characterized by <T,C, D>,

(b) memories characterized by kW,B,Pr,Pw,C,D>, and

(c) address generators characterized by <T, C, D>.

3. Constraints on PS (pipe stage) delay and latency.

Determine:

1. A mapping of

(a) OP vertices to functional units,

(b) MEM vertices to a memory organization, and

(c) AG vertices to address generators.

2. A division of the DFG into pipe stages.

Such that:

1. PS delay and latency constraints are satisfied, and

2. Cost of functional units, address generators and memories is minimized.

The elements of the 3-tuple <T, C, D> refer to the type, cost, and delay of functional

units and address generators. (We support three different address generator types, discussed

later). The elements of kW,B,Pr,PwiC,D> refer to the number of words, the bitwidth,

the number of read ports and write ports, and the cost and access delay of the memory,

respectively. Design constraints may be placed on both the PS delay and the latency of

the design. PS delay is the sample inter-arrival delay, that is, the delay between the arrival

of two consecutive input samples. This is also the clock cycle of the design. Throughput,



which is often the prime constraint on DSP systems, is the inverse of the PS delay. Latency

is the total execution time {nxPS delay, for an n-stage pipeline), that is, the time between

the arrival of an input sample and the availability of the corresponding output.

The example in Figure 4 illustrates the problem. Given are a VPQ, a LIB, and con

straints on PS delay (10 ns) and latency (25 ns). (In our case, the VTQ is derived from

a model of the system written in a hardware description language called SpecCharts [17]).

The VPG contains vertices of different types: address generator vertices (AG), a memory

vertex of size 512x16 (MEM Tl), a memory vertex of size 64x16 (MEM T2), and multiply

(*) and add (-f) vertices. The memory vertex sizes as well as the bitwidth of all other

vertices are determined from the input description. (For simplicity, we have not explicitly

mentioned the bitwidth of aU vertices). The LIB contains several diflFerent implementa

tions of component types such as three multipHers with different area and delay values,

three memories with different bitwidths, ports, access delays, and so on.

The output of the algorithm consists of a mapped and pipelined VPQ in which aU ver

tices, other than memory vertices, have been mapped to a component of the corresponding

type from the library, while memory vertices have been mapped to one or more memory

components. The vertices have also been partitioned into 2 stages of delay 10 ns each.

The mapping and the partitioning has been done such that the total cost of the design

(952 gates) is minimized. Note, that in the output VPG the memory vertices need not

directly correspond to a single memory component from the library, LIB, but to a mem

ory organization which consists of an interconnection of one or more memories, registers

and multiplexers. The memory organization is designed such that it best satisfies size

constraints imposed by the VTG and performance constraints imposed by the input PS

delay and latency values. As an example, consider the vertex MEM Tl of size 512 x 16.

This has been mapped to two MemC components of size 512 X 8 so as to satisfy bitwidth

requirements. Similarly, the vertex MEM T2 has been mapped to MemB with its two read

ports multiplexed, such that one word can be read every 5 ns.

Associated with every memory vertex is an AG or address generation vertex which is

required to generate the sequence of addresses of words to be read from the memory. We

support three different address generator types, though only one type has been shown in

the example. Once again, the address generator type associated with each memory vertex

is determined from the input description.
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Figure 4: An example illustrating the inputs and outputs of the component selection,
memory selection, and pipelining algorithm.

6 Memory selection

Having given a formal definition of the problem, we now describe the different memory

organizations, the algorithm for memory generation, and the address generator types.

6.1 Memory organizations

A memory organization refers to an interconnection of one or more memory components

of a given type, along with registers and multiplexers such that the resulting memory

organization has a greater number of words, bitwidth or ports, or a smaller access delay

than the memory component from which it is built. We define memory generation as the

task of generating a memory organization given a memory component and a set of bitwidth,

word, port, and access delay requirements.

Figure 5(a) depicts a basic memory component characterized by <W,B,Pr^Pw,C,D>,

which are the number ofwords, bits, read ports, write ports and the cost and access delay, re

spectively. Figures 5(b) to (f) depict five memory organizations obtained by connecting one

or more of the basic memory components in different ways. We now define the characteristics

of each of the memory organizations with respect to the characteristics <W,B,Pr ,Pw,C,D>

of the basicmemory component and the characteristics <W',B' ,P^,Pl^,C',D'> of the desired
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Figure 5: Different memory organizations to increase the bitwidth, number of words or
ports, or to decrease the access delay of a basic memory component.

memory component.

