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EPIGRAPH

If you know yourself but not the enemy,

for every victory gained you will also suffer a defeat

unless you have defense with provable guarantee.

—Sun Tzu on Adversarial Machine Learning
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ABSTRACT OF THE DISSERTATION

Robust Machine Learning in Adversarial Setting with Provable Guarantee

by

Yizhen Wang

Doctor of Philosophy in Computer Science

University of California San Diego, 2020

Professor Kamalika Chaudhuri, Chair

Over the last decade, machine learning systems have achieved state-of-the-art

performance in many fields, and are now used in increasing number of applications. However,

recent research work has revealed multiple attacks to machine learning systems that

significantly reduce the performance by manipulating the training or test data. As machine

learning is increasingly involved in high-stake decision making processes, the robustness of

machine learning systems in adversarial environment becomes a major concern.

This dissertation attempts to build machine learning systems robust to such adver-

sarial manipulation with the emphasis on providing theoretical performance guarantees. We

consider adversaries in both test and training time, and make the following contributions.

xvi



First, we study the robustness of machine learning algorithms and model to test-time

adversarial examples. We analyze the distributional and finite sample robustness of nearest

neighbor classification, and propose a modified 1-Nearest-Neighbor classifier that both has

theoretical guarantee and empirical improvement in robustness. Second, we examine the

robustness of malware detectors to program transformation. We propose novel attacks that

evade existing detectors using program transformation, and then show program normaliza-

tion as a provably robust defense against such transformation. Finally, we investigate data

poisoning attacks and defenses for online learning, in which models update and predict

over data stream in real-time. We show efficient attacks for general adversarial objectives,

analyze the conditions for which filtering based defenses are effective, and provide practical

guidance on choosing defense mechanisms and parameters.
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Chapter 1

Introduction

The last decade has witnessed tremendous advances in machine learning as learning

based methods produce new state-of-the-art performance in image recognition [KSH12,

HZRS16], object detection [RDGF16, HGDG17], natural language processing [DCLT18,

VSP+17] and many other fields. Machine learning products and techniques are deployed

to replace human effort in security-critical domains such as automotive systems, malware

detection, and finance decision-making. In these domains, failure of learning system can

cause critical consequences such as traffic accidents, loss of invaluable personal data and

huge monetary loss to the user. On the contrary, there are also potential adversaries – the

driver’s rival, a malware author and a competitor in the financial market – who benefit

from the failure and thus have the incentive to actively exploit the weakness of the learning

algorithm and model. It is questionable whether machine learning systems can still achieve

high performance in the presence of such adversaries.

In this dissertation, we attempt to address this concern by building provably robust

learning systems in adversarial setting. We focus on two security threats – the test-time

attack using adversarial examples and the data poisoning attack during training time. In

both threat models, the adversary wants to force the learning system to malfunction by

1



tampering the data used in a machine learning pipeline. In the former setting, the adversary

perturbs the test input to fool the model, while in the latter, it poisons the training data so

that the learning algorithm obtains a sub-optimal model. Given the adversary’s capability

to manipulate these data, we analyze the adversarial impact on undefended models, and

find defense mechanisms that bounds the adversarial impact with guarantees.

The dissertation is organized as follows. Chapter 2 presents main related work

in adversarial machine learning and also learning scenarios involved in the dissertation.

Chapter 3 contains our work analyzing the robustness of nearest neighbor classification

against test-time adversaries. Chapter 4 presents our work on robust malware detection

against program transformation. Chapter 5 presents data poisoning attack against online

learners. Chapter 6 investigates data poisoning defenses for online learning.

Adversarial Examples and Test-time Adversarial At-

tack

In test-time attack, an adversary has the ability to provide modified test inputs to

an already-trained classifier, but cannot modify the training process or the model in any

way. A test-time adversary profits from the mistakes of the victim machine learning model

made over modified test inputs. Test-time attack has received a lot of recent attention

because of the discovery of adversarial examples. [GSS14, PMJ+16, SZS+13, PMG+17]

finds that the adversary only needs to perturb legitimate test inputs by a “small amount”

in order to force the classifier to report an incorrect label, and the resulted perturbed test

inputs are called adversarial examples. An example is an adversary that replaces a stop sign

by a slightly defaced version in order to force an autonomous vehicle to recognize it as an

yield sign. The adversarial examples are similar to the original legitimate inputs by human

standard and thus have the same ground truth label, yet will be classified differently.
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The existence of adversarial examples causes serious concern over the reliablity and

safety of machine learning systems because most machine learning models, ranging from

deep neural nets to nonparametric models such as decison trees and nearest neighbors, are

all susceptible to adversarial examples. Meanwhile, the adversarial perturbation can often

be imperceptible to human, which makes detection hard. While the initial attack is for

image classification tasks in which the attacker can perturb the pixel values and has full

knowledge of the victim model, subsequent work on adversarial attack has extended the

attack paradigm to more domains such as voice recognition, text sentiment analysis and

malware detection, to physical object instead of digital input, and to grey-box and the

black-box settings where the attacker not necessarily have full knowledge of the victim

model. With commercial products reportedly being compromised by adversarial attacks,

building models robust to adversarial examples becomes one of the top challenges to

machine learning community.

Early defense mechanisms simulate potential attackers in training and optimize

models on a mixture of clean and adversarially created training instances. Such approach

yields increased robustness against existing attacks, but often fails against new attacks.

In order to end the arms-race between attack and defense, recent work on adversarial

examples starts to investigate the causes of adversarial examples and to develops defenses

with provable guarantees. Our work in Chapter 3 is one of first paper that analyzes model

robustness to Lp-norm bounded perturbation in large sample limit and in finite sample

case. Inspired by the analysis, we propose novel nearest neighbor algorithms with provable

guarantee.

While a large body of attack and defense are on Lp-norm bounded adversarial

perturbation on input vectors, recent work also starts to consider more types of adversar-

ial perturbation. Defenses on Lp-norm bounded perturbation lead to models robust to

adversarial examples with similar syntactic representation to the original legitimate test
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inputs. However, in many applications, a good model should also be robust to adversarial

examples with similar semantics as the original input. For example, a face authentication

tool ideally should be able to recognize the user’s identity even if the camera angle is tilted

or the ambient lighting has slightly changed. In Chapter 4, we investigate machine learning

models in malware detection, a scenario in which the attacker – the malware author – can

tranform the malware freely at the syntax level as long as the malicious functionality is

maintained. We examine the threats to current models and propose new defenses with

provable guarantee.

Data Poisoning Attacks

A major factor behind recent advances of machine learning models is the availabilty

of big data. On the other hand, checking the integrity of such high volume data obtained

in the wild using human experts becomes infeasible. It is then possible that the attacker

can inject poisoning examples to the training set to reduce the performance of the model.

In data poisoning attacks, an adversary is aware of the learner’s training data and

algorithm, and has the power to alter a small fraction of the training data in order to

make the trained classifier satisfy certain objectives. For example, a sabotage adversary

of an industrial pipeline may hijack sensors and send false observation to degrade the

performance of the control policy learned from the observation, or an online store may hire

malicious reviewers to report false preferences so that the resulting recommendation model

favors its product over its competitor’s.

There has been a body of prior work on data poisoning with increasingly sophisti-

cated attacks and defenses [BNL12, MZ15, MGBD+17, SHN+18, KSL18, SKL17, LWSV16,

PMGGL18]. However, most work is on the offline batch setting – all data is provided in

advance and the adversary assumes that the learner’s goal is to produce an empirical mini-
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mizer of a loss. This assumption excludes many modern learning settings that are online

in nature, i.e. data arrives sequentially, the environment may change and timely model

updates are required. For example, in malware detection, new malware appears everyday

so the model needs to constantly adapt to new patterns and be updated incrementally.

In financial industry, trading and transaction data keeps arriving and the volume is so

large that storing and training on all history data is prohibitive for real-time responses. In

privacy-aware setting such as federated learning, data is stored on distributed devices and

the learner can only obtain sequential model updates from individual users. In contrast to

extensive studies for the offline setting, little is understood in the context of online learning.

In this dissertation, we focus on data poisoning in the online setting to bridge the

gap. We find the threat of data poisoning for online learning challenging as there exist

highly effective attacks that can achieve its objective with a small number of poisoning

examples. In order to address the problem, we formally show the conditions for which

popular filtering based defense mechanisms are effective, and also give guidance to choosing

the best defense mechanism in practice.

Our Contribution

Robust Nearest Neighbor Classification with Provable Guarantees

In Chapter 3, we introduce a theoretical framework analogous to bias-variance theory

for understanding the sources of model robustness. Following the framework, we analyze

the robustness of k nearest neighbor classification to Lp-norm constrained adversarial

examples in large sample limit and with finite training data. Our analysis shows that its

robustness properties depend critically on the value of k – the classifier may be inherently

non-robust for small k, but its robustness approaches that of the Bayes Optimal classifier

for fast-growing k. We then propose a modified 1-nearest-neighbor algorithm with provable
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robustness guarantee in large sample limit. The proposed 1-NN classifier also achieves

significantly higher robustness than vanilla nearest neighbors in experiments on various

data sets against both white-box and black-box attacks.

Robust Malware Detection under Adversarial Program Transformation

In Chapter 4, we attempt to address the challenge of malware detection against

program transformation – a process in which the malware author changes the program

syntax while still maintains the original semantics or key malicious funciton. We formalize

potential transformation to program syntax as logic relations, and propose a provably

robust approach of learning on normalized inputs. In theory, we compare two approaches –

program normalization and robust optimization – in terms of their objectives, robustness

guarantees, model capacity requirement and hardness in training. In practice, we launch

two novel API-substitution attacks against detectors using neural net models, and validate

the gain in robustness on real world data sets using program normalization.

Effectiveness Analysis of Data Poisoning Defenses for Online Learning

In Chapter 5 and 6, we investigate data poisoning attacks and defenses for online

learning, in which data arrives in stream and the model makes real-time prediction. In

Chapter 5, we introduce two general attack objectives for online learning – semi-online and

fully-online – and design computationally efficient attack algorithms for both objectives.

These highly effective attacks against learners using the popular online gradient descent

algorithm shows the security threats and calls for effective defenses. In Chapter 6, we

analyze the conditions for which defense mechanisms are effective or fragile for general

filtering based defense mechanisms, and instantiate the analysis for L2-norm based defenses

and two popular data-dependent defenses – L2-distance-to-centroid and Slab. The results

are validated on various real-world data sets, and can serve as guidelines for practitioners
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in choosing defense mechanism and parameters.
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Chapter 2

Related Work

2.1 Adversarial Examples, Test-time Adversarial At-

tack and Defenses

2.1.1 Under Lp-norm Constraints

[SZS+13] first finds adversarial examples to neural net models with small Lp-norm

of perturbation by solving a contrained optimization problem. Since then, there has a

plethora of work on finding adversarial examples. [GSS14] proposes the first gradient based

method, the fast gradient sign method (FGSM), which is able to generate adversarial

examples using a single round of gradient computation. [MDFF15] and [MMS+17] further

improve the gradient-based methods to generate adversarial examples of smaller Lp-norm of

perturbation than using [GSS14]’s method within comparable time. Meanwhile, adversarial

attacks are also extended to indifferentiable, non-parametric models, as [ABE+16, PMG16]

successfully find adversarial examples for nearest neighbors and decision tree.

In addition to improving white-box attacks where the attackers have full knowledge

of the model parameters and outputs, another important line of work focuses on more
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realistic threat models, in which the attackers only have limited knowledge of the models

and limited access to model outputs. [PMG16] finds adversarial examples “transferable” –

the adversarial examples to one model can also be used to attack a similar model. Such

transferability enables black-box attacks against unknown models by crafting adversarial

examples for the attacker’s own substitute models on the same task. [CZS+17] proposes

attacks using only the zeroth order output of the model as the attacker often do not have

access to gradient information in real-world applications. [PYZ18] further lowers the cost

of black-box attack by reducing the number of queries to the victim models. Work on these

threat models also implies that security by obscurity is not an effective approach against

adversarial attacks.

The security threats have motivated a large volume of work on the defense end.

[MMS+18] formulates the defense into a min-max optimization problem and proposes

a principled approach – adversarial training – to increase the model’s robustness to

adversarial examples. [MC17] focus on detecting adversarial examples via learning the

manifold of clean inputs using labeled and unlabeled data. Work including [HA17, ZYJ+19]

adds regularization terms to the empirical risk minimization learning process, where the

regularizers are associated with model robustness. Lastly, [LAG+19] uses differential

privacy techniques to ensure the model’s outputs are insensitive to changes in inputs. These

approaches do increase the model robustness to various extent. However, they either are

broken by new attacks or give up too much accuracy on clean inputs, and hence the arms

race between attacker and defender continues.

Instead of developing increasingly sophisticated empirical attacks and defenses,

our work in Chapter 3 is one of the first to provide theoretical insights on the cause of

adversarial examples. We introduce a theoretical framework analogous to bias-variance

theory for understanding the impact of the underlying data distribution and sample size

to model robustness. We use our framework to analyze the robustness of a canonical
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non-parametric classifier – the k-nearest neighbors, and proposes a novel 1-nearest neighbor

classifier with robustness guarantees in large sample limit. The robustness of the modified

1-NN algorithm is also validated against both white-box and black-box attacks.

2.1.2 Beyond Lp-norm Constraints

For image recognition, [ETT+17] raises the question that Lp-norm constraints on

perturbation is not sufficient to capture all adversarial images that are visually similar to

the original legitimate input. [HP18] has found successful attacks against image classifiers

by rotation and change of backgrounds, which still keeps the semantic meaning of the

image by human perception. The study of semantic-preserving attacks quickly extends

to natural language processing, as [ERLD17, YCH+18, LWC+19, ZSAL19, HSW+19] find

that some state-of-the-art models are not robust to word substitution using synonym.

One domain that has been severely threatened by semantic-preserving adversarial

examples is system security, as [GPM+17, ADHHO18, RSRE18, HT18, RSER19] find that

machine learning based malware detectors fails when the attacker adds dummy calls in

program and running traces. Such vulnerability also leads to the discussion of whether

machine learning should be used in the security domain [SMK+18].

While current defenses has lead to empirically more robust defense to specific

attacks, there is a general lacking of provably robust defense mechanism. In Chapter 4, we

look closely into semantic-preserving examples for malware detection over binary encoded

input feature vectors. We formalize the adversarial action as logical transformation,

and try two approaches – program normalization and robust optimization – to enhance

model’s robustness. We show that the normalization approach can provably enhance model

robustness against adversarial attack using program transformation, and find that both

approaches have good empirical performances.
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2.2 Data Poisoning Attack and Defenses

2.2.1 Attacks

Prior work on data poisoning has mostly looked at offline learning algorithms. This

includes attacks on spam filters [NBC+08] and malware detection [NKS06] to more recent

work on sentiment analysis [NPXNR14] and collaborative filtering [LWSV16]. [BNL12]

developed the first gradient-ascent-based poisoning attack on offline SVMs; this technique

was later extended to neural networks [MGBD+17]. Mei and Zhu [MZ15] propose a general

optimization framework for poisoning attacks in the offline setting; they show how to use

KKT conditions to efficiently calculate the gradients for gradient ascent.

In contrast, little is known about poisoning attacks in more online and adaptive

settings prior to our work in Chapter 5. [BL17] invesigates the effect of poisoning over data

stream on the final classifier of online learning algorithms; however, the poisoning goal is

limited to misclassify a pre-specified input. [AZB16] attacks an autoregressive model to

yield desired outputs by altering the initial input; however their attack does not alter the

model parameters, nor does it have access to the training process. Steinhardt et al. [SKL17]

uses an online learning framework to generate a poisoning data set, but their attack and

certified defense both apply to offline learning algorithms. Lastly, [HPG+17] and [LHL+17]

consider attacks against an reinforcement learning agent. However, the attacks only provide

adversarial examples at test time using gradient methods; the policies are already learned

and the attacker has no access to the training process.

In Chapter 5, we initiate a systematic investigation of data poisoning attack for

online learning. We formalize two general settings – semi-online and fully-online – which

covers a wide range of online learning scenarios including [BL17]’s. We propose gradient-

based computationally efficient algorithms to find the poisoning examples in both settings.

These optimization problems are considerably more complex than than in [BNL12] and
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[MZ15] because the KKT conditions in [MZ15] no longer apply. We address the challenges

with novel optimization processes.

2.2.2 Defenses

Previous work on data poisoning defenses has attempted to provide theoretical bound

of the effectiveness of poisoning attack as well as provide practical learning algorithms that

deter the attacks. [DKK+18b] provides a convex optimization algorithm that is resistant

to data poisoning attacks and has provable guarantees. [SKL17] bounds the effectiveness

of offline data poisoning attacks using online learning losses. [JOB+18] proposes a robust

regression learning algorithm that removes potential poisoning examples based on their

losses over the fitted model. These results, however, only applies to the offline learning

scenario, as the algorithms requires knowledge of the entire data sets, which is unavailable

to the learner in the online setting. Meanwhile, there has also been prior work on outlier

detection by [DKS16, DKK+17, DKK+18a]; however, these are largely in the unsupervised

learning setting.

To the best of our knowledge, our work in Chapter 6 is the first to provide theoretical

performance guarantees of attacks and defenses for online data poisoning. We analyze the

conditions under which online poisoning attack is rapid or impossible for various defense

mechanisms, and validate the effectiveness of popular data-dependent defense mechanisms

on a number real-world data sets.

2.3 Security and Program Analysis

2.3.1 Machine-Learning Based Malware Detection

Machine-learning techniques have recently been widely used for malware detection

and reportedly achieved high performance over inputs of both static program analysis and
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dynamic traces [ASH+14, HS16]. Unfortunately such state-of-the-art malware detectors are

still vulnerable to attacks that adaptively transform the malware or its dynamic behavior

while keeping the malicious functionality [GPM+17, ADHHO18, RSRE18, HT18, RSER19].

[GPM+17, ADHHO18] attack binary API/library usage based neural net detectors by

adding dummy API calls and library import on the feature level, and then enhance the

model’s robustness using adversarial training. Similarly, [RSRE18, HT18] attacks dynamic

traces based recurrent neural net detectors via inserting API calls into the program traces.

On the defense side, [ITAW18] enforces robustness against API additions by using monotonic

classifiers.

Compared to [GPM+17, ADHHO18, RSRE18, HT18, ITAW18], our work in Chap-

ter 4 consider model robustness against more general set of adversarial actions beyond

simple addition. We formally define possible adversarial actions as transformations that

respect sets of logical relations, which can readily incorporate other program obfuscation

actions such as API substitution and re-implementation. The work that also considers

subsitution is [RSER19], which groups API calls with similar embedding and squeezes

similar calls in dynamic traces. While [RSER19] takes a statistical approach of learning

the grouping from data, our work instead focuses on enforcing known logical relations in

the model, and the relation can be more general than similarity between single API calls.

2.3.2 Program Normalization

Normalization was introduced to network security in the early 2000s in the context

of network intrusion detection systems [HPK01] and later applied to malware detec-

tion [CJK+07]. In both settings, normalization is a technique to reduce the number of

syntactically distinct instances that need to be considered by the detection system. This

is particularly important in security systems that are based on rules, as operating on

normalized instances immediately translates to fewer classification rules and presumedly
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better accuracy as the class of malicious items can be covered by rules. A particular

subset of normalization, known as deobfuscation, targets the evasion techniques commonly

used by malware writers: virtualization [CLD11], layout obfuscation [BRTV16], renaming

obfuscation [BPM17], and metadata hiding [SB16].

In Chapter 4, we address the open problem whether normalization is useful in the

context of machine learning-based malware detection. We show the security guarantee and

performance trade-off using feature normalization and validate the results on real-world

data set.

2.4 Learning Related

2.4.1 Nearest Neighbor Classification

There has been a body of work on the convergence and consistency of nearest-

neighbor classifiers and their many variants [CH67, Sto77, KP95, DW77, CD14, KW15];

all these works however consider accuracy and not robustness.

In the asymptotic regime, [CH67] shows that the accuracy of 1-nearest neighbors

converges in the large sample limit to 1−2R∗(1−R∗) where R∗ is the error rate of the Bayes

Optimal classifier. This implies that even 1-nearest neighbor may achieve relatively high

accuracy even when p(y = 1|x) is not 0 or 1. In contrast, we show that 1-nearest neighbor

is inherently non-robust when p(y = 1|x) ∈ (0, 1) under some continuity conditions.

For larger k, the accuracy of k-nearest neighbors is known to converge to that of

the Bayes Optimal classifier if kn →∞ and kn/n→ 0 as the sample size n→∞. We show

that the robustness also converges to that of the Bayes Optimal classifier when kn grows at

a much higher rate – fast enough to ensure uniform convergence. Whether this high rate is

necessary remains an intriguing open question.

Finite sample rates on the accuracy of nearest neighbors are known to depend
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heavily on properties of the data distribution, and there is no distribution free rate as in

parametric methods [DW77]. [CD14] provides a clean characterization of the finite sample

rates of nearest neighbors as a function of natural interiors of the classes. Here we build on

their results by defining a stricter, more robust version of interiors and providing bounds

as functions of these new robust quantities.

In Chapter 3, we propose a novel 1-nearest-neighbor algorithm to increase the

robustness in the presence of test-time adversaries. We also analyze the large sample limit

performance of the proposed algorithm.

2.4.2 Model Interpretability

Another related field in machine learning is model interpretability, which attempts

to explain machine learning model’ decision and extract knowledge from model [RSG16,

STY17, GMR+19]. In Chapter 4, we use the method in [STY17] to interpret our learned

model as a sanity check to see if our model’s basis of prediction matches human expert’s

expectation.
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Chapter 3

Analyzing the Robustness of Nearest

Neighbor to Adversarial Examples

3.1 Introduction

Motivated by safety-critical applications, test-time attacks on classifiers via adver-

sarial examples has recently received a great deal of attention. However, there is a general

lack of understanding on why adversarial examples arise; whether they originate due to

inherent properties of data or due to lack of training samples remains ill-understood.

In this chapter, we develop a theoretical framework for robust learning in order to

understand the effects of distributional properties and finite samples on robustness. Building

on traditional bias-variance theory [FHT00], we posit that a classification algorithm may be

robust to adversarial examples due to three reasons. First, it may be distributionally robust,

in the sense that the output classifier is robust as the number of training samples grow

to infinity. Second, even the output of a distributionally robust classification algorithm

may be vulnerable due to too few training samples – this is characterized by finite sample

robustness. Finally, different training algorithms might result in classifiers with different
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degrees of robustness, which we call algorithmic robustness. These quantities are analogous

to bias, variance and algorithmic effects respectively.

Next, we analyze a simple non-parametric classification algorithm: k-nearest neigh-

bors in our framework. Our analysis demonstrates that large sample robustness properties

of this algorithm depend very much on k.

Specifically, we identify two distinct regimes for k with vastly different robustness

properties. When k is constant, we show that k-nearest neighbors has zero robustness in

the large sample limit in regions where p(y = 1|x) lies in (0, 1). This is in contrast with

accuracy, which may be quite high in these regions. For k = Ω(
√
dn log n), where d is the

data dimension and n is the sample size, we show that the robustness region of k-nearest

neighbors approaches that of the Bayes Optimal classifier in the large sample limit. This

is again in contrast with accuracy, where convergence to the Bayes Optimal accuracy is

known for a much slower growing k [DGKL94, CD14].

Since k = Ω(
√
dn log n) is too high to use in practice with nearest neighbors, we

next propose a novel robust version of the 1-nearest neighbor classifier that operates on

a modified training set. We provably show that in the large sample limit, this algorithm

has superior robustness to standard 1-nearest neighbors for data distributions with certain

properties.

Finally, we validate our theoretical results by empirically evaluating our algorithm

on three datasets against several popular attacks. Our experiments demonstrate that our

algorithm performs better than or about as well as both standard 1-nearest neighbors and

nearest neighbors with adversarial training – a popular and effective defense mechanism.

This suggests that although our performance guarantees hold in the large sample limit, our

algorithm may have good robustness properties even for realistic training data sizes.
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3.2 The Setting

3.2.1 The Basic Setup

We consider test-time attacks in a white box setting, where the adversary has full

knowledge of the training process – namely, the type of classifier used, the training data

and any parameters – but cannot modify training in any way.

Given an input x, the adversary’s goal is to perturb it so as to force the trained

classifier f to report a different label than f(x). The amount of perturbation is measured

by an application-specific metric d, and is constrained to be within a radius r. Our analysis

can be extended to any metric, but for this chapter we assume that d is the Euclidean

distance for mathematical simplicity; we also focus on binary classification, and leave

extensions to multiclass for future work.

Finally, we assume that unlabeled instances are drawn from an instance space

X , and their labels are drawn from the label space {0, 1}. There is an underlying data

distribution D that generates labeled examples; the marginal over X of D is µ and the

conditional distribution of labels given x is denoted by η.

3.2.2 Robustness and Astuteness

We begin by defining robustness, which for a classifier f at input x is measured by

the robustness radius.

Definition 3.2.1 (Robustness Radius). The robustness radius of a classifier f at an

instance x ∈ X , denoted by ρ(f, x), is the shortest distance between x and an input x′ to

which f assigns a label different from f(x):

ρ(f, x) = inf
r
{∃x′ ∈ X ∩B(x, r) s.t f(x) 6= f(x′)}
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Observe that the robustness radius measures a classifier’s local robustness. A

classifier f with robustness radius r at x guarantees that no adversarial example of x with

norm of perturbation less than r can be created using any attack method. A plausible way

to extend this into a global notion is to require a lower bound on the robustness radius

everywhere; however, only the constant classifier will satisfy this condition. Instead, we

consider robustness around meaningful instances, that we model as examples drawn from

the underlying data distribution.

Definition 3.2.2 (Robustness with respect to a Distribution). The robustness of a classifier

f at radius r with respect to a distribution µ over the instance space X , denoted by R(f, r, µ),

is the fraction of instances drawn from µ for which the robustness radius is greater than or

equal to r.

R(f, r, µ) = Pr
x∼µ

(ρ(f, x) ≥ r)

Finally, observe that we are interested in classifiers that are both robust and accurate.

This leads to the notion of astuteness, which measures the fraction of instances on which a

classifier is both accurate and robust.

Definition 3.2.3 (Astuteness). The astuteness of a classifier f with respect to a data

distribution D and a radius r is the fraction of examples on which it is accurate and has

robustness radius at least r; formally,

AstD(f, r) = Pr
(x,y)∼D

(ρ(f, x) ≥ r, f(x) = y),

Observe that astuteness is analogous to classification accuracy, and we argue that

it is a more appropriate metric if we are concerned with both robustness and accuracy.

Unlike accuracy, astuteness cannot be directly empirically measured unless we have a way

to certify a lower bound on the robustness radius. In this work, we will prove bounds on
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the astuteness of classifiers, and in our experiments, we will approximate it by measuring

resistance to standard attacks.

