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PUBLISHED WORK

Elghraoui, A., Gunasekaran, D., Ramirez-Busby, S. M., Bishop, E., &
Valafar, F. (2022). Hybran: Hybrid Reference Transfer and ab initio
Prokaryotic Genome Annotation. bioRxiv, 2022-11.
(doi: https://doi.org/10.1101/2022.11.09.515824)

Modlin, S.J., Elghraoui, A., Gunasekaran, D., Zlotnicki, A.M., Dil-
lon, N.A., Dhillon, N., Kuo, N., Robinhold, C., Chan, C.K., Baughn,
A.D. and Valafar, F., 2021. Structure-Aware Mycobacterium tuber-
culosis Functional Annotation Uncloaks Resistance, Metabolic, and
Virulence Genes. Msystems, 6(6), pp.e00673-21.
(doi: https://doi.org/10.1128/mSystems.00673-21)

Heredia, M. Y., Gunasekaran, D., Ikeh, M. A., Nobile, C. J., &
Rauceo, J. M. (2020). Transcriptional regulation of the caspofungin-
induced cell wall damage response in Candida albicans. Current Ge-
netics, 1-10.
(doi: https://doi.org/10.1007/s00294-020-01105-8)

Heredia, M. Y., Ikeh, M. A., Gunasekaran, D., Conrad, K. A., Fil-
imonava, S., Marotta, D. H., Nobile, C.J. & Rauceo, J. M. (2020).
An expanded cell wall damage signaling network is comprised of the
transcription factors Rlm1 and Sko1 in Candida albicans. PLoS Ge-
netics, 16(7), e1008908.
(doi: https://doi.org/10.1371/journal.pgen.1008908)

Petrera, A., Gassenhuber, J., Ruf, S., Gunasekaran, D., Esser, J.,
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Abstract

Evolution of the gene regulatory network controlling biofilm formation in Candida
species

by

Deepika Gunasekaran

Doctor of Philosophy in Quantitative and Systems Biology
University of California, Merced

Professor Clarissa Nobile, Advisor
Professor David Ardell, Co-advisor

Gene expression is one of the most fundamental processes in a cell, allowing
genetic information to be processed into functional products. Regulation of gene
expression is determined by the underlying gene regulatory networks (GRNs). We
can think of a GRN as a directed network with hub nodes denoting master regulators,
which are DNA-binding proteins and target nodes denoting downstream genes whose
expression is modulated. The directed network edges denote strength of the interaction
between the master regulators and downstream target genes. High-throughput genomic
and epigenomic data is used to construct GRNs and to estimate the robustness of
these networks. In this study, we used the GRN underlying the formation of complex
multicellular structures called biofilms, in the yeast species Candida albicans, to
understand the mechanisms of GRN divergence between species and variation within
species. Biofilm formation has evolved multiple times in the fungal tree of life and
the ability to form biofilms is highly varied across species and strains. To study the
effects of these variations on components of the GRN, we developed three standalone
bioinformatic tools. The first tool was developed to infer the structure of GRNs across
Candida species by identifying and annotating binding loci of master regulators. The
second was used to identify mutations in the C. albicans population and the effect
of these mutations on the network components. The third tool was used to estimate
the evolutionary forces acting on the components of the biofilm GRN. Using these
tools, we inferred the sources of genetic variations in the biofilm regulatory network
components. We found that the motif preferences of the DNA-binding proteins are
conserved across large evolutionary distances but their interaction with target genes
is highly divergent. This is driven in part by mutations resulting in gains and losses
of genomic regions where the DNA-binding proteins preferentially bind. Furthermore,
mutations accumulate in segments of DNA-binding proteins that are required to
interact with other hub proteins in the network. This affects the overall structure of
the network both within and between species.

xviii



Chapter 1

Introduction

1.1 Gene regulatory networks

Gene expression is one of the most fundamental processes in a cell, allowing genetic
information to be processed into functional products. The regulation of gene expression
is determined by underlying gene regulatory networks (GRNs). A GRN is a system
of interacting genes and regulatory elements. We can think of a GRN as a directed
network (examples shown in Figure 1.1 and Figure 1.2) with hub nodes denoting
DNA-binding proteins (also known as transcription factors (TFs)), which determine
if and when downstream genes are expressed. Gene expression is determined by
where the TFs bind in the genomic DNA (cis-regulatory regions in the genome), and
what downstream genes they regulate (hereon referred to as target genes). For this
study, we define the cis-regulatory region as the upstream (5’) intergenic region of a
protein-coding gene. Gene expression can also be regulated by regions such as the
downstream (3’) region, introns or extant enhancers (even at a distance greater than
10000 bases from the gene) (Blackwood and Kadonaga; 1998), especially in higher
eukaryotes. Other factors such as chromatin structure, accessibility (Klemm et al.;
2019) and regulatory RNAs (Morris and Mattick; 2014) also affect gene expression.
In this study, we use a simplified model of the GRN, comprising three components,
TFs, target genes and cis-regulatory regions, to study the evolution of the biofilm
regulatory network in Candida albicans.

Evolutionary changes in the components of the GRN are known to alter the
phenotype encoded by the GRN (Schember and Halfon; 2022). Phenotypic diversity
can be generated by differences in gene content, specifically in protein-coding genes
and/or differences in gene expression. For example, studies have shown that gene
loss (Helsen et al. (2020)) and loss-of-function variants (Albalat and Cañestro (2016))
increase phenotypic variability, on which selection can act, to increase the fitness of
the organism under different environmental conditions. Mutations in coding regions,
however, are not sufficient to explain profound phenotypic differences between species

1
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(King and Wilson; 1975) and gene expression divergence (Jacob and Monod; 1961).
Nevertheless, we know more about interspecific fixed differences (hereon referred to
as differences) and intraspecific genetic variants (hereon referred to as variants), in
protein-coding regions compared to cis-regulatory regions. Extensive genetic variation
in cis-regulatory regions has been observed, however, with evidence for both the
conservation of transcription factor binding sites (TFBSs) and the rapid divergence
of cis-regulatory elements (Wray et al. (2003); Hahn (2007); Siepel and Arbiza
(2014)). The studies mentioned above focus on identifying evolutionary constraints on
protein-coding genes and cis-regulatory elements independently, however, knowledge
of TF-target gene relationship can be leveraged to better understand divergence of
a GRN. Studies that use such prior knowledge uncovered coevolution in modules
of regulatory regions and TFs (Gordon and Ruvinsky; 2012), evolutionary path
of divergence of a cis-regulatory module (Britton et al.; 2020), and mutational
compensation (Landry et al.; 2005).

Extending on the principle of coanalysing variants in cis-regulatory regions and
TFs, if we know the underlying GRN, we can also assess constraints posed on the
cis-regulatory region as a function of the TFs that bind in this region. This essentially
provides a view of the effect of network architecture on the evolutionary constraints
placed on the network. Changes in GRNs underlie divergence of functional modules
in many species. Evolution of new developmental processes driven by changes in
GRNs have been observed, such as, for example, in flagellar organization in bacteria
(McAdams et al. (2004)). In fungi, GRN rewiring has been shown to underlie changes
in regulatory functions from regulating sterol synthesis to regulating filamentation
(Maguire et al.; 2014), and from regulating sporulation to regulating biofilm formation
(Nocedal et al.; 2017). Additionally, GRN rewiring in fungi underlies differences in
galactose metabolism (Dalal et al.; 2016), and purine catabolism (Tebung et al.; 2016).
In invertebrates, GRN rewiring is known to alter gene expression at the developmental
stage in sea urchins (Israel et al.; 2016), and is responsible for pigment differences in
Drosophila (Massey and Wittkopp; 2016). In mammals, GRN rewiring underlies the
differentiation of embryonic stem cells in mice (Zhou et al.; 2007) and humans (Kunarso
et al.; 2010; Tsankov et al.; 2015). Changes in GRNs can be a consequence of mutations
in the TFs that alter their binding specificity or mode of regulation or of mutations in
cis-regulatory regions of target genes. Consequentially, mutations in cis-regulatory
regions can result in losses, gains, changes in binding affinities or functional conversions
of binding sites. Although these changes can modify GRNs, divergence of GRNs
between species is driven primarily by gene duplication (Teichmann and Babu; 2004;
Voordeckers et al.; 2015). For example, a gene duplication event and subsequent
divergence through neofunctionalization or subfunctionalization of a TF, can result in
the generation of paralogs that respond to different environmental signals or in the
regulation of different target genes (Teichmann and Babu (2004); Gu et al. (2005);
Wohlbach et al. (2009); Ohno (2013); Pougach et al. (2014); Voordeckers et al. (2015);
Gu et al. (2004)). TF duplication events can undergo different fates, all of which change
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the evolutionary landscape of the GRN, including: (i) subfunctionalization, resulting
in specialized function of the ancestral gene and its paralog through segregation of
target genes between the two copies (Voordeckers et al. (2015)), (ii) redundancy, when
both copies of the TF regulate the same genes (De Smet and Van de Peer (2012)), and
(iii) neofunctionalization, where the paralog regulates genes not previously regulated
by the ancestral TF (Voordeckers et al. (2015)).