1. Horizontal Organization: This organization is used when the desired bitwidth B' is

greater than B, the bitwidth of the basic memory component. Let n = IB'/B]. Then,

the characteristics of the memory organization are given by:

<W,nB,Pr,Pw,nC,D>

2. Vertical Organization: This organization is used when the required number of words,

W, is greater than W. Let n=\W'IW^^. Then, the new characteristics are:

<nW,B,Pr,Pw,nC,D>

3. Interleaved Organization: This organization is used when the desired reading rate

P,!/D', is greater than the available reading rate Pr/D. Let '̂ =[§7/§-l- Then, the
memory organization's characteristics are:

<W,B,n XPr,Pru,n X{C+{Pr'X.Costreg)),D>

Here, Costreg refers to the cost of a P bit register. To illustrate the need for an

interleaved organization consider the case when the desired reading rate is lword/20ns

(P/=l, D'=20 ns) and the available memory component has Pr=2 and D=100 ns. We



could then interleave 3 memory components giving us a resulting read rate of 6/100

(which is greater than 1/20). Thus, interleaving essentially increases the reading rate,

that is, the number of words read per unit time.

Note, that even though n components are used, the number of words does not increase

to nW. This is because we duplicate contents in all n memory components so that

any combination of words can be read simultaneously. If we had actually partitioned

the data amongst the n components we would not be able to read more than Pr

words from a given memory simultaneously, though, this would have increased the

total number of words, W', to nW.

Also note that this technique cannot be used to increase the rate of writing to a

memory because of the assumption that all n memories contain copies of the same

4. Port-increasing Organization: This organization is used when the desired reading rate

P'rJD' is satisfied, but the port requirements are not, that is P^ is smaller than P/.

Let n = [P//Pr]. Then, the new characteristics are:

<IT,P,nXPr,P,u,(C+(Tl XPrXCostreg)),nXD>

To illustrate the need for this organization, consider a case when the desired rate is

4words/100 ns (P/=4, P'=100 ns) and the basic memory component has Pr=l and

D=25 ns. In this case, P^/D' = P/D but Pr < P^. Words can then be accessed

serially, and after 100 ns four words can be read out in parallel.

This organization can also be used when the desired writing rate is satisfied but P^ is

smaller than P^. Once again, words can be written in parallel into registers and then

into the momory, serially, one after the other.

In summary, this organization has a larger number of ports and access delay than the

basic memory component.

5. Delay-decreasing Organization: This organization is used when the desired reading

rate P//P' is satisfied but the access delay, D > D'. Let n = [D/P']. Then, the

characteristics of the memory organization are:

<W,P,Pr/ra,Pu;,(C+(Pr XCostreg)-\-{Pr XCostnx\^ux))-,Djn>

Here, Costny,\_mux is the cost of an n x 1 multiplexer. To illustrate the need for this

organization, consider a case when the desired rate is lwordl25 ns (P/=l, D'=25



ns) and the basic memory component has Pr=4 and Z?=100 ns. Words can then be

accessed from the memory in parallel 4 at a time, and read serially, 1 every 25 ns.

This organization can also be used for the write ports in a similar way when the

desired writing rate is satisfied but D > D'.

In summary, this organization has a lower access delay and a smaller number of ports

than the basic memory component.

6.2 Memory generation

Having described the 5 different memory organizations, we now formally define the prob

lem of memory generation.

Given a memory component M characterized by <W,B,Pr,Pw,C,D> and a vir

tual (or desired) memory characterized by <W',B',P(.,PI^,D'> build a memory

organization with characteristics <W",B",P",P(l,C",D"> such that W">W',

B">B', P">P(., P(^>P(I,, D'<D" and C" is minimized.

In Figure 6 we outline the procedure for generating a memory <W",B",P",P(I,,C",D">

given a memory component <W,B,Pr ,Pw,C,D> and a set of desired characteristics <W',B',

Pl.,P(^,D'>. This procedure wiU be utilized in the main algorithm for selection and pipelin

ing presented in Section 7.