3.2.3 Sources of Robustness

There are three plausible reasons why classifiers lack robustness – distributional,

finite sample and algorithmic. These sources are analogous to bias, variance, and algorithmic

effects respectively in standard bias-variance theory.

Distributional robustness measures the effect of the data distribution on robustness

when an infinitely large number of samples are used to train the classifier. Formally, if

Sn is a training sample of size n drawn from D and A(Sn, ·) is a classifier obtained by

applying the training procedure A on Sn, then the distributional robustness at radius r is

limn→∞ ESn∼D[R(A(Sn, ·), r, µ)].

In contrast, for finite sample robustness, we characterize the behaviour ofR(A(Sn, ·), r, µ)

for finite n – usually by putting high probability bounds over the training set. Thus, finite

sample robustness depends on the training set size n, and quantifies how it changes with

sample size. Finally, robustness also depends on the training algorithm itself; for example,

some variants of nearest neighbors may have higher robustness than nearest neighbors

itself.

3.2.4 Nearest Neighbor and Bayes Optimal Classifiers

Given a training set Sn = {(X1, Y1), . . . , (Xn, Yn)} and a test example x, we use the

notation X(i)(x) to denote the i-th nearest neighbor of x in Sn, and Y (i)(x) to denote the

label of X(i)(x).
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Given a test example x, the k-nearest neighbor classifier Ak(Sn, x) outputs:

= 1, if Y (1)(x) + . . .+ Y (k)(x) ≥ k/2

= 0, otherwise.

The Bayes optimal classifier g over a data distribution D has the following classifi-

cation rule:

g(x) =

 1 if η(x) = Pr(y = 1|x) ≥ 1/2;

0 otherwise.
(3.1)

3.3 Robustness of Nearest Neighbors

How robust is the k-nearest neighbor classifier? We show that it depends on the

value of k. Specifically, we identify two distinct regimes – constant k and k = Ω(
√
dn log n)

where d is the data dimension – and show that nearest neighbors has different robustness

properties in the two.

3.3.1 Low k Regime

In this region, k is a constant that does not depend on the training set size n.

Provided certain regularity conditions hold, we show that k-nearest neighbors is inherently

non-robust in this regime unless η(x) ∈ {0, 1} – in the sense that the distributional

robustness becomes 0 in the large sample limit.

Theorem 3.3.1. Let x ∈ X ∩ supp(µ) such that (a) µ is absolutely continuous with respect

to the Lebesgue measure (b) η(x) ∈ (0, 1) (c) η is continuous with respect to the Euclidean

metric in a neighborhood of x. Then, for fixed k, ρ(Ak(Sn, ·), x) converges in probability to

0.
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Remarks. Observe that Theorem 3.3.1 implies that the distributional robustness (and

hence astuteness) in a region where η(x) ∈ (0, 1) is 0. This is in contrast with accuracy; for

1-NN, the accuracy converges to 1− 2R∗(1−R∗) as n→∞, where R∗ is the error rate of

the Bayes Optimal classifier, and thus may be quite high.

The proof of Theorem 3.3.1 in the Appendix shows that the absolute continuity

of µ with respect to the Lebesgue measure is not strictly necessary; absolute continuity

with respect to an embedded manifold will give the same result, but will result in a more

complex proof.

In the Appendix A (Theorem A.2), we show that k-nearest neighbor is astute in

the interior of the region where η ∈ {0, 1}, and provide finite sample rates for this case.

3.3.2 High k Regime

Prior work has shown that in the large sample limit, the accuracy of the nearest

neighbor classifiers converge to the Bayes Optimal, provided k is set properly. We next

show that if k is Ω(
√
dn log n), the regions of robustness and the astuteness of the k nearest

neighbor classifiers also approach the corresponding quantities for the Bayes Optimal

classifier as n→∞. Thus, if the Bayes Optimal classifier is robust, then so is k-nearest

neighbors in the large sample limit.

The main intuition is that k = Ω(
√
dn log n) is large enough for uniform convergence

– where, with high probability, all Euclidean balls with k examples have the property that

the empirical averages of their labels are close to their expectations. This guarantees that

for any x, the k-nearest neighbor reports the same label as the Bayes Optimal classifier for

all x′ close to x. Thus, if the Bayes Optimal classifier is robust, so is nearest neighbors.
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Definitions

We begin with some definitions that we can use to characterize the robustness of the

Bayes Optimal classifier. Following [CD14], we use the notation Bo(x, r) to denote an open

ball and B(x, r) to denote a closed ball of radius r around x. We define the probability

radius of a ball around x as:

rp(x) = inf{r | µ(B(x, r)) ≥ p}

We next define the r-robust (p,∆)-strict interiors as follows:

X+
r,∆,p = {x ∈ supp(µ) | ∀x′ ∈ Bo(x, r),

∀x′′ ∈ B(x′, rp(x
′)), η(x′′) > 1/2 + ∆}

X−r,∆,p = {x ∈ supp(µ) | ∀x′ ∈ Bo(x, r),

∀x′′ ∈ B(x′, rp(x
′)), η(x′′) < 1/2−∆}

What is the significance of these interiors? Let x′ be an instance such that all

x′′ ∈ B(x′, rp(x
′)) have η(x′′) > 1/2 + ∆. If p ≈ k

n
, then the k points x′′ closest to x′ have

η(x′′) > 1/2 + ∆. Provided the average of the labels of these points is close to expectation,

which happens when k is large relative to 1/∆, k-nearest neighbor outputs label 1 on x′.

When x is in the r-robust (p,∆)-strict interior region X+
r,∆,p, this is true for all x′ within

distance r of x, which means that k-nearest neighbors will be robust at x. Thus, the

r-robust (p,∆)-strict interior is the region where we natually expect k-nearest neighbor to

have robustness radius r, when k is large relative to 1
∆

and p ≈ k
n
.

Readers familiar with [CD14] will observe that the set of all x′ for which ∀x′′ ∈

B(x′, rp(x
′)), η(x′′) > 1/2 + ∆ forms a stricter version of the (p,∆)-interiors of the 1

region that was defined in this work; these x′ also represent the region where k-nearest
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neighbors are accurate when k ≈ max(np, 1/∆2). The r-robust (p,∆)-strict interior is thus

a somewhat stricter and more robust version of this definition.

Main Results

We begin by characterizing where the Bayes Optimal classifier is robust.

Theorem 3.3.2. The Bayes Optimal classifier has robustness radius r at x ∈ X+
r,0,0∪X−r,0,0.

Moreover, its astuteness is E[η(x)1(x ∈ X+
r,0,0)] + E[(1− η(x))1(x ∈ X−r,0,0)].

The proof is in the Appendix, along with analogous results for astuteness. The

following theorem, along with a similar result for astuteness, proved in the Appendix,

characterizes robustness in the large k regime.

Theorem 3.3.3. For any n, pick a δ and a ∆n → 0. There exist constant C1 and C2 such

that if kn ≥ C1

√
dn logn+n log(1/δn)

∆n
, and pn ≥ kn

n
(1 +C2

√
d logn+log(1/δ)

kn
), then, with probability

≥ 1− 3δ, kn-NN has robustness radius r in x ∈ X+
r,∆n,pn

∪ X−r,∆n,pn
.

Remarks. Some remarks are in order. First, observe that as n→∞, ∆n and pn tend

to 0; thus, provided certain continuity conditions hold, X+
r,∆n,pn

∪ X−r,∆n,pn
approaches

X+
r,0,0 ∪ X−r,0,0, the robustness region of the Bayes Optimal classifier.

Second, observe that as r-robust strict interiors extend the definition of interiors

in [CD14], Theorem 3.3.3 is a robustness analogue of Theorem 5 in this work. Unlike the

latter, Theorem 3.3.3 has a more stringent requirement on k. Whether this is necessary is

left as an open question for future work.

3.4 A Robust 1-NN Algorithm

Section 3.3 shows that nearest neighbors is robust for k as large as Ω(
√
dn log n).

However, this k is too high to use in practice – high values of k require even higher sample
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sizes [CD14], and lead to higher running times. Thus a natural question is whether we can

find a more robust version of the algorithm for smaller k. In this section, we provide a

more robust version of 1-nearest neighbors, and analytically demonstrate its robustness.

Our algorithm is motivated by the observation that 1-nearest neighbor is robust

when oppositely labeled points are far apart, and when test points lie close to training

data. Most training datasets however contain nearby points that are oppositely labeled;

thus, we propose to remove a subset of training points to enforce this property.

Which points should we remove? A plausible approach is to keep the largest subset

where oppositely labeled points are far apart; however, this subset has poor stability

properties even for large n. Therefore, we propose to keep all points x such that: (a) we

are highly confident about the label of x and its nearby points and (b) all points close to x

have the same label. Given that all such x are kept, we remove as few points as possible,

and execute nearest neighbors on the remaining dataset.

The following definition characterizes data where oppositely labeled points are far

apart.

Definition 3.4.1 (r-separated set). A set A = {(x1, y1), . . . , (xm, ym)} of labeled examples

is said to be r-separated if for all pairs (xi, yi), (xj, yj) ∈ A, ‖xi − xj‖ ≤ r implies yi = yj.

The full algorithm is described in Algorithm 1 and Algorithm 2. Given confidence

parameters ∆ and δ, Algorithm 2 returns a 0/1 label when this label agrees with the average

of kn points closest to x; otherwise, it returns ⊥. kn is chosen such that with probability

≥ 1 − δ, the empirical majority of kn labels agrees with the majority in expectation,

provided the latter is at least ∆ away from 1
2
.

Algorithm 2 is used to determine whether an xi should be kept. Let f(xi) be the

output of Algorithm 2 on xi. If yi = f(xi) and if for all xj ∈ B(xi, r), f(xi) = f(xj) = yi,

then we mark xi as red. Finally, we compute the largest r-separated subset of the training

data that includes all the red points; this reduces to a constrained matching problem as
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in [KW15]. The resulting set, returned by Algorithm 1, is our new training set. We observe

that this set is r-separated from Lemma A.2.2 in the Appendix, and thus oppositely labeled

points are far apart. Moreover, we keep all (xi, yi) when we are confident about the label

of xi and its nearby points. Observe that our final procedure is a 1-NN algorithm, even

though kn neighbors are used to determine if a point should be retained in the training set.

Algorithm 1 Robust-1NN(Sn, r, ∆, δ, x)

for (xi, yi) ∈ Sn do
f(xi) = Confident-Label(Sn,∆, δ, xi)

end for
SRED = ∅
for (xi, yi) ∈ Sn do

if f(xi) = yi and f(xi) = f(xj) for all xj such that ‖xi − xj‖ ≤ r and (xj, yj) ∈ Sn
then
SRED = SRED

⋃
{(xi, yi)}

end if
end for
Let S ′ be the largest 2r-separated subset of Sn that contains all points in SRED.
return new training set S ′

Algorithm 2 Confident-Label(Sn, ∆, δ, x)

kn = 3 log(2n/δ)/∆2

ȳ = (1/kn)
∑kn

i=1 Y
(i)(x)

if ȳ ∈ [1
2
−∆, 1

2
+ ∆] then

return ⊥
else

return 1
2
sgn(ȳ − 1

2
) + 1

2

end if

3.4.1 Performance Guarantees

The following theorem establishes performance guarantees for Algorithm 1.

Theorem 3.4.2. Pick a ∆n and δ, and set kn = 3 log(2n/δ)/∆2
n. Pick a margin parameter

τ . Then, there exist constants C and C0 such that the following hold. If we set pn =
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kn
n

(1 + C
√

d logn+log(1/δ)
kn

), and define the set:

XR =

{
x
∣∣∣x ∈ X+

r+τ,∆n,pn
∪ X−r+τ,∆n,pn

,

µ(B(x, τ)) ≥ 2C0

n
(d log n+ log(1/δ))

}

Then, with probability ≥ 1− 2δ over the training set, Algorithm 1 run with parameters r,

∆n and δ has robustness radius at least r − 2τ on XR.

Remarks. The proof is in the Appendix, along with an analogous result for astuteness.

Observe that XR is roughly the high density subset of the (r + τ)-robust strict interior

X+
r+τ,∆n,pn

∪ X−r+τ,∆n,pn
. Since η(x) is constrained to be greater than 1

2
+ ∆n or less than

1
2
−∆n in this region, as opposed to 0 or 1, this is an improvement over standard nearest

neighbors when the data distribution has a large high density region that intersects with

the interiors.

A second observation is that as τ is an arbitrary constant, we can set to it be quite

small and still satisfy the condition on µ(B(x, τ)) for a large fraction of x’s when n is very

large. This means that in the large sample limit, r − 2τ may be close to r and XR may be

close to the high density subset of X+
r,∆n,pn

∪ X−r,∆n,pn
for a lot of smooth distributions.

3.5 Experiments

The results in Section 3.4 assume large sample limits. Thus, a natural question is

how well Algorithm 1 performs with more reasonable amounts of training data. We now

empirically investigate this question.

Since there are no general methods that certify robustness at an input, we assess

robustness by measuring how our algorithm performs against a suite of standard attack
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Figure. 3.1: White Box Attacks: Plot of classification accuracy on adversarial
examples v.s. attack radius. Top row: Direct Attack. Bottom row: Kernel Substitute
Attack. Left to right: 1) Halfmoon, 2) MNIST 1v 7 and 3) Abalone.

methods. Specifically, we consider the following questions:

1. How does our algorithm perform against popular white box and black box attacks

compared with standard baselines?

2. How is performance affected when we change the training set size relative to the data

dimension?

These questions are considered in the context of three datasets with varying training

set sizes relative to the dimension, as well as two standard white box attacks and black

box attacks with two kinds of substitute classifiers.

3.5.1 Methodology

Data

We use three datasets – Halfmoon, MNIST 1v7 and Abalone – with differing data

sizes relative to dimension. Halfmoon is a popular 2-dimensional synthetic data set for

non-linear classification. We use a training set of size 2000 and a test set of size 1000

generated with standard deviation σ = 0.2. The MNIST 1v7 data set is a subset of the
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Figure. 3.2: Black Box Attacks: Plot of classification accuracy on adversarial
examples v.s. attack radius. Top to Bottom: 1) kernel substitute, 2) neural net
substitute. Left to right: 1) Halfmoon, 2) MNIST 1 v.s. 7 and 3) Abalone.

784-dimensional MNIST data. For training, we use 1000 images each of Digit 1 and 7, and

for test, 500 images of each digit. Finally, for the Abalone dataset [Lic13], our classification

task is to distinguish whether an abalone is older than 12.5 years based on 7 physical

measurements. For training, we use 500 and for test, 100 samples. In addition, a validation

set with the same size as the test set is generated for each experiment for parameter tuning.

Baselines

We compare Algorithm 1, denoted by RobustNN, against three baselines. The first

is the standard 1-nearest neighbor algorithm, denoted by StandardNN. We use two forms

of adversarially-trained nearest neighbors - ATNN and ATNN-all. Let S be the training

set used by standard nearest neighbors. In ATNN, we augment S by creating, for each

(x, y) ∈ S, an adversarial example xadv using the attack method in the experiment, and

adding (xadv, y). The ATNN classifier is 1-nearest neighbor on this augmented data. In

ATNN-all, for each (x, y) ∈ S, we create adversarial examples using all the attack methods

in the experiment, and add them all to S. ATNN-all is the nearest neighbor classifier on

this augmented data. For example, for white box Direct Attacks in Section 3.5.2, ATNN

includes adversarial examples generated by the Direct Attack, and ATNN-all includes
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adversarial examples generated by both Direct and Kernel Substitute Attacks.

Observe that all algorithms except StandardNN have parameters to tune. RobustNN

has three input parameters – ∆, δ and a defense radius r which is an approximation to the

robustness radius. For simplicity, we set ∆ = 0.45, δ = 0.1 and tune r on the validation set;

this can be viewed as tuning the parameter τ in Theorem 3.4.2. For ATNN and ATNN-

all, the methods that generate the augmenting adversarial examples need a perturbation

magnitude r; we call this the defense radius. To be fair to all algorithms, we tune the

defense radius for each. We consider the adversary with the highest attack perturbation

magnitude in the experiment, and select the defense radius that yields the highest validation

accuracy against this adversary.

3.5.2 White-box Attacks and Results

To evaluate the robustness of Algorithm 1, we use two standard classes of attacks

– white box and black box. For white-box attacks, the adversary knows all details about

the classifier under attack, including its training data, the training algorithm and any

hyperparameters.

Attack Methods

We consider two white-box attacks – direct attack [ABE+16] and Kernel Substitute

Attack [PMG16].

Direct Attack. This attack takes as input a test example x, an attack radius r,

and a training dataset S (which may be an augmented or reduced dataset). It finds an

x′ ∈ S that is closest to x but has a different label, and returns the adversarial example

xadv = x+ r x−x′
||x−x′||2 .

Kernel Substitute Attack. This method attacks a substitute kernel classifier

trained on the same training set. For a test input ~x, a set of training points Z with one-hot
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labels Y , a kernel classifier f predicts the class probability as:

f : ~x→

[
e−||~x−~z||

2
2/c
]
~z∈X∑

~z∈X e
−||~x−~z||22/c

· Y

The adversary trains a kernel classifier on the training set of the corresponding nearest

neighbors, and then generates adversarial examples against this kernel classifier. The

advantage is that the prediction of the kernel classifier is differentiable, which allows the

use of standard gradient-based attack methods. For our experiments, we use the popular

fast-gradient-sign method (FSGM). The parameter c is tuned to yield the most effective

attack, and is set to 0.1 for Halfmoon and MNIST, and 0.01 for Abalone.

Results

Figure 3.1 shows the results. We see that RobustNN outperforms all baselines for

Halfmoon and Abalone for all attack radii. For MNIST, for low attack radii, RobustNN’s

classification accuracy is slightly lower than the others, while it outperforms the others for

large attack radii. Additionally, as is to be expected, the Direct Attack results in lower

general accuracy than the Kernel Substitute Attack.

These results suggest that our algorithm mostly outperforms the baselines Stan-

dardNN, ATNN and ATNN-all. As predicted by theory, the performance gain is higher

when the training set size is large relative to the dimension – which is the setting where

nearest neighbors work well in general. It has superior performance for Halfmoon and

Abalone, where the training set size is large to medium relative to dimension. In contrast,

in the sparse dataset MNIST, our algorithm has slightly lower classification accuracy for

small attack radii, and higher otherwise.
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3.5.3 Black-box Attacks and Results

[PMG+17] has observed that some defense methods that work by masking gradients

remain highly amenable to black box attacks. In this attack, the adversary is unaware of

the target classifier’s nature, parameters or training data, but has access to a seed dataset

drawn from the same distribution which they use to train and attack a substitute classifier.

To establish robustness properties of Algorithm 1, we therefore validate it against black

box attacks based on two types of substitute classifiers.

Attack Methods

We use two types of substitute classifiers – kernel classifiers and neural networks.

The adversary trains the substitute classifier using the method of [PMG+17] and uses the

adversarial examples against the substitute to attack the target classifier.

Kernel Classifier. The kernel classifier substitute is the same as the one in

Section 3.5.2, but trained using the seed data and the method of [PMG+17].

Neural Networks. The neural network for MNIST is the ConvNet in [PCG+17]’s

tutorial. For Halfmoon and Abalone, the network is a multi-layer perceptron with 2 hidden

layers.

Procedure. To train the substitute classifier, the adversary uses the method

of [PMG16] to augment the seed data for two rounds; labels are obtained by querying

the target classifier. Adversarial examples against the substitutes are created by FGSM,

following [PMG16]. As a sanity check, we verify the performance of the substitute classifiers

on the original training and test sets. Details are in Table A.1 in the Appendix. Sanity

checks on the performance of the substitute classifiers are presented in Table A.1 in the

Appendix.
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Results

Figure 3.2 shows the results. For all algorithms, black box attacks are less effective

than white box, which corroborates the results of [PMG16], who observed that black-box

attacks are less successful against nearest neighbors. We also find that the kernel substitute

attack is more effective than the neural network substitute, which is expected as kernel

classifiers have similar structure to nearest neighbors. Finally, for Halfmoon and Abalone,

our algorithm outperforms the baselines for both attacks; however, for MNIST neural

network substitute, our algorithm does not perform as well for small attack radii. This

again confirms the theoretical predictions that our algorithm’s performance is better when

the training set is large relative to the data dimension – the setting in which nearest

neighbors work well in general.

3.5.4 Discussion

The results show that our algorithm performs either better than or about the same

as standard baselines against popular white box and black box attacks. As expected from

our theoretical results, it performs better for denser datasets which have high or medium

amounts of training data relative to the dimension, and either slightly worse or better for

sparser datasets, depending on the attack radius. Since non-parametric methods such as

nearest neighbors are mostly used for dense data, this suggests that our algorithm has

good robustness properties even with reasonable amounts of training data.

3.6 Conclusion

We introduce a novel theoretical framework for learning robust to adversarial

examples, and introduce notions of distributional and finite-sample robustness. We use

these notions to analyze a non-parametric classifier, k-nearest neighbors, and introduce a
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novel modified 1-nearest neighbor algorithm that has good robustness properties in the

large sample limit. Experiments show that these properties are still retained for reasonable

data sizes.
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Chapter 4

Robust Machine Learning-Based

Malware Detection Against Program

Transformation

4.1 Introduction

In this chapter, we consider the adversarial attack in malware detection task, in which

the attacker can change the syntax of the malicious software to evade detection while still

maintain the original malicious function. We generalize potential adversarial transformation

as logical relations, and evaluate two defense approaches – program normalization and

robust optimization – in both theory and practice. The program normalization approach is

robust by design.

Malware detection is a challenging problem in computer security and past approaches

based on pattern matching, although widely deployed and efficient, are reactive as they

detect only past threats. The success of machine learning in other data-driven classification

tasks in areas such as computer vision and natural language processing has drawn the
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attention of malware-detection researchers, who currently focus on using machine learning

to identify previously unseen malware samples [PSS+15, JSD+17, OPL13].

While machine learning-based malware detection has shown strong predictive power,

it has been shown that machine learning is open to carefully designed threats, as a

number of attacks showed that robustness of learned classifiers is not gained by default

[MMS+18, BR17, CW17]. Past work in adversarial machine learning observed that a variety

of attacks against malware detectors can be constructed, from poisoning of training data

sets (consisting of malware samples that are controlled by the adversary) [MZ15, BNL12]

to evasion via controlled misclassification [BCM+13, PMJ+16, SZS+13]. A solution that

addresses such attacks is to (re)train the machine-learning model, for example through an

adversarial-training procedure [MMS+18], in order to refine the detection boundary and

produce a new model with higher classification accuracy under adversarial attack.

Similar to natural language processing, malware detection operates in a discrete

feature domain. A feature is often a boolean variable, representing the presence of a

certain characteristic in the input program file or the occurrence of a certain behavior

in its execution. Typical examples include whether the program opens a certain file and

whether the program calls a certain API such as memcpy. In this discrete setting the threat

model in recent robust malware detection research is that of feature addition, under the

assumption that it is easier to add a new, extraneous feature to the program than to

remove a necessary one. This addition threat model is assumed by recent malware detection

attacks [GPM+16, GPM+17] and defenses [ITAW18, ADHHO18].

In this chapter, we challenge this commonly used threat model. We present new

attacks that can remove features from the input program and corresponding new defense

techniques. Our work is motivated by program obfuscation, a program transformation that

preserve semantics while changing syntactic structure to any degree desired. Applied to

the malware domain, obfuscation allows an adversary to create an unlimited number of
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new malicious samples. Semantics-preserving program transformations can be as simple

as replacing an API with another, such as replacing a call to printf library function

with a call to the cout library function. Following this approach, our new attacks are

based on replacing APIs with other equivalent APIs and are particularly potent against

malware-detection techniques that use as features the presence of APIs.

On the defense side, we abstract the impact of both addition and substitution

(and any other as program transformations) on the feature vector as a relations between

the features. For example, there is an equivalence relation between printf and cout and

intuitively a malware should be still classified as a malware after progrma transformations.

This abstraction step allows us to reduce the problem of constructing robust malware

detectors to that of learning a class while respecting a relation. However, machine learning

does not necessarily learn classifiers that respect a relation by default. Therefore, we believe

it is critical to develop machine learning techniques that respect a relation.

When considering the task of learning a classifier that respects a relation, a natural

question is whether the classifier can automatically learn the relation from the training

data, while under adversarial settings. This is the basic idea behind using adversarial

training [MMS+18]. We evaluate our substitution attacks against a state-of-the-art robust

malware detection technique [ADHHO18] and observe a 82.8% False Negative Rate (FNR)

for robust classifiers, whose FNR is under 10% against addition attacks. These results

show that substitution attacks pose real threats to robust malware detection and future

research on robust malware detection should also question the practicality of the addition

threat model.

Another approach to learning a classifier that respects a relation is to use normal-

ization, a technique introduced in network security and extended to programs when applied

to malware detection. Program normalization is used in practice as a way to reverse the

effects of obfuscation, by transforming a program to a semantically equivalent one that
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is simpler and thus easier to analyze and classify. A normalization technique induces an

equivalence relation over the set of all programs, with equivalence classes each having one

unique representative sample (a normalized program). In turn this can be used in the

malware detection task by applying normalization as a preprocessing step during both

training and inference and then using a machine-learning technique that is not necessarily

enhanced via adversarial training. We call this approach normalize-and-predict. It is an

open question whether normalization, initially used to help rule-based detection systems, is

useful or necessary for machine learning.

We compare adversarial learning with program normalization from both theoretical

and empirical perspectives. Our evaluation shows that adversarial training can achieve a

12.7% FNR, but is not as effective against substitution attacks as normalize-and-predict,

with a 7.4% FNR. It is surprising to us that adversarial training can achieve any reasonable

success against substitution attacks despite its probablistic nature. Therefore, we attempt

to understand how the adversarially trained models respect the substitution relation and

introduce a formalism for learning a relation and for analyzing and comparing adversarial

training and normalize-and-predict.

Our paper makes the following contributions:

• We provide a framework to reason about robustness of malware detectors in the

presence of program transformations. Fundamentally this reduces to the task of

constructing classifiers that respect a relation, such as program equivalence under a

set of code transformations (e.g., code addition, code substitution). (Sections 4.2)

• We present two novel attacks based on an API substitution relation and show that

these attacks are effective against the state-of-the-art robust malware detection

classifiers. (section 4.5)

• We show that normalize-and-predict and adversarial training are two viable approach
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for learning classifiers that respect a relation. We show that these two approaches

optimize for different objectives, that normalize-and-predict can enable robust linear

classifiers whereas adversarial training may fail to do so, and empirically evaluate

how they perform in practice. (Sections 4.4 and 6.5)

4.2 The Setting

4.2.1 Learning via Empirical Risk Minimization

We assume a data distribution D over X × Y , where X is the space of samples and

Y is the space of labels. Let DX be the marginal distribution over X induced by D.1 In the

empirical risk minimization (ERM) framework we wish to solve the following optimization

problem:

min
w∈H

E(x,y)∼D l(w,x, y)

In the equation given above H is the hypothesis space and l is the loss function. We will

denote vectors in boldface (e.g. x, y). Since the distribution is usually unknown, a learner

solves the following problem over a data set S = {(x1, y1), · · · .(xn, yn)}

min
w∈H

1

n

n∑
i=1

l(w,xi, yi)

Once we have solved the optimization problem given above, we obtain a w∗ which yields a

classifier F : X → Y (the classifier is usually parameterized by w∗, but we will omit it for

brevity).