Gene 1

Protein 1

mRNA 1

Gene 2

Protein 2

mRNA 2

Gene 3

mRNA 3
Protein 3

Gene 1

Gene 2Gene 3

Figure 1.1: Components of a gene regulatory network
Gene regulatory networks are comprised of protein-coding genes translated to DNA-
binding proteins called TFs that bind to DNA in a sequence-specific manner within
cis-regulatory regions to regulate transcription of the target genes. Binding sites
preferred by each TF is indicated by bars below the DNA, colored by the corresponding
TF. In this example, gene 1 regulates gene 2 and protein 1 and protein 2 bind in
the intergenic region of gene 3, to regulate this gene in a cooperative manner. Other
known elements of GRNs, such as regulatory RNAs are not included in the figure.

1.2 Motivation and study aim

The overall focus of my research is to understand the mechanisms of
intraspecific and interspecific evolution of transcriptional networks using
the C. albicans biofilm network as a model. Although various mechanisms
for GRN diversification have been observed and studied in isolation, the effect of
these variants in the context of the underlying network structure is still relatively
unknown. Elucidating the divergence of network structure requires experimental
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data from related species, measured for the same phenotype. This data was recently
published by Mancera et al. (2021) for the biofilm regulatory networks of several
Candida species. We reanalysed this data to infer the network structure across species.
Additionally, predicting the effect of cis-regulatory variants is challenging due to
lack of functional annotation of cis-regulatory elements. Studies on the evolution of
cis-regulatory elements have traditionally assumed that any change in the TFBS has
functional consequences, however, the effects of natural variants on binding affinity
and resulting change in structure of the GRN have not been studied (Hahn (2007);
Siepel and Arbiza (2014); Wray et al. (2003)). In this study, we identified TF binding
sites across species and used this information to obtain high confidence binding motifs,
which were then used to predict the effects of variants. One limitation to note, is
that we do not account for other regulatory effects, such as chromatin structure and
accessibility.

Studies have also reported interspecific gains and losses of TFBSs, but the frequency
of occurrence of these events within a species, mechanisms driving these events and
their roles in GRN evolution are unknown (Bradley et al. (2010); Bullaughey (2011);
Doniger and Fay (2007); He et al. (2011); Moses et al. (2006); Krieger et al. (2022)).
We identify TFBS gain and loss in C. albicans for the biofilm regulators. Additionally,
previous studies exploring genomic variation of cis-regulatory regions have focused
on single nucleotide polymorphisms (SNPs) and variations that affect individual TF
binding sites. In this study, we expand our understanding of mechanisms driving
variations in cis-regulatory regions by including larger structural variations (SVs) and
studying their relative contribution(s) to the disruption of these regulatory elements.
We also developed three tools to identify SNPs and SVs, identify binding sites and
measure molecular evolution statistics.

1.3 Candida albicans as a model organism

1.3.1 C. albicans is a biologically relevant model

Candida species are commensal fungi of the skin, gastrointestinal and genitourinary
tracts of humans, but they are also opportunistic pathogens capable of causing
superficial and systemic infections under specific host conditions (Silva et al. (2009)).
Candida species, in particular C. albicans, are the most common fungal species isolated
from hospital settings (Perlroth et al. (2007)). One significant virulence trait of the
Candida species is the ability to form multicellular microbial communities called
biofilms (Costerton et al. (1995); Silva et al. (2009)). C. albicans, interestingly, is
also the most robust biofilm former in this genus (Hawser and Douglas (1994); Kuhn
et al. (2002); Silva et al. (2009)). The capacity of C. albicans to cause disease is
due, in part, to its ability to form highly structured biofilms that confer resistance to
both physical and chemical stresses (Mayer et al. (2013); Nobile and Johnson (2015);
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Kaur and Nobile (2023)). The presence of a C. albicans biofilm infection is correlated
with a significant decrease in the efficacy of antifungal drug treatment as well as with
an increase in the associated morbidity and mortality rates of the patient (Bizerra
et al. (2008); Cauda (2009); Rajendran et al. (2016)). Biofilm formation is a highly
regulated process in C. albicans and the biofilm regulatory network in C. albicans is
an ideal model system to study the evolution of transcriptional networks since this
network is well established, recently evolved, and seemingly less complex relative to
known regulatory networks in higher eukaryotes.

1.3.2 Biofilm formation is a well-studied phenotype in C.
albicans

Biofilm formation has evolved multiple times in the fungal tree of life (Desai et al.;
2014; Naranjo-Ortiz and Gabaldón; 2020). Among the most commonly known biofilm
forming fungi are Aspergillus fumigatis and Cryptococcus neoformans (Fanning and
Mitchell; 2012). These robust biofilm-formers are also clinically relevant pathogens.
The biofilm regulatory network in C. albicans was first described by Nobile et al.
(2012) as a network comprised of six “master” regulators (Bcr1, Brg1, Efg1, Ndt80,
Rob1 and Tec1) and approximately 1000 downstream target genes (Figure 1.2) (Nobile
et al. (2012)). This network was later expanded to include three additional regulators
(Flo8, Gal4 and Rfx2), which play distinct roles in different temporal stages of
biofilm formation (Fox et al. (2015)). Nobile et al. (2012) also hypothesized that this
network is recently evolved, since upregulated genes under biofilm forming conditions
emerged relatively recently in the Ascomycota phylum, after the diversification of
Schizosaccharomyces pombe and Neurospora crassa (Nobile et al. (2012)). A recent
study showed that despite conservation of binding specificities of most of the biofilm
regulators across species closely related to C. albicans, the targets regulated by these
TFs are diverse (Mancera et al. (2021)). While Mancera et al. (2021) focused on
interspecies rewiring of the biofilm regulatory network, other studies have demonstrated
that biofilm formation is highly varied among C. albicans strains (Hawser and Douglas
(1994); Huang et al. (2019); Jain et al. (2007); Kuhn et al. (2002); Li et al. (2003);
Pujol et al. (2015); Soll and Daniels (2016); Villar-Vidal et al. (2011)). Notably, Huang
et al. (2019) observed that the downstream effects of deletion of the biofilm regulators
is dependent on their genetic backgrounds (Huang et al. (2019)). In addition to
phenotypic characterization of C. albicans clinical and environmental strains, studies
have also looked at the population structure and genomic diversity driven by SNPs
and copy number variants (Bensasson et al. (2019); Hirakawa et al. (2015); Ropars
et al. (2018)). Hirakawa et al. (2015) identified that genome-wide heterozygosity
is correlated with higher fitness and hypothesized that adaptive genomic changes
in clinical isolates are enriched for genes associated with virulence and the host
response (Hirakawa et al. (2015)). Ropars et al. (2018) showed that a subspecies of
the C. albicans clade, Candida africana, has undergone extensive pseudogenization
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in genes associated with virulence and morphogenesis, possibly contributing to its
restriction to a specific host environmental niche (Ropars et al. (2018)). Together,
these studies suggest that different isolates of C. albicans likely have differences in
biofilm regulatory network components, affecting their abilities to form biofilms, and
consequently leading to changes in their virulence properties in the host. Additionally,
these studies also suggest that cis-regulatory variants and binding site gains and
losses are likely mechanisms of evolution of this regulatory network and play roles in
co-opting novel genes into the network. In general, the study of population genomic
variants affecting cis-regulatory grammar and the identification of conserved modules
in the biofilm network will be important information to guide the development of
future therapeutic targets against biofilm formation that could be functional across
Candida species.

1.4 Genetic diversity in yeasts

The monophyletic kingdom of fungi comprises nine phyla, of which Ascomycota is
the largest and most well studied (Naranjo-Ortiz and Gabaldón (2019); Schoch et al.
(2009)). Ascomycetes are genotypically and phenotypically diverse, ranging from
simple yeasts to highly filamentous fungi (Hane et al. (2011); Naranjo-Ortiz and
Gabaldón (2019)). Ascomycota consists of three subphyla Saccharomycotina (budding
yeasts), Pezizomycotina (filamentous yeasts) and Taphrinomycotina (fission yeasts)
(Shen et al. (2020)). The Saccharomycotina subphylum includes the model yeast
species Saccharomyces cerevisiae, and the most relevant human fungal pathogens of
the Candida genus. Studies have shown that this subphylum has high evolutionary
rates, and that diversity is driven primarily by reductive genome evolution (Shen
et al. (2018, 2020)). Reductive modes of diversification in budding yeasts have been
demonstrated by comparing their metabolic capabilities with filamentous yeasts in
the Ascomycota phylum. Although the most studied budding yeast, S. cerevisiae,
displays significantly reduced metabolic capabilities compared to filamentous yeasts, C.
albicans displays higher metabolic capabilities than average in this subphylum (Shen
et al. (2018)). This suggests that robustness is likely maintained in C. albicans due
to diverse and/or unpredictable environmental conditions (Félix and Wagner (2008);
Mendonça et al. (2011)). Additionally, preferential maintenance of robustness and
modularity in pathways and networks might also drive maintenance of the size of
these networks and genomes (Félix and Wagner (2008); Kitano (2004)).