Westart with a memory called newjmem and initialize its attributes <W",B",P",PII,,C",

D"> to the attributes of the given memory component <W,B,Pr,Pw,C,D> (step 1). We

then check the bitwidth of newjmem (step 2) and if it is less than the required bitwidth we

horizontally connect \B'/B"] new-mem components (step 4). This Horizontal connection

is now of the required bitwidth. Next, we check to see that there are a sufficient number

of words (step 8), and once again, if needed, we use a Vertical organization to build up

the required words. Next, in steps 14 and 20 we check to see if the required reading

and writing rate are met by newjmem. If the reading rate is not met, we build it up by
p! pH

Interleaving \^/memories; however, if the writing rate is not met weare forced to exit

the program since we are unable to increase the writing rate. By the time we reach steps

23 and 29 newjmem has the desired writing and reading rate. However, it may have too

large or too small an access delay in which case we use a Delay-decreasing or Port-increasing

organization to get the required read and write ports and access delay. Note, that Figure 6

only shows the the delay-decreasing and port-increasing organizations for read ports; the

organizations for write ports are similar.



Begin GenerateMemory {<W',B',PI.,Pl,D'>, <W,B,Pr,Pw,C,D>)
1. newjnem <W",B",P",P^,C",D"> = memory component <W,B,Pr,Pxu,C,D>
2. If {B' > B")
3. n = ("B'/B"]
4. new-mem = Horizontal(newjmem, n) (Figure 5(b))
5. C" = nxC"

6. B" = nxB"

7. End if

8. If {W > W")
9. n =

10. new.mem - Vertical(newjmem, n) (Figure 5(c))
11. C" = nxC"

12. W" = nxW"

13. End if

14. If (b;/b' > b;vb")
d' d"

15. n=f5^/;5^7l
16. new-tnem = Interleave(newjmem, n) (Figure 5(d))
17. C" = (nxC")+(n x B/'xCost^j,)
18. b;' = nxP;'
19. End if

20.If(B;/B'>Bi7B")
21. Cannot increase write rate. Exit Generate-Memory.
22. End if

23. If(B; > B/')
24. n = rB;/B;'l
25. new.mem - Port-increasing(new-mem, n) (Figure 5(e))
26. C" = C"+(n XP^'xCostreg)
27. b;' = nxP;'
28. b;' = nxD'J
29. Else If (B' < B")
30. n = [B"/B']
31. new.mem = Delay-decreasing(new.mem, n) (Figure 5(f))
32. C" = C"+(B;'xCost,ej)+(B;VnxCost„xi^«r)
33. B;' = PI.'I n
34. B;' = D';in
35. End if

36. Output {new.mem <W",B",P",Pll,C",D">)
End Generate.Memory

Figure 6: Algorithm for generating a memory given a set of required characteristics and a
memory component.



Finally, in step 36 we output newjmem <W",B",P",D"> where W">W',

Pr>Pr, K>Pw >D'<D" and C" is minimized.

6.3 Address generator types

Initialization values front controller Initialization values from controller

address

Figure 7; Address generators (a) Type 2 (b) Type 3.

Most array accesses in DSP applications follow a regular pattern that may be represented

by the linear expression {C\I\ + C2I2 + ••• + Cnl-n + Cn+i)) where C\, C2 ••• Cn+i are

constants and I\, I2 •• - In are loop indices. In our designs, we make the assumption that all

array accesses fit the expression ai + bj + c (that is, n=2 in the above expression), where at

least one term is non-zero. Thus, we support the following three address generator types:

1. Type 1: a=b=0. Thus for an array A, the access is of the form A(c). The address

generator consists of a register to store the value of c.

2. Type 2\ b=0. Access is of the form A{ai -f c). The address generator required for this

address sequence is shown in Figure 7(a). It essentially consists of an adder and two

registers with Reg-A initialized to c and Reg-B to a. At every loop iteration the value

of a is added to the previous address resulting in the next address.

3. Type 3: Access is of the form A{ai + bj -1- c). The address generator (Figure 7(b)

required for this address sequence is similar to the address generator for Type 2 except

that it contains two adder-register pairs, one for each loop index.