For the rest of the chapter, we will focus on the special case when X = {0, 1}n

(the sample space is n-dimensional Boolean vectors) and Y = {0, 1} (we consider binary

classification). A typical example of this special case is malware detection where each

1The measure of set Z ⊆ X in distribution DX is the measure of the set Z × Y in distribution D.
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feature is Boolean value representing whether a certain API call is present in the program,

and the classification result is binary: malicious or benign. However, our remarks readily

transfer to the general problem. A vector x ∈ {0, 1}n will be denoted in boldface. Note

that for our special case our classifier F : {0, 1}n → {0, 1} can be regarded as a Boolean

function, so we will sometimes refer to our classifier as a Boolean function.

4.2.2 Relation, and Function that Respects Relation

A relation R is a subset of {0, 1}n × {0, 1}n. We will write x→R y iff (x,y) ∈ R.

We will write x →∗R y iff x = y or there exists y0,y1, · · · ,yk (k > 0) such that x = y0,

yi →R yi+1 (0 ≤ i < k) and yk = y. In other words, →∗R is the reflexive-transitive closure

of →R.

Example. To make things concrete, we will use malware detection as our running example.

Let M be the space of malicious programs and Z :M→ {0, 1}n be a “feature extractor”

(i.e. Z(m)i = 1 means that the i-th system call is present in the malware m). From now, we

will equate malware with its “feature vector” representation in the Boolean space {0, 1}n.

Let f ? : {0, 1}n → {0, 1} be a Boolean function that corresponds to “ground truth”

(the reader can use the following intuition: f ?(x) = 1 means that x corresponds to a malware

and f ?(x) = 0 means that x corresponds to a benign program). Let f : {0, 1}n → {0, 1}

be a Boolean function that is supposed to approximate f ? and is the output of a learning

algorithm (e.g. an algorithm for learning decision trees to classify executables as malicious

or benign).

We say that a Boolean function g respects the relation R iff for all x and y in {0, 1}n

such that x →∗R y and g(x) = 1 implies that g(y) = 1. In other words, the relation R

“preserves maliciousness” (if x is classified as malware, then a transformed malware y is

also classified as malware). We assume that f ? respects the relation R. Recall that f is
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the approximate or learned version of f ?. Ideally, we also want f to respect R. However,

we can also define a probabilistic version of the “respects condition” that might be more

appropriate for machine-learning techniques. Let A(R, f,x,y) be the following predicate:

(x→∗R y ∧ f(x) = 1)⇒ f(y) = 1

A “probabilistic” version of the above definition is defined as the following metric (where

D is the data-generating distribution over {0, 1}n):

E
(x,y)∼(DX×DY )

1A(R,f,x,y)

4.2.3 Some Example Relations

Next we formalize some of the common relation that are specific to our context–

malware detection. Let x1, · · · , xn be Boolean variables. A literal is xi or ¬xi. A clause is a

conjunction of literals (e.g. x2 ∧ x4 ∧ ¬x6) A 2-tuple of clauses (C,C ′) defines a relation as

follows: (x,y) is in the relation iff x |= C and y |= C ′.2 A relation R can then be defined

as a set of 2-tuples of clauses {(C1, C
′
1), · · · , (Ck, C ′k)} with the natural interpretation (i.e.

(x,y) ∈ R iff there exists i ∈ {1, · · · , k} such that x |= Ci and x |= C ′i).

A monotone relation Rm can be defines as follows: {(¬x1, x1), · · · , (¬xn, xn)}. Recall

that a monotone relation corresponds to a malware author adding unused system calls.

A substitution relation Rs can be defines as a set of clauses, which have the following

form (xi1 ∧ · · · ∧ xik , xj1 ∧ · · · ∧ xjm), where {i1, · · · ik}
⋂
{j1, · · · , jm} = ∅. Informally, the

relation (xi1 ∧ · · · ∧ xik , xj1 ∧ · · · ∧ xjm) represents features {i1, · · · ik} being substituted

by {j1, · · · , jm} (this corresponds to an adversary replacing a sequence of system-calls by

another sequence of systems-calls). From now on, we we will assume that our relation

2x |= C iff the vector corresponding to x is a satisfying assignment for C.

41



is Rm ∪ Rs (i.e. we allow monotone bit flipping and substitutions). If we only consider

monotone relation, we can set Rs = ∅.

Example. Simple substitution. We again consider the example of malware detection.

Consider x ∈ {0, 1}n, where xi = 1 means that the corresponding sample contains the i-th

system call. Suppose we are given a partition {P1, · · · , Pk} of the set {1, · · · , n}, where if i

and j belong to the same partition Pr, then they can be substituted with one another (e.g.

the system calls corresponding to i and j are equivalent). This can be easily put in the

formulation we described before, and the partition corresponds to a relation in a natural

manner as follows: for each pair of indices (i, j) that are in the same partition we have two

pairs of clauses (xi, xj) and (xj, xi). As we will describe in 4.6.2, Windows contains a wide

range of equivalent APIs for attackers to apply simple substitution in a large substitution

space.

4.3 Normalize-and-Predict and Robust Optimization

– Two Approaches of Learning Classifiers that Re-

spect a Relation

Let F be the hypothesis space of Boolean functions. We want to learn a Boolean

function that respects a relation R. Therefore, we want to constrain the space of Boolean

functions F . In other words, we want to find the maximal set FR ⊆ F such that all f ∈ FR

respect R. If we have a representation of FR we can define our the ERM problem as:

min
f∈FR

E(x,y)∼D l(w,x, y)
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In several cases, FR is hard to characterize. Therefore, we outline two approaches to

address this difficulty – one that is based on adversarial training and another which will

call normalize-and-predict (NaP).

Robust Optimization. In such cases, we can use robust optimization, which solves the

following optimization problem:

min
f∈F

E(x,y)∼D max
z∈postR(x)

l(w, z, y)

In the equation given above, postR(x) denotes the following set:

{y | x→∗R y}

In other words, y can be obtained from x using 0 or more rewrites according to the

relation R. The robust optimization problem is usually solved using adversarial training.

Adversarial training works as follows: let A be an attack algorithm which given an x

attempts to find z according to the objective maxz∈postR(x) l(w, z, y) (an attacker tries to

find a “transformed” example that maximizes the loss). Note that A might not achieve

the objective exactly because the inner maximization problem can be hard to solve. Given

A, each data xi is replaced by A(xi), or each sample is replaced by the corresponding

adversarial example. With adversarial training a learner solves the following problem over

a data set S = {(x1, y1), · · · .(xn, yn)}

min
w∈H

1

n

n∑
i=1

l(w,A(xi), yi)

Normalize-and-Predict (NaP). Let � be a preorder on the set {0, 1}n.3 If a � b and a 6= b,

we will write it as a ≺ b. A metric µ over {0, 1}n induces a preorder corresponding to the

3Recall that a preorder satisfies two properties: reflexivity and transitivity.
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value of the metric (a � b) iff µ(a) ≤ µ(b). We say that a relation R respects the preorder

� iff (x,y) ∈ R implies that y � x.

We also define an undirected graph G, in which

• the nodes are all lattices in {0, 1}n, and

• an edge (x, z) exists iff x→∗R z or z→∗R x.

For a vector x, we use SR(x) to denote the connected component in G that contains x, i.e.

SR(x) = {z |a path exists between x and z in G}.

Given x and R, we assume that it has a normal form N(x,R), which satisfies the following

properties:

• N(x,R) ∈ SR(x)

• There does not exist a z such that z ∈ SR(x) and z ≺ N(x,R)

Moreover, we assume that given x andR there is an effective algorithm to compute N(x,R).

We call N(x,R) the normal form of x. NaP framework works as follows:

• Training: Essentially each data item is normalized before training. With ad-

versarial training a learner solves the following problem over a data set S =

{(x1, y1), · · · .(xn, yn)}

min
w∈H

1

n

n∑
i=1

l(w,N(xi,R), yi)

• Predict: Let f : {0, 1}n → {0, 1} that is constructed after training. Prediction of

x ∈ {0, 1}n is f(N(x,R)) (we normalize the sample before passing it through the

classifier).
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Example. We revisit the simple substitution example described earlier in the context of

malware detection. Consider x ∈ {0, 1}n, where xi = 1 means that the corresponding

sample contains the i-th system call. Suppose we are given a partition {P1, · · · , Pk} of

the set {1, · · · , n}, where if i and j belong to the same partition Pl, then they can be

substituted with one another (e.g. the system calls corresponding to i and j have equivalent

semantics). In this case the normalize function N(x,R) is simple and described as follows:

We define N(x,R) as follows:

N(x,R)j =


∨
m∈Pl xm if j = minPl

for some l ∈ {1, · · · , n}

0 otherwise

In the equation given above xm denotes the m-th element of the vector x. It is not hard to

see that N(·, ·) satisfies the properties outlined before.

4.4 Comparison between Normalize-and-Predict and

Robust Optimization

Section 4.3 introduces two candidate approaches of learning classifiers respecting

relations. Program normalization has been studied and used widely in many program

analysis applications [HPK01, CJK+07, CLD11, BRTV16, BPM17, SB16], while robust

optimization has been one of the most effective approaches in the machine learning

community for learning classifiers robust to adversarial perturbations [MMS+18, CW17]

Which approach is better for robust malware detection? In this section, we compare

the two approaches in terms of their optimization objectives, amount of model capacity

required and hardness of training. We show that the two approaches give different types

of guarantee when they optimize their respective objectives. The normalize-and-predict
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approach guarantees to learn classifiers that respect the relation. In contrast, robust

optimization only approximately respects the the relation and may violate the relation for

better classification accuracy in the adversarial setting. While robust optimization in the

best case can have higher classification accuracy in the adversarial setting, it also needs to

use a more complex model class that allows richer intermediate feature representation, and

thus can be harder to train.

4.4.1 Optimization Objectives

The most easily noticed difference between the two approaches is in their objective

functions. To best understand the fundamental difference between the approaches, we

first look at their objectives on the data distribution instead on a finite data set to avoid

potential interference from generalization gaps. We show that the optimal classifiers for

these two objectives have different guarantees. In addition, we also show a special case

in which the two objectives actually yield the same classifier in terms of the classification

outcome.

As introduced in Section 4.3, normalize-and-predict has the following objective

min
f∈F

E(x,y)∼D l(w,N(x,R), yi) (4.1)

over the data distribution, whereas the adversarial training procedure hopes to solve the

following optimization problem

min
f∈F

E(x,y)∼D max
z∈postR(x)

l(w, z, y). (4.2)

Let fNaP and fadv denote the optimal classifier to Objective 4.1 and 4.2 respectively. The

following propositions characterize the property that each classifier guarantees.
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Proposition 4.4.1. The classifier fNaP always respects R, i.e. its prediction is always

robust under adversarial rewrites on the test input.

Proposition 4.4.2. The classifier fadv has the lowest expected loss against the strongest

adversary under R. In particular, when ` in Objective 4.2 is 0-1 classification loss, fadv

has the lowest classification error over the distribution in the adversarial setting.

The proof to these propositions is straight-forward. The classifier fNaP respects R

because for any input instance x, all vectors in postR(x) will be normalized to N(x,R),

which will then have the same classification results. The proposition of fadv is a direct

result of its definition.

The subtle difference between the properties of optimal solution suggests that the

practitioners should choose the approach carefully based on their needs. If the prediction

on malware needs to be absolutely consistent under R, then normalize-and-predict is

perferable. Otherwise, the adversarial training approach can potentially offer better

classification accuracy at the cost of not respecting the relation sometimes.

Despite the difference, there exists a condition under which the two optimal classifiers

fNaP and fadv have the same prediction on all input vectors. This scenario is especially

interesting because the learner can now get the best from both worlds – a classifier that

guarantees to respect relation R and meanwhile has the highest classification accuracy

against the strongest attacker.

Theorem 4.4.3. Assume for all x ∈ X , z ∈ postR(x) if and only if x ∈ postR(z), and

consider F to be the set of all possible labeling functions on X . Suppose fNaP and fadv are

unique. Then fNaP (x) = fadv(x) for all x ∈ X .

Proof. Let C = {postR(x)|∀x ∈ X}, i.e. each element in C is the set of all possible vectors

of transforming some x under R. The assumption in Theorem 4.4.3 ensures that elements

in C partition the entire input space X .
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For each C(x) = postR(x) ∈ C, we know that

fNaP (z) = 1 [Pr(y = 1| z ∈ C(x)) > 1/2]

, which is the Bayes’ optimal classifier and is the same for all z ∈ C(x). It remains to show

that fadv(z) = fNaP (z) for all z ∈ C(x). Without loss of generality, let fNaP (z) = 1. The

average classification loss in C(x) is ` = Pr(y = 0| z ∈ C(x)) ≤ 1/2, i.e. the Bayes’ optimal

loss.

Now assume fadv(z) = −1 for some z ∈ C(x). Then for all z′ ∈ C(z) = C(x),

the attacker can always transform z′ to z such that f(z′) = −1. The loss under this

transformation `′ is then 1− ` ≥ 1/2 ≥ `. Recall that fadv minimizes the maximum loss

over all possible transformations. However, fNaP ’s loss over C(x) under transformation,

which is `, is no more than the loss of fadv, which is at least `′. Then either fNaP is also a

minimizer to Objective 4.2, or the initial assumption in this paragraph is false. In either

case, fNaP (z) = fadv(z). The same argument applies for fNaP (z) = −1 and thus the proof

is completed.

Remark. One example of relation satisfying the condition is a relation that only contains

simple substitution. The intuition behind the theorem is that the transformation fully

maintains the program semantics.

4.4.2 Required Model Capacity

The comparison in 4.4.1 assumes that the model class F contains all possible labeling

functions. However, in practice, learning the best classifier from a large model class is

typically harder than from a small one and often requires large amount of data. In this

section, we show by example that normalize-and-predict can obtain a robust and accurate

classifier on a simple model class, which is otherwise impossible using adversarial training.

48



This observation suggests that normalize-and-predict may have the advantage when we

have limited data over a large feature space.

We consider a simple hypothetical setting with five APIs, which are denoted by

A,B,C,D1, D2. API D1 and D2 are renamed versions of the same API D. We consider

one simple relations – if a software uses any Di for i ∈ {1, 2}, then it can replace Di with

any non-empty subset of {D1, D2}. We say a tuple of APIs is present in a software if

the software uses all APIs in the tuple. A software is malicious if and only if any of the

following condition is true:

1. (A,B) is present;

2. (A,Di) is present for any i ∈ {1, 2};

3. (B,C,Di) is present for any i ∈ {1, 2}.

Let x ∈ {0, 1}5 denote the binary representation of a software by its API usage.

The class label y = +1 for malicious instances and −1 for benign ones. Let F = {fw,b :

x→ sgn(〈w,x〉 − b)|w ∈ R5, b ∈ R} denote the set of all linear classifiers.

Lemma 4.4.4. No classifier f ∈ F can classify all x ∈ {0, 1}5 correctly and at the same

time respect the substitution relations.

Proof. Let wA denote the w’s coordinate corresponding to API A and similarly wB, wC , wD1 ,

wD2 for the other four APIs. In order to classify all possible x correctly, the classifier fw,b

must satisfy

wA + wC < b (4.3)

∀i ∈ {1, 2}, wA + wDi > b (4.4)

wB + wD1 + wD2 < b (4.5)

∀i ∈ {1, 2}, wB + wC + wDi > b (4.6)
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First, by Formula 4.3 and 4.4, we have wD1 > wC and wD2 > wC . However, by Formula 4.5

and 4.6, we have wD1 +wD2 < wC +wD2 , which implies wD1 < wC . Contradition. Therefore,

no f ∈ F satisfies all the equations.

On the other hand, if we perform normalization by using D to replace both D1 and

D2, then a software is malicious if and only if

1. (A,B) is present;

2. (A,D) is present;

3. (B,C,D) is present.

Now we consider the linear model class F ′ = {fw,b : x→ sgn(〈w,x〉 − b)|w ∈ R4, b ∈ R}

over the normalized inputs.

Lemma 4.4.5. There exists a classifier f ∈ F ′ that classifies all normalized input vector

x ∈ {0, 1}4 correctly.

Proof. We can construct such a classifier f by setting wA = 0.7, wB = 0.5, wC = 0.2, wD =

0.4 and finally b = 1.

Through this example, we see that normalization allows to find a robust and accurate

linear classifier in Lemma 4.4.5, which is not possible before normalization in Lemma 4.4.4.

4.4.3 Hardness of Training

The discussion in Section 4.4.1 and 4.4.2 is all with respect to the true optimal

classifier for each approach. However, real-world machine learning is always done on a finite

size data set. In Section 4.3, we have also given the formulation of the ERM problems, and

the classifier obtained may be different from the true optimal.
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There are two advantages of normalize-and-predict in the training stage. First, the

guarantee of respecting relations still holds. The guarantee comes from the fact that all

vectors in postR(x) have the same normal form, and thus shall have the same prediction

outcome for any arbitrary function f . Second, normalize-and-predict only requires solving

a minimization problem, which in general is easier in practice than the min-max problem

in adversarial training.

For adversarial training, whether robustness over training examples generalizes to

robustness over test examples is still an open problem in the adversarial machine learning

community, therefore the guarantee in Proposition 4.4.2 may no longer hold. Meanwhile,

the performance of the adversarially trained classifier typically relies on the quality of the

inner maximization subroutine in Formula 4.2. Suboptimal attack in the inner loop may

cause bad performance when facing stronger attacker. We validate the performance of

adversarial training in Section 6.5 over a real-world malware detection data set.

4.5 Substitution Rules and Attack Algorithms

While previous literature has developed various attacks creating adversarial examples

by adding API calls, there is no attack yet in the malware detection domain using API

substitutions. In this section, we introduce two attack algorithms to generate adversarial

examples conforming to the simple substitution relation described in Section 4.2.3, which is

an one-to-one equivalence relation. Both attacks are computationally efficient heuristics to

the inner maximization problem in Formula 4.2, which is known to be NP-hard in general

and is impractical to solve by exhaustive search due to high input dimensions.
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4.5.1 Substitution Relations

The substitution relation class in our attacks is the one-to-one equivalence relations,

which are defined as follows.

Definition 4.5.1 (One-to-one Substitution Relation). Let i, j be the indices of two APIs.

A one-to-one substitution relation (i, j) exists if API j can always replace API i to realize

the same malicious functionality.

Definition 4.5.2 (One-to-one Equivalence Relation). API i and API j are said to have

one-to-one equivalence relation if both substitution relation (i, j) and (j, i) exist, i.e. the

two API calls are interchangeable.

Such one-to-one substitution and equivalence relation indeed exists between many

APIs, including but not limited to APIs with the same functionality in different .dll files

and different version of the same API in a library. A detailed procedure for harnessing

equivalence relations is explained in the experiment section.

All substitution relations can be stored as a list of API indices pairs shown in

Definition 4.5.1 and 4.5.2. In addition, equivalence relations can also be represented and

stored in the form of equivalence group defined as follows.

Definition 4.5.3 (Equivalence Group). Let E = {i1, · · · , ik} denote a set of k APIs

represented by their indices. Then a group E is said to be an equivalence group if 1) i and

j have one-to-one equivalence relation for all i, j ∈ E, and 2) API i and API j do not

have one-to-one equivalence relation for all i ∈ E and j /∈ E. An API forms a stand-alone

equivalence group if it is not equivalent to any other APIs.

If many APIs are equivalent to each other, equivalence group will be a more compact

representation to equivalence relation than a list of substitution tuples. In addition, the

equivalence groups are a partition of the APIs in the input space.
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4.5.2 Attack Algorithm

We propose two attack algorithms – GreedyByGroup and GreedyByGrad–

to create adversarial examples using substitutions as shown in Algorithm 3 and 4. Both

algorithms iteratively modifies the input example by applying substitution rules. The

subsitutions made in each iteration are chosen to maximize some surrogate objectives, which

potentially lead to higher classification loss. The difference between the two algorithms is

the choice of the objective – GreedyByGroup directly uses the change in loss function,

while GreedyByGrad uses the local gradients to approximate the change in loss. Since

adversarial examples are only created for malware, we use `f(x) as a short hand of

`(x,+1, f), the loss of a malware under classifier f .

GreedyByGroup GreedyByGroup takes the initial feature representation x of a

malware as input and a parameter indicating maximum number of iteration. We first

introduce some notations used in the algorithm. We say an equivalence group E is present

in x if it contains an API that appears in x (∃i ∈ E such that xi = 1). Let E be the set

of equivalence groups present, k = |E| be the number of equivalence groups present, and

Ei be the i-th group in E . In addition, we call s ∈ {0, 1}|E| an assignment to a group of

APIs E. Last, we use xE,s to denote the feature vector obtained by applying an assignment

s to E in x, i.e. replacing the original feature values of APIs in E with the values in s.

s = {0}|E| is not a legal assignment to apply as at least one of the API in the group must

be present to ensure the functionality of the original malware is not changed. On the other

hand, it is valid to apply an assignment that cause multiple APIs in a group to be present.

In each iteration, the attacker first finds all equivalence groups present in the current

version of x, i.e. the set E . For each group Ei, the attacker finds the assignment si such

that xEi,si maximizes the loss function. At the end of each iteration, the attacker applies

these assignments to all groups present to obtain a new x. The final adversarial example is
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the vector with the largest loss among the original input x and all x at the end of each

iteration.

In practice, we have observed that the size of a group |E| ranges from 2 to 23

and most groups contain fewer than 10 APIs. Therefore, we enumerate every possible

assignment when |E| ≤ 10 and randomly sample 1024 assignments when |E| > 10.

Algorithm 3 GreedyByGroup (x,MaxIter)

xadv = x, k = 0

while k < MaxIter do

k = k + 1

Find the set E of all equivalence groups present in xadv

for Ei ∈ E do

si = arg maxs∈{0,1}|Ei|−{0}|Ei| `f (xEi,s)

end

for Ei ∈ E do x = xEi,si ;

if `f (x) > `f (x
adv) then xadv = x;

end

return xadv

Algorithm 4 GreedyByGrad(x,m,MaxIter, ListR)

xadv = x, k = 0
while k < MaxIter do

k = k + 1
g = ∇x`f (x)
for (i, j) ∈ ListR where xi = 1 do

ci,j = max(gj, gj − gi)
end
for (i, j) corresponding to top m largest positive ci,j do

if ci,j = gj − gi then xi = 0,xj = 1;
else xj = 1;

end
if `f (x) > `f (x

adv) then xadv = x;

end
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GreedyByGrad GreedyByGrad takes four input arguments. Vector x is the original

test input; ListR contains all substitution relations represented in a list of tuples; m is

the maximum number of subsitution rules applied in one iteration; and MaxIter is the

maximum number of iterations. We use g to denote the gradient of the loss function w.r.t.

the input at x, and gi to denote the i-th coordinate of g.

In each iteration, the attacker first computes ci,j, the potential increase in loss

function of applying a substitution rule (i, j), for all applicable rules in ListR. The gain

is approximated by using first order Taylor expansion – the loss ` approximately increase

by gj if xj changes from 0 to 1, and decreases by gi if xi changes from 1 to 0. We allow

two outcomes of applying substution rules: either only xj = 1, or both xi and xj = 1. The

latter captures the case in which the attacker uses different versions of APIs at different

locations to achieve the same functionality. The potential change ci,j is then the maximum

value between gj and gj − gi.

After computing the ci,j, the attacker chooses m rules with the largest positive

potential increase ci,j , and apply these rules to x. If there are fewer than m rules satisfying

the condition, the attacker will apply all of these rules. The final adversarial example is

the vector with the largest loss among the original input x and all x at the end of each

iteration.

4.6 Experiment

We evaluate the effectiveness of our substitution attacks, GreedyByGroup and

GreedyByGrad, and the effectiveness of adversarial training and normalize-and-predict

for learning classifiers that respect a relation. Our evaluation aims to answer the following

questions:

1. Do our substitution attacks pose real threats to robust malware detection?
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2. Do adversarially training and normalize-and-predict give similar results in practice,

when trained on finite training sets?

We know from Theorem 4.4.3 that adversarial training and normalize-and-predict

learn the same optimal classifier when given the same infinite training set conforming

to a simple substitution relation.

3. Normalize-and-predict respects a relation by design. How do adversarially trained

models respect relations?

Our evaluation results show that:

1. Our substitution attacks defeat adversarially trained models for addition attacks

[ADHHO18] and pose real threat to robust malware detection. The False Nega-

tive Rate (FNR) increases from 5.6% (natural examples in the data set) to 82.8%

(adversarial examples generated by our attacks).

2. Adversarial training learns classifiers that approximate the given relation. Adver-

sarially trained models have a 12.8% FNR on the adversarial examples generated

by our attacks. Normalize-and-predict achieves 7.4% FNR on the same adversarial

examples.

3. An intuitive hypothesis for explaining how adversarially trained models respect a

simple substitution relation is that the model has similar or even the same weights

between inputs for equivalent APIs and the first hidden layer neurons. We performed

this computation and found that it is not case. We then use prediction-attribution

techniques such Integrated Gradient (IG) [STY17] and show that the adversarially

trained models indeed have similar prediction attribution scores for equivalent APIs.

Therefore, adversarial training approximate relations in a non-obvious way.
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4.6.1 Experiment Setup

Our experiments use the same setup as the one in [ADHHO18], including the

data set, the model structure, and the training and testing data split. We use their

setup because their work represents state-of-the-art results against addition attack. If our

substitution attacks are effective against these models that are robust against addition

attacks, substitution attacks pose new threats to robust malware detection.

Data Sets The data set contrains Windows binary API usage features of 34,995 malware

and 19,696 benign software, extracted from their Portable Executable (PE) files using

LIEF. 4 There are 22,761 unique API calls in the data set, so each PE file is represented

by a binary indicator vector x ∈ {0, 1}m, where m = 22, 761.

Model Structure We use a fully-connected neural net with three hidden layer, each

with 300 nodes. All hidden layer nodes use the ReLU activiation function.

Data Split We sample 19,000 benign PEs and 19,000 malicious PEs to construct the

training (60%), validation (20%), and test (20%) sets.