Studies of Ascomycota species have also shown that the rate of gene expression
divergence is higher than sequence evolution between species and this has
predominantly been attributed to large-scale genomic changes such as whole genome
duplication in shared ancestors (Gu et al. (2005); Ihmels et al. (2005)). However,
even species with negligible differences in gene content show large differences in gene
expression, suggesting that these differences could be a consequence of small-scale
cis-regulatory fixed differences (Rokas (2022)). Studies have also demonstrated that
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Tec1
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Brg1

Figure 1.2: The C. albicans biofilm regulatory network
The biofilm regulatory network identified by Nobile et al. (2012) is comprised of six
master transcriptional regulators and approximately 1000 target genes (Nobile et al.;
2012). The regulators are labeled in white and target genes are depicted in blue
if they are upregulated, yellow if they are downregulated or gray if no differential
expression is observed in biofilm compared to planktonic conditions. The size of the
node corresponds to its degree, where the larger nodes are TFs regulating more genes.

genomic evolution in filamentous Ascomycetes show conservation of gene content but
not gene order or orientation (Hane et al. (2011)), which is likely the consequence of
SVs, such as inversions.

Based on previous work, we hypothesize that large scale rewiring of regulatory
networks is employed to generate the biofilm regulatory network in C. albicans. We
observe extensive rewiring in our analysis of synteny across the closely related Candida
species, C. albicans, C. dubliniensis, C. tropicalis and C. parapsilosis (Figure 1.3).
Protein-coding genes are highly conserved across these species with more than 80%
of genes shared among them. Despite the high conservation of gene content, the
gene order is poorly conserved between these species (Figure 1.3), suggesting poor
conservation of regulatory elements of these genes.
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Figure 1.3: Syntenic relationships between C. albicans and its close relatives
Gene order conservation between C. albicans, C. dubliniensis, C. tropicalis and C.
parapsilosis is depicted in this image. Each line shows a trace of gene order conservation
for orthologous genes between these species, and the colors correspond to different
chromosomes in C. albicans. Orthologous genes were identified using OrthoFinder
(Emms and Kelly; 2015, 2019) and gene order conservation was identified using
GENESPACE (Lovell et al.; 2022).

1.5 Evolution of gene regulatory networks in

yeasts

GRN growth has been attributed primarily to gene duplications (i.e. duplication of
TFs and/or target genes in the network) (Teichmann and Babu (2004); Voordeckers
et al. (2015)). Simulation of early stages of gene duplication events show maintenance
of robustness of these networks (Posadas-Garćıa and Espinosa-Soto (2022)), but, over
longer evolutionary time, TF-target gene relationships change due to loss of binding
sites in promoters of duplicated genes (Ihmels et al. (2005); Maslov et al. (2004);
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Conant and Wolfe (2006); Wohlbach et al. (2009); Wapinski et al. (2007)) or gain of
motifs of new TFs (Papp et al. (2003); Wohlbach et al. (2009)). This suggests that
both subfunctionalization and neofunctionalization contribute to divergence of TF
binding (Ihmels et al. (2005); Maslov et al. (2004); Conant and Wolfe (2006); Papp
et al. (2003); Evangelisti and Wagner (2004)). These changes result in rapid increased
divergence in gene expression in paralogs compared to orthologs (Gu et al. (2002,
2004); Li et al. (2005)).

The studies mentioned above focus on gene expression divergence and GRN
rewiring over longer evolutionary time and through the lens of effects of whole genome
duplication (WGD) in the Saccharomyces clade. However, rewiring has been reported
even within species that have diverged from the Saccharomyces clade predating the
WGD event (Huang et al. (2019); Mancera et al. (2021)). Additionally, recent studies
elucidating mechanisms driving expression divergence of target genes of individual TFs,
show that cis-acting differences are the source of large expression divergence in shorter
evolutionary timescales (Siddiq and Wittkopp (2022); Krieger et al. (2022)). These
studies also identify trans-acting differences and suggest that they are maintained in
the population through stabilizing selection (Metzger and Wittkopp (2019); Siddiq and
Wittkopp (2022)). Based on this prior work, we hypothesize that cis- and trans-acting
differences contribute to diversity in biofilm formation in the Candida species.

The studies mentioned above, focus on individual or on a handful of TFs, and
thus provide a focused view on expression divergence driven by cis- or trans-acting
differences in a subset of TFs. In addition to studying these regulatory changes
mediated by independent TFs, understanding the changes in binding of TFs that
act concertedly in regulating a phenotype, will provide a complementary view on
evolutionary constraints acting on GRNs. Theoretical models have shown that
phenotypic plasticity is almost always favored for labile traits (Scheiner (1993))
and studies have hypothesized that genes regulated by multiple TFs likely play key
roles in the ability of an organism to respond to diverse environments (Promislow
(2005); Proulx et al. (2005)). These models suggest that studying the constraints on
the number of upstream regulators in a GRN for target genes of interest will shed
light on whether plasticity of a trait is favored in a population.

To gain a better understanding of the mechanisms and evolution of GRN divergence
between species and variation within species, I specifically address the following
questions in my thesis:

i. What is the role of gene duplication in biofilm network evolution across species?

ii. What are the types of genetic variants in the biofilm network components
segregating in the C. albicans population?

iii. Are cis- or trans-acting variations more prevalent in the C. albicans biofilm
network components?

iv. What are the forces of evolution acting on the network components?
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v. Is binding affinity, number of binding sites or number of upstream regulators more
constrained in the network?
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Chapter 2

Transcription factor-target gene
conservation across Candida species

2.1 Abstract

The ability to form biofilms is highly varied across Candida species. This study
examines the possible sources of variation in this process. Some Candida species
translate the CUG codon to serine rather than the more standard leucine. We refer
to the Candida species with atypical CUG codon translation as “CTG species” and
species that use the ancestral genetic code as “non-CTG species”. We found that
of the nine known master biofilm regulators in the CTG species C. albicans, five
are conserved over large evolutionary distances, three are lost or have considerably
diverged in non-CTG Candida species and one has newly emerged, most likely in the
ancestor shared by C. albicans, C. dubliniensis and C. tropicalis. We constructed
the biofilm network in C. dubliniensis, C. tropicalis and C. parapsilosis and also
expanded the previously identified C. albicans biofilm network. We found that binding
sites and target genes are only moderately conserved even in closely related CTG
species. Several TFs that are conserved across species regulate distinct target genes in
each species. In rare occasions, changes in binding preferences drive this change, but
more commonly, TFs regulate species-specific functions despite conservation of motif
preference. In addition to target genes and binding strengths, network structure is
also varied. The C. albicans biofilm network is highly intertwined with a large number
of target genes regulated by multiple TFs. In C. albicans, the coordinated regulation
of target genes by multiple TFs is prominent and target genes encoding proteins with
annotated functions in host interactions appear to be enriched for such combinatorial
interactions.
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2.2 Introduction

Candida species are among the most common fungal species that cause bloodstream
infections in the United States, which are associated with high mortality rates
(Edmond et al. (1999)). C. albicans is the predominant pathogen responsible for
Candida infections followed by Candida glabrata, Candida tropicalis and Candida
parapsilosis (Satoh et al. (2009); Gabaldón et al. (2016); Lone and Ahmad (2019)).
Other pathogenic Candida species include Candida dubliniensis, Candida lusitaniae
and the recently emerged Candida auris (Gabaldón et al. (2016); Chow et al. (2020)),
which are all causing increased numbers of infections in hospital settings. Biofilm
formation has been reported to vary within (Singh et al.; 2019) and between clinical
isolates of the aforementioned Candida species (Hasan et al.; 2009; Cavalheiro and
Teixeira; 2018). Mancera et al. (2021) examined the conservation of the master biofilm
regulators in these closely related species and identified that most of the regulators
are conserved in the four closely related Candida species (C. albicans, C. dubliniensis,
C. tropicalis and C. parapsilosis), but their roles in biofilm formation have diverged
significantly (Mancera et al. (2021)). Although the conservation of some of the master
biofilm regulators in closely related Candida species is beginning to be explored
(Gasch et al. (2004); Nocedal et al. (2017); Mancera et al. (2021); Kaessmann (2010)),
the conservation of the targets of these TFs and their cis-regulatory elements have
not been studied and are likely to play roles in the biofilm-forming abilities of the
Candida species (Pais et al. (2016); Cavalheiro and Teixeira (2018)). Gene and genome
duplication and de novo gene formation can also contribute to rewiring of regulatory
networks (Teichmann and Babu (2004); Voordeckers et al. (2015)). Expanding the
scope of comparative genomic studies to include these elements, would considerably
improve our understanding of biofilm formation among Candida species.