The library contains multiple implementations of these three address generator types,

obtained by using adders of different implementations.



1. Generate memories of specified sizes and a range of access delays.
2. Map all vertices to fastest component of corresponding type, and evaluate performance.
3. If {fastest design does not satisfy constraints)
4. exit the program.
5. Else

6. Loop
7. Evaluate the weight of all vertices.
8. Select the vertex with the highest weight to slow down.
9. Pipeline the V^FQ, and evaluate its performance.
10. If {this slow down meets performance constraints), accept it
11. else, reject it.
12. Until (no vertex can he slowed down without violating constraints).
13. End if

14. Optimize memories to further reduce cost.

Figure 8: Overview of the component and memory selection and pipelining algorithm.

7 Complete algorithm: component selection, memory se
lection, and pipelining

Having defined the problem, we now present the algorithm for component selection, mem

ory selection and pipelining with memory generation. We first give an overview of the

complete algorithm and then explain individual steps in more detail.

7.1 Overview

The algorithm takes as input a VTQ, a component library CXB, and a constraint on the

PS delay and latency. It outputs a mapped VPQ where each memory vertex is mapped

to a memory organization built out of memory components in CIB and all other vertices

are mapped to components of the corresponding type. The VPQ is also partitioned into

[latency/PS Delay} stages, such that the delay of each pipe stage is less than or equal to

the PS Delay and the total area of the VPQ is minimized.

The algorithm (Figure 8) starts by generating a list of larger and faster memories from

the memory components available in the input library. The size, port, and delay charac

teristics of these new memories is determined from the size of the memory nodes and from

the PS delay constraint. Essentially, we enhance the memory library by making sure that

it contains memories of the required sizes and delays. This enhanced library can then be

used by the rest of the selection and pipelining algorithm.

The procedure to generate these memories is outlined in Figure 9. As input we have

a list of all the memory vertices with their sizes, a list of memory components given in



Begin Enumerate-All-Memories{memoTy vertices, memory components, PS delay, MIN, INC )
1. For (all memory vertices) loop
2. W = number of words of (current) memory vertex.
3. B' = bitwidth of memory vertex.
4. P/ = number of outgoing arcs of memory vertex.
5. P4 = number of incoming arcs of memory vertex.
6. For (all memory components) loop
7. <W,B,Pr,Pw,C,D> = current memory component.
8. maxjdelay= min(P5 delay, D).
9. D'= MIN.

10. Loop
11. new.mem= Generate-Memory {<W',B',Pl.,PI^,D'>, <W,B,Pr,Pw,C,D>)
12. Add new.mem to component library.
13. D' = D' + INC.
14. Until (£)' < maxjdelay).
15. End Loop
16. End Loop

End Enumerate-All-Memories

Figure 9: Procedure for enumerating memories for a given DFG and component library.

the input component library, and the PS delay constraint imposed by the designer. For

each memory vertex we then generate new memories from each of the memory components

using the procedure Generate-Memory in Section 6.2. These new memories have the same

number of words and bits as the memory vertex, and the same number of read and write

ports as the number of outgoing and incoming arcs, respectively. (Outgoing arcs indicate

a read operation, while incoming arcs indicate a write operations). The memories have a

range of access delays, that start from a specified minimum value (MIN) and vary in fixed

size increments (INC) tiU a maximum value is reached. For instance, the minimum value in

the experiments presented in this report is 5 ns and the increment is 3 ns. The maximum

value is either equal to the PS delay constraint or the delay of the memory component,

whichever is lower.

The procedure essentially contains a triple nested loop, one to iterate over aU memory

vertices, the other to iterate over all memory components and the third to iterate over

access delay values. This procedure could potentially be expensive in terms of CPU time;

however, for most DSP applications and for most existing component libraries the number

of memory vertices and the number of memory components is quite small (approximately,

under 30 each), leading to a low execution time.