4.6.2 Procedure

Our experiment contains additional steps for performing substitution attacks and

evaluating effectiveness of adversarial training and normalize-and-predict against substitu-

tion attacks.

1. Extract Substitution Rules: Two APIs that appear in a substitution rule have

similar functionality and are interchangeable. While it is in general difficult to automatically

4KDD 19 adversarial malware detection competition uses data sets of the same format provided by the
same authors.
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extract equivalent APIs, we find it is effective to extract substituion rules based on API

names. We identified four types of patterns for extracting substitution rules:

• API with the same name but located in different Dynamically Linkable Libraries

(DLLs). For example, the memcpy is a commonly used standard C library func-

tion. In different versions of Windows and MSVC compilers, mempcy is shipped in

libraries with differnt names, including crtdll.dll, msvcr90.dll, and msvcr110.dll.

crtdll.dll:memcpy, msvcr90.dll:memcpy, and msvcr110.dll:memcpy become three

different API features in the data set, but they are equivalent and interchangeable.

• API with and without the Ex suffix. The Ex suffix represents an extension to the same

API without the suffix. For example, Sleep and SleepEx both realize the functionality

of suspending the current running thread.

• API with and without the A or W suffixes. The A suffix represents the single charater

version (i.e. using char[] for strings). The W suffix represents the wide character

version (i.e. using wchar t[] for strings).

• API with/without s suffix. The s suffix represents the secure version of an API.

Using these four patterns, we extracted about 15,000 rules and 2,000 substitution

sets. About 500 of the sets have more than 2 APIs and the maximal set has 23 APIs.

2. Generate Substitution Adversarial Examples: For each malicious input vector,

we generate one adversarial example using GreedyByGroup and one adversarial example

using GreedyByGrad.

3. Perform Adversarial Training: We use GreedyByGrad to generate adversarial

substitution examples for adversarial training. We cannot use GreedyByGroup for

adversarial training because it take significantly longer than GreedyByGrad to generate

an adversarial example.
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Table 4.1: Evaluation of model accuracy and robustness to adversarial examples.

Each column represents a method for training. The “Adv. Training”
column is using adversarial examples generated by GreedyByGrad.
Each row represents a test set. We present the False Negative Rate
(FNR) and False Positive Rate (FPR) for each combination.

Normalize
Natural Adv. Training and Al-Dujaili et al.

Predict

FNR FPR FNR FPR FNR FPR FNR FPR

Natural 6.7% 9.2% 8.1% 9.1% 7.4% 7.7% 5.6% 10.1%
GreedyByGrad 92.7% 9.2% 8.1% 9.1% 7.4% 7.7% 70.6% 10.1%
GreedyByGroup 92.7% 9.2% 12.7% 9.1% 7.4% 7.7% 82.8% 10.1%

4. Evaluate models: We use natural examples and adversarial examples to evaluate

natural models, models adversarially trained for addition attacks, and models adversarially

trained for substitution attacks.

4.6.3 Results

Table 4.1 summarizes the results for different combinations of attack methods and

training methods. We make four observations based on the results.

First, substitution attacks pose real threats to robust malware detection. Both

GreedyByGroup and GreedyByGrad can successfully evade naturally trained models

(FNR ¿ 90%). Adversarially trained models for addition attacks have slightly better

robustness against substitution attacks compared naturally trained models, but the FNR

is still high (FNR ¿ 80%). Our results call for attentions to the threat model assumed by

robust malware detection research. It is commonly assumed that it is easier to add APIs

than to remove APIs. Our results show that substitution is an effective way for removing

APIs.

Second, the effectiveness of adversarial training depends on the quality of the ad-
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versarial examples used. In our experiment, adversarial training was performed using

adversarial examples generated by GreedyByGrad. When encountered with adversarial

examples generated by GreedyByGroup, which is a stronger attack than GreedyBy-

Grad, the effectivness of adversarial training decreased. This means that adversarial

training is effective against attacks with similar or weaker capabilities, but not against

attackers with stronger capabilities.

Third, normalize-and-predict achieves the same FPR for natural examples and

adversarial examples generated by the two attacks. The results are not surprising given the

design goal of normalize-and-predict . By strictly respecting the relation, any transformations

based the relation makes no impact to the prediction results, regardless of the capabilities

of the attackers. This is the key difference between normalize-and-predict and adversarial

training.

Fourth, while normalize-and-predict guarantees robustness against a given relation,

it sacrificed a little bit of accuracy. Using the natural examples for testing, the FPR of

normalize-and-predict is higher than the FPR of the natural models. The tradeoff between

accuracy and robustness is well known. In our case, the gained robustness clearly overweighs

the slight drop of accuracy.

4.6.4 Interpretability Study of Adversarial Training

Our results show the importance of learning a classifier that repsects a relation. To

our surprise, adversarial learning achieved good results for learning a relation in spite of

its statistical nature. In this section, we perform a deep analysis of our results to better

understand what exactly adversarial learning has learned.
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How Many Substitution Adversarial Examples?

The more adversarial examples there are, the more likely adversarial training would

have a blind spot for the attacker to succeed. For a present equivalence group E whose size

is |E|, the number of adversarial examples can be generated from this equivalence group is

2|E| − 1. The total number of adversarial examples for an input x is then
∏

i(2
|Ei| − 1),

where i iterates over all present equivalence group.

Using the formula above, we calculate the number of substitution adversarial

examples that can be generated for each malicious input vector in the data set. The 0, 25,

50, 75, and 100 percentiles are 100, 1023, 1033, 1043, 10356, respectively. Even though the

attacker has a significantly smaller space for constructing adversarial examples compared

to addition attacks (up to 2m, where m = 22, 761 in our data set), substitution attacks

still give a sufficiently large space for the attacker to be successful. In addition, while

our GreedyByGrad and GreedyByGroup are effectively for generating subsection

adversarial examples, the size of the space indicates that there could be stronger attacks

than our attacks. We have shown that the effectivness of adversarial training (with

GreedyByGrad) drops when encountered with a stronger attack (GreedyByGroup).

It is concerning whether adversarial training can keep up with stronger attackers.

How Does Adversarial Training Respect a Relation?

Our results show that adversarial training does quite well against the substitution

attack. The natural question to ask here is “Does adversarial training actually learn a

classifier that respect the relation?” We attempt to answer this question from two different

angles.

Do equivalent APIs have similar first-layer weights? Intuitively, if a neural net has

the same first layer weights for equivalent APIs, then the neural net will strictly respect
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Figure. 4.1: First layer weights difference between equivalent APIs. Most
data points are on the right side of 0.0, indicating that adversarial training does not
push the weights for equivalent APIs together.

the relation. While having the same first layer weights is not a necessary condition, this is

a good starting point for understanding how adversarial training respects a relation.

We calculate L2 distance between the weight vectors for equivalent APIs. Suppose

APIs i and j are equivalent. Denote wi be the weight vector between feature i to the first

hidden layer and wj be that between feature j and the first hidden layer. We enumerate

every pair of equivalent API (i, j) and calculate ||wi −wj||2 for the natural models and the

adversarially trained models.

Figure 4.1 shows the histogram of ||w0
i −w0

j ||2− ||w1
i −w1

j ||2, where w0 represents a

weight vector from an adversarially trained model and w1 represents a weight vector from

a naturally trained model. The results show that for most pairs of equivalent APIs, the

L2 distance between weight vectors for the equivalent APIs and the first layer neurons

increased after adversarial training. This indicates that adversarial training does not learn

the relation by simply assigning equivalent or similar first layer weights. If adversarial

training indeed learns the relation, it is learning the relation in a non-obvious way.
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Do adversarially trained models treat equivalent APIs similarly in prediction?

To answer this question, we use the Integrated Gradient (IG) [STY17], which attributes

the prediction results to individual features. Suppose API i and j are equivalent. Given an

input x where xi = 1 while xj = 0, we can use IG to calcualte an attribution score for xi,

denoted as si. Then, we set xi = 0 and xj = 1, and use IG to re-calculate the attribution

score for xj, denoted as sj. If adversarially trained models respects the relation, si and sj

should be close.

Suppose F (x) is a net that generates a prediction score in [0, 1], where x is the

input. In our case, F (x) will be the malicious probability and x will be API feature vector

of the input program. To better attributing prediction, the authors of IG recommend that

we find a baseline input x′, where F (x′) = 0. Typically, the baseline input is an input

without any signal. For example, a black image for object identification, or zero embedding

for NLP.

Interestingly, in the case of malware detection, the zero feature vector leads to high

malicious score (about 0.9 for several models). Our explanation is that every software

more or less needs to use some APIs; if no API is used at all, it means the programmer is

intentionally avoiding using any API, which is a suspicious behavior. To find a baseline

input x′ whose F (x′) = 0, we searched in the benign software used for training, and found

11 distinctive feature vectors, whose malicious score are close to 0.

Given a baseline, the end-to-end output of IG is to assign prediction score of the

input vector to individual features. The sum of the contribution scores of individual features

is equal to the prediction score of the input; so F (x) =
∑

i IG(xi), where IG(xi) represents

the prediction score assigned to feature i.

For each malicious input x, we randonly sample a pair of equivalent API (i, j),

63



0 0.5 1 1.5 2 2.5 3

·10−2

0

0.2

0.4

0.6

0.8

1

Attribution Score Percentage Difference

C
u
m

u
la

ti
ve

D
is

tr
ib

u
ti

on

Figure. 4.2: CDF of attribution score difference. Since there are 11 baseline
points, we present the results with an error bar for each point, presenting the maximal,
median, and minimal value. The trend is consistent among different baselines used for
calculating IG.

where xi = 1 and xj = 0, and then use IG to calcualte the attribution score si for xi and

sj for xj.

Figure 4.2 shows the cumulative distribution function (CDF) for |si − sj|. About

83% of the API pairs have a score difference smaller than 0.01 and about 97% of the API

pairs have a score difference smaller than 0.02. Note that the malicious score should be

above 0.5 to be predicted as a malware. Our results show that equivalent APIs are indeeded

treated similarly by an adversarially trained models.

4.7 Conclusion

Recent research on attacks and defenses for machine learning systems has drawn

concerns for using machine learning in security critical applications. Malware detection, a

security application that has benefited from the prediction power of machine learning, is

also fighting against adversarial attacks against machine learning systems. In this work,
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we showed that the addition threat model is flawed, which assumes that it is easier to

add features to malware than to remove features. We borrowed the ideas from program

obfuscation and program normalization to design new attacks that remove features and

evade defenses.

Our attacks and defenses are based on a theoretical framework that abstracts the

impact of program transformations as relations between features. Our framework captures

both the addition attacks (the monotonic relation) and our new substitution attacks (the

simple substitution attack). We show that adversarial training and normalize-and-predict

are optimizing for different objectives and prove that adversarial training and normalize-

and-predict will learn the same optimal classifiers given infinite training data conforming a

simple substitution relation.

We then empirically evaluted our substitution attacks against a state-of-the-art

robust malware detection techniques. Our results showed that substitution attacks pose

real threats to malware detection. We then showed normalize-and-predict is more effective

than adversarial training against substitution attacks in practice.

A key takeaway from this chapter is that security applications should rely on

techniques that can provide security guarantees. While it is tempting to use adversarial

learning to automatically learn relations, our results have shown that adversarial learning

only approximates the desired relation and may even violate it in the pursuit of robustness

and accuracy. Such approximation leaves the door open for stronger adversaries. The

normalize-and-predict approach on the other hand provide robustness by design regardless

of the strength of the attackers.
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Chapter 5

Data Poisoning Attack against

Online Learning

5.1 Introduction

In this chapter, we initiate a systematic investigation of data poisoning attacks

for online learning. We begin by formalizing the problem into two settings, semi-online

and fully-online, that reflect two separate use cases for online learning algorithms. In the

semi-online setting, only the classifier obtained at the end of training is used downstream,

and hence the adversary’s objective involves only this final classifier. In the fully-online

setting, the classifiers is updated and evaluated continually, corresponding to applications

where an agent continually learns and adapts to a changing environment – for example, a

tool predicting price changes in the stock market. In this case, the adversary’s objective

involves classifiers accumulated over the entire online window.

We next consider online classification via online gradient descent, and formulate

the adversary’s attack strategy as an optimization problem; our formulation covers both

semi-online and fully-online settings with suitable modifications and applies quite generally
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to a number of attack objectives. We show that this formulation has two critical differences

with the corresponding offline formulation [MZ15] that lead to a difference in solution

approaches. The first is that unlike the offline case where the estimated classifier is the

minimizer of an empirical risk, here the classifier is a much more complex function of the

data stream which makes gradient computation time-consuming.The second difference

is that data order now matters, which implies that modifying training points at certain

positions in the stream may yield high benefits; this property can be potentially exploited

by a successful attack to reduce the search space.

We then propose a solution that uses three key steps. First, we simplify the

optimization problem by smoothing the objective function and using a novel trick called

label inversion if needed. Second, we recursively compute the gradient using Chain rule.

The third and final step is to narrow down the search space of gradient ascent by modifying

data points at certain positions in the input stream. We propose three such modification

schemes – the Incremental Attack which corresponds to an online version of the greedy

scheme, the Interval Attack which corresponds to finding the best consecutive sequence to

modify, and finally a Teach-and-Reinforce Attack, which seeks to teach a classifier that

adheres to the adversary’s goal by selectively modifying inputs in the beginning of the data

stream, and then reinforce the teaching by uniformly modifying inputs along the rest of

the stream.

Finally, we carry out detailed experimentation which evaluates these attacks in the

context of an adversary who seeks to degrade the classification error for four data sets,

two settings (semi-online and fully-online) as well as three styles of learning rates. Our

experiments demonstrate that online adversaries are indeed significantly more powerful

in this context than adversaries who are oblivious to the online nature of the problem.

Additionally, we show that the severity of the attacks depend on the learning rate as well

as the setting; online learners with rapidly decaying learning rates are more susceptible to
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attacks, and so is the semi-online setting. We conclude with a brief discussion about the

implication of our work for constructing effective defenses.

5.2 The Setting

5.2.1 The Classification Setting and Algorithm

We consider online learning for binary linear classification. Specifically, we have

instances x drawn from the instance space Rd, and binary labels y ∈ {−1,+1}. A linear

classifier is represented by a weight vector w; for an instance x, it predicts a label sgn(θ>x).

For a particular classification problem, this weight vector w is determined based on training

data.

In offline learning, the weight vector θ is learnt by minimizing a convex empirical

loss ` on training data plus a regularizer Ω(θ). In contrast, in online learning, the training

data set S arrives in a stream {(x0, y0), . . . , (xt, yt), . . .}; starting with an initial θ0, at

time t, the weight vector θt is iteratively updated to θt+1 based on the current example

St = (xt, yt).

Since the classical work of [LLW91], there has been a large body of work in online

learning in a number of settings [CBL06]. In this work, we consider online learning in a

distributional setting where each (xt, yt) is independently drawn from an underlying data

distribution D. As our learning procedure, we select the popular Online Gradient Descent

(OGD) algorithm [Zin03], which at time t, performs the following update:

θt+1 = θt − ηt(∇`(θt, (xt, yt)) +∇Ω(θt)),

Recall that here ` is a convex loss function, and Ω is a regularizer. For example, in

the popular L2-regularized logistic regression, ` is the logistic function: `(θ, (x, y)) =
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log(1 + e−yθ
>x) and Ω(θ) = c

2
‖θ‖2 for some constant c. In addition, ηt is a learning rate

that typically diminishes over time. We use T to denote the length of the data stream.

5.2.2 The Attacker

Following prior work on data poisoning [MZ15, KL17], we consider a white-box

adversary. Specifically, the adversary knows the entire data stream (including data order),

the model class, the training algorithm, any hyperparameters and any defenses that may be

employed. Armed with this knowledge, the adversary has the power to arbitrarily modify

at most K examples (xt, yt) in the stream. While this is a strong assumption, it has been

used in a number of prior works [MZ15, KL17, BNL12, BL17]. Security by obscurity is

well-known to be bad practice and to lead to pit-falls [BPRB+13]. Additionally, adversaries

can often reverse-engineer the parameters of a machine learning system [TZJ+16, SSSS17].

We consider two different styles of attack objectives – semi-online and fully-online –

that correspond to two different practical uses of online learning. In the sequel, we use

the notation f(θ) to denote an attack objective function that depends on a specific weight

vector θ.

Semi-Online. Here, the attacker seeks to modify the training data stream so as

to maximize its objective f(θT ) on the classifier θT obtained at the end of training. This

setting is applicable when an online or streaming algorithm is used to train a classifier,

which is then used directly in a downstream application.

Here, the training phase uses an online algorithm but the evaluation of the objective

is only at the end of the stream. Compared to the classic offline data-poisoning attack

setting [BNL12, SKL17], the attacker now has the extra knowledge on the order in which

training data is processed.

Fully-online. Here, the attacker seeks to modify the training data so as to maximize

the accumulated objectives over the entire online learning window. More specifically, the
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attacker’s goal is to now maximize
∑T

t=1 f(θt).

This setting is called fully-online because both the training process and the evaluation

of the objective are online. It corresponds to adversaries in applications where an agent

continually learns online, thus constantly adapting to a changing environment; an example

of such a learner is a financial tool predicting price changes in the stock market.

An Example Attack Objective: Classification Error. Our algorithm and ideas

apply to a number of objective functions f ; however, for specificity, while explaining our

attack, we will consider an adversary whose objective is the classification error achieved by

the classifier output by the online learner:

f(θ) = Pr
(x,y)∼D

(sgn(θ>x) 6= y) = E
(x,y)∼D

[1(sgn(θ>x) 6= y)] (5.1)

The Feasible Set Defense. Following prior work [BNL12, SKL17] will also assume

that the learner employs a feasible set defense, where each example (xt, yt) on arrival is

projected on to a feasible set F of bounded diameter. This defense rules out trivial attacks

where outlier examples with very high norm may be used to arbitrarily modify a classifier

at training time. Observe that under the feasible set defense, it is sufficient to consider

adversaries which only alter training points to other points inside the feasible set F .

For the purpose of this work, we will consider F = [−1, 1]d × {−1, 1}.

5.3 Attack Methods

In the setting described above, finding the attacker’s optimal strategy reduces to

solving a certain attack optimization problem. We begin by describing this problem.

In the sequel, given a data stream S, we use the notation St to denote the t-th

labeled example in the stream. Additionally, the difference between two data streams S
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and S ′, denoted by S \ S ′, is defined as the set {St|St 6= S ′t}; its cardinality |S \ S ′| is the

number of of time steps t for which St 6= S ′t.

5.3.1 Attacker’s Optimization Problem

Under this notation, the attacker’s optimal strategy under an input data stream

Strain in the semi-online case can be described as the solution to the following optimization

problem.

max
S∈FT

f(θT ) (5.2)

subject to: |S \ Strain| ≤ K, (5.3)

θt = θ0 −
t−1∑
τ=0

ητ (∇`(θτ , Sτ ) +∇Ω(θτ )), 1 ≤ t ≤ T (5.4)

Here, (5.3) ensures that at most K examples in the input data stream are changed,

and (5.4) ensures that θt is the OGD iterate at time t. In the fully online case, the objective

changes to
∑T

t=1 f(θt).

5.3.2 Attack Algorithm

Challenges and Our Approach. Observe that this optimization problem has some

similarities to the corresponding offline problem derived by [MZ15]. However, there are

two important differences that leads to a difference in solution approaches.

The first is that unlike the offline case where the estimated weight vector is the

minimizer of an empirical risk, here θt is a more complex function of the data stream

S. This has two consequences that make gradient computation more challenging – first,

changing xt now influences all later wτ for τ > t; second, the KKT conditions that were
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exploited by prior work [BNL12, SKL17, KL17] for easy computation no longer hold. The

second difference from the offline case is that data order now matters, which implies that

modifying training points at certain positions in the stream may yield high benefits. This

property could be potentially exploited by a successful attack to reduce the search space.

We next provide a solution approach that involves three steps, corresponding to three key

ideas.

The first key idea is to simplify the optimization problem and make it amenable for

gradient ascent; this is done by smoothing the objective function and using a novel tool

called label inversion if needed. The second idea is to compute the gradient of the objective

function with respect to points in the data stream by use of the chain rule and recursion.

Finally, our third key idea is to narrow the search space by confining our search to specific

positions in the data stream. We next describe each of these steps.

Idea 1: Simplify Optimization Problem. We begin by observing that in many cases,

the objective function (5.2) may not be suited for gradient ascent. An example is the

classification error objective function (5.1); being a 0/1 loss, it is non-differentiable, and

second, it involves an expectation over D which we cannot compute as D is generally

unknown. In these cases, we smooth the objective function using standard tools – we use a

convex surrogate, the logistic loss, instead of the 0/1 loss, and evaluating the expectation

over a separate validation data set Svalid [BNL12].

However, the surrogate to the classification loss objective (5.1) still has local maxima

at the constant classifier. To address this, we propose a novel tool – label inversion. Instead

of maximizing logistic loss on the validation set, we construct an inverted validation set

Svalidinv, which contains, for each (x, y) in the validation set, an example (x,−y). We then

maximize the negative of the logistic loss on this inverted validation set.

Formally, for an example (x, y) and a weight vector θ, let L(θ, (x, y)) denote the
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negative logistic loss L(θ, (x, y)) = − log(1+exp(−yθ>x)). For the semi-online case, the ob-

jective (5.2) reduces to maxS∈FT L(S) = maxS∈FT
∑

(x,y)∈Svalidinv L(θT , (x, y)). Intuitively,

this encourages the attacker to modify the data stream to fit a dataset whose labels are

inverted with respect to the original data distribution. Again, an analogous objective can

be derived for the fully online case.

Idea 2: Compute Gradients via Chain Rule. The next challenge is how to compute

the gradient of the objective function with respect to a training point (xt, yt) at position t.

Unlike the offline case, this is more challenging as the KKT conditions can no longer be

used, and the gradient depends on position t. Our second observation is that this can still

be achieved by judicious use of the chain rule.

We first observe that in the computation of any θτ , replacing a training point (xt, yt)

with (−xt,−yt) leads to exactly the same result; this is due to symmetry of the feasible

set as well as the OGD algorithm. We therefore choose to keep the label yt’s fixed in the

training set, and only optimize over the feature vector xts.

Let F (θt) denote a (possibly) smoothed version of the objective f evaluated at the

t-th iterate wt; using Chain Rule we can write:

∂F (θt)

∂xi
=


0 if i ≥ t

∂F (θt)
∂θt

∂θt
∂xi

if i = t− 1

∂F (θt)
∂θt

∂θt
∂θt−1

· · · ∂θi+2

∂θi+1

∂θi+1

∂xi
if i < t− 1.

 (5.5)

Observe that the term ∂F (θt)/∂θt and ∂θi+1/∂xi may be calculated directly, and

the product ∂F (θt)
∂θt
· ∂θt
∂θt−1

· · · ∂θi+2

∂θi+1
may be calculated via t− i matrix-vector multiplications.

Finally, we observe that since the gradients ∂F (θt)/∂xi and ∂F (θt)/∂xi+1 share the prefix as

shown in Appendix B.1.1 and hence the gradients {∂F (θt)/∂xi} for all i may be computed

in O(Td2) time. A detailed derivation of the general case, as well as specific expressions
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for the surrogate loss to classification error, is presented in the Appendix B.1.2.

Idea 3: Strategic Search over Positions in the Stream. So far, we have calculated

the impact of modifying a single point (xt, yt) on the objective function; a remaining

question is which data points in the input stream to modify. Recall that in a data stream of

length T , there are potentially
(
T
K

)
subsequences of K inputs to modify, and a brute force

search over all of them is prohibitively expensive. We present below three algorithms for

strategically searching over positions in the stream for attack purposes – the Incremental

Attack, the Interval Attack and the Teach-and-Reinforce Attack.

A first idea is to consider a greedy approach, which iteratively alters the training

point in the sequence that has the highest gradient magnitude. While this has been

considered by prior work for offline settings, we next derive how to do this in an online

setting. This results in what we call the Incremental Attack.

Incremental Attack. This attack employs an iterative steepest coordinate descent

approach. In each iteration, we calculate the gradient of the modified objective with respect

to each single training point, and pick the (xt, yt) with the largest gradient magnitude.

This example is then updated as:

xt ← projF(xt + ε∂F/∂xt),

where ε is a step size parameter, F is the objective function, and proj is the projection

operator. The process continues until either K distinct points are modified or convergence.

The full algorithm is described in Algorithm 6 in the Appendix.

Observe however that the greedy approach has two limitations. The first is that

since it does not narrow the search space using the online nature of the problem, it involves

a large number of iterations and is computationally expensive. The second is that it is

known to be prone to local minima as observed by prior work in the offline setting. [SKL17]
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Interval Attack. To address these limitations, we next propose a novel strategy that is

tailored to the online setting, called the Interval Attack. The idea here is to find the best

consecutive sequence (xt, yt), . . . , (xt+K−1, yt+K−1) modifying which decreases the objective

function the most.

More specifically, the search process is as follows. For each t ∈ {0, . . . , T −K − 1},

the algorithm computes the concatenated gradient [∂F/∂xt, · · · , ∂F/∂xt+K−1] and carries

out the following update until convergence or until a maximum number of iterations is

reached:

[xt, · · · , xt+K−1]← projFK ([xt, · · · , xt+K−1] + ε[∂F/∂xt, · · · , ∂F/∂xt+K−1]),

where ε is again a step-size parameter. The value of t for which the final [xt, . . . , xt+K−1]

gives the best objective (5.2) is then selected.

Teach-and-Reinforce Attack. Even though the Interval attack is faster than the Incre-

mental, it has the highest impact on the performance of the classifiers θt′ for t′ close to

t. In particular, it is suboptimal in the fully online case, where the objective is the sum

of the losses of all θt. This motivates our third attack strategy – the Teach-and-Reinforce

Attack, which seeks to first teach a new classifier by modifying a set of initial examples,

and then reinforce the teaching by modifying examples along the rest of the data stream.

We split K, the number of examples to be modified, into two parts αK and (1−α)K.

We then modify the first αK points in the stream, followed by every s-th remaining point,

where s = d T−αK
(1−α)K

e. As in previous attacks, once the attack positions are determined,

the algorithm iteratively finds the best modification through gradient ascent followed by

projection to the feasible set. The full algorithm is described in Algorithm 8. Finally, the

optimal value of α is determined through a grid search. Observe that α = 0 corresponds to

modifying points over an uniform grid of positions in the stream, and hence the performance
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of Teach-and-Reinforce is at least as good as this case.

5.4 Experiments

We now evaluate the proposed attacks experimentally to determine their practical

performance. In particular, we consider the following three questions:

1. How effective are the proposed gradient ascent-based online adversaries relative

to adversaries who are oblivious to the online nature of the learning process, and

adversaries that simply invert training labels?