In order to study the evolution of the biofilm regulatory network across other
Candida species, the species listed in Table 2.1 were included in this study.
Schizosaccharomyces pombe was included as an outgroup. These species belong
to different clades, indicated in Figure 2.1. This species phylogenetic tree was
constructed by reconciling gene trees of 2356 orthogroups identified using OrthoFinder
(Emms and Kelly; 2015, 2019). STAG (Emms and Kelly; 2018) and STRIDE (Emms
and Kelly; 2017) were used to reconcile the gene trees in OrthoFinder. Branch lengths
indicate the average branch lengths for each bipartition in the individual estimate of
the species tree from gene trees of orthologs. Most of these Candida species belong
to the CTG clade, which are known to use an alternative genetic code, where the
CUG codon encodes for serine instead of the canonical leucine (Santos et al. (2011)).
The CUG codon is unstable in yeast, with multiple, independent reassignments to
encode other amino acids instead of the canonical leucine. Krassowski et al. (2018)
report the reassignment of this codon in five monophyletic groups (clades) of yeast
species and we grouped the Candida species in this study based on their CUG codon
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reassignment and corresponding clade designation (Krassowski et al.; 2018). All
species in this study, except for the outgoup S. pombe, share a common ancestor
with an altered genetic code. S. cerevisiae, C. glabrata, C. kefyr and C. pelliculosa
belong to the CUG-Leu1 clade, where the tRNA decoding the CUG codon as leucine
is modified in some species of this clade through intron expansion and subsequent
changes to its secondary structure or complete loss of this tRNA. C. krusei belongs to
the CUG-Leu2 clade, which is distinguished from the CUG-Leu1 clade, since they
do not share a common ancestor. All other Candida species in this study belong to
the CUG-Ser1 clade, where the CUG codon encodes for serine. Estimates indicate
that the CTG clade diverged from the common ancestor of all Candida species
approximately 150-170 million years ago (MYA) (Pesole et al.; 1995; Massey et al.;
2003). In Figure 2.1, the phylogenetic relationship between the clades indicates that
CUG-Leu1 and CUG-Ser1 clades share a common ancestor, which is contradictory
to the findings of Krassowski et al. (2018), where CUG-Leu2 and CUG-Ser1 share
a common ancestor. This discrepancy is likely due to the inclusion of a fragmented
assembly of C. pelliculosa. Therefore, when we retained only the species with complete
or near-complete (Figure 2.2), contiguous genome assemblies we inferred phylogenetic
relationships between the CUG-Leu1, CUG-Leu2 and CUG-Ser1 clades that were
consistent with previous findings (Krassowski et al.; 2018).

Opportunistic fungal pathogens are predominant in the CTG clade, likely due to
gene family expansion in virulence related genes (Turner and Butler; 2014). In the
ancestor shared between S. cerevisiae and C. glabrata, a whole genome duplication
(WGD) event occurred approximately 100 MYA (Wolfe and Shields; 1997; Kellis
et al.; 2004). This WGD event resulted in an expansion of transcription factors in S.
cerevisiae (Wolfe and Shields; 1997), whereas the C. glabrata genome is characterised
by gene loss and loss of synteny compared to S. cerevisiae (Gabaldón et al.; 2013). We
follow the commonly used designation for these species consistent with the literature
(Wolfe and Shields; 1997; Gabaldón et al.; 2013; Krassowski et al.; 2018). For instance,
when referring to only S. cerevisiae and C. glabrata, we call them “WGD species”,
and when referring to all Candida species that use the alternative genetic code we
call them “CTG species”. Any species not belonging to this clade (including WGD
species), we call “non-CTG species”. We also introduce the term “haploid CTG
species” to specifically indicate CTG species that are found predominantly as haploids
in nature, such as C. guilliermondii, C. lusitaniae, C. auris, C. haemulonii, and C.
duobushaemulonii, and “diploid CTG species” to specifically indicate CTG species
that are found predominantly as diploids in nature (Muñoz et al.; 2018).

2.2.1 Ability of Candida species to form biofilms

The Candida species included in our study vary in cell size, morphology and biofilm
structure. We examined the source of divergence of the underlying biofilm network.
The phylogenetic relationships of the Candida species in our study are depicted
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in Figure 2.1, which includes an artist rendering (by Laurence Gao) of the biofilm
structures of these species. C. dubliniensis and C. tropicalis biofilms are more similar
to C. albicans biofilms, consisting of yeast-form, hyphal and pseudohyphal cells,
as well as a robust extracellular matrix (Ramage et al. (2001); Zuza-Alves et al.
(2017)). C. parapsilosis biofilms consist of only yeast-form and pseudohyphal cells,
with a diminished extracellular matrix (Lattif et al. (2010)). C. duobushaemulonii,
C. haemulonii and C. auris belong to the same clade and biofilms of species in this
clade are comprised primarily of a dense network of yeast-form cells, with occasional
pseudohyphal cells reported for some strains (Cendejas-Bueno et al. (2012); Ramos
et al. (2020); Sherry et al. (2017)). C. lusitaniae forms very thin biofilms comprised
predominantly of yeast-form cells (Mancera et al. (2021)). C. guilliermondii biofilms
also consist primarily of yeast-form cells, but under some conditions, this species
has been reported to form pseudohyphal cells (Lastauskienė et al. (2015); Marcos-
Zambrano et al. (2017)). The non-CTG Candida species also form weak biofilms
composed of yeast-form cells and in some cases pseudohyphal cells, with the exception
of C. krusei, which has been reported to form true hyphal cells (Gómez-Gaviria and
Mora-Montes (2020)). The ability to form hyphae (filamentation) is a key process in
biofilm formation (Nobile and Johnson; 2015). Diploid CTG species are known to
filament (Priest and Lorenz; 2015) and form true hyphae, which likely contributes to
robust biofilm formation. Although some haploid CTG species have been reported to
filament on occasion (Yue et al.; 2018), they are primarily found in the yeast-form
(Muñoz et al.; 2018). Additionally, key genes required for filamentation are lost in
haploid CTG species (Muñoz et al.; 2018). In WGD species, TF family expansion
has been observed (Wolfe and Shields; 1997), followed by rapid divergence and loss of
duplicates in some species (Byrne and Wolfe; 2007). Given the genomic divergence
(in WGD species) and divergence in biofilm-forming abilities, we would predict that
significant rewiring of the underlying biofilm regulatory network is likely.

2.2.2 Genomic variation in Candida species

Previous work, comparing simulations to observed WGD events, estimated retention
of 8% of duplicated genes and extensive genomic rearrangements driven by reciprocal
translocations (Seoighe and Wolfe (1998)). Reciprocal translocations involve exchange
of genomic content between non-homologous chromosomes, which might result in
disruption of gene regulation in these segments or fusion of regulatory elements
to bring these genes under control of other upstream regulators. Studies have
also shown that increased rates of genome rearrangements are observed in CTG
species and WGD species, compared to non-WGD species (Rajeh et al. (2018)).
Additionally, CTG species have been reported to exhibit increased evolutionary rates
compared to non-CTG species, suggesting increased genetic diversity in CTG species
(Shen et al. (2020)). Even between the closely related CTG species C. albicans and
C. dubliniensis, differences in genomic content have been reported (Jackson et al.
(2009)). While expansion in genes encoding virulence factors has been observed in C.
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albicans, C. dubliniensis has reportedly undergone pseudogenization (Jackson et al.
(2009)). In summary, variation in gene content, genomic rearrangements and increased
evolutionary rates drive genetic diversity, possibly enabling divergence of the biofilm
regulatory network.

2.2.3 Gene regulatory network (GRN) evolution in yeasts

Functional divergence of transcriptional regulation, either by loss of cis-regulatory
elements (Ihmels et al.; 2005), or by handoff of target genes from one regulator to
another (Tuch et al.; 2008; Dalal et al.; 2016; Johnson; 2017; Hsu et al.; 2021) has been
reported in fungal species. Ihmels et al. (2005) show that loss of a cis-regulatory element
resulted in emergence of aerobic growth in WGD yeast species (Ihmels et al.; 2005).
In this study, loss and gain of a cis-regulatory motif was compared between WGD
and non-WGD species. The regulators binding to this motif were unknown, therefore
inferences cannot be made on whether this cis-regulatory change or trans-acting
variants are the primary driving force of this rewiring. Studies aimed at understanding
handoff of target genes between regulators showed that non-functional binding events
are an important intermediary step in facilitating the gain of novel regulatory roles
of a TF (Hsu et al.; 2021). Furthermore, cooperative binding of regulators in the
cis-regulatory region also facilitates the handoff of target genes (Tuch et al.; 2008;
Baker et al.; 2012; Johnson; 2017). But in order to study cooperative regulation of
TFs, we would require knowledge of all upstream regulators and target genes that drive
a specific phenotypic response. Since, all the master regulators of biofilm formation
have been identified in C. albicans and their role in regulating biofilm formation
in other Candida species have also been studied, the biofilm GRN is a informative,
well-described model to study GRN divergence and evolution. Additionally, in a recent
study, Mancera et al. (2021) published the data for in vivo binding of these master
regulators in three other Candida species. This helps us compare the divergence of
targets and network structure across species directly.
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Figure 2.1: Morphological diversity in Candida species.
Candida species are highly diverse in their morphology and their ability to form
biofilms. An artist rendition of the different morphological cell types involved in the
biofilms of different Candida species as well as the outgroup species S. cerevisiae
and S. pombe. The illustration of biofilms was made by Laurence Gao, an artist in
residence in the Nobile lab. The data used to estimate biofilm density in these species
was generated by Melanie Ikeh, a former postdoctoral scholar in the Nobile lab. Cell
densities in the biofilm communities of these species relative to C. albicans is also
depicted. The species phylogenetic tree was constructed by reconciling gene trees of
2356 orthogroups identified using OrthoFinder (Emms and Kelly; 2015, 2019). STAG
(Emms and Kelly; 2018) and STRIDE (Emms and Kelly; 2017) were used to reconcile
the gene trees in OrthoFinder. The branch lengths indicate average branch lengths
for each bipartition in the individual estimate of the species tree from gene trees of
orthologs.