After generating these new memory organizations, we perform the core component and

memory selection and pipelining task. We first map each vertex to the fastest component of



the corresponding type in the library. Thus, aU★ nodes are mapped to the fastest multiplier,

all + nodes to the fastest adder, all MEM nodes to the fastest memory of the corresponding

size and so on. Since this is the fastest possible design it is also the most expensive. We

then try and pipeline this design into \latencyjPS Delay\ stages of delay PS delay each. If

we are unable to do this, it implies that the fastest design cannot meet constraints - the only

option left is to try again with lower design constraints or a library with faster components.

If the fastest design satisfies constraints, our next step is then to slow down the design

by replacing some vertices by slower and cheaper components, such that cost is minimized

and constraints are still satisfied. Intuitively speaking, the aim of the algorithm is to slow

down as many vertices by as much as possible, and this is achieved by balancing the use

of slow and fast components so that the delay of each pipe stage is as close to PS delay as

possible, and the total cost is minimized.

The slowing down process is carried out iteratively (steps 6 to 12 in Figure 8), by first

assigning a weight to all vertices, and then replacing the highest weight vertex with a slower

component. After each slow down, the VPQ is pipelined to ensure that the slow down does

not violate constraints. This process is repeated till there are no vertices left to slow down or

performance constraints cannot be satisfied any longer. This then will be the minimum-cost

design.

The key to the algorithm lies in judiciously selecting vertices to be slowed down in each

iteration, since slowing down one vertex may prevent slowing down others due to graph

dependencies. Thus, the desirability of slowing down a vertex has to be evaluated with

respect to all the vertices that would be affected by its slow down. The vertex weight

represents this measure of desirability or priority in the slowing down process. The vertex

weight is briefly described below; a more detailed explanation can be found in [4].

7.2 Vertex weight

The weight W{v) of a vertex v, that is currently mapped to a component c', and that is

going to be replaced by a slower component c", is given by:

W(v) = ^DG(^,c^c") Qs
Commonality Facto r(t;)

where the area-delay gain of v with respect to c' and c", ADG{v,c',c") is:

ADG(v c' c") = ~ .Of
' ' Delay{c") —Delay{c')

The vertex weight depends on three factors. First, the area reduction incurred by

replacing c' with c". The higher the area reduction, the higher the weight indicating the

ADG{v,c',c") =



desirability of slowing down the vertex. The second factor is the increase in delay or the

extent of the slow down. Higher the increase in delay, lower is the desirability of slowing

down a vertex since a large increase in delay could prevent further slow downs.

CF=3 ( + )e

Figure 10: An example to illustrate the commonality factor (CF) of a vertex.

The third factor, defined as the commonality factor (CF) of the vertex, is essentially a

measure of the number of input-output (I-O) paths that the vertex is contained in. The

slow down of a vertex affects all the paths that it is contained in, and it decreases the

possibility of slowing down other vertices in the paths. As an example, consider the VTQ

in Figure 10. Vertex e has a CF of 3 since it is contained on three 1-0 paths {a —d —e,

b ~ d —e, c —e) while CF(a)=l since a is contained on only one 1-0 path (a —d —e). Let

us assume that we can afford to incur a total slow down of only 10 ns. If we were to slow

down e by 10 ns we would not be able to slow down any other vertex since e is contained

on all 1-0 paths. However, if we slowed down a, we could also slow down b and c since a is

not on the same 1-0 paths as b and c.

These three factors, the area reduction, the delay gain, and the commonality factor axe

combined as shown in equations (1) and (2), to give the vertex weight.

We now explain the next two steps (steps 9 and 14) of the component selection and

pipelining algorithm in Figure 8, namely the procedure for pipelining the ViFQ into equal

delay stages, and the procedure for optimizing the memory selection.

7.3 Pipelining

Given a VJ^Q, in which every vertex has been associated with a component, and a PS

delay constraint, the pipelining algorithm partitions the VPQ into a minimal number of

stages of delay no more than PS delay. It traverses the graph in two directions, downward

(from the input to the output nodes), and upward (from output to input nodes). As it

traverses the graph it keeps accumulating the delay from the boundary of the last pipe

stage. A new boundary is set when the performance constraint can no longer be satisfied.