2. Which positions in the data stream are predominantly attacked by the online adver-

saries?

3. How does attack performance vary with the setting (semi-online vs fully-online) and

learning rate?

These questions are investigated in the context of the classification error objective

for four data sets, two settings (semi-online and fully-online) as well as three styles of

learning rates.

5.4.1 Experimental Methodology

Baselines. We implement the three proposed online attacks – Incremental, Interval

and Teach-and-Reinforce – in both semi-online and fully-online settings. For computational

efficiency, in the fully-online setting, we use the objective function
∑

t∈G f(θt) where G is a

regular grid containing every 10-th integer.

Additionally, we consider two baselines – the Offline attack and the Label-flip Attack.

The Offline attacker represents an adversary who is oblivious to the streaming nature of
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the input. It uses the method of [BNL12] to generate K additional attack points. Since

their method generates points for adding to the training data, and our input stream is

fixed-length, we replace a random set of K positions in the stream with the newly generated

points. The Label Flip attack selects K points from the input stream, and flips their labels.

We use three strategies for selecting the positions of these points – head-flip (initial K

positions in the stream), tail-flip (the final K positions), and random. To keep the figures

understandable, we report the best outcome acheived by the three strategies.

Datasets. We select four datasets – a synthetic dataset consisting of a 2-dimensional

mixture of spherical Gaussians, MNIST, fashion MNIST and UCI Spambase. To reduce the

running time, we project both MNIST and fashion MNIST to 50 dimensions via random

projections. For MNIST, we use the 1 vs. 7 classification task, and for fashion MNIST, the

sandals vs. boots task.

Parameter Choice. The online learner has three parameters of interest – the

initial classifier w0, the regularization function, and the learning rate ηt. We set the initial

classifier w0 in Online Gradient Descent to a logistic regression classifier trained offline on

a held-out dataset. For all cases, we use L2 regularization Ω(θ) = λ
2
‖θ‖2 with parameter

λ = 0.4. We consider three choices for learning rate – Constant (where ηt = η0), Slow Decay

(where ηt = η0/
√
t) and Fast Decay (where ηt = η0/λt) – in accordance with standard

practices. η0 is chosen to ensure that in all cases, the online learner has more than 90%

test accuracy when run on the clean data stream.

The gradient based attack algorithms also involve a step size parameter ε, which is ini-

tially set to
√
d/100 where d is the data dimension, and then decays as

√
d/[100

√
1 + (t/20)].

Finally, the hyper-parameter α in the Teach-and-Reinforce attack is chosen by grid search

from {0, 0.25, 0.5, 0.75}; observe that α = 0 corresponds to modifying points over an

uniform grid of positions in the stream.
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5.4.2 Results

Figure 5.1 and 5.2 show the attack results for synthetic, MNIST and Spambase

for the Slow decay learning rate; the remaining figures are in the Appendix B.2.2. Each

plotted point reports average test accuracy as a function of the fraction of modified points,

and is an average over 8 runs. Table 5.1 provides a qualitative description of the positions

in the stream that are attacked by the different methods, with full histograms in the

Appendix B.2.3.

The figures show that the Incremental and Interval attacks are overall the most

effective in the semi-online case, while Teach-and-Reinforce is overall the most effective

in the fully-online case. Additionally, the gradient ascent-based online attacks are highly

effective for all datasets (except for the synthetic 2-d mixture of Gaussians), and have

higher performance than the position-oblivious Offline attack as well as the Label Flip

attack. Finally, the positions attacked by Incremental and Interval attacks do change

as a function of the setting (semi-online vs. fully-online) and learning rate style. In the

semi-online case, for Slow Decay and Constant, the attacks modify points towards the end

of the stream, while in the fully-online case, the modified points are chosen towards the

beginning. In constrast, for Fast Decay, the points modified are chosen from the beginning

of the stream in both cases.

5.4.3 Discussion

We now revisit our initial questions in light of these results.

Comparison with Oblivious Adversaries and Label Flip Adversaries. Both

Offline and Label Flip fail to perform as well as the best online attack. This implies that

an adversary who can exploit the online nature of the problem can produce better attacks

than an oblivious one. Additionally, gradient ascent procedures are indeed necessary for
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high performance, and simple label flipping does not suffice.

Implications of Attack Positions. We find that the positions modified by the

Incremental and Interval attacks are highly concentrated in the semi-online case. This

implies that we may be able to narrow down the search space of attack positions in this

case. However, such short-cuts may not yield high performance in the fully-online case.

Impact of Setting and Learning Rates. The setting (semi-online vs. fully-

online) and learning rates significantly impact the results. The results there imply that

first, the Incremental Attack suffers from local minima which are mitigated by Teach-and-

Reinforce, and second, the semi-online setting may be easier to attack than fully-online.

Additionally, the efficacy of all three online attacks is higher in the Fast Decay case than

Slow Decay or Constant, which suggests that Fast Decay learning rates may be particularly

vulnerable to adversarial attacks.

5.4.4 Implications for Defenses

Our experiments show that the semi-online setting is more vulnerable than the

fully-online setting, and the Fast Decay learning rate is also more vulnerable than Slow

Decay or Constant Decay. We conjecture that this is because the classifier wT in the

semi-online setting depends heavily on a relatively smaller number of training points than

the fully-online setting. A similar explanation applies to Fast Decay; because the learning

rate decays rapidly, the classifiers produced depend rather critically on the few initial

points.

Based on these results, we therefore recommend the use of online methods where

no one classifier depends heavily on a few input points; we conjecture that these methods

would be less vulnerable to adversarial attacks. An example of such a method is the

averaged stochastic gradient classifier, where the classifier used in iteration t is the average

2
t

∑t
s=t/2 θs. An open question for future work is to investigate the vulnerability of this
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Table 5.1: Attack positions chosen by each online attack against an online learner in
different settings. We use ‘Start’, ‘End’ and ‘Uniform’ to qualitatively represent whether
most attack positions are at the beginning, end or uniformly distributed over the stream.
The most frequent α is reported for Teach-and-Reinforce.

Incremental Interval Teach-and-Reinforce
Semi-online Fully-online Semi-online Fully-online Semi-online Fully-online

Fast Decay Start Start Start Start 0.75 0.75
Constant End Start/Uniform End Start 0 0.25/0.75

Slow Decay End Start/Uniform End Start 0 0/0.75

method.

5.5 Conclusion

We initiate the study of data poisoning attacks in the context of online learning. We

formalize the problem to abstract out two settings of interest – semi-online and fully-online.

In both cases, we formulate the attacker’s strategy as an optimization problem and propose

solution strategies. Our experiments show that our attacks perform significantly better

than an attacker who is oblivious to the online nature of the input data.

There are many avenues for further investigation – such as, extending our attacks

to more complex classifiers such as neural networks, and building online defenses. Finally,

online learning is closely related to other problems on learning from feedback, such as

contextual bandits. We believe that a very interesting open question is to expand our

understanding to better understand the role and capabilities of adversaries in these systems.
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Figure. 5.1: Test accuracy vs. fraction of modified points for each attack on an online
learner with Slow Decay learning rate. Semi-Online. Top to Bottom: 2D Gaussian
mixture, MNIST 1 v.s. 7, UCI Spambase.
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Figure. 5.2: Test accuracy vs. fraction of modified points for each attack on an online
learner with Slow Decay learning rate, Fully-Online. Top to Bottow: 2D Gaussian
mixture, MNIST 1 v.s. 7, UCI Spambase.
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Chapter 6

Data Poisoning Defenses for Online

Learning

6.1 Introduction

In this chapter, we consider data poisoning for online learning, and carry out a

theoretical and empirical study of its effectiveness under four popular defenses. In online

learning, examples arrive sequentially, and at iteration t, the learner updates its parameters

based on the newly-arrived example. We select as our learner perhaps the most basic yet

widely-used algorithm – online gradient descent (OGD). Starting with an initial parameter

value and a loss function, OGD updates its parameter value by taking a small step against

the gradient of the loss at the current example.

We consider two threat models. First, for its amenability to analysis, we consider a

powerful semi-online threat model by [WC18], where the adversary can add examples in

any position in the stream, and their goal is to attack the classifier produced at the end of

learning. In addition, we consider a messier but more realisitic fully-online threat model –

where the adversary can only add examples at pre-specified positions and their goal is to
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achieve high overall loss throughout the entire stream. We assume that the learner has a

defense in place that filters out input examples with certain properties determined by the

defense mechanism.

For the semi-online threat model, we assume that the adversary has a target classifier

in mind, and we measure how rapidly it can cause the learnt classifier to move towards the

target when a specific defense is in place. We look at three regimes of effectiveness. In the

first easy regime, there is a simplistic attack that the adversary can use to rapidly reach

its target. In the second hard regime, there are no successful data poisoning attacks that

succeed against a defense. In between lies an intermediate regime where effective attacks

exist, but are not as simplistic or powerful. Specifically, our contributions are:

• We prove that the L2-norm defense, which filters out all examples outside an L2-ball is

always in the easy regime and hence mostly weak.

• We provide conditions under which the labeling oracle defense [SHN+18, SMK+18],

where the adversary only provides an unlabeled example to be labeled by an annotator,

is in the easy regime or in the hard regime.

• We characterize the performance of two data-dependent defenses – the L2-distance-

to-centroid defense and the Slab defense [SKL17, KSL18] – when initialized on clean

data.

• We empirically investigate the extent to which our theoretical observations translate

to practice, and show that existing attacks are mostly effective in the regime that our

theory predicts as easy, and mostly ineffective in those predicted as hard.

While our theory directly measures the speed of poisoning, a remaining question

is how the poisoning attacks and defenses interact with the learning process overall – as

defenses also filter out clean examples. To understand this, we consider the interplay of
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poisoning and learning in a more realistic threat model – the fully online model – where

the adversary can only add examples in pre-specified positions, and its goal is to force high

overall loss over the entire stream. Our findings here are as follows:

• Theoretically, we show two examples that illustrate that the adversary’s success depends

on the “easiness” of the learning problem – for low dimensional data with well-separated

classes, defenses work well, while the adversary can succeed more easily for higher

dimensional, lower margin data.

• Experimentally, we corroborate that data poisoning defenses are highly effective when

the classification problem is easy, but the findings from the semi-online case carry over

when the classification problem is more challenging.

Our results have two major implications for data poisoning in the online setting.

First, they indicate that the Slab defense may be a highly effective defense overall. Second,

our experiments indicate that for challenging classification problems, weaker threat models

can still result in fairly powerful attacks, thus implying that data poisoning is a threat

even for these weaker adversaries.

6.2 The Setting

There are two parties in a data poisoning process – the learner and the attacker.

We describe the learning algorithm as well as the attacker’s capability and goals of two

threat models – semi-online and fully-online.

6.2.1 Learning Algorithm

We consider online learning – examples (xt, yt) arrive sequentially, and the learner

uses (xt, yt) to update its current model θt, and releases the final model θT at the con-
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clusion of learning. Our learner of choice is the popular online gradient descent (OGD)

algorithm [SS12, Haz16]. The OGD algorithm, parameterized by a learning rate η, takes

as input an initial model θ0, and a sequence of examples S = {(x0, y0), . . . , (xT−1, yT−1)};

at iteration t, it performs the update:

θt+1 = θt − η∇`(θt, xt, yt)

where ` is an underlying loss function – such as square loss or logistic loss. In this work,

we focus on logistic regression classifiers, which uses logistic loss.

6.2.2 Threat Models

We consider two types of attackers – semi-online and fully-online – which differ

in their poisoning power and objectives.

Semi-online. A semi-online attacker adds poisoning examples to the clean data

stream S, and the resulting poisoned stream S ′ becomes the input to the online learner.

We consider a strong attacker that knows the entire clean data stream and can add up

to K examples to S at any position. Let θ be the final model output by the learner. A

semi-online attacker’s goal is to obtain a θ that satisfies certain objectives, for example

θ could be equal to a specific θ∗, or have high error on the test data distribution. The

attacker is ‘semi-online’ because the learner is online but 1) the attacker’s knowledge of the

stream resembles an offline learner’s, and 2) the objective only involves the final model θ.

Fully-online. Unlike a semi-online attacker which knows the entire data stream

and can poison at any position, a fully-online attacker only knows the data stream up to

the current time step and can only add poisoning examples at pre-specified positions. This

is a more realistic setting in which the learner gets data from poisoned sources at specific

time steps. Let S ′ be the resulting poisoned stream of length T ′ and I = {t1, · · · , tK} be
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the set of time steps with poisoned examples. The fully-online attacker aims to increase

the online model’s loss over clean examples in the data stream over the entire time horizon,

i.e. to maximize
∑T ′−1

t=0 `(θt, xt, yt)1[t /∈ I].

Note that the attacks are white-box in both settings, which is a common assumption

in data poisoning. The only work in a general black-box setting is by [DHPZ19], whose

methods are computationally inefficient. Other work either considers simple and limited

attacker model [ZAGZ17] or knows the model class and learning algorithm [LDL+17]. The

white-box setting also rules out security by obfuscation.

Defense. In both semi-online and fully-online settings, we assume that the attacker

works against a learner equipped with a defense mechanism characterized by a feasible

set F . For example, F is an L2-ball of radius R in the popular L2-norm defense. If the

incoming example (xt, yt) ∈ F , then it is used for updating θt; otherwise it is filtered out.

The attacker knows F under the white-box assumption.

6.3 Analysis

In this section, we analyze the effectiveness of common defenses against data

poisoning in the semi-online setting. We formalize a semi-online attacker as follows.

Definition 6.3.1 (Data Poisoner). A Data Poisoner DP η(θ0, S,K,F , θ∗, ε), parameterized

by a learning rate η, takes as input an initializer θ0, a sequence of examples S, an integer

K, a feasible set F ⊆ X ×Y, a target model θ∗, and a tolerance parameter ε and outputs a

sequence of examples S̃. The attack is said to succeed if S̃ has three properties – first, an

OGD that uses the learning rate η, initializer θ0 and input stream S̃ will output a model θ

s.t. ‖θ∗ − θ‖ ≤ ε; second, S̃ is obtained by inserting at most K examples to S, and third,

the inserted examples lie in the feasible set F .

For simplicity of presentation, we say that a data poisoner outputs a model θ if the
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OGD algorithm obtains a model θ over the data stream S̃.

In order to test the strength of a defense, we propose a simple data poisoning

algorithm – the SimplisticAttack. A defense is weak if this attack succeeds for small K,

and hence is able to achieve the poisoning target rapidly. In contrast, a defense is strong if

no attack with any K can achieve the objective. We analyze the conditions under which

these two regimes hold for an online learner using logistic loss for binary classification tasks.

Algorithm 5 SimplisticAttack(θ0, S, K, F , θ∗, ε, R)

Input: initial model θ0, clean data stream S, max number of poisoning points K, feasible
set F , target model θ∗, tolerance parameter ε, max L2 norm R of inputs.
Initialize θ̃0 as the model learned over S.
λ = ‖θ∗‖ , S̃ = S, t = 0

γ0 = min
(
R/‖θ̃0 − θ∗‖, 1/η

)
while t < K and ‖θ̃t − θ∗‖ ≥ ε do
γt = min (γ∗t , γ0), where γ∗t is the solution of γ to γ

1+exp(θ̃>t (θ∗−θ̃t)γ)
= 1

η

(xt, yt) = (γt(θ
∗ − θ̃t),+1)

Find the closest c ∈ [0, R/‖xt‖] to 1, s.t. (cxt, yt) ∈ F or (−cxt,−yt) ∈ F .
if (cxt, yt) ∈ F then append (cxt, yt) to S̃
else append (−cxt,−yt) to S̃
t = t+ 1

endwhile
return S̃

The SimplisticAttack algorithm is described in Algorithm 5. Suppose the online

learner has an initial model θ0 and obtains a model θ̃0 after learning over the clean stream

S. SimplisticAttack iteratively appends poisoning points to the clean stream S, where

all poisoning points are in the direction of θ∗− θ̃0 with adaptive L2 magnitude capped at R.

The algorithm is inspired by the iterative teaching method [LDH+17] and is modified with

an additional projection step for general feasible set F . In order to maintain the direction

of the poisoning points, the projection step scales the input by a nonnegative factor c.

90



6.3.1 Bounded L2 Norm Defense.

In many applications, the learner requires the input vector to be within a bounded

domain, for example having bounded Lp norm. We consider inputs with bounded L2 norm,

which corresponds to a defense mechanism with a feasible set F = {(x, y)| ‖x‖2 ≤ R} for

some constant R. Notice that if the input domain is bounded by L∞ or L1 norms, we can

still find an L2 ball inscribed in the domain. We next show that SimplisticAttack is a

very efficient data poisoner for this setting.

Theorem 6.3.2. Let θ0 and θ∗ be the initial and the target model. Suppose the feasible

set F = {(x, y)| ‖x‖2 ≤ R} and ‖θ∗‖ = λ. If K > C log(λ/ε) for some constant C = C(R),

then SimplisticAttack(θ0, S,K,F , θ∗, ε, R) outputs a θ such that ‖θ − θ∗‖ ≤ ε.

Remark. Notice that K is an upperbound of number of poisoning examples needed

to output a θ close to θ∗, therefore also corresponds to a lowerbound on the speed of

poisoning. Theorem 6.3.2 suggests that SimplisticAttack outputs a θ close to θ∗ within

logarithmic number of steps w.r.t. 1/ε. Therefore, the defense is in the easy regime. The

factor C increases with decreasing R, and is in the order of O(1/ηR) when R is small.

However, in real applications, the learner cannot set R to be arbitrarily small because this

also rejects clean points in the stream and slows down learning. We investigate this in

more details in our evaluation in Sec 6.5.

6.3.2 The Labeling Oracle Defense

In many applications, the adversary can add unlabeled examples to a dataset, which

are subsequently labeled by a human or an automated method. We call the induced labeling

function a labeling oracle. Denoting the labeling oracle by g, we observe that this oracle,
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along with bounded L2 norm constraint on the examples, induces the following feasible set:

F = {(x, y)|‖x‖ ≤ R, y = g(x)}, (6.1)

For simplicity, we analyse the oracle defense on a different feasible set F ′ = {(yx,+1)|(x, y) ∈

F} derived from F . We call F ′ the one-sided form of F because it flips all (x,−1) ∈ F

into (−x,+1) and as a result only contains points with label +1. Lemma C.1.1 in the

appendix shows that an attacker that outputs θ using K points in F always corresponds to

some attacker that outputs θ using K points in F ′ and vice versa. Therefore, the defenses

characterized by F and F ′ have the same behavior.

We next show that for feasible sets F ′ of this nature, three things can happen as

illustrated in Figure 6.1. First, if F ′ contains a line segment connecting the origin O and

some point in the direction of θ∗ − θ̃0, then SimplisticAttack can output a θ close to

θ∗ rapidly. Second, if F ′ is within a convex region G that does not contain any point in

the direction of θ∗ − θ0, then no poisoner can output θ∗. Third, if F ′ contains points in

the direction of θ∗ − θ̃0 but not the origin, then the attack can vary from impossible to

rapid. Theorem 6.3.3 captures the first and the second scenarios, and Appendix C.1.4

shows various cases under the third.

Theorem 6.3.3. Let L(r,u) =
{
cu/ ‖u‖

∣∣∣0 < c ≤ r
}

denote a line segment connecting the

origin and ru/‖u‖ for some vector u. Also, let θ0, θ
∗ be as defined in Theorem 6.3.2 and

θ̃0 be the online learner’s model over the clean stream S. Suppose ‖θ∗‖ = λ.

1. If L(r, θ∗ − θ̃0) ⊆ F ′ for some r > 0 and K ≥ C log(λ/ε) for some constant C, then

SimplisticAttack(θ0, S,K,F ′, θ∗, ε, r) outputs a θ with ‖θ − θ∗‖ ≤ ε.

2. If there exists a convex set G such that 1) F ′ ⊆ G, and 2) G
⋂
L(+∞, θ∗ − θ0) = ∅,

then no data poisoner can output θ∗ for any K.
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Figure. 6.1: Schematic illustration of the one-sided feasible sets F ′ corresponding
to three defense regimes. Left to right: defense is in the easy, hard and intermediate
regime.

6.3.3 Data-driven Defenses

A common data poisoning defense strategy is to find a subset of the training points

that are anomalous or “outliers”, and then sanitize the data set by filtering them out before

training. Following [CSL+08], [SKL17], [PMGGL18] and [KSL18], we assume a defender

who builds the filtering rule using a clean initialization data set that the poisoner cannot

corrupt. Thus the poisoner knows the defense mechanism and parameters, but has no way

of altering the defense. We focus on two defenses, the L2-distance-to-centroid defense and

the Slab defense [SKL17, KSL18], which differ in their outlier detection rules.

Defense Description. Both defenses assign a score to an input example, and

discard it if its score is above some threshold τ . The L2 norm constraint on the input

vector still applies, i.e. ‖x‖ ≤ R. Let µ+ denote the centroid of the positive class and µ−

the centroid of the negative class computed from the initialization set.

L2-distance-to-centroid defense assigns to a point (x, y) a score ‖x− µy‖. This

induces a feasible set F c+ = {(x,+1)| ‖x− µ+‖ ≤ τ, ‖x‖ ≤ R} for points with label +1 and

F c− = {(x,−1)| ‖x− µ−‖ ≤ τ, ‖x‖ ≤ R} for points with label −1. The entire feasible set

F c = F c+
⋃
F c−.
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Slab defense assigns to a point (x, y) a score |(µ+ − µ−)>(x − µy)|. We call β =

µ+ − µ− the “defense direction”. Intuitively, the defense limits the distance between

the input and the class centroid in the defense direction. The defense induces a feasible

set F s+ = {(x,+1)||β>(x − µ+)| ≤ τ, ‖x‖ ≤ R} for points with label +1 and F s− =

{(x,−1)||β>(x − µ−)| ≤ τ, ‖x‖ ≤ R} for points with label −1. The entire feasible set

F s = F s+
⋃
F s−.

L2-distance-to-centroid Defense. If τ is large such that either F c+ or F c− contains

the origin, then SimplisticAttack can succeed rapidly. If τ is small such that the one-

sided form of F c does not contain any point on the positive side of the hyperplane with

normal vector (θ∗ − θ0), then no attack is possible. Lemma 6.3.4 shows the condition for

these two cases.

Lemma 6.3.4. Let u+ be µ+’s projection on θ∗ − θ0. Similarly, let u− be µ−’s projection

on θ0 − θ∗.

1. If τ > min(‖µ+‖ , ‖µ−‖) and K ≥ C log(λ/ε) for some constant C, then ∃r > 0 such

that SimplisticAttack(θ0, S,K,F c, θ∗, ε, r) outputs a θ with ‖θ − θ∗‖ ≤ ε.

2. Otherwise, if 〈µ+, θ
∗ − θ0〉 < 0, 〈µ−, θ0 − θ∗〉 < 0 and τ ≤ min(‖u+‖ , ‖u−‖), then no

data poisoner can output θ∗ for any K.

Slab Defense. Each of F s+ and F s− is a ‘disc’ between two hyperplanes with normal

vector β. When τ is large such that either F s+ or F s− contains the origin, SimplisticAttack

can succeed rapidly. When τ is small and the projection of y(θ∗ − θ0) on β is opposite to

µy, then no attack is possible. Lemma 6.3.5 shows the condition for both cases.

Lemma 6.3.5. Let β = (µ+ − µ−), b+ = −β>µ+, b− = β>µ−. WLOG, assume β>(θ∗ −

θ̃0) ≥ 0.1

1If β>(θ∗ − θ̃0) < 0, we can set β = (µ− − µ+). The Slab score remains the same.
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1. If τ − b+ > 0 > −τ − b+ or τ − b− > 0 > −τ − b−, then there exist a data poisoner

DP η(θ0, S,K,F s, θ∗, ε) that outputs a θ with ‖θ − θ∗‖ ≤ ε for K ≥ C log(λ/ε) for

some constant C.

2. If 0 ≥ τ − b+ > −τ − b+ and 0 ≥ τ − b− > −τ − b−, then SimplisticAttack cannot

output θ∗ for any K. In addition, if β>(θ∗ − θ0) ≥ 0, then no data poisoner outputs

θ∗ for any K.

6.4 The Fully-Online Setting

Our theory in Section 6.3 discusses the effectiveness of attack and defense in the

semi-online setting. Do effective semi-online attacks always lead to effective fully-online

attacks, where the attacker wants the online model to have high loss over the entire time

horizon? We show by two examples that the result varies on different learning tasks, and

thus the existence of effective semi-online attack alone is not sufficient. The poisoning effect

is quickly negated by clean points in one case but not in the other, which suggests the

effectiveness of fully-online attack also critically depends on the difficulty of the learning

tasks. As a result, the learner also needs to consider its defense mechanism’s impact on the

learning process.

Effectiveness of Poisoning on Different Tasks. We consider the following

learner-attacker pair. The learner uses the standard OGD algorithm with initial value

θ0 = 0, learning rate η = 1, and also an L2 norm defense with F = {(x, y)| ‖x‖ ≤ 1}, which

is always in easy regime for semi-online attacks as shown in Theorem 6.3.2. The attacker

can inject 10% as many poisoning points as the clean points at any position. We then show

two different tasks in Lemma 6.4.1 and 6.4.2, in which fully-online attack is hard and easy,

respectively.
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Lemma 6.4.1 (hard case). Consider a data distribution with input x ∈ {1,−1} and label

y = sgn(x). The attacker cannot cause classification errors on more than 10% of the clean

examples.2

Lemma 6.4.2 (easy case). Consider an input space Rd with d = 10, 000. The clean inputs

are uniformly distributed over 2d points {e1, · · · , ed,−e1, · · · ,−ed}, where ei is the i-th

basis vector. The label y = +1 if x ∈ {e1, · · · , ed}, and y = −1 otherwise. Then the

attacker can, with probability more than 0.99, cause classification error on ≥ 50% of the

first 1, 000, 000 clean examples.

In the first case, learning is easy as each clean example contains all the information

needed, while in the second, learning is hard as each clean example only contributes to

one dimension among many. A fully-online attack is effective if poisoning is easier than

learning, and is less likely to succeed otherwise. We further validate this finding over

different real-world data sets with different complexity for learning in Section 6.5.

Impact of Defenses. In reality, the defense mechanism filters both the clean and

the poisoning points. Therefore, the learner cannot set the feasible set arbitrarily small

since such defense also prohibits learning useful patterns. For example, if the L2 norm

bound is less than 1 for the learner in Lemma 6.4.1 and 6.4.2, then all clean points will

be filtered out, and the model will be solely determined by poisoning points. The learner

needs to find an appropriate defense parameter so the feasible set keeps enough clean points

while slows the attack. We evaluate the effectiveness of defenses over a range of defense

parameters in Section 6.5.
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Figure. 6.2: The plot of cos(θ, θ∗) against defense parameter τ for semi-online attacks
with a fixed number of poisoning points. Red background region indicates hard regime;
blue background indicates easy regime. Top to bottom: L2-norm, L2-distance-to-
centroid and Slab. Left to Right: BreastCancer, MNIST, FashionMNIST, IMDB.