25

2.3 Results

2.3.1 Gene loss and duplication of master regulators drive
differences in biofilm formation between CTG and
non-CTG Candida species

Genome assembly and annotation for the 15 species listed in Table 2.1 were obtained
as described in subsection 2.5.1. C. pelliculosa was removed from further analysis
due to its fragmented genome assembly. Orthologous gene relationships were inferred
for 14 species, comprising a total of 73499 genes, as described in subsection 2.5.2.
Most of these genes (94.3%) were assigned to 6661 orthogroups, among which 2350
orthogroups contained all species and 1579 of these were single-copy orthogroups,
with exactly one gene from each species. The presence of orthologs of the nine master
regulators across species is depicted in Figure 2.2. These TFs regulate different stages
of biofilm formation. Bcr1 regulates adhesion by regulating adhesins in vitro and
in vivo (Nobile et al.; 2006). Brg1 regulates hyphal formation (Cleary et al.; 2012)
in response to multiple cues including nutrient limitation and pH (Luo et al.; 2021).
EFG1 is a well studied gene in C. albicans (Glazier; 2022) and regulates morphological
transition (Do et al.; 2022), hyphal development (Leng et al.; 2001) and extracellular
matrix composition (Panariello et al.; 2017). Flo8 interacts with Efg1 in vivo to
regulate hyphal development and biofilm formation (Fox et al.; 2015). Gal4 and Rfx2
negatively regulate bioiflm formation in intermediary stages (Fox et al.; 2015). Gal4
performs different functions in C. albicans compared to S. cerevisiae due to a truncated
C-terminal activation domain in the CTG species (Choudhury and Whiteway; 2018).
Ndt80 regulates meiosis and sporulation in S. cerevisiae but has undergone extensive
rewiring in C. albicans and regulates biofilm formation (Nocedal et al.; 2017). Rob1
regulates filamentation (Glazier et al.; 2017) and the ROB1 gene in the C. albicans
reference strain SC5314 is known to contain a dominant allele that modulates biofilm
formation and virulence in in vivo infection models (Glazier et al.; 2023). Tec1
regulates filamentation and extracellular matrix composition (Panariello et al.; 2017).
There is a balance between biofilm regulation and commensalism in vivo and Efg1,
Brg1 and Rob1 also regulate commensalism (Witchley et al.; 2019). Most biofilm
regulators (BCR1, BRG1, EFG1, FLO8, NDT80 and TEC1 ) are conserved across
large evolutionary distances. ROB1 is present only in C. albicans, C. dubliniensis, and
C. tropicalis. GAL4 and RFX2 are absent in the non-CTG species. Gene duplication
events distinct from the WGD duplication were identified in this study and paralogs of
BCR1, BRG1, FLO8, NDT80, and TEC1 were present predominantly in the non-CTG
species. The paralogs of BCR1 and NDT80 can be explained by a single, duplication
event that is distinct from the WGD event. BCR1 duplication was inferred in the
ancestor of CUG-Leu1 clade species, NDT80 duplication was inferred in the ancestor
of CUG-Ser1 clade species. A single duplication event was also observed for TEC1 in
C. glabrata. The absence of TEC1 paralog in S. cerevisiae could be due to loss of this
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paralog post-WGD in S. cerevisiae or duplication of TEC1 and subsequent retention
of the paralog in C. glabrata. On the other hand, multiple duplication events were
inferred for BRG1 and FLO8 (Figure 2.3). These results suggest that gene loss and
duplication of multiple TFs in the non-CTG species could be driving factors leading
to differences in the biofilm-forming abilities between the CTG and non-CTG Candida
species.
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Figure 2.2: Loss of biofilm master regulators in the non-CTG Candida
species, S. cerevisiae and S. pombe.
Orthologs of the nine C. albicans master biofilm regulators were identified using
OrthoFinder (Emms and Kelly; 2015, 2019). If an ortholog of the TF is present in
a species, it is indicated with a solid blue square, and if a paralog of the TF is also
identified in a species, it is indicated with a purple dot within a square. Unfilled
squares indicate the absence of an ortholog or a paralog. The species tree was
constructed using STAG (Emms and Kelly; 2018) and STRIDE (Emms and Kelly;
2017) in OrthoFinder. The branch lengths indicate average branch lengths for each
bipartition in the estimated species tree from gene trees of orthologs.

2.3.2 Genes expressed in mature biofilms are less conserved
across large evolutionary distances

We then proceeded to examine if target genes are conserved across the 14 species. To
do this, we processed publicly available ChIP-Seq data, measuring in vivo binding
events of six biofilm regulators in C. albicans. We identified 820 putative target
genes for Bcr1, 888 for Brg1, 1107 for Efg1, 2073 for Ndt80, 315 for Rob1 and 1099
for Tec1 in C. albicans. The orthologous relationships of these target genes were
identified across the other 13 species. We then obtained gene expression information
from Nobile et al. (2012) and categorized the target genes based on their expression
under biofilm relative to planktonic growth conditions in C. albicans (Nobile et al.
(2012)). Differential gene expression in biofilm growth condition relative to planktonic
growth condition was determined by reconciling information from microarray and
RNA-Seq assays in Nobile et al. (2012). The proportion of conservation of target
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Figure 2.3: Gene duplication events in BRG1 and FLO8.
Gene duplication events were inferred using OrthoFinder (Emms and Kelly; 2015, 2019).
Blue circles in the phylogenetic tree indicate the nodes at which a BRG1 duplication
event occurred and yellow circles indicate nodes at which FLO8 duplications
occurred. Multiple BRG1 duplications are identified in the non-CTG Candida species.
Duplication events are identified in FLO8 in S. pombe and in the ancestor of the CTG
and non-CTG species. The branch lengths indicate average branch lengths for each
bipartition in the estimated species tree from gene trees of orthologs.

genes in the biofilm network is shown in Figure 2.4. This figure shows that C. albicans
genes expressed in planktonic conditions (labeled as “Downregulated”) are the most
conserved across large evolutionary distances and genes expressed in mature biofilms
(labeled as “Upregulated”) are less conserved, especially in the non-CTG Candida
species. Genes expressed in planktonic conditions are also significantly more conserved
compared to the genes that are not differentially expressed (labeled as “Non-DEG”)
between the two conditions. Conversely, genes expressed in biofilm condition are
significantly less conserved than genes that are not differentially expressed between
the two conditions.

In addition to the conservation of target genes categorized by their gene expression,
we also verified if target genes of some TFs are more conserved than others. We
separated the CTG and non-CTG species for this comparison because target genes,
especially those expressed in biofilm conditions are less conserved in the non-CTG
species. The comparison of target gene conservation for the six TFs is shown in
Figure 2.5. As expected, target genes are less conserved in the non-CTG species
compared to the CTG species. In the CTG species, 71%-78% of target genes are
conserved, and in the non-CTG species 44%-63% of the target genes are conserved.
Rob1 targets are the least conserved in the non-CTG species compared to target genes
of other TFs in the biofilm network. We also verified if the proportion of conserved



28

Figure 2.4: Genes expressed in biofilm condition are significantly less
conserved in Candida species, S. cerevisiae and S. pombe.
Conservation of target genes of the biofilm network based on their expression
in planktonic and biofilm conditions (Nobile et al.; 2012). Genes categorized as
“Downregulated” are those whose expression is at least 1.5 fold lower in biofilm
conditions compared to planktonic conditions. Genes categorized as “Upregulated”
are those that are at least 1.5 fold higher in biofilm conditions compared to planktonic
conditions and “Non-DEG” are target genes that are not differentially expressed
between the two conditions. The statistical significance of differences in gene
conservation between these three categories was measured using the Friedman test
(Friedman; 1937), a non-parametric test for dependent samples. The χ2

Friedman-value
is 19.88. The p-value was adjusted for multiple comparisons using the False Discovery
Rate (FDR) and is shown in the plot (Benjamini and Hochberg; 1995).

genes was dependent on the number of TFs regulating the gene and found that there
was no significant difference between target genes regulated by only one TF and target
genes regulated by all six TFs.

2.3.3 Regulatory role of Ndt80 is the most conserved
between C. albicans and its close relatives compared
to other master regulators

Given the high conservation of target genes in the CTG clade, we wanted to evaluate
if binding of the TFs at these genes are also conserved among closely related species.



29

Figure 2.5: Target genes regulated by Rob1 are less conserved in the non-
CTG species.
Comparison of target gene conservation for each TF between the CTG and non-CTG
species. S. pombe was removed from this analysis since it is the outgroup. Conservation
of targets are higher in the CTG species for all TFs compared to the non-CTG species.
Additionally, Rob1 targets are less conserved in the non-CTG species compared to
targets of other TFs.