OptimizeJdemory (mapped VTQ, component library)
1. Get list of only memory nodes from the V^FQ.
2. Repeat
3. For (each pair of memory nodes, i and j, mapped to memory components characterized by

<Wi,Bi,Pri,Pwi,Ci,Di> and <Wj,B,i jBrj,Pwj)Cj,Dj>)
4. W' = Wi + Wj.
5. B' = max(Wi, Bj).
6. D' = LCMiDi, Dj).
7. p; = {Pri X D')/Di + (Prj X D')/Dj.
8. P;, = {P^i X D')/Di + {P^j X D')/Dj.
9. For (each memory component characterized by <W,B,Pr,Pw,C,D>)
10. new_mem <W",B",P",P{^,C",D"> = Generate-Memory(<W',B',PI.,PI^,D'>,

<W,B,Pr,P^,C,D>)
11. cost-difference = {C" - (C,- + Cj))
12. If (cost-difference is highest so far)
13. best_pair=i and j.
14. End If

15. End For

16. Combine best_pair, i and j, add combined node to list, and remove i and j from list.
17. End For

18. Until (no further cost reduction or only one memory node in list)
End Optimize-Memory

Figure 11: Procedure for optimizing memories.

The traversal is repeated for both directions, and the pipeline with the fewer number of

"cuts" is selected. A "cut" refers to the intersection of an edge of the VTQ with the pipe

stage partition, and it corresponds to a pipeline register. Hence, the fewer the number of

cuts, the fewer the pipeline registers.

7.4 Memory optimization

In steps 6-12 of Figure 8 we iteratively decrease the cost of the VTQ by slowing down

vertices, including all memory vertices. However, during this process we assume a one-

to-one mapping between vertices and components, and we do not consider the possibility

of mapping two or more memory vertices to a single memory component. Mapping two

memory vertices to one larger or faster memory component rather than to two smaller or

slower ones, could possibly lead to a cost-reduction, if the area of the larger memory is less

than the combined area of the two smaller memories.

For instance, two memory nodes of size 16 x 8 each, that are mapped to two memories

with the characteristics <16 x 8,1 read port, 200 gates, 50 ns>, could instead be mapped to

a single memory component with characteristics <32 x 8, 2 read ports, 50 ns>, or <32 x 8,

1 read ports, 25 ns>, if the single memory component has a lower cost than 400 gates.

The procedure for optimizing the memory selection is shown in Figure 11. We first



form a list of all the memory nodes in the VTQ. For all pairs of memory nodes, we then

form a new set of characteristics <W'^B\Pl,P'^^D'> that a memory would need to store

both nodes %and j. These characteristics are evaluated as shown in steps 4 to 8. We then

generate memories with these characteristics from the memory components in the library,

using the procedure GenerateJvIemory. This is indicated in steps 9 to 15 of the algorithm.

As we generate these new memories we keep track of the node pair, say i and y, that

gives the highest cost reduction. The nodes i and j are then deleted from the initial list of

memory nodes and a new node with the characteristics <W",B",P",PII„C",D"> is added.

Steps 2 to 18 are repeated till there is only one memory node in the list, or there is no

further cost reduction.

8 Experimental results

We have implemented the algorithm for component and memory selection, pipelining, and

memory generation using C on a SUN SPARC 5 workstation. The first step of the algorithm

(Enumemte-All-Memories) has a complexity of 0{NmCm), where Nm is the number of

memory vertices in the VPQ, and Cm is the number of memory components in the library.

The core selection and pipelining algorithm (steps 2 to 13 in Figure 8) has a complexity

of O(iV^C) where N is the total number of vertices in the VTQ, and C is the maximum

number of implementations of any operator type in the component library. Finally, the

complexity of the memory optimization phase is 0{N^Cm)-

TABLE 1

MODIFIED DTAS COMPONENT LIBRARY

Name

Mpyl
Mpy2
Mpy3
Mpy4
MpyS
Mpy6
Mpy7
MpyS

Addl/Subl
Add2/Sub2

Delay. Cost

(ns) (gates)
57.97 2368

44.21 2400

36.21 2600

32.98 2710

28.57 2978

25.00 3500

22.50 4000

20.50 4500

m 62

HI 125

13.50 187

10.00 250

5.50 375

In all our experiments we have used a modified version of the DTAS library [9] shown

in Table 1 for multiplier and adder/subtractor components. Component cost is in terms of

the number of 2-input NAND gates, while delay is in ns. The memory components in the



library were patterned after the Toshiba gate array memories [1]. The area/bit (gates) and

access delay (ns) values of four memory types (MEM_A, MEM_B, MEM_C and MEM_D)

are shown in Figure 12. Each memory type contains several memories of different bitwidths

(ranging from 4 to 32) and a different number of words (ranging from 4 to 1024). In general,

for all memory types, increasing number of words and bits leads to a decrease in the area/bit

and an increase in the access delay per word, as indicated in the graphs. (The curves are

annotated with a few memory sizes to give a feel of the area/bit and delay variation with

size).