6.5 Experiments

Is our analysis on the rapidity of attacks confirmed by practice? And how does

the online classification error rate vary across different defenses and real-world data sets,

given that the relative speed of poisoning and learning matters? We now investigate these

questions through an experimental study. In particular, we ask the following questions.

• Do practical data-poisoning defenses exhibit the different regimes of effectiveness that

we see in theory in the semi-online setting?

• How successful are fully-online attacks across different data sets, given that the tasks

have different difficulty levels of learning?

These questions are considered in the context of three defenses – L2-norm, L2-

distance-to-centroid and Slab.3 The defenses do display different regimes of effectiveness as

2The bound is tight as an attacker can always cause as many errors as the number of poisoning points
under L2 norm defense.

3The labeling oracle defense is not included as we lack the appropriate labeling functions for the
real-world tasks involved.
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predicted, and the loss caused by fully-online attacks is more significant on data sets that

are harder to learn.

6.5.1 Semi-online Experiment Methodology

Baseline Attacks. To evaluate the effectiveness of the defenses, we consider four

canonical baseline attacks. All attacks we use append the poisoning examples to the end of

the clean data stream, as [WC18] shows that this works best for our setting.

The Simplistic attack uses the SimplisticAttack algorithm. The Greedy

attack [LDH+17], finds, at step t, the example (xt, yt) ∈ F that minimizes ‖θt+1 − θ∗‖,

where θt+1 is derived from the OGD update rule. The Semi-Online-WK attack [WC18]

finds K poisoning examples together by maximizing the loss of the resulting model on

a clean validation dataset. The optimization problem is solved using gradient descent.

The poisoning points are again inserted at the end. As a sanity-check, we also include

an offline baseline – the Concentrated attack [KSL18], which is effective against many

offline defenses. We explain its adaption to the online setting in Appendix C.2.2.

Data Sets. We consider four real-world data sets – UCI Breast Cancer (dimension

d = 9), IMDB Reviews [MDP+11] (d = 100),4 MNIST 1v7 (d = 784) and FashionM-

NIST [XRV17] Bag v.s. Sandal (d = 784). The standard OGD algorithm is able to learn

models with high accuracy on all clean data sets. Each data set is split into three parts:

initialization (used for the data-driven defenses), training and test sets. Procedural details

are in Appendix C.2.1.

Experimental Procedure. The learner starts with θ0 = 0 and uses the OGD

algorithm to obtain a model θ by iterating over the sequence of examples output by the

poisoner. The attacker sets the target model θ∗ = −θ̃0, where θ̃0 is the learner’s final

model if it updates only on the clean stream. Poisoning examples are restricted inside the

4The features are extracted using Doc2Vec on the unlabeled reviews by setting d = 100.
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feasible set induced by the learner’s defense, and scores for the data-driven defenses are

calculated based on the initialization set. The number of poisoning examples K is 80 for

Breast Cancer, 100 for MNIST/FashionMNIST and 200 for IMDB.

To avoid confusion by scaling factors, we evaluate the effect of poisoning by cos(θ, θ∗),

the cosine similarity between the final model θ and the target model θ∗. Successful attacks

will result in large cos(θ, θ∗) values.

For L2-norm defense, the defense parameter τ is the maximum L2 norm of the input;

for L2-distance-to-centroid, τ is the maximum L2 distance between an input to its class

centroid, and for Slab, it is the maximum Slab score. Smaller τ means stronger defense.

We consider ten τ values. The i-th value is the 10i-th percentile line of the corresponding

measure for points in the clean stream. We choose τ data-dependently to ensure the range

of τ is practical.

6.5.2 Fully-online Experiment Methodology

Baseline attacks and data sets. Existing fully-online attack methods [WC18,

ZZ19] are either too computationally expensive for high dimensional data and long time

horizons, or require knowledge of the entire clean stream. Instead, we use a generic

fully-online attack scheme which reduces to semi-online attacks as follows. At time t

when the learner gets examples from the attacker, the attacker runs a semi-online attack

algorithm with θt as the initial value and a model with high fully-online loss as the target

θ∗ to generate the poisoning examples.5 We construct three fully-online attackers using

Simplistic, Greedy and Semi-Online-WK as the semi-online subroutines respectively,

and name the baselines after their semi-online subroutines. We use the same four data sets

as in the semi-online experiment.

5Such attack does not require knowledge of future clean points, which either needs to be given or
estimated in previous methods.
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Figure. 6.3: Online classification error rate against defense parameter τ when 10%
of the examples in the data stream comes from the attackers. The dashdot line shows
the error rate of the offline optimal classifier. Small τ means the defense filters out
more examples, both clean and poisoned. Larger online classification error means more
successful attack. Top to bottom: L2-norm, L2-distance-to-centroid and Slab defense.
Left to Right: BreastCancer, MNIST, FashionMNIST, IMDB.

Experiment Procedure. The sequence length T is 400 for Breast-Cancer and

1000 for MNIST, FashionMNIST and IMDB. For each run of experiment, a set of attack

position I with |I| = 0.1T is first drawn uniformly random over all possible positions.6

The attacker generates a poisoning example when t ∈ I, otherwise a clean sample is drawn

from the training set. The learner starts with θ0 = 0 and updates on the poisoned data

stream. Examples that fall outside the feasible set are not used for updating model. At each

iteration t, the learner also predicts the class label of the input xt as ft(xt) = sgn(θ>t xt).

The effect of poisoning is measured by the online classification error rate over the entire

time horizon
∑T−1

i=0 1(ft(xt) 6= yt)1(t /∈ I).

For each defense, we use five τ values, corresponding to five feasible sets F which

contains 30%, 50%, 70%, 90% and 100% of the clean examples in the stream.

6We also try a more powerful poisoner with |I| = 0.2T ; the result is shown in Appendix C.2.3 and has
similar trend.
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6.5.3 Results and Discussion

Figure 6.2 presents the cosine similarity between the final model θ and the target

model θ∗ against various defense parameters τ . An attack is rapid if it can make cos(θ, θ∗)

close to 1 within the fixed budget of poisoning examples. In contrast, a defense is successful

if cos(θ, θ∗) is close to −1, i.e. θ is close to the model under no poisoning. We also show

θ’s error rate on clean test examples in Appendix C.2.3. Figure 6.3 presents the online

classification error rate over clean examples in the stream against defense parameter τ

when 10% of the stream is poisoned. A defense is effective if the error rate is low for all

attack baselines.

Semi-online Experiments

Overall Performance of Attacks. Simplistic, Greedy and Semi-Online-WK are

effective online attacks – cos(θ, θ∗) increases as τ increases and approaches 1 for large τ

in most cases. Concentrated is ineffective for ignoring the online nature of the problem.

Semi-Online-WK typically performs the best for its flexibility in poisoning examples

selection.

Regime of Effectiveness for Defenses vs. Theories. In Figure 6.2, we highlight

the easy and hard regime predicted by our analysis in blue and red background. The

boundaries are calculated based on the initialization data set. The results corroborate our

theories in the following aspects. First, poisoning is more rapid as τ increases, as larger τ

corresponds to larger feasible set. Second, we see from the figure that for most datasets

and defences, there are regimes where SimplisticAttack is rapid, and regimes where no

attacks work – e.g. easy and hard. However, their boundaries do not always completely

agree with the theoretically predicted boundaries – as is to be expected. This is because

the multiplicative factor C in the lowerbound of poisoning speed implicitly depends on τ ;

smaller τ leads to larger C, and thus the number of poisoning examples required increases.

101



We show in an additional experiment in Appendix C.2.3 that the attacker can still make

cos(θ, θ∗) close to 1 for small τ in the predicted easy regime under a larger learning rate

η = 1, which lowers C.

Comparison between Defenses. L2-norm defense is the weakest as it is always

in easy regime. Slab, in contrast, is potentially the strongest defense mechanism because it

has the widest hard regime – the defense is in hard regime even when the feasible set keeps

70% to 80% of clean examples.

Fully-online Experiments

Overall Effectiveness of Defenses. On all datasets, Slab defense is the most

effective because it can slow down poisoning while still keeping most clean examples.

L2-norm is the least effective because it always permits the attacker to move the online

model towards θ∗. L2-distance-to-centroid is more effective than L2-norm on BreastCancer,

MNIST and FashionMNIST but not on IMDB.

Online Error Rate across Data Sets and its Implication. Over all defense

methods, IMDB has the largest online classification error rate and BreastCancer has the

lowest. MNIST and FashionMNIST have similar behaviors. The results corroborate our

intuition on the impact of the learning task’s difficulty level. BreastCancer is an easy low

dimensional learning task, so poisoning is quickly negated by learning on clean examples.

IMDB is a harder task with high dimensional inputs; poisoning is more rapid than learning

for weak defenses and the attack can cause more online classifcation error than the number

of poisoning examples. MNIST/FashionMNIST are high dimensional but the inputs are

more structured, e.g. all centered and similar in size, therefore the results are in between.

Effectiveness of Defenses vs. Choice of Defense Parameter. The lowest

online classification error rate mostly occurs when τ is set to include 70% or 90% of the

examples in the stream. Defenses with too small τ filter out too many clean example and
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slows down learning, while too large τ allows fast poisoning. The result suggests that a

moderate τ that keeps the majority of clean examples is good in practice.

6.6 Conclusion

In conclusion, we perform a thorough theoretical and experimental study of defenses

against data poisoning in online learning. In semi-online setting, we show different regimes

of effectiveness for typical defenses in theory, and validate the predicted effectiveness in

experiment. In fully-online setting, we show by example that poisoning effect also depends

on the difficulty of the learning task, and validate the finding on real-world data sets. Our

experiment suggests that the Slab defense is often highly effective in practice. For future

work, we want to extend the analysis to more complex models such as neural nets, to

more attack objectives such as targeted attack at specific test instance, clean-label stealthy

attack and backdoor attack, and provide defenses with provable guarantees in each case.
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Appendix A

Additional Proof and Experiment

Procedure for Chapter 3

A.1 Proofs from Section 3.3

A.1.1 Proofs for Constant k

Proof. (Of Theorem 3.3.1) To show convergence in probability, we need to show that for

all ε, δ > 0, there exists an n(ε, δ) such that Pr(ρ(Ak(Sn, ·), x) ≥ ε) ≤ δ for n ≥ n0(ε, δ).

The proof will again proceed in two stages. First, we show in Lemma A.1.1 that if

the conditions in the statement of Theorem 3.3.1 hold, then there exists some n(ε, δ) such

that for n ≥ n(ε, δ), with probability at least 1− δ, there exists two points x+ and x− in

B(x, ε) such that (a) all k nearest neighbors of x+ have label 1, (b) all k nearest neighbors

of x− have label 0, and (c) x+ 6= x−.

Next we show that if the event stated above happens, then ρ(Ak(Sn, ·), x) ≤ ε. This

is because Ak(Sn, x+) = 1 and Ak(Sn, x−) = 0. No matter what Ak(Sn, x) is, we can always

find a point x′ that lies in {x+, x−} ⊂ B(x, ε) such that the prediction at x′ is different

from Ak(Sn, x).
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Lemma A.1.1. If the conditions in the statement of Theorem 3.3.1 hold, then there exists

some n(ε, δ) such that for n ≥ n(ε, δ), with probability at least 1− δ, there are two points

x+ and x− in B(x, ε) such that (a) all k nearest neighbors of x+ have label 1, (b) all k

nearest neighbors of x− have label 0, and (c) x+ 6= x−.

Proof. (Of Lemma A.1.1) The proof consists of two major components. First, for large

enough n, with high probability there are many disjoint balls in the neighborhood of x such

that each ball contains at least k points in Sn. Second, with high probability among these

balls, there exists a ball such that the k neareast neighbors of its center all have label 1.

Similarly, there exists a ball such that the k nearest neighbor of its center all have label 0.

Since µ is absolutely continuous with respect to Lebesgue measure in the neigh-

borbood of x and η is continuous, then for any m ∈ Z+, we can always find m balls

B(x1, r1), · · · , B(xm, rm) such that (a) all m balls are disjoint, and (b) for all i ∈ {1, · · · ,m},

we have xi ∈ B(x, ε), µ(B(xi, ri)) > 0 and η(x) ∈ (0, 1) for x ∈ B(xi, ri). For simplicity,

we use Bi to denote B(xi, ri) and ci(n) to denote the number of points in Bi

⋂
Sn. Also,

let µmin = mini∈{1,··· ,m} µ(Bi). Then by Hoeffding’s inequality, for each ball Bi and for any

n > k+1
µmin

,

Pr[ci(n) < k] ≤ exp(−2nµ2
min/(k + 1)2),

where the randomness comes from drawing sample Sn. Then taking the union bound over

all m balls, we have

Pr[∃i ∈ {1, · · · ,m} such that ci(n) < k] ≤ m exp(−2nµ2
min/(k + 1)2), (A.1)

which implies that when n > max
(
k+1
µmin

, [logm−log(δ/3)](k+1)2

µ2min

)
, with probability at least

1− δ/3, each of B1, · · · , Bm contains at least k points in Sn.

An important consequence of the above result is that with probability at least

1− δ/3, the set of k nearest neighbors of each center xi of Bi is completely different from
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another center xj’s, so the labels of xi’s k nearest neighbors are independent of the labels

of xj’s k nearest neighbors.

Now let ηmin,+ = minx∈B1
⋃
···
⋃
Bm η(x) and ηmin,− = minx∈B1

⋃
···
⋃
Bm(1−η(x)). Both

ηmin,+ and ηmin,− are greater than 0 by the construction requirements of B1, · · · , Bm. For

any xi,

Pr[xi’s k nearest neighbors all have label 1] ≥ ηkmin,+

Then,

Pr[∃i ∈ {1, · · · ,m}s.t. xi’s k nearest neighbor all have label 1] ≥ 1−(1−ηkmin,+)m, (A.2)

which implies when m ≥ log δ/3

log(1−ηkmin,+)
, with probability at least 1− δ/3, there exists an xi

s.t. its k nearest neighbors all have label 1. This xi is our x+.

Similarly,

Pr[∃i ∈ {1, · · · ,m} s.t. xi’s k nearest neighbor all have label 0] ≥ 1− (1− ηkmin,−)m,

(A.3)

and when m ≥ log δ/3

log(1−ηkmin,−)
, with probability at least 1− δ/3, there exists an xi s.t. its k

nearest neighbors all have label 0. This xi is our x−.

Combining the results above, we show that for

n > max

(
k + 1

µmin

,
[logm− log(δ/3)](k + 1)2

µ2
min

)
,

m ≥ max

(
log δ/3

log(1− ηkmin,+)
,

log δ/3

log(1− ηkmin,−)

)
,

with probability at least 1− δ, the statement in Lemma A.1.1 is satisfied.
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A.1.2 Theorem and proof for k-nn robustness lower bound.

Theorem 3.3.1 shows that k-NN is inherently non-robust in the low k regime if

η(x) ∈ (0, 1). On the contrary, k-NN can be robust at x if η(x) ∈ {0, 1}. We define the

r-robust (p,∆)-interior as follows:

X̂+
r,∆,p = {x ∈ supp(µ)|∀x′ ∈ Bo(x, r),

∀x′′ ∈ B(x′, rp(x
′)), η(x′′) ≥ 1/2 + ∆}

X̂−r,∆,p = {x ∈ supp(µ)|∀x′ ∈ Bo(x, r),

∀x′′ ∈ B(x′, rp(x
′)), η(x′′) ≤ 1/2−∆}

The definition is similar to the strict r-robust (p,∆)-interior in Section 3.4, except replacing

< and > with ≤ and ≥. Theorem A.1.2 show that k-NN is robust at radius r in the r-robust

(1/2, p)-interior with high high probability. Corollary A.1.3 shows the finite sample rate of

the robustness lowerbound.

Theorem A.1.2. Let x ∈ X ∩ supp(µ) such that (a) µ is absolutely continuous with respect

to the Lebesgue measure (b) η(x) ∈ {0, 1}. Then, for fixed k, there exists an n0 such that

for n ≥ n0,

Pr[ρ(Ak(Sn, ·), x) ≥ r] ≥ 1− δ

for all x in X̂+
r,1/2,p

⋃
X̂−r,1/2,p for all p > 0, δ > 0.

In addition, with probability at least 1− δ, the astuteness of the k-NN classifier is at

least:

E(1(X ∈ X̂+
r,1/2,p

⋃
X̂−r,1/2,p))

Proof. The k-NN classifier Ak(Sn, ·) is robust at radius r at x if for every x′ ∈ Bo(x, r), a)

there are k training points in B(x′, rp(x
′)), and b) more than bk/2c of them have the same

label as Ak(Sn, x). Without loss of generality, we look at a point x ∈ X̂+
r,1/2,p. The second
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condition is satisfied since η(x) = 1 for all training points in B(x′, rp(x
′)) by the definition

of X̂+
r,1/2,p.

It remains to check the first condition. Let B be a ball in Rd and n(B) be the

number of training points in B. Lemma 16 of [CD10] suggests that with probability at

least 1− δ, for all B in Rd,

µ(B) ≥ k

n
+
Co
n

(
d log n+ log

1

δ
+

√
k

(
d log n+ log

1

δ

))
(A.4)

implies n(B) ≥ k, where Co is a constant term. Let B = B(x′, rp(x
′)). By the definition

of rp, µ(B) ≥ p > 0. Then as n → ∞, Inequality A.4 will eventually be satisfied, which

implies B contains at least k training points. The first condition is then met.

The astuteness result follows because Ak(Sn, x) = y = 1 in X̂+
r,1/2,p and Ak(Sn, x) =

y = 0 in X̂−r,1/2,p with probability 1.

Corollary A.1.3. For n ≥ max(104, c4
d,k,δ/[(k + 1)2p2]) where

cd,k,δ = 4(d+ 1) +
√

16(d+ 1)2 + 8(ln(8/δ) + k + 1)

, with probability at least 1− 2δ, ρ(Ak(Sn, x)) ≥ r for all x in X̂+
r,1/2,p

⋃
X̂−r,1/2,p and for all

p > 0, δ > 0.

In addition, with probability at least 1− 2δ, the astuteness of the k-NN classifier is

at least:

E(1(X ∈ X̂+
r,1/2,p

⋃
X̂−r,1/2,p))

Proof. Without loss of generality, we look at a point x ∈ X̂+
r,1/2,p. Let B = B(x′, rp(x

′)),

J(B) = E(Y ·1(X ∈ B)) and Ĵ(B) be the empirical estimation of J(B). Notice that Ĵ(B)n

is the number of training points in B, because η(x) = 1 for all x ∈ B by the definition of
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r-robust (1/2, p)-interior. It remains to find a threshold n such that for all n′ > n,

Ĵ(B) ≥ (k + 1)/n′ (A.5)

By Lemma A.1.5, with probability 1− 2δ,

Ĵ(B) ≥ p− 2βn
√
p− 2β2

n (A.6)

for all B ∈ Rd.

Therefore it suffices to find a threshold n that satisfies

p− 2βn
√
p− 2β2

n ≥ (k + 1)/n, (A.7)

where βn =
√

(4/n)((d+ 1) ln 2n+ ln(8/δ)).

Solving this quadratic inequality yields

βn ≤
−√p+

√
3p+ (k + 1)/n

2
, (A.8)

which can be re-written as

(8/
√
n)[(d+ 1) ln(2n) + ln(8/δ) + (k + 1)/8] ≤

√
(k + 1)p (A.9)

by substituting the expression for βn. This inequality does not admit an analytic solution.

Nevertheless, we observe that n1/4 ≥ ln(2n) for all n ≥ 104. Therefore it suffices to find an

n ≥ 104 such that

(8/
√
n)[(d+ 1)n1/4 + ln(8/δ) + (k + 1)/8] ≤

√
(k + 1)p. (A.10)
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Let m = n1/4. Inequality A.10 can be re-written as

√
(k + 1)pm2 − 8(d+ 1)m− (8 ln(8/δ) + (k + 1)) ≥ 0. (A.11)

Solving this quadratic inequality with respct to m gives

m ≥
4(d+ 1) +

√
16(d+ 1)2 + 8(ln(8/δ) + k + 1)√

(k + 1)p
. (A.12)

Letting

cd,k,δ = 4(d+ 1) +
√

16(d+ 1)2 + 8(ln(8/δ) + k + 1)

, we find a desired threshold

n = max(104,m4) ≥ max(104, c4
d,k,δ/[(k + 1)2p2]). (A.13)

The astuteness result follows in a similar way to Theorem A.1.2.

A.1.3 Proofs for High k

Robustness of the Bayes Optimal Classifier

Proof. (Of Theorem 3.3.2) Suppose x ∈ X+
r,0,0. Then, g(x) = 1. Consider any x′ ∈ Bo(x, r);

by definition, η(x′) > 1/2, which implies that g(x′) = 1 as well. Thus, ρ(g, x) ≥ r. The

other case (x ∈ X−r,0,0) is symmetric.

Consider an x ∈ X+
r,0,0 (the other case is symmetric). We just showed that g has

robustness radius ≥ r at x. Moreover, p(y = 1 = g(x)|x) = η(x); therefore, g predicts the

correct label at x with probability η(x). The theorem follows by integrating over all x in

X+
r,0,0 ∪ X−r,0,0.
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Robustness of k-Nearest Neighbor

We begin by stating and proving a more technical version of Theorem 3.3.3.

Theorem A.1.4. For any n and data dimension d, define:

an =
C0

n
(d log n+ log(1/δ))

bn = C0

√
d log n+ log(1/δ)

n

βn =
√

(4/n)((d+ 1) ln 2n+ ln(8/δ))

where C0 is the constant in Theorem 15 of [CD10]. Now, pick kn and ∆n so that ∆n → 0

and the following condition is satisfied:

kn
n
≥

2βn + bn +
√

(2βn + bn)2 + 2∆n(2β2
n + an)

∆n

and set

pn =
kn
n

+
C0

n

(
d log n+ log(1/δ)

+
√
kn(d log n+ log(1/δ)

)

Then, with probability ≥ 1− 3δ, kn-NN has robustness radius r at all x ∈ X+
r,∆n,pn

∪

X−r,∆n,pn
. In addition, with probability ≥ 1− δ, the astuteness of kn-NN is at least:

E[η(X) · 1(X ∈ X+
r,∆n,pn

)] + E(1− η(X)) · 1(X ∈ X−r,∆n,pn
)]

Before we prove Theorem A.1.4, we need some definitions and lemmas.

For any Euclidean ball B in Rd, define J(B) = E[Y · 1(X ∈ B)] and Ĵ(B) as the
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corresponding empirical quantity.

Lemma A.1.5. With probability ≥ 1− 2δ, for all balls B in Rd, we have:

|J(B)− Ĵ(B)| ≤ 2β2
n + 2βn min(

√
J(B),

√
Ĵ(B)),

where βn =
√

(4/n)((d+ 1) ln 2n+ ln(8/δ)).

Proof. (Of Lemma A.1.5) Consider the two functions: h+
B(x, y) = 1(y = 1, x ∈ B) and

h−B(x, y) = 1(y = −1, x ∈ B). From Lemma A.1.6, both h+
B and h−B are 0/1 functions with

VC dimension at most d+ 1. Additionally, J(B) = E[h+
B]− E[h−B]. Applying Theorem 15

of [CD10], along with an union bound gives the lemma.

Lemma A.1.6. For an Euclidean ball B in Rd, define the function h+
B : Rd×{−1,+1} →

{0, 1} as:

h+
B(x, y) = 1(y = 1, x ∈ B)

and let HB = {h+
B} be the class of all such functions. Then the VC-dimension of HB is at

most d+ 1.

Proof. (Of Lemma A.1.6) Let U be a set of d + 2 points in Rd; as the VC dimension of

balls in Rd is d+ 1, U cannot be shattered by balls in Rd. Let UL = {(x, y)|x ∈ U} be a

labeling of U that cannot be achieved by any ball (with pluses inside and minuses outside);

the corresponding d+ 1-dimensional points cannot be labeled accordingly by h+
B. Since U

is an arbitrary set of d+ 2 points, this implies that any set of d+ 2 points in Rd×{−1,+1}

cannot be shattered by HB. The lemma follows.

Lemma A.1.7. Let δp = C0

n

(
d log n+ log(1/δ) +

√
k(d log n+ log(1/δ)

)
. Then, with

probability ≥ 1−δ, for all x, ‖x−X(k+1)(x)‖ ≤ rk/n+δp(x), and µ(B(x, ‖x−X(k+1)(x)‖)) ≥
k
n
− δp.
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Figure. A.1: Visualization of the halfmoon dataset. 1) Training sample of size n = 2000,
2) subset selected by Robust 1NN with defense radius r = 0.1, 3) subset selected by
Robust 1NN with defense radius r = 0.2.

Proof. (Of Lemma A.1.7) Observe that by definition for any x, rp is the smallest r such

that µ(B(x, rp(x)) ≥ p. The rest of the proof follows from Lemma 16 of [CD10].

Proof. (Of Theorem A.1.4)

From Lemma A.1.7, by uniform convergence of µ̂, with probability ≥ 1 − δ, for

all x′, ‖x′ −X(kn)(x′)‖ ≤ rpn(x′) and µ(B(x, ‖x −X(kn)(x)‖)) ≥ kn
n
− δp. If x′ ∈ X+

r,∆n,pn
,

this implies that for all x̃ ∈ B(x′, X(kn)(x′)), η(x̃) ≥ 1/2 + ∆. Therefore, for such an

x′, J(B(x′, X(kn)(x′))) ≥ (1
2

+ ∆n)µ(B(x′, X(kn)(x′))) ≥ (1
2

+ ∆n)(kn/n − δp). Since for

B(x′, X(kn)(x′)), µ̂(B(x′, X(kn)(x′))) = kn
n

, min(Ĵ , J) ≤ k
n
. Thus we can apply Lemma A.1.5

to conclude that

Ĵ(B) > J(B)− 2β2
n − 2βn

√
kn/n >

kn
2n
,

which implies that Ŷ (B) = 1
kn

∑kn
i=1 Y

(i)(x) = n
kn
Ĵ(B) > 1

2
. The first part of the theorem

follows.

For the second part, observe that for an x ∈ X+
r,∆n,pn

, the label Y is equal to +1

with probability η(x) and for an x ∈ X−r,∆n,pn
, the label Y is equal to −1 with probability

1− η(x). Combining this with the first part completes the proof.
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Figure. A.2: Adversarial examples of MNIST digit 1 images created by different attack
methods. Top row: clean digit 1 test images. Middle row from left to right: 1) direct
attack, 2) white-box kernel attack. Bottom row from left to right: 1) black-box kernel
attack, 2) black-box neural net substitute attack.