To this end, we compared binding events of the biofilm regulators in C. albicans, C.
dubliniensis, C. tropicalis and C. parapsilosis. The number of target genes shared
across species is shown in Figure 2.6. Ndt80 and Efg1 share the most number of target
genes across species, with 270 and 165 target genes, respectively. Bcr1 ChIP-seq data
was available only for C. albicans, C. dubliniensis and C. tropicalis. Approximately
90% of Bcr1 targets are species-specific, indicating a possible rewiring of Bcr1 in these
three species. Similarly, 69% of Brg1 targets are species-specific. C. albicans and C.
dubliniensis share 170 target genes, similarly 146 target genes are shared by C. albicans
and C. parapsilosis, suggesting that both gains and losses of targets are likely for
Brg1. Although a large number of genes were identified as Tec1 targets in C. albicans
and C. parapsilosis, no target genes were common across all four species for this TF.
Note that Brg1 and Tec1 are not required for biofilm formation in C. parapsilosis
(Mancera et al. (2021)). More than 50% of Efg1 targets are species-specific. 345 gene
targets are common between C. parapsilosis and C. tropicalis, and the regulation of
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these genes by Efg1 was lost in C. albicans and C. dubliniensis. Conversely, only
107 targets are common between C. albicans and C. dubliniensis, indicating that a
substantial number of ancestral binding events of Efg1 were lost in C. albicans. More
than 50% of Ndt80 targets are shared between at least two species. Ndt80 also shares
the most number of targets between the four species.

We also were interested to know if binding strength is correlated for these TFs
between species. In the genes commonly regulated across species, we computed the
correlation of cumulative binding strength in the upstream intergenic regions of these
genes. The Bayesian Pearson correlation is shown in Figure 2.7. Bayesian Pearson
(Ly et al.; 2016) gives the relative likelihood of the observed data under the alternate
hypothesis compared to the null hypothesis. In this comparison, the null hypothesis
states that the cumulative binding strengths for each TF in the intergenic region
of the target genes are not correlated between species. The summarized Bayesian
Pearson correlation indicates that Efg1 and Ndt80 binding strength is correlated
across species. Cumulative binding strength for Brg1 and Rob1 are most correlated
between C. albicans and C. dubliniensis and binding strength is divergent in the
other two Candida species for Brg1. There were no common genes regulated by Rob1
between C. dubliniensis and C. tropicalis.

2.3.4 Binding preferences of biofilm regulators are conserved
across diploid CTG species

Given the variation of TF binding and binding strength even in closely related species,
we asked whether this variation could be due to changes in binding preference of
the TFs. We identified binding motifs for the TFs in C. albicans, C. dubliniensis,
C. tropicalis and C. parapsilosis. Representative motifs were selected for each TF,
prioritizing centrality of the motif in relation to the peak summit identified by MACS2,
representation of the motif in binding peaks and information content (IC). Similarity
between motifs was estimated using average log-likelihood ratio (ALLR) to combine
similar motifs for a TF within species and to compare motifs for the TF between
species. The primary motifs for each TF, along with the total IC and percentage
of peaks containing the motif is given in Figure 2.8. Bcr1 motifs identified in C.
albicans, C. dubliniensis and C. tropicalis share similarity to each other. The ALLR
values were computed between C. albicans motifs and the other species as described
in Section 2.5.6. The ALLR of Bcr1 primary motifs between C. albicans and C.
dubliniensis is 0.996, indicating that the motifs are very similar. The Bcr1 motif in
C. tropicalis indicates a different nucleotide preference in position four compared to
the C. albicans motif. Bcr1’s binding preference is less conserved between C. albicans
and C. tropicalis (ALLR = 0.486). The primary Bcr1 motif was also identified in
sequences retrieved from Brg1. This motif is present in 33.8% of Brg1 sequences in C.
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Figure 2.6: Conservation of TF-target relationship in four diploid CTG
Candida species. Comparison of target genes across species that each TF binds
upstream of and regulates. ChIP-Seq data from Mancera et al. (2021) was reanalysed
using a custom workflow to obtain binding loci of TFs. This custom ChIP-Seq workflow
is described in detail in chapter 4 and was developed to improve sensitivity in identifying
binding sites for TFs, especially for single-end and short-reads (approximately, 50
bps). ROB1 is absent in C. parapsilosis and Mancera et al. (2021) were unable to tag
Bcr1 in C. parapsilosis. Efg1 and Ndt80 share the most target genes across species.
Tec1 regulates a large number of species-specific targets. Rob1 and Bcr1 regulate
more target genes in C. albicans than in the other species.

albicans, 23.2% of sequences in C. dubliniensis, 57.6% of sequences in C. tropicalis,
and 10.4% of sequences in C. parapsilosis. The most prevalent Brg1 motif is listed as
the representative motif. This representative motif shares high similarity between C.
albicans, C. dubliniensis, and C. parapsilosis, but is absent in C. tropicalis. Instead,
the representative Brg1 motif in C. tropicalis is identified in 3.7% of C. albicans Brg1
peaks (ALLR=0.852). Highly similar alternate motifs for Brg1 are listed in Figure 2.9.
This Brg1 alternate motif is the sequence recognized by Ndt80. The Bcr1 and Brg1
motifs identified in this study are different from those identified by Nobile et al. (2012)
and Mancera et al. (2015) (Nobile et al. (2012); Mancera et al. (2021)). Mancera et al.
(2021) did not identify a motif for Bcr1 and the Brg1 motif they reported was similar
to the Efg1 motif, likely due to shared target genes between Brg1 and Efg1. Both
the primary and alternate Efg1 motifs are conserved across the four species. The
primary Efg1 motif has higher entropy (i.e. decreased IC) in most positions in C.
dubliniensis and C. tropicalis relative to C. albicans and C. parapsilosis. The alternate
Efg1 motif, on the other hand, is more conserved (min(pairwise ALLR) = 0.949
and (max(pairwise ALLR) = 1.16) across the four species than the primary Efg1
motif (min(pairwise ALLR) = 0.092 and max(pairwise ALLR) = 0.717). Highly
conserved primary (min(pairwise ALLR) = 0.953 and max(pairwise ALLR) = 1.124)
and alternate motifs (min(pairwise ALLR) = 1.03 and max(pairwise ALLR) = 1.077)
were also identified for Ndt80. The primary Rob1 motif in C. albicans and C.tropicalis
is similar (ALLR=0.905), but the C. dubliniensis motif is distinct. The alternate
motifs for Rob1 are species-specific, and are not similar to the primary or secondary
motifs in other species. Notably, Tec1 motifs are the most dissimilar between species.
The primary Tec1 motifs of C. dubliniensis and C. tropicalis are similar to the C.
albicans alternate Tec1 motif, with ALLR of 0.57 and 0.333, respectively. Tec1 motifs
in C. parapsilosis are unique to this species. Additionally, 46.6% of Tec1 binding
loci in C. parapsilosis contain the Brg1 primary motif and 18.6% contain the Ndt80
primary motif.
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Figure 2.7: Cumulative binding strength of Rob1 and Tec1 are least
correlated in the diploid CTG species.
Correlation of cumulative binding between species. Cumulative binding is the sum
of binding strengths in the cis-regulatory regions of target genes. The correlation
between binding strengths is shown as the Bayesian Pearson correlation coefficient.
Efg1 and Ndt80 cumulative binding strengths are correlated in diploid CTG species,
whereas Rob1 and Tec1 cumulative binding strengths are least correlated.
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Figure 2.8: Primary motifs of five master regulators are conserved across
diploid CTG species.
Primary motifs representing binding preference of TFs were identified for the master
regulators in C. albicans, C. dubliniensis, C. tropicalis and C. parapsilosis using
STREME (Bailey; 2021). The primary motifs of Bcr1, Brg1, Efg1 and Ndt80 are
similar across diploid CTG species. Rob1 primary motif in C. dubliniensis is different
from C. albicans and C. tropicalis. Tec1 primary binding motifs are distinct across
the diploid CTG species. The prevalence of these primary motifs of TFs in their
corresponding binding sites are shown along with total IC of the motif.
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Figure 2.9: Alternate motifs of Brg1, Efg1 and Ndt80 are conserved across
diploid CTG species.
Alternate motifs of TFs were identified for the master regulators in C. albicans, C.
dubliniensis, C. tropicalis and C. parapsilosis using STREME (Bailey; 2021). These
are second most prevalent motifs, following the primary motifs, in binding loci of the
TFs. The alternate motifs of Brg1, Efg1 and Ndt80 are similar across diploid CTG
species. The prevalence of these alternate motifs of TFs in their corresponding binding
sites are shown along with total IC of the motif.
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(a) C. albicans (b) C. dubliniensis

(c) C. tropicalis (d) C. parapsilosis

Figure 2.10: Biofilm network structure has diverged between C. albicans, C.
dubliniensis, C. tropicalis and C. parapsilosis.
Number of target genes regulated by TF sets. The x-axis shows the set categories of
target genes regulated by one or more TFs. The y-axis shows the number of target
genes that belong to each category. Most of the target genes in the biofilm regulatory
network in C. albicans and C. dubliniensis are regulated independently by Ndt80. In
C. dubliniensis this is followed by the target genes regulated by three TFs, Ndt80, Efg1
and Brg1. Most of the target genes in the biofilm regulatory network in C. tropicalis
are regulated by Ndt80 and Efg1 together, followed by Ndt80 and Efg1 independently.
Most of the target genes in the biofilm regulatory network in C. parapsilosis are
regulated by all four TFs, Brg1, Efg1, Ndt80 and Tec1.
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2.3.5 Biofilm network structure has diverged across diploid
CTG Candida species