-8 ^
CO 1 — -

area/bit (gates)

MEM^ 1 R
- -A MEM.B 1 R

X--KMEM_C 1R. IV
MEM_0 2 R. 1 V

Figure 12: Area/bit vs. access delay of memories used in all our experiments.

We conducted three types of experiments. The first set of experiments demonstrates

the importance of allowing memories with different characteristics (in terms of bitwidth,

number of words, number of ports, delay and cost), in a design. The second experiment

demonstrates the importance of memory optimization by comparing designs obtained with

and without the optimization. Finally, the third experiment demonstrates the range of

designs obtained by varying the component and memory selection and the pipelining.

8.1 Experiment ^1: Memory selection

The aim of this experiment is to get a quantitative measure of the importance of designing

a DSP system with memories of varying bitwidths, ports, access delays etc. We conducted

this experiment for three examples, a differential heat release computation (DHRC) [8],

that had 4 arrays of size 489 x 16, the Daubechues 4-coefiicient wavelet filter (DWF) [13]



with arrays of size 256 x 16, 128 x 16 and 4 x 16, and the Kalman filter [10] (KALMAN)

with arrays of size 256 X 16 and 16 X 16.

*T ] m

m • all cotnponeni*
*• - A onty MEM.A-4
Hi- - 4konly MeM_A_7
X - Xooty MeM_A_8

- •only MEM_B_4
^ - ♦only MEM_D_8
m--m only MEM_B_9

80000 120000 160000 200000

anea (galea)

Figure 13: Comparing Area vs. PS Delay of KALMAN filter designs obtained by using all
memory types vs. only one memory type.

For each of the examples, we first executed our algorithm for a range of PS delay

constraints using the complete component library, that is, aU the adders and multipliers

in Table 1 and all the memory components shown in Figure 12. We then obtained a

list of the different memory components that were used in the designs, and for each of

the memory components, we conducted the experiment again, this time with only that

component instead of the entire set of memory components. Note, that the set of adders

and multipliers remained the same through all the experiments.

Figure 13 shows the results obtained for the KALMAN example. Designs shown along

the soUd curve were those obtained by using the complete set of memory components. These

designs contained a mix of six types of memory components: MEM_A_4 of size 32 X 16,

MEM_A_7 of size 256 x 8, MEM_A_9 of size 1024 x 16, MEM_B_4 of size 32 x 8, MEM_B^ of

size 512 X 8, and MEM_B_9 of size 1024 x 16. Designs shown along the dashed curves were

obtained by using only one of the six memory types; hence, there are six dashed curves, one

for each memory type. For a given PS delay value, these designs are much higher in area

than the design obtained by using a mix of memory types. For instance, the area of designs

with MEM_B_9 are approximately 50% higher in area at large PS delay (75 - 150 ns) values

and as much as 250% higher at lower PS delays (45 - 75 ns). Of aU the six memory types,

the best designs are obtained using MEM_A_7; they are approximately 50% higher in area
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Figure 14: Comparing Area vs. PS Delay of DHRC designs obtained by using all memory
types vs. only one memory type.

e eai comportsntt

A- - a> onfy MEM_C_7
^ - •«on(/ MEM_D_1
B - • only MEM_0_9

0 100000 200000 300000 400000 500000 600000

area (gates)

Figure 15: Comparing Area vs. PS Delay of DWF designs obtained by using aU memory
types vs. only one memory type.



over the entire range of PS delay values.