A.2 Proofs from Section 3.4

We begin with a statement of Chernoff Bounds that we use in our calculations.

Theorem A.2.1. [MU05] Let Xi be a 0/1 random variable and let X = 1
m

∑m
i=1Xi. Then,

Pr(|X − E[X]| ≥ δ) ≤ e−mδ
2/2 + e−mδ

2/3 ≤ 2e−mδ
2/3

Lemma A.2.2. Suppose we run Algorithm 1 with parameter r. Then, the points marked

as red by the algorithm form an r-separated subset of the training set.

Proof. Let f(xi) denote the output of Algorithm 2 on xi. If (xi, 1) is a Red point, then

f(xi) = 1 = f(xj) for all xj ∈ B(x, r); therefore, (xj,−1) cannot be marked as Red by the

algorithm as f(xj) 6= yj. The other case, where (xi,−1) is a Red point is similar.
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Table A.1: An evaluation of the black-box substitute classifier. Each black-box
substitute is evaluated by: 1) its accuracy on the its training set, 2) its accuracy on the
test set, and 3) the percentage of predictions agreeing with the target classifier on the
test set. A combination of high test accuracy and consistency with the original classifier
indicates the black-box model emulates the target classifier well.

Abalone

target f % training % test % testf
accuracy accuracy same as f

Kernel

StandardNN 100% 61.3% 72.6%
RobustNN 100% 62.5% 90.9%

ATNN 100% 61.4% 73.7%
ATNN-All 100% 63.5% 73.5%

Neural
Nets

StandardNN 69.1% 68.9% 68.6%
RobustNN 87.2% 64.1% 86.9%

ATNN 68.8% 68.4% 68.4%
ATNN-All 66.5% 65.0% 66.6%

Halfmoon

target f % training % test % test
accuracy accuracy same as f

Kernel

StandardNN 95.9% 95.6% 95.5%
RobustNN 97.7% 94.9% 97.6%

ATNN 96.4% 95.1% 96.0%
ATNN-All 97.6% 96.8% 97.3%

Neural
Nets

StandardNN 94.5% 94.0% 94.4%
RobustNN 94.2% 90.5% 94.1%

ATNN 95.3% 94.2% 95.2%
ATNN-All 96.9% 96.2% 96.5%

MNIST 1v7

target f % training % test % test
accuracy accuracy same as f

Kernel

StandardNN 100% 98.9% 99.3%
RobustNN 100% 95.4% 97.6%

ATNN 100% 98.9% 99.3%
ATNN-All 100% 98.7% 99.3%

Neural
Nets

StandardNN 99.9% 98.9% 99.1%
RobustNN 99.8% 94.8% 98.7%

ATNN 100% 98.8% 99.2%
ATNN-All 99.7% 98.9% 99.3%

Lemma A.2.3. Let x ∈ X such that Algorithm 1 finds a Red xi within Bo(x, τ). Then,

Algorithm 1 has robustness radius at least r − 2τ at x.
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Proof. For all x′ ∈ B(x, τ), we have:

‖x′ − xi‖ ≤ ‖x− xi‖+ ‖x− x′‖ < 2τ

Since xi is a Red point, from Lemma A.2.2, any xj in training set output by Algorithm 1

with yj 6= yi must have the property that ‖xi − xj‖ > 2r. Therefore,

‖x′ − xj‖ ≥ ‖xi − xj‖ − ‖x′ − xi‖ > 2r − 2τ

Therefore, Algorithm 1 will assign x′ the label yi. The lemma follows.

Lemma A.2.4. Let B be a ball such that: (a) for all x ∈ B, η(x) > 1
2

+ ∆ and (b)

µ(B) ≥ 2C0

n
(d log n+ log(1/δ)). Then, with probability ≥ 1− δ, all such balls have at least

one xi such that xi ∈ |B ∩Xn| and yi = 1.

Proof. Observe that J(B) ≥ C0

n
(d log n+ log(1/δ)). Applying Theorem 16 of [CD10], this

implies that Ĵ(B) > 0, which gives the theorem.

Lemma A.2.5. Fix ∆ and δ, and let kn = 3 log(2n/δ)
∆2 . Additionally, let

pn =
kn
n

+
C0

n
(d log n+ log(1/δ) +

√
kn(d log n+ log(1/δ)),

where C0 is the constant in Theorem 15 of [CD10]. Define:

SRED = {(xi, yi) ∈ Sn|xi ∈ X+
r,∆,pn

∪ X−r,∆,p,

yi =
1

2
sgn

(
η(xi)−

1

2

)
+

1

2
}

Then, with probability ≥ 1− δ, all (xi, yi) ∈ SRED are marked as Red by Algorithm 1 run

with parameters r, ∆ and δ.
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Proof. Consider a (xi, yi) ∈ SRED such that xi ∈ Xn∩X+
r,∆,pn

, and consider any (xj, yj) ∈ Sn

such that xj ∈ B(xi, r). From Lemma A.1.7, for all such xj, ‖xj −X(kn)(xj)‖ ≤ rpn(xj);

this means that all kn-nearest neighbors x′′ of such an xj have η(x′′) > 1
2

+ ∆.

Therefore, E[
∑kn

l=1 Y
(l)(xj)] ≥ kn(1/2 + ∆); by Theorem A.2.1, this means that for

a specific xj, Pr(
∑kn

l=1 Y
(l)(xj) < 1/2) ≤ 2e−kn∆2/3, which is ≤ δ/n from our choice of kn.

By an union bound over all such xj, with probability ≥ 1 − δ, we see that Algorithm 2

reports the label g(xi) on all such xi, which is the same as yi by the definition of interiors;

xi therefore gets marked as Red.

Finally, we are ready to prove the main theorem of this section, which is a slightly

more technical form of Theorem 3.4.2.

Theorem A.2.6. Fix a ∆n, and pick kn and pn as in Lemma A.2.5. Suppose we run

Algorithm 1 with parameters r, ∆n and δ. Consider the set:

XR =

{
x
∣∣∣x ∈ X+

r+τ,∆n,pn
∪ X−r+τ,∆n,pn

,

µ(B(x, τ)) ≥ 2C0

n
(d log n+ log(1/δ))

}
,

where C0 is the constant in Theorem 15 of [CD10]. Then, with probability ≥ 1−2δ over the

training set, Algorithm 1 has robustness radius ≥ r−2τ on XR. Additionally, its astuteness

at radius r− 2τ is at least E[η(X) · 1(X ∈ X+
r+τ,∆n,pn

)] + E[(1− η(X)) · 1(X ∈ X−r+τ,∆n,pn
)].

Proof. Due to the condition on µ(B(x, τ)), from Lemma A.2.4, with probability ≥ 1− δ,

all x ∈ XR have the property that there exists a (xi, yi) in Sn such that yi = g(xi)

and xi ∈ B(x, τ). Without loss of generality, suppose that x ∈ X+
r+τ,∆n,pn

, so that

η(x) > 1/2 + ∆n. Then, from the properties of r-robust interiors, this xi ∈ X+
r,∆n,pn

.

From Lemma A.2.5, with probability ≥ 1 − δ, this (xi, yi) is marked Red by

Algorithm 1 run with parameters r, ∆n and δ. The theorem now follows from an union
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bound and Lemma A.2.3.

A.3 Experiment Visualization and Validation

First, we show adversarial examples created by different attacks on the MNIST

dataset in order to illustrate characteristics of each attack. Next, we show the subset

of training points selected by Algorithm 1 on the halfmoon dataset. The visualization

illustrates the intuition behind Algorithm 1 and also validates its implementation. Finally,

we validate how effective the black-box subsitute classifiers emulate the target classifier.

A.3.1 Adversarial Examples Created by Different Attacks

Figure A.2 shows adversarial examples created on MNIST digit 1 images with attack

radius r = 3. First, we observe that the perturbations added by direct attack, white-box

kernel attack and black-box kernel attack are clearly targeted: either a faint horizontal

stroke or a shadow of digit 7 are added to the original image. The perturbation budget is

used on ”key” pixels that distinguish digit 1 and digit 7, therefore the attack is effective.

On the contrary, black-box attacks with neural nets substitute adds perturbation to a

large number of pixels. While such perturbation often fools a neural net classifier, it is not

effective against nearest neighbors. Consider a pixel that is dark in most digit 1 and digit

7 training images; adding brightness to this pixel increases the distance between the test

image to training images from both classes, therefore may not change the nearest neighbor

to the test image.

Figure A.2 also illustrates the break-down attack radius of visual similarity. At r = 3,

the true class of adversarial examples created by effective attacks becomes ambiguous even

to humans. Our defense is successful as the Robust 1NN classifiers still have non-trivial

classification accuracy at such attack radius. Meanwhile, we should not expect robustness
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against even larger attack radius since the adversarial examples at r = 3 are already close

to the boundary of human perception.

A.3.2 Training Subset Selected by Robust 1NN

Figure A.1 shows the training set selected by Robust 1NN on a halfmoon training set

of size 2000. On the original training set, we see a noisy region between the two halfmoons

where both red and blue points appear. Robust 1NN cleans training points in this region

so as to create a gap between the red and blue halfmoons, and the gap width increases

with defense radius r.

A.3.3 Performance of Black-box Attack Substitutes

We validate the black-box substitute training process by checking the substitute’s

accuracy on its training set, the clean test set and the percentage of predictions agreeing

with the target classifier on the clean test set. The results are shown in Table A.1. For

the halfmoon and MNIST dataset, the substitute classifiers both achieve high accuracy on

both the training and test sets, and are also consistent with the target classifier on the test

set. The subsitutute classifiers do not emulate the target classifier on the Abalone dataset

as close as on the other two datasets due to the high noise level in the Abalone dataset.

Nonetheless, the substitute classifier still achieve test time accuracy comparable to the

target classifier.
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Appendix B

Additional Proofs and Experiment

Procedure for Chapter 5

B.1 Derivation and Description of Attack Algorithms

B.1.1 Gradient Computation Using an Recurrent Prefix

Equation 5.5 shows the formula of calculating the exact online attack gradient for a

general smooth function F (θt). In this section, we show how this gradient can be efficiently

w.r.t. all points in the data stream using a recurrent prefix.

The computation for the case of i ≥ t and i = t−1 in Equation 5.5 is straightforward

once F (θt) is known, so we focus at computing the gradient for all i < t− 1. We call ξi the

prefix of ∂F (θt)/∂xi, where

ξi =
∂F (θt)

∂θt

∂θt
∂θt−1

· · · ∂θi+2

∂θi+1

(B.1)

and for all i < t− 1, we have

∂F (θt)

∂xi
= ξi

∂θi+1

∂xi
. (B.2)
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Notice that the prefix has a simple recurrence relation

ξi = ξi+1
∂θi+2

∂θi+1

, (B.3)

so it is more efficient to first find the prefix ξi for all i < t− 1 and then find ∂F (θt)/∂xi

from ξi than to compute each ∂F (θt)/∂xi from scratch. Notice that ∂F (θt)/∂θt and each ξi

is a vector of dimension d. Finding ∂θi+2

∂θi+1
and ∂θi+1

∂xi
for a particular i takes O(d2) time each,

and computing ξi for all i involves making O(T ) vector-matrix multiplications, each taking

O(d2) time. Therefore the computation complexity of finding all gradients is O(Td2).

B.1.2 Gradient Computation for Online Logistic Regression

We now instantiate the gradient computation with the objective function for online

logistic regression using OGD. Recall that the attacker’s objective L(θt) at time t is the

negative logistic loss of the classifier with weight θt over a label-flipped validation set

Svalidinv, i.e.

L(θt) =
∑

(x,y)∈Svalidinv

− log(1 + exp(−yθTt x)). (B.4)

The gradient calculation procedure in Equation 5.5 requires ∂L(θt)
∂θt

, ∂θs+1

∂θs
for all 1 ≤ s < t

and ∂θi+1

∂xi
for all 0 ≤ i < t, which can be found as follows:

∂L(θt)

∂θt
=

∑
(x,y)∈Svalidinv

yx

1 + exp(yθTt x)
, (B.5)

∂θs+1

∂θs
= (1− 2ληs)I− ηs

(
exp(ysθ

T
s xs)

[1 + exp(ysθTs xs)]
2

)
xsx

T
s , (B.6)

and

∂θi+1

∂xi
= −ηi

(
−yiI

1 + exp(yiθTi xi)
+

exp(yiθ
T
i xi)

[1 + exp(yiθTi xi)]
2
xiθ

T
i

)
, (B.7)
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where λ is the regularization constant of OGD and ηi is the learning rate of OGD at time

step i.

B.1.3 Attack Algorithms Descptions and Pseudocodes.

In order to simplify the algorithm pseudocode, we introduce the following notations.

First, we denote the attacker’s objective function over a training stream S as L(S).

Recall that in Section B.1.2, we use L(θt) to represent the attacker’s objective function

at time t, where θt is the model parameter of the online logistic regression classifier at

time t trained on stream S. Then we have L(S) = L(θT ) for the semi-online setting and

L(S) =
∑T

t=1 L(θt) for the fully-online setting.

Second, we use Sa:b to represent the substream of S from Sa to Sb−1, and use Sa:b:i

to represent the substream containing every i-th point in S from Sa to Sb−1. If a substream

can be represented by concatenating two above mentioned types of substreams, then its

subscript will be a list of its component substream’s subscript separated by comma. For

example, Sa:b,b:c:i means a substream with points from Sa to Sb−1 and then every i-th point

from Sb to Sc−1.

Lastly, we use ε0 to denote the initial step size of gradient ascent and εniter to denote

the gradient ascent step size at step niter. The step size εniter is a function of ε0 and niter,

which decays at the rate of O(1/
√
niter).
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Algorithm 6 Incremental Attack(S, K, ε0, maxiter)

S: the original training stream, ε0: initial gradient ascent step size, K: the attacker’s
budget, maxiter : maximum number of iterations for gradient ascent.
niter = 0
T = |S|
hasPerturbed = [0]× T
nperturbed = 0
while (niter < maxiter) and (nperturbed <= K ) do

xi = arg maxxk∈S ||
∂L(S)
∂xk
||2

xi = projF(xi + εniter
∂L(S)
∂xi

)
hasPerturbed[i] = 1
niter = niter + 1
nperturbed = sum(hasPerturbed)

end while
return S

Algorithm 7 Interval Attack(S, K, ε0, maxiter, s)

S: the original training stream, ε0: initial gradient ascent step size, K: the attacker’s
budget, which is also the length of the sliding window, maxiter : maximum number of
iterations for gradient ascent, s: the step size for grid searching the best attack window.
T = |S|
Satt = S
for t ∈ range (0, T − l, s) do
S ′ = S
S ′t:t+K = Find-Best-Modification-Over-Substream(S ′, ε0, maxiter, S

′
t:t+K)

if L(S ′) > L(Satt) then
Satt = S ′

end if
end for
return Satt

Algorithm 8 Teach-and-Reinforce Attack(S, K, ε0, maxiter, α)

S: the original training stream, ε0: initial gradient ascent step size, K: the attacker’s
budget, max iter: maximum number of iterations for gradient ascent, α: fraction of
attack budget used for teaching.
T = |S|
s = d T−αK

(1−α)K
e

S0:αK,αK:T :s = Find-Best-Modification-Over-Substream(S, ε0, maxiter, S0:αK,αK:T :s)
return S
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Algorithm 9 Find-Best-Modification-Over-Substream(S, ε0, maxiter, Smodify)

S: the original training stream, ε0: initial gradient ascent step size, max iter: maximum
number of iterations for gradient ascent, Smodify: the substream to be modified to
optimize the attacker’s objective.
niter = 0
while niter < maxiter do

for x ∈ Smodify do
x = projF(x+ εniter∂L(S)/∂x)

end for
niter = niter + 1

end while
return Smodify

B.2 Additional Experiment Description and Result

Plots

B.2.1 Dataset Size and Initial Learning Rate of Online Learners

For each data set, we select a training set of size 400 which is presented to the learner

as the input stream, and a separate test set which is used for evaluation. The attacker also

has a held-out validation set of size 200, and the learner has a separate held-out set of the

same size as the training set, which is used to initialize the classifier w0.

For 2D-Gaussian mixtures, MNIST 1 v.s. 7 and fashion MNIST sandals v.s. boots

datasets, the initial learning rate of online learner is η0 = 0.005 for Constant learning rate

and η0 = 0.1 for Slow Decay and Fast Decay. For UCI Spamset, the initial learning rate

is η0 = 0.01 for Constant, η0 = 0.1 for Slow Decay and η0 = 0.2 for Fast Decay. These

parameter ensure that in all cases, the online learner has more than 90% test accuracy

when run on the clean data stream.
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B.2.2 Efficacy of Attack Plots

Only the result of attacks against Slow Decay online learner is presented in the

main text due to the page limit. In this section, we show the plots of test accuracy against

fraction of points modified for all datasets and all online learner learning rates.
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Figure. B.1: Results for 2d Gaussian mixtures. Top row: Semi-online, Bottom row:
Fully-online. Left to right: Slow Decay, Fast Decay, Constant

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Fraction of Points Perturbed

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Incremental
Interval
Reach-Reinforce
Offline
Label-flip

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Fraction of Points Perturbed

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Incremental
Interval
Reach-Reinforce
Offline
Label-flip

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Fraction of Points Perturbed

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Incremental
Interval
Reach-Reinforce
Offline
Label-flip

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Fraction of Points Perturbed

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Av
er

ag
e 

Te
st

 A
cc

ur
ac

y

Incremental
Interval
Reach-Reinforce
Offline
Label-flip

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Fraction of Points Perturbed

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e 

Te
st

 A
cc

ur
ac

y Incremental
Interval
Reach-Reinforce
Offline
Label-flip

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Fraction of Points Perturbed

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Av
er

ag
e 

Te
st

 A
cc

ur
ac

y

Incremental
Interval
Reach-Reinforce
Offline
Label-flip

Figure. B.2: Results for MNIST. Top row: Semi-online, Bottom row: Fully-online.
Left to right: Slow Decay, Fast Decay, Constant
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Figure. B.3: Fashion MNIST Sandals v.s. Boots. Top row: Semi-online, Bottom
row: Fully-online. Left to right: Slow Decay, Fast Decay, Constant
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Figure. B.4: UCI Spambase. Top row: Semi-online, Bottom row: Fully-online.
Left to right: Slow Decay, Fast Decay, Constant

B.2.3 Distribution of Attack Positions

In Table 5.1 in the experiment section, we qualitatively summarize the most frequent

attack positions chosen by each online attack. In this section, we show the histogram plots

of attack positions chosen by the Incremental and Interval attacks.

The entire length T window is divided into 20 equal-size bins. Each bar represents

the frequency of modified points lying in the bin, normalized by the total number of points

attacked in all repeated experiment. For Incremental attack, all modified points before
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reaching maximum attack budget of each series or maximum number of iteration are

counted. For interval attack, we count the modified points when the attack budget is 160

for 2-D Gaussian mixtures, 40 for MNIST and fashion MNIST, and 80 for UCI Spamset.

2D Gaussian Mixtures
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Figure. B.5: Results for 2d Gaussian mixtures, Incremental Top row: Semi-online,
Bottom row: Full-online. Left to right: Slow Decay, Fast Decay, Constant
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Figure. B.6: Results for 2d Gaussian mixtures, Interval Top row: Semi-online,
Bottom row: Full-online. Left to right: Slow Decay, Fast Decay, Constant
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MNIST 1 v.s. 7

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Bin Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
%

 o
f A

tta
ck

 S
ite

s i
n 

th
e 

Bi
n

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Bin Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 o

f A
tta

ck
 S

ite
s i

n 
th

e 
Bi

n

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Bin Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 o

f A
tta

ck
 S

ite
s i

n 
th

e 
Bi

n

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Bin Index

0.00

0.05

0.10

0.15

0.20

0.25

%
 o

f A
tta

ck
 S

ite
s i

n 
th

e 
Bi

n

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Bin Index

0.0

0.1

0.2

0.3

0.4

0.5

%
 o

f A
tta

ck
 S

ite
s i

n 
th

e 
Bi

n

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Bin Index

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

%
 o

f A
tta

ck
 S

ite
s i

n 
th

e 
Bi

n

Figure. B.7: Results for MNIST, Incremental. Top row: Semi-online, Bottom row:
Full-online. Left to right: Slow Decay, Fast Decay, Constant
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Figure. B.8: Results for MNIST, Interval Top row: Semi-online, Bottom row:
Full-online. Left to right: Slow Decay, Fast Decay, Constant
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Fashion MNIST Sandals v.s. Boots
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Figure. B.9: Fashion MNIST Sandals v.s. Boots, Incremental Top row: Semi-online,
Bottom row: Full-online. Left to right: Slow Decay, Fast Decay, Constant
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Figure. B.10: Fashion MNIST Sandals v.s. Boots, Interval Top row: Semi-online,
Bottom row: Full-online. Left to right: Slow Decay, Fast Decay, Constant
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UCI Spambase
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Figure. B.11: UCI Spam Dataset, Incremental Top row: Semi-online, Bottom row:
Full-online. Left to right: Slow Decay, Fast Decay, Constant
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Figure. B.12: UCI Spam Dataset, Interval Top row: Semi-online, Bottom row:
Full-online. Left to right: Slow Decay, Fast Decay, Constant
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Appendix C

Additional Proof and Experiment

Procedure for Chapter 6
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C.1 Proofs to Theorems and Lemmas

C.1.1 Proof to Theorem 6.3.2

Recall that γ0 = min

(
R

‖θ̃0−θ∗‖ , 1/η
)

. In round t, we pick γt = min(γ∗t , γ0), where

γ∗t is the solution to γ

1+exp(θ̃>t (θ∗−θ̃t)γ)
= 1

η
. Suppose we set yt = 1 and xt = γt(θ

∗ − θ̃t); this

(x, y) lies in F from the way we choose γt. Notice that θ̃>t θ
∗ −

∥∥∥θ̃t∥∥∥2

≤ λ2. If γt = γ∗t , then

the poisoner can output θ∗ in the next step. Otherwise if γt = γ0, the norm of θ̃t − θ∗

shrinks geometrically because

∥∥∥θ̃t+1 − θ∗
∥∥∥

=

∥∥∥∥∥∥θ̃t − θ∗ − η γ0(θ∗ − θ̃t)

1 + exp
(
θ̃>t (θ∗ − θ̃t)γ0

)
∥∥∥∥∥∥

=

∥∥∥∥∥∥(θ̃t − θ∗)

1− ηγ0

1 + exp
(
θ̃>t (θ∗ − θ̃t)γ0

)
∥∥∥∥∥∥

≤
∥∥∥∥(θ̃t − θ∗)

(
1− ηγ0

1 + exp(λ2γ0)

)∥∥∥∥
=

(
1− ηγ0

1 + exp(λ2γ0)

)∥∥∥θ̃t − θ∗∥∥∥ .

(C.1)

The first inequality holds because θ̃>t θ
∗ −

∥∥∥θ̃t∥∥∥2

≤ λ2 and the monotonicity of exponential

function. The last equality holds because 1− ηγ0
1+exp(λ2γ0)

≥ 1− ηγ0
1+exp(θ̃>t (θ∗−θ̃t)γ0)

≥ 0 by our

construction. The result follows from setting C = 1

− log
(

1− ηγ0
1+exp(λ2γ0)

) .

Notice that if we let λ = 1, the Taylor expansion of C at γ0 = 0 is approximately

2/(ηγ0). If we treat R as a variable, then when R is small, γ0 = R/‖θ̃0− θ∗‖, and therefore

C is approximately 2‖θ̃0 − θ∗‖/(ηR), which is in the order of O(1/R).
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C.1.2 Statement and Proof to Lemma C.1.1

Lemma C.1.1. A data poisoner DP η(θ0, S,K,F , θ∗, ε) can output a model θ if and only

if there exists some data poisoner DP η(θ0, S,K,F ′, θ∗, ε) that outputs θ.

We first show that if a data poisoner can output θ using a sequence S̃ = {(x0, y0), · · · ,

(xT−1, yT−1)} with each point (xi, yi) ∈ F , then there must be a data poisoner that output

θ using a sequence S̃ ′ = {(x′0, y′0), · · · , (x′T−1, y
′
T−1)} with each point (x′i, y

′
i) ∈ F ′. Notice

that for an OGD algorithm running on logistic regression model, (x,+1) and (−x,−1) will

lead to the same gradient updates on the model parameter. We construct S̃ ′ as follows.

For each (xi, yi) ∈ S̃, if (xi, yi) ∈ F ′, then we let (x′i, y
′
i) = (xi, yi); otherwise, we let

(x′i, y
′
i) = (−xi,−y′i). Notice by the construction rule of F ′, at least one of (xi, yi) and

(−xi,−yi) exists in F ′. Hence, we have obtained a data poisoner on F ′ using a poisoning

sequence of same length and outputing the same model as a poisoner on F .

The reverse direction is similar. We can use the same technique to show that

whenever a poisoner can output θ using a sequence of length T with points on F ′, there is

a sequence using points on F that achieves the same goal. Therefore, the statement is true.

C.1.3 Proof to Theorem 6.3.3

For the first part, we use the same poisoning sequence as in the proof of Theorem 6.3.2;

what remains to be shown is that all (xt, yt) in this sequence still lie in the feasible set F .

To show this, we begin with showing that for any t, θ̃t − θ∗ = c(θ̃0 − θ∗) for some scalar

c ∈ [0, 1].

We prove this by induction. The base case is easy – t = 0, and c = 1. In the

inductive case, observe that:

θ̃t+1 − θ∗ = θ̃t − θ∗ −
ηγt(θ̃t − θ∗)

1 + exp(θ̃>t (θ̃t − θ∗)γt)
,
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and that (1− ηγt/(1 + exp(θ̃>t (θ̃t − θ∗)γt))) ∈ [0, 1] by construction. Thus, the inductive

case follows. Now, observe that the proof of Theorem 6.3.2 still goes through, as y = 1 and

x = γ(θ∗ − θ̃t) = cγ(θ∗ − θ̃0) is still a feasible point to add to the teaching sequence.

For the second part, observe that if the data poisoner outputs θ∗, then θ∗ =

θ0 − η
∑

i `
′(θi−1, xi, yi)yixi for some (xi, yi)’s. For the augmented feasible set F ′, yi = +1

always. For logistic regression, `′ > 0 always. Hence, there should exist some collection of

xi’s, and some positive scalars αi such that:

∑
i

αixi = θ∗ − θ0.

However, Lemma C.1.2 shows that such collection is impossible by letting u = θ∗ − θ̃ and

β = 1. Therefore, no data poisoner can output θ∗.

Lemma C.1.2. Let G be a convex set, u be a vector and ru /∈ G for all r ≥ 0. Then there

is no set of points {x1, · · · , xn|xi ∈ G,∀i ∈ [n]} such that

∑
i

αixi = βu

for any αi, β ∈ R+ and n ∈ Z+.