In addition to the targets in the biofilm network, the network structure is also different
in the four species (Figure 2.10). The number of TFs regulating each target gene
is shown for C. albicans in Figure 2.10a, for C. dubliniensis in Figure 2.10b, for C.
tropicalis in Figure 2.10c and for C. parapsilosis in Figure 2.10d. The biofilm network
consists of 2633 genes in C. albicans, 1602 genes in C. dubliniensis, 2422 genes in C.
tropicalis and 2964 genes in C. parapsilosis. Both the size and the structure of the
biofilm regulatory network has diverged between these species. In all four species, in
addition to regulating genes concertedly with other TFs, Ndt80 also regulates a large
number of genes independently. Additionally, Efg1 and Ndt80 share the most targets
among pairs of TFs in all the four species, showing that the interactions between
Ndt80 and Efg1 are maintained across species. In C. albicans, following the genes
uniquely regulated by Ndt80, the second frequent category of target genes is those
regulated by five TFs, Bcr1, Brg1, Efg1, Ndt80 and Tec1. This shows that the biofilm
network is highly connected in C. albicans. Rob1 does not independently regulate
any genes in C. albicans or C. dubliniensis, suggesting that Rob1 is the last biofilm
regulator to be integrated into this network. In C. dubliniensis, Ndt80, Efg1 and
Brg1 regulate approximately 450 target genes. When comparing this category in
C. tropicalis and C. parapsilosis, it is possible that C. tropicalis and C. parapsilosis
lost regulatory interactions shared by these three TFs. Another, more parsimonious
explanation is the increase in targets regulated by these three TFs in C. dubliniensis
and C. albicans. In C. tropicalis, most of the target genes are regulated by Ndt80
and Efg1 together or independently, followed by Bcr1. This shows that these three
regulators are more closely integrated in the C. tropicalis biofilm network compared
to Brg1, Rob1 and Tec1. In C. parapsilosis, most of the genes in the network are
regulated by all four TFs Brg1, Efg1, Ndt80 and Tec1. This is a unique aspect of
the C. parapsilosis biofilm network, given that it is also the network with the most
number of target genes. Another unique aspect of the C. parapsilosis biofilm network
is the number of target genes regulated independently by Tec1. Since, Tec1 is not
required for biofilm formation in this species, it is likely that these targets are involved
in processes other than biofilm development.

We next wanted to quantify the difference in network structure between the four
diploid CTG Candida species. We used the Jensen-Shannon Divergence (JSD) to
measure differences in number of TFs regulating the same target gene (i.e. in-degree
of the target gene in the biofilm network). The JSD between C. albicans and C.
dubliniensis is 0.082 bits and the biofilm network structure is significantly different
in these two species. Similarly, the JSD between the C. albicans and C. tropicalis
biofilm networks is 0.121 bits and is significantly different in these two species. To
compare in-degree distributions between different networks using JSD we need the
same number of regulators. C. parapsilosis was not included in this comparison since
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we identified targets of only four regulators. Hence, we visualized the distributions
of node in-degree across species (Figure 2.11), and we can see that C. albicans has
more targets regulated by five or more TFs. A large number of target genes in C.
parapsilosis are regulated by four TFs. This shows that the biofilm network is more
interconnected in C. albicans and C. parapsilosis.

Figure 2.11: Biofilm network structure varies in diploid CTG species.
Distribution of node in-degree in biofilm network across species. The x-axis denotes
the node number of TFs regulating the target and the y-axis is probability density of
target genes regulated by the corresponding number of TFs on the x-axis. C. albicans
has more targets regulated by five or more TFs.

2.3.6 C. albicans target genes are enriched for host-fungal
interactions

Since the TFs regulate different genes in the four diploid CTG Candida species, we
wanted to determine whether the TFs regulate different functions in these species
and whether they have any species-specific roles. We performed a gene-set functional
enrichment analysis as described in subsection 2.5.4, using the TF targets in each
species as the gene lists and all genes in the genome as the background. The functional
enrichment results of selected GO terms for Bcr1 is shown in Figure 2.12, Brg1 in
Figure 2.13, Efg1 in Figure 2.14, Ndt80 in Figure 2.15, and Tec1 in Figure 2.16. Rob1
is not included since biological processes (BP) functional categories were not enriched
in C. dubliniensis and C. tropicalis. All of the TFs have acquired targets with new
roles in C. albicans, regulating additional functions compared to C. dubliniensis,
C. tropicalis and C. parapsilosis. Bcr1 regulates filamentation in C. albicans and
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C. dubliniensis, and additionally regulates cell adhesion, interspecies interaction,
entry into host and adhesion of symbiont to host, exclusively in C. albicans. Brg1
regulates hyphal cell wall formation and biofilm formation on inanimate substrate
across multiple species. Brg1 also regulates some functions exclusively in C. albicans,
including adhesion of symbiont to host, development of symbiont in host and entry
into host. Efg1 regulates interspecies interaction in all four diploid CTG Candida
species. In C. tropicalis, Efg1 regulates pseudohyphal growth, as well as response to
stresses, such as heat and glucose starvation. Similar to other TFs, Efg1 regulates
cell-cell adhesion, adhesion of symbiont to host, development of symbiont in host,
entry into host and induction by symbiont of host defense response, exclusively in
C. albicans. Ndt80, similar to Efg1 regulates essential functions in C. tropicalis such
as signal transduction, regulation of mitotic cell cycle and response to heat. In C.
albicans, Ndt80 also regulates adhesion of symbiont to host and entry into host. Tec1
regulates essential functions in C. parapsilosis. These functions include protein folding,
regulating chaperone functions and response to glucose starvation. In C. albicans,
Tec1 along with other TFs regulates adhesion to host and entry into host. Although
hyphal formation and biofilm formation is enriched in multiple species, fungal-host
relationship is regulated uniquely in C.albicans. The integration of these functions into
the biofilm network, especially by multiple TFs, likely contribute to robust biofilm
formation in C. albicans.

2.4 Discussion

In this study, we assessed the conservation of biofilm regulators and target genes
across species. To do so, we carefully verified the orthologous relationships inferred for
the TFs. OrthoFinder was not able to identify an ortholog of EFG1 in C.tropicalis,
but this is due to an assembly gap in the C. tropicalis genome (Mancera et al. (2015)).
Similarly, OrthoFinder was unable to find the ortholog of FLO8 in S. cerevisiae. This
is possibly due to a missense mutation in the S. cerevisae reference strain S288C
(Liu et al. (1996)). Hence, the choice of reference and high quality assembly are
important for the interpretation of the results. Another example is GAL4, where
GAL4 is present in S. cerevisiae, and shares a homologous DNA-binding domain
with the C. albicans GAL4 (Askew et al. (2009)). However, S. cerevisiae GAL4
belongs to a different orthogroup and homologs of this gene are present in most of
the CTG Candida species. Even though the S. cerevisiae GAL4 and C. albicans
GAL4 have similar binding domains and likely shared a common ancestor, the are
not clustered in the same orthogroup, likely due to the divergence in their activation
domain (Martchenko et al. (2007)).
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Figure 2.12: Bcr1 regulates entry into host and interspecies interaction in C.
albicans.
A subset of GO terms enriched in target genes of Bcr1 in C. albicans, C. dubliniensis
and C. tropicalis. The y-axis shows the biological processes enriched in at least one of
the above species. The color in the heatmap shows the enrichment score which is the
proportion of genes annotated with the corresponding GO term in the target gene
list over proportion of genes annotated with the GO term in the background gene set.
Bcr1 regulates interspecies interaction, entry into host and adhesion of symbiont to
host, exclusively in C. albicans.
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Figure 2.13: Brg1 regulates host-pathogen functions in C. albicans.
A subset of BP GO terms enriched in target genes of Brg1 in C. albicans, C.
dubliniensis,C. parapsilosis and C. tropicalis. The y-axis shows the biological processes
enriched in at least one of the above species. The color in the heatmap shows the
enrichment score which is the proportion of genes annotated with the corresponding
GO term in the target gene list over proportion of genes annotated with the GO
term in the background gene set. Brg1 regulates biofilm formation and interspecies
interaction in multiple species. Whereas, Brg1 regulates adhesion of symbiont to host,
development of symbiont in host and entry into host exclusively in C. albicans.
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Figure 2.14: Efg1 regulates interspecies interaction in all four diploid CTG
Candida species.
A subset of BP GO terms enriched in target genes of Efg1 in C. albicans, C. dubliniensis,
C. parapsilosis and C. tropicalis. The y-axis shows the biological processes enriched
in at least one of the above species. The color in the heatmap shows the enrichment
score which is the proportion of genes annotated with the corresponding GO term
in the target gene list over proportion of genes annotated with the GO term in the
background gene set. Efg1 regulates interspecies interaction in all four diploid CTG
Candida species. Efg1 regulates cell-cell adhesion, adhesion of symbiont to host,
development of symbiont in host, entry into host and induction by symbiont of host
defense response, exclusively in C. albicans.
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Figure 2.15: Ndt80 regulates host-pathogen functions in C. albicans.
A subset of BP GO terms enriched in target genes of Ndt80 in C. albicans, C.
dubliniensis and C. tropicalis and C. parapsilosis. The y-axis shows the biological
processes enriched in at least one of the above species. The color in the heatmap
shows the enrichment score which is the proportion of genes annotated with the
corresponding GO term in the target gene list over proportion of genes annotated
with the GO term in the background gene set. Ndt80 regulates essential functions in
C. tropicalis. In C. albicans, Ndt80 regulates adhesion of symbiont to host and entry
into host.
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Figure 2.16: Tec1 regulates regulates adhesion to host and entry into host in
C. albicans.
A subset of BP GO terms enriched in target genes of Tec1 in C. albicans and C.
parapsilosis. No BPs were enriched in C. tropicalis. The y-axis shows the biological
processes enriched in at least one of the above species. The color in the heatmap
shows the enrichment score which is the proportion of genes annotated with the
corresponding GO term in the target gene list over proportion of genes annotated
with the GO term in the background gene set. Tec1 regulates essential functions in C.
parapsilosis. In C. albicans, Tec1 along with other TFs regulates adhesion to host and
entry into host.