Similar experiments were conducted for DHRC (Figure 14)and DWF (Figure 15). Once

again, using the complete component library with all the memory components we obtained

designs with much lower costs than those obtained by using just one type of memory

component. For the DHRC example, only two memory types, MEM_A_9 and MEM_B_9,

were used from the complete memory library. Designs with only one of these memories

were about 20% higher in area, than designs with both memory types. This difference in

design areas between using only one memory type and a mixture of memory types was more

significant for the DWF example. Designs with single memory components were between

75% to 175% higher in area than designs obtained with the complete memory library.

In aff three examples, we note that the set of designs obtained by using the complete

library with all memory components have a lower area than designs with only one memory

type. In some examples, this difference in area is as significant as 100%, and for all the

examples we ran, no single memory component could consistently give low area designs

over all PS delay constraints. This experiment indicates the impact of memory selection in

obtaining cost-efRcient designs.

with optimization
X- —K Without ODtlmlzatian

1SOOOO 200000 250000
aroa (gataa)

Figure 16: Comparing Area vs. PS delay of 4 x 1 beamformer designs obtained with and
without memory optimization.

8.2 Experiment ^^2: Memory optimization

This experiment quantifies the area improvement obtained by optimizing the memory

after selection and pipelining (step 14 of Figure 8). We conducted this experiment for a



4x1 beamformer [3] (Figure 16) containing four 8th-order FIR filters, and for the DHRC

example (Figure 17) introduced earlier. For both examples, we compare designs obtained

with and without the optimization. At PS delays below 130 ns the DHRC example did not

benefit from optimization but at higher delay constraints the optimized designs are as much

as 40% lower in area. Similarly, for the beamformer, at PS delay values above 150 ns, the

optimized designs are, on average, 20% lower in area than the non-optimized designs.

* <
\ ^

\ t

'̂iPoooo soooo eoooo 70000 soooo eoooo
area (gates)

Figure 17: Comparing Area vs. PS delay of DHRC designs obtained with and without
memory optimization.

For both examples, we note that optimization was more beneficial at larger PS delay

constraints. This is due to the fact that at lower PS delay values when the time constraint is

very stringent, there is very little "room" for optimization. At larger PS delay values, there

is a larger possibility of two or more arrays sharing the same memory and, in addition, there

are more memory organizations to choose from. These factors result in better optimized

designs.

8.3 Experiment Design exploration

This experiment gives a quantitative measure of the design space explored by varying

the component selection, memory selection and pipelining in a design. Once again, we

conducted this experiment for a 4 x 1 beamformer (Figure 18) and for the DHRC example

(Figure 19). For the beamformer example, we note that just by varying the component and

memory selection alone we obtain designs that vary in delay from 25 to 150 ns and in area

from 190,000 gates to 60,000 gates. Similarly, for the DHRC example (Figure 19), delay
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Figure 18: Area vs. PS delay of 4 X 1 beajnformer designs obtained by varying component
and memory selection and pipelining.
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Figure 19: Area vs. PS de/aj/of DHRC designs obtained by varying component and memory
selection and pipelining.



varies from 40 to 350 ns and area from 120,000 gates to 42,000 gates.

Note, that the extent of this variation is due both to the selection and pipeliningfeatures.

Had we not pipelined the designs, we would have obtained higher costs for the same PS

delay, and if we had not allowed multiple implementations of operators and memories in

our designs, we would have obtained just one design per curve.

9 Conclusions

In this report, we have presented an algorithm that combines component selection for

operators, the selection of a memory organization, and pipelining. In addition to selecting

memories from a given library, our algorithm also provides the capability of generating new

memories with characteristics (in termsofnumber ofwords, bits, ports or access delay) that

are weU suited to the design. The selection and pipelining tasks thus have a larger variety

of memories to choose from, eventually resulting in designs that are more cost-efRcient.

Experiments conducted on several examples indicate the importance of designing a DSP

system with memories of several different types. The designs obtained by using a library

of different memory components, were consistently lower in area than the designs with

memories of only one type. In fact, in some examples, the best designs obtainable by using

single memory types had 75% higher area than those obtained with multiple memory types.

Additionally, our algorithm has a polynomial time complexity of O(iV^C), where N is

the number of nodes, C the number of different implementations of any component type,

and for all our examples our algorithm executed in less than 45 seconds, on a SPARC 5

workstation.
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