Proof. We prove the statement by induction. The base case n = 1 is true because G does

not contain any point in the direction of u. Suppose the statement is true for n = k.

Assume there exists a set S = {x1, x2, · · · , xk+1} such that

∑
i∈[k+1]

αixi = βu. (C.2)

Let x′ = α1

α1+α2
x1 + α2

α1+α2
x2. Since both x1 and x2 are in G by our assumption, x′ is also in

G by the definition of convex set. Multiplying both side of the equation above by 1
α1+α2

,
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we obtain

1

α1 + α2

k+1∑
i=1

αixi

=
α1

α1 + α2

x1 +
α2

α1 + α2

x2 +
1

α1 + α2

k+1∑
i=3

αixi

= x′ +
k+1∑
i=3

αi
α1 + α2

xi

=
β

α1 + α2

u,

(C.3)

The equation implies that a set S̃ = {x′}
⋃
S\{x1, x2} is a set of k points in G such

that a positive linear combination of them gives a vector in the direction of u. However,

this contradicts our inductive assumption when n = k. Therefore, there cannot be a set of

k + 1 points from G that satisfies Equation C.2. The statement we want to prove is also

true for n = k + 1.

C.1.4 Various Attack Rates in the Intermediate Regime

In Section 6.3, we conclude that the poisoning attack’s rate can vary from impossible

to rapid in the intermediate regime. We show three examples in which the attack is very

rapid, slow and impossible.

The Rapid Case. SimplisticAttack is shown to be effective against L2-norm

defense. Let S̃ = {(x0,+1), · · · , (xT−1,+1)} be the poisoning sequence generated by

SimplisticAttack against L2-norm defense, which only uses points with +1 label. Let

xmin denote the point with the smallest L2 norm among x0, · · · , xT−1. A feasible set

F = {(rxxmin
,+1)|r ≥ 1} contains all points in S̃ but not the origin. An attacker can use

S̃ as the poisoning sequence to approach its target as rapidly as against L2-norm defense,
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even though the feasible set F does not contain the origin.

The Slow Case. Notice that the poisoning points in SimplisticAttack normally

have diminishing magnitudes towards the end. We now show that if the attacker is only

allowed to use poisoning points with constant magnitude, then the attack can be very slow.

Suppose the feasible set only contains a single point (x,+1) where x = r θ∗−θ̃0
‖θ∗−θ̃0‖ .

The attacker can only choose (x,+1) as the poisoning point. The gradient update will be

θt+1 = θt +
ηx

1 + exp(θ>t x)

for all t.

We consider a 1-D example with θ̃0 = 0.5, θ∗ = 1, step size η = 1 and an L2-norm

upperbound r = 10. If the attacker can choose any point (x,+1) such that x ≤ r = 10,

the attacker can reach its objective with a single poisoning points by solving the following

equation

1 = 0.5 +
x

1 + exp(0.5x)
,

which gives x ≈ 1.629.

Now suppose the attacker is only allowed to choose (r,+1) as the poisoning point.

Let ∆t denote the difference between θt+1 and θt. We have

∆t =
x

1 + exp(θ>t x)
=

10

1 + exp(10θt)
≤ 10

1 + exp(5)
.

The inequality is because θt ∈ [0.5, 1] as it starts from θ̃0 = 0.5 and approaches θ∗ = 1. The

attacker then needs at least d0.5(1+exp(5))
10

e = 8 poisoning points to achieve its goal. Notice

that the exponential term grows much more rapidly then the denominator. If r = 20,

the attacker will need at least d0.5(1+exp(10))
20

e = 551 points! In short, the attacker needs

exponentially many points w.r.t. r in this case to achieve the same objective that can be
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done using a single point against L2-norm defense.

This example also naturally extends to high dimensional inputs as long as the

attacker only wants to change one coordinate of the model parameter.

The Impossible Case. We consider the same θ̃0, θ
∗ and η as in the slow case.

Now the attacker can only choose (2.5,+1) as the poisoning point, i.e. r = 2.5. After one

update step, the model θ becomes

θ = θ̃ +
ηx

1 + exp(θ̃>x)
= 0.5 +

2.5

1 + exp(1.25)
= 1.058.

Notice that the model parameter monotonically increases if the attacker adds more poisoning

points of (2.5,+1) into the stream. Therefore, this θ after one poisoning point is the closest

the attacker can ever get to the target θ∗ = 1. No data poisoner can output θ∗ exactly.

C.1.5 Proof to Lemma 6.3.4

For simplicity, we consider a feasible set F ′c = {(yx,+1)|(x, y) ∈ F c}, which is

the one-sided form of F c. As a consequence of Lemma C.1.1, defenses characterized by

F c and F ′c have the same behavior. We define F ′c− = {(−x,+1)|(x,−1) ∈ F c−}. Then

F ′c = F c+
⋃
F ′c− . Also, let L(r,u) denote a line segment connecting the origin and a point

r u
‖u‖ as in Theorem 6.3.3.

The Rapid Case. For the first part, we show that there exists an r > 0 such that

L(r, θ∗ − θ̃0) ⊆ F c+
⋃
F ′c− . Suppose ‖µ+‖ < τ . Let α denote the angle between µ+ and

θ∗ − θ̃0, and let x = l(θ∗ − θ̃0)/
∥∥∥θ∗ − θ̃0

∥∥∥ be a point in the direction of θ∗ − θ̃0 with norm l.

A point (x,+1) is in F c+ if and only if it satisfies the following inequality

‖x− µ+‖2 = l2 − 2l ‖µ+‖ cosα + ‖µ+‖2 ≤ τ 2.
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We want to find the range for l when the inequality holds. Notice that the determinant of

this quadratic inequality, ‖µ+‖2 (cosα)2 − ‖µ+‖2 + τ 2, is always positive. Therefore, real

solutions always exist for the lower and upper bound of l. Solving the inequality gives us

l ≥ ‖µ+‖ cosα−
√
‖µ+‖2 (cosα)2 − ‖µ+‖2 + τ 2

and

l ≤ ‖µ+‖ cosα +

√
‖µ+‖2 (cosα)2 − ‖µ+‖2 + τ 2.

It is also easy to verify that the lower bound is smaller than 0 and the upper bound

is larger than 0. Let r = ‖µ+‖ cosα+
√
‖µ+‖2 (cosα)2 − ‖µ+‖2 + τ 2. The solution implies

that L(r, θ∗ − θ̃0) ⊆ F c+.

Similarly, when ‖µ−‖ < τ , we can show that there exists an r such that L(r, θ∗− θ̃0)

is in F ′c− . Therefore, when τ > min(‖µ+‖ , ‖µ−‖), there exists some r > 0 s.t. L(r, θ∗− θ̃0) ⊆

F ′c. The rest follows from Theorem 6.3.3.

The Impossible Case. For the second part, we show that G = {(x,+1)|(θ∗ −

θ0)>x ≤ 0}, i.e. the negative halfspace characterized by (θ∗ − θ0), contains both F c+ and

F ′c− yet does not intersect L(+∞, θ∗ − θ0) at all. The rest follows from Theorem 6.3.3.

We first look at F c+. The condition 〈µ+, θ
∗ − θ0〉 < 0 implies that µ+ ∈ G. The

distance between µ+ to the hyperplane (θ∗ − θ0)>x = 0 is ‖u+‖. Since ‖u+‖ ≥ τ , none of

the point in F c+ can cross the hyperplane, and therefore F c+ ⊆ G. The proof for showing

F ′c− in G is analogous. Therefore G contains both F c+ and F ′c− . In addition, G does not

contain any point x in L(+∞, θ∗ − θ0) because x = r(θ∗ − θ0)/‖θ∗ − θ0‖ for some r > 0,

and (θ∗ − θ0)>x = (θ∗ − θ0)>(r(θ∗ − θ0)/‖θ∗ − θ0‖) = r > 0.
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C.1.6 Proof to Lemma 6.3.5

For simplicity, we consider a feasible set F ′s = {(yx,+1)|(x, y) ∈ F s}, which is

the one-sided form of F s. As a consequence of Lemma C.1.1, defenses characterized by

F s and F ′s have the same behavior. We define F ′s− = {(−x,+1)|(x,−1) ∈ F s−}. Then

F ′s = F s+
⋃
F ′s− .

The Rapid Case. For the first part, we show that L((τ − b+)/ ‖β‖ , θ∗ − θ̃0) is in

F s+ or L((τ − b−)/ ‖β‖ , θ∗ − θ̃0) is in F ′s− .

Suppose τ − b+ > 0 > −τ − b+. Let x be a point in L((τ − b+)/ ‖β‖ , θ∗− θ̃0). Then

x can be expressed as x = r(θ∗ − θ̃)/
∥∥∥θ∗ − θ̃∥∥∥ for some 0 < r < (τ − b+)/ ‖β‖. We know

that

β>x ≤ ‖β‖ r ≤ ‖β‖ (τ − b+)/ ‖β‖ = τ − b+,

therefore β>x+b+ ≤ τ . On the other hand, β>x > 0 by our assumption that β>(θ∗−θ̃0) > 0,

and b+ > −τ by the condition −τ − b+ < 0. Therefore, β>x + b+ > b+ > −τ . We can

conclude that the Slab score |β>x| ≤ τ , and hence L((τ − b+)/ ‖β‖ , θ∗ − θ̃0) ∈ F s+.

Similarly, we can show that L((τ − b−)/ ‖β‖ , θ∗ − θ̃0) is in F ′s− when τ − b− > 0 >

−τ − b−. The rest follows from Theorem 6.3.3, and an example of such a rapid data

poisoner is SimplisticAttack(θ0, S,K,F , θ∗, ε, r) in which F = F ′s and r = min((τ −

b+)/ ‖β‖ , (τ − b−)/ ‖β‖).

The Impossible Case. For the second part, we show that G = {(x,+1)|β>x ≤ 0},

i.e. the negative halfspace characterized by β, contains both F s+ and F ′s− yet does not

intersect L(+∞, θ∗ − θ̃0) at all. The rest follows from Theorem 6.3.3.

We first look at F s+ when 0 > τ − b+ > −τ − b+. We know that the Slab score

|β>x + b+| ≤ τ for all x ∈ F s+. Combining with the condition that τ − b+ < 0, we have

β>x ≤ τ − b+ < 0 for all x ∈ F s+. Therefore, F s+ ⊆ G. The proof for showing F ′s− in G

is analogous. Also, since β>(θ∗ − θ̃0) > 0, we have β>x > 0 for all x ∈ L(+∞, θ∗ − θ̃0).
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Therefore, G does not intersect L(+∞, θ∗ − θ̃0) at all. Theorem 6.3.3 tells that no data

poisoner can output θ∗ starting from θ̃0.

If β>(θ∗ − θ0) > 0, then we can replace θ̃0 in the above analysis with θ0, and show

that G does not intersect L(+∞, θ∗ − θ0) at all. Theorem 6.3.3 then tells that no data

poisoner can output θ∗.

C.1.7 Proof to Lemma 6.4.1

In this problem setting, a linear classifier with classification rule f(x) = sgn(θ>x) is

correct on clean examples if θ > 0, and is incorrect otherwise. We show that the online

learner’s model θt is always positive (except at t = 0) even in the presence of the attacker,

and thus the online model has no classification error on the clean examples for t > 0.

The update rule of a logistic regression classifier at each iteration t is

θt+1 = θt + η
ytxt

1 + exp(θ>t xtyt)
.

For simplicity, we assume yt = 1 for all t because (xt, yt) and (−xt,−yt) gives the same

updates. Therefore, the clean example will be (1,+1) and the only feasible poisoning

example is (−1,+1). Substitute η = 1 into the equation, the rule becomes

θt+1 = θt +
xt

1 + exp(θ>t xt)
.

Now, let S be any poisoned stream created by the attacker. We use an interval to

denote a consecutive sequence of data in S, and extract intervals of interests using the

following rules.

An interval of interest starts at time t if 1) θt ≥ 0 and 2) θt+1 ≤ 0. It ends at the

first time t′ > t when 1) θt′ ≤ 0 and 2) θt > 0. It also ends if t′ = T , i.e. we already reach
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the end the stream.

Notice that by our rule, we can extract multiple intervals of interests from S, and

the intervals will never overlap.

We observe the following two major properties of the intervals.

Observation 1. Clean examples outside the intervals will all be correctly classified.

1

Observation 2. There are at least as many poisoning points as clean points in

each interval.

The reason for Observation 1 is straight forward as θt > 0 for all t not in the interval.

In order to prove Observation 2, we first show a few useful claims.

Claim C.1.3. Suppose the model θt ≥ 0 at time t, and updates over a poisoning point so

that θt+1 < 0. Then at any t′ such that θt+1 ≤ θt′ ≤ 0, a single model update over a clean

point will always cause θt′+1 > 0.

Proof. Deriving from the model update rule, θt+1 is at least −0.5. This is done by

minimizing θt + −1
1+exp(−θt) for θt ≥ 0. We again can derive that a single update over a

clean point always makes θt′+1 > 0 from the model update rule, as θt + 1
1+exp(θt)

> 0 for all

θt ∈ [−0.5, 0].

Claim C.1.4. Suppose −0.5 ≤ θt ≤ 0, and in the following n points, there are more clean

points than poisoning points. Then there must be some t′ ∈ {t + 1, · · · , t + n} such that

θt′ > 0.

Proof. We prove by contradiction. Suppose for all t′ ∈ {t+ 1, · · · , t+ n}, θt′ ≤ 0. Then an

update over a poisoning point will lower θ by at most 0.5, while an update over a clean will

raise θ by at least 0.5. Since there are more clean points than poisoning points, then the

1There exists one corner case: the first point in S is clean and since θ0 = 0, it has the chance to be
misclassified. When this case happen, the error bound on clean examples needs to add 1, which does not
impact the result when the stream length T is large.
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accumulated change in θ must be at least 0.5 and strictly more than 0.5 when θt = −0.5.

Therefore, θt+n > 0. Contradiction.

We then prove Observation 2 by two cases as follows.

Case 1. In each interval of interest that ends before time T , the first point at

the starting time t is always a poisoning point, because θt+1 < θt, i.e. the point moves

the model into the wrong direction. Similarly, the last point at time t′ will always be a

clean point, because it moves the model in the right direction. Using the same argument

in Claim C.1.3, model θt+1 is at least −0.5. Then by Claim C.1.4, the remaining points

cannot contain more clean points than poisoning points, because otherwise the model θ

will be positive somewhere in the interval, contradicting to the construction of the interval.

Therefore, the number of poisoning points at least equal to the number of clean points in

the interval.

Case 2. In the interval of interest that ends at time T if such interval exists, the

first point at the starting time t is also a poisoning point due to the same argument for

the previous case. Once again by Claim C.1.4, the interval must contain no more clean

points than poisoning points, otherwise the model θ will be positive at some time within

the interval.

Now combining Observation 1 and 2, we know that the clean points are only classified

wrongly in the interval of interests, and the number of such clean points no more than the

poisoning points in the intervals. Therefore, no attacker can cause more online error on

clean points than the number of poisoning points it can add.

The bound is also tight as the attacker can construct an attack such that the number

of error equals to the number of poisoning points. The attack can be done by inserting one

poisoning point after every clean point, starting at the beginning of the stream.
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C.1.8 Proof to Lemma 6.4.2

We construct a fully-online attacker which adds one poisoning example after every

ten clean examples, and show that such attacker can achieve the attack effectiveness stated

in the lemma.

The main idea of the proof is to show that for most time t, θt has very few nonnegative

coordinates and thus low classification accuracy on clean examples. In order to show this,

we look at the sum of model parameters over all coordinates, and construct an attacker

such that 1) a poisoning example can lower the sum much more rapidly than a clean

example increases it when θt has many nonnegative coordinates, and 2) the sum is also

lower bounded. If the number of nonnegative coordinates in θt is above a threshold for too

many different t, then the lower bound will be violated and thus causes contradiction.

Let θt,i denote the i-th coordinate of the online model θt at iteration t. In this

problem setting, the classifier predicts a clean example (ei,+1) or (−ei,−1) correctly if

θt,i > 0 and makes an error otherwise.

The attacker is as follows. At time t when the learner gets a poisoning examples

from the attacker, the attacker first picks 1000 nonnegative coordinates of θt. Let J =

{j1, · · · , j1000} denote the indices of these 1000 coordinates. The poisoning point x has

xj = − 1√
1000

for j ∈ J and xj = 0 for other j ∈ Z+, j ≤ 10000. The label y = +1. If

fewer than 1000 coordinates are nonnegative, then the attacker returns a zero vector as the

poisoning example, which causes no change to the online model.

We say the online learner makes one cycle of updates when it updates on ten clean

examples followed by a poisoning examples, which is the pattern of poisoning locations in

the setting. Then 1,000,000 clean examples corresponds to 100,000 complete cycles.

In order to prove the lemma, we first look at the number of nonnegative coordinates

in θt when t = 11k + 10 for k ∈ Z+, i.e. the time steps when the learner gets an example

from the attacker.
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Claim C.1.5. The number of nonnegative coordinates in θ11k+10 must be below 1000 in at

least 60,000 cycles, i.e. for 60,000 different k.

Proof. We prove the contrapositive statement by contradiction. Let st denote the sum of

all coordinates of θt, i.e. st =
∑10000

j=1 θt,j, and θt,i denote the i-th coordinate of the online

model θt at iteration t. We have the following observations on θt,i and st.

Observation 1. We have θt,i ≥ − 1√
1000

for all t and i. This is because θt,i decreases

only when the learner updates over a poisoning example and the coordinate is nonnegative,

and the poisoning example can lower θt,i by at most 1√
1000

in one update.

Observation 2. For each update over the nonzero poisoning example, st+1 − st ≤

−
√

1000/2. This is because for each coordinate j ∈ J , θt+1,j − θt,j ≤ −1/(2
√

1000) by our

construction of the attacker, and there are a total of 1000 coordinates to be updated.

Suppose that in more than 40,000 cycles, i.e. 40,000 different k, the number of

nonnegative coordiates in θ11k+10 is more that 1000. Then for at least 40,000 different t,

st+1− st ≤ −
√

1000/2. On the other hand, when the learner updates over a clean example,

st+1−st ≤ 1/(1+exp(θ>t xtyt)) ≤ 0.52 because θt,i ≥ − 1√
1000

for all i, t and θ>t xtyt ≥ − 1√
1000

.

There are a total of 1,000,000 clean examples. We can get an upper bound of sT as follows.

sT = sT − s0 =
T−1∑
t=0

st+1 − st

≤ 40000(−
√

1000/2) + 1000000(0.52)

≤ −105.

However, by Observation 1, θT,i ≥ − 1√
1000

for all i,

sT ≥ 10000(− 1√
1000

) ≥ −400,

which contradicts the lower bound. Hence, it is impossible that θ11k+10 has at least 1000
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nonnegative coordinates for more than 40,000 cycles, and the statement is proven.

Claim C.1.6. At least 600,000 clean examples are classified by models with fewer than

1000 nonnegative coordinates.

Proof. Claim C.1.5 shows that θ11k+10 has fewer than 1000 nonnegative coordinates in over

60,000 cycles. Notice that in each cycle, the number of nonnegative coordinates of θt never

decreases when model updates on clean examples. Therefore, θ11k+i must have fewer than

1000 nonnegative coordinates too for i = 0, · · · , 9, i.e. the time steps when the model

updates over clean examples. There are 10 clean examples in each cycle, and hence the

statement is proven.

The last step is to show that with high probability, at least 500,000 out of the 600,000

examples in Claim C.1.6 are misclassified using concentration bound. Let J ′ be the set of

time step indices at which the online model has fewer than 1000 nonnegative coordinates. By

Claim C.1.6, |J ′| ≥ 600, 000. Let Xt = 1(θt correctly predicts the clean example (xt, yt)).

For t ∈ J ′, E(Xt) < 0.1 because 1) the input xt only has one nonzero coordinate, 2) the

prediction is only correct when the nonzero coordinate of xt corresponds to a nonnegative

coordinate of θt, and 3) xt is independent of θt. In addition, Xt is bounded in [0, 1]. Let

S =
∑

t∈J ′ Xt be the random variable of total number of correct prediction for time steps

in J ′. Notice that

E[S] =
∑
t∈J ′

E[Xt] < 60000
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. Applying Hoefdding’s inequality, we have

Pr[S > 100000]

= Pr[S − E[S] > 100000− E[S]]

≤ Pr[S − E[S] > 40000]

≤ exp

(
−2(40000)2

|J ′|

)
≤ exp

(
−2(40000)2

600000

)
< 0.01.

(C.4)

The probability that more than 100,000 examples at times steps t ∈ J ′ is classified correctly

is less than 0.01. Therefore, with probability more than 0.99, at least 500,000 examples at

times steps t ∈ J ′ are misclassified, and hence proves the lemma.
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C.2 Experiment Details

C.2.1 Data Preparation

UCI Breast Cancer. Initialization, training and test data sets have size 100, 400, 100

respectively, and the data set is divided in random.

IMDB Review We train a Doc2Vec feature extractor on the 50000 unlabeled

reviews provided in the original data set using the method in [ŘS10]. Then we convert

reviews in the original training and test set into feature vector of d = 100 using the

extractor. Initialization, training and test data sets have size 5000, 10000, 5000 respectively.

The first two data sets are drawn from the original training set in vector representation

without replacement. The test set is drawn from the original test set.

MNIST 1v7. We use a subset of the MNIST handwritten digit data set containing

images of Digit 1 and 7. Initialization, training and test data set have size 1000, 8000, 1000

respectively. The first two data sets are drawn from the original MNIST training sets in

random with no replacement. The test set is drawn from the original MNIST test set.

fashionMNIST Bag v.s. Sandal. We use a subset of the fashionMNIST data

set containing images of bags and sandal. Initialization, training, and test data set have

size 1000, 8000, 1000 respectively. The first two data sets are drawn from the original

fashionMNIST training sets in random with no replacement. The test set is drawn from

the original fashionMNIST test set.

Each data set is normalized by subtracting the mean of all data points and then

scaled into [−1, 1]d.

C.2.2 Detailed Experiment Procedures.

The learning rate η is set to 0.05 for UCI Breast Cancer and 0.01 for the other

three data sets. The model obtained after making one pass of the training set using OGD
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algorithm has high accuracy on all data sets.

For Concentrated attack, the attacker needs to divide its attack budget, i.e. number

of poisoning points, to points with +1 and −1 labels. We try three different splits – all +1

points, half-half, all −1 points – and report the best in terms of poisoning effect.

As mentioned in Section 6.5, Concentrated attack also needs to adapt to the online

setting by imposing an order to set of poisoning examples generated for the offline setting.

In positive first order, the attacker appends all the points with +1 label to the data stream

before appending points with −1 labels. In negative first order, the attacker appends all

the points with −1 label to the data stream first instead. In random order, the points are

shuffled and appended to the data stream. We try 100 different random orders, and report

the best among the positive-first, negative-first and random orders in terms of poisoning

effect.

For poisoning the initialization set used by Slab defense, the attacker also needs to

divide its attack budget to points with +1 and −1 labels. We divide the budget proportional

to the fraction of +1 and −1 points in the clean initialization set.

C.2.3 Additional Experiment Results and Plots

In this section, we present additional experiment results and plots mentioned in the

main body of paper.

The Semi-Online Setting

Error Rate of the Final Model on Clean Test Examples In Section 6.5, we

present the cosine similarity between the final model θ and the target model θ∗ against

defense parameter τ . Since the target θ∗ has high error rate on test examples, we also plot

the test error rate of θ on clean examples in Figure C.1. The trend matches the cosine

similarity reported in Section 6.5 – the final model has low error rate when in hard regime,
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Figure. C.1: Plot of θ’s error rate on clean test examples against defense parameter
τ for the semi-online attacks. Small τ means stronger defense. Larger error rate
means more successful attack. Red background region indicates hard regime, while blue
background indicates easy regime. Top to bottom: L2-norm, L2-distance-to-centroid
and Slab defense. Left to Right: BreastCancer, MNIST, fashionMNIST, IMDB.

high error rate for large τ in easy regime, and intermediate error rate for small τ in easy

regime.

Cosine Similarity and Test Error Rate for Large Learning Rate. In Sec-

tion 6.5, we claim that the attacker cannot make cos(θ, θ∗) close to 1 for small τ in easy

regime because smaller τ increases the multiplicative factor C in the theory. To validate

our claim, we use a larger learning rate η = 1 for all tasks, which reduces the factor C.

Figure C.2 and C.3 show the cosine similarity to target model and the test error rate

against defense parameter τ respectively. The result matches our expectation as for large

η, a semi-online attacker can make θ close to θ∗ even for small τ in easy regime. On the

other hand, it still cannot make θ in the same direction as θ∗ when in hard regime, and the

test error rate remains low in hard regime.
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Figure. C.2: Plot of cos(θ, θ∗) against defense parameter τ for the semi-online attacks
with larger learning rate (η = 1). Small τ means stronger defense. Larger cos(θ, θ∗)
means more successful attack. Red background region indicates hard regime, while blue
background indicates easy regime. Top to bottom: L2-norm, L2-distance-to-centroid
and Slab defense. Left to Right: BreastCancer, MNIST, fashionMNIST, IMDB.

Figure. C.3: Plot of θ’s error rate on clean test examples against defense parameter τ
for the semi-online attacks with larger learning rate (η = 1). Small τ means stronger
defense. Larger error rate means more successful attack. Red background region
indicates hard regime, while blue background indicates easy regime. Top to bottom:
L2-norm, L2-distance-to-centroid and Slab defense. Left to Right: BreastCancer,
MNIST, fashionMNIST, IMDB.
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Figure. C.4: Online classification error rate against defense parameter τ when 20%
of the examples in the data stream comes from the attackers. The dashdot line shows
the error rate of the offline optimal classifier. Small τ means the defense filters out
more examples, both clean and poisoned. Larger online classification error means more
successful attack. Top to bottom: L2-norm, L2-distance-to-centroid and Slab defense.
Left to Right: BreastCancer, MNIST, fashionMNIST, IMDB. The data sets from left
to right are in decreasing order of difficulty for successful poisoning attacks.

The Fully-Online Setting

In Section 6.5, we consider a mild fully-online attacker which poisons 10% of the

data stream. We also try a more powerful fully-online attack that can poison 20% of the

data stream. Figure C.4 shows the online classification error rate in the presence of this

more powerful attacker. The error rate is high for the weak L2 norm defense. Slab is still

able to keep the error rate low and is thus the strongest defense among all three. The

L2-distance-to-centroid defense’s error rate is in between, and can typically keep the error

rate below the fraction of poisoning examples in the stream. Meanwhile, the difficulty

levels of poisoning attack over the four data sets are in the same order, with BreastCancer

be the hardest and IMDB the easiest.
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