We found that CTG and non-CTG species have diverged considerably in their
TFs and target genes and even well conserved TFs largely regulate “younger” genes
(genes unique to the CTG species). Divergence in TF roles in non-CTG species is
likely driven by multiple TF duplication events in this clade. But variation in CTG
species are driven predominantly by cis-acting variations. This is supported by the
conservation of both TFs, target genes and binding preferences of TFs. Binding
motifs for Ndt80 are conserved across large evolutionary distances, where this TF
has the same motif preference in S. cerevisiae (Nocedal et al. (2017)). Tec1 binding
preference is distinct in C. parapsilosis. Interestingly, C. parapsilosis does not require
Brg1 and Tec1 for biofilm formation. In C. parapsilosis, Bcr1 motifs were found in
Brg1 binding sites and Ndt80 and Bcr1 motifs were observed in Tec1 binding sites.
Hence, it is likely that targets of Tec1 and Brg1 are regulated by other TFs in C.
parapsilosis. Also of note is that even when the binding preference of a TF is similar
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across species, the mutational robustness of the motif likely varies. For instance,
Figure 2.17 shows the mutational robustness of the Efg1 motif in C. albicans, C.
dubliniensis, C. tropicalis and C. parapsilosis. The construction of the landscape is
detailed in subsection 2.5.3. The width of the global peak (highlighted in yellow) is
indicative of mutational tolerance for the motif (Aguilar-Rodŕıguez et al. (2017); Payne
and Wagner (2014)). The Efg1 motif peak is broader in C. parapsilosis compared
to the C. albicans, indicating that mutations in C. albicans are more likely to result
in a loss of function, than in C. parapsilosis. The mutational landscape should be
further validated by comparing binding strengths in cis-regulatory regions in addition
to motif strength.
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(c) C. dubliniensis
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(d) C. albicans

Figure 2.17: Mutational landscape of Efg1 motif.
The landscape of motif scores. The x-axis and y-axis indicate all possible k-mers,
where k is the motif length and the z-axis denotes the motif score calculated from
the PPM of the motif. The breadth of the global peak corresponds to mutational
robustness. Mutations in C. albicans are more likely to result in a loss of function,
than in C. parapsilosis.
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The biofilm network structure has significantly changed between C. albicans and
its close relatives. Even though Tec1 and Brg1 are not required for biofilm formation in
C. parapsilosis, these regulators are well integrated with the other biofilm regulators in
this species. This suggests that Brg1 and Tec1 likely function as redundant regulators
in the biofilm network as opposed to cooperatively regulating target genes along with
Ndt80 and Efg1. This redundancy could have resulted in divergence of target genes
regulated by these TFs, making them essential for biofilm formation in C. tropicalis,
C. dubliniensis and C. albicans.

We also found that the biofilm regulatory network in C. albicans has acquired
new functions, specifically pertaining to symbiont interaction with host. One BP
category that was enriched in targets of all TFs in C. albicans is adhesion of symbiont
to host. The enrichment of this functional category is driven by GPI-anchored cell
wall adhesins, such as Eap1. The gene family encoding GPI-anchor proteins has
expanded in C. albicans relative to non-CTG Candida species (Nather and Munro
(2008)). Additionally, adhesins have been shown to rescue the ability to form biofilms
in the absence of upstream regulators, emphasizing the integral role of adhesion in
biofilm development (Nobile et al. (2006)). Another noteworthy enriched category is
development of symbiont in host. This category is annotated for genes whose roles
involve progression of an organism from initial condition, either through filamentation
or secretion of proteases. The enrichment of this functional category is driven by
transcription factors involved in filamentation as well as regulators of mating and
pheromone-simulated biofilm formation (such as Cph1) (Lin et al. (2013)).

In summary, we found that duplication of TFs and gene loss are not responsible
for differences in biofilm formation in the CTG species. Binding preferences of TFs
are also largely conserved, but the network structure varies considerably with the C.
albicans biofilm network being highly interconnected compared to its close relatives.
This rewiring has also resulted in the recruitment of new functions to the network
that enable C. albicans to tolerate and leverage changes in the host environment. One
caveat to note is that not all interspecific binding events predicted using ChIP-Seq data
have functional consequences. Other factors such as co-binding of other regulators,
chromatin accessibility and local genomic context also play roles in determining
functional consequence of binding (Jiang and Mortazavi; 2018). A recent study
comparing S. cerevisiae and C. albicans regulators involved in iron-uptake shows that
nonfunctional binding is pervasive and specifically advantageous in adaptation to
new environmental conditions (Hsu et al.; 2021). Hence, divergence in non-functional
binding are also indicative of network rewiring.
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2.5 Methods

2.5.1 Data acquisition

The most complete genome assembly and annotation (in FASTA format) was retrieved
(between January 26th - February 1st 2023) for the yeast species in this study from
GenBank, RefSeq and the National Center for Biotechnology Information (NCBI).
The assembly accession numbers along with assembly completeness, genome size, and
number of annotated protein-coding genes are listed in Table 2.1. The genome assembly
of C. pelliculosa was fragmented into 46 scaffolds, so this species was removed from
further analyses. The gene expression data, identifying genes differentially expressed
in biofilm relative to planktonic growth conditions, as well as ChIP-ChIP binding of
biofilm regulators in C. albicans was retrieved from Nobile et al. (2012). Binding of
biofilm regulators in C. albicans, C. dubliniensis, C. tropicalis and C. parapsilosis
identified using ChIP-Seq experiments were retrieved from Mancera et al. (2021).

2.5.2 Identifying orthologous genes and regions

Orthologs and paralogs of C. albicans genes were identified across species using
OrthoFinder (version 2.5.4) (Emms and Kelly (2015, 2019)). OrthoFinder identifies
orthogroups by computing similarity scores between proteins using an all-vs-all BLAST
search. The similarity scores are normalized for gene lengths and phylogenetic distance.
These normalized scores are then used to construct an orthogroup graph, where
the nodes are genes and edge weights are given by the normalized scores. These
normalized scores are then used to identify orthogroups using Markov Clustering
(MCL) (Van Dongen (2008)). OrthoFinder was run with parameters -S diamond to
identify sequence similarity using DIAMOND (Buchfink et al. (2015)) and -M msa to
perform multiple sequence alignment (MSA) of orthogroups with MAFFT (Katoh
and Standley (2013)) and infer gene trees from MSA using FastTree (Price et al.
(2010)). OrthoFinder uses a set of gene trees that include genes from all species,
including multi-copy gene families to infer the unrooted species tree using the Species
Tree from All Genes (STAG) algorithm (Emms and Kelly (2018)). OrthoFinder then
uses the Species Tree Root Inference from Duplication Events (STRIDE) algorithm
to identify gene duplication events in unrooted orthogroup trees and uses these
events to infer the species root (Emms and Kelly (2017)). The rooted species tree
is then used to root the gene trees and infer orthologs and gene duplication events
using duplication-loss-coalescence (DLC) analysis. DLC is used to infer the most
parsimonious history of a gene family, accounting for gene duplication, gene loss and
incomplete lineage sorting (Wu et al. (2014)).
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2.5.3 ChIP-Seq data analysis

Publicly available ChIP-Seq data was retrieved from Mancera et al. (2021) to identify
binding targets of the six master biofilm regulators, Bcr1, Brg1, Efg1, Ndt80, Rob1 and
Tec1 in C. albicans, C. dubliniensis and C. tropicalis. ChIP-Seq data for four biofilm
regulators (excluding Rob1 and Bcr1) was available for C. parapsilosis. The analysis
of single-end ChIP-Seq data is described in detail in chapter 4. Briefly, sequences
were aligned to the reference genomes of the respective Candida species using Bowtie2
(version 2.2.5) (Langmead and Salzberg (2012)). Peaks were called using MACS2
(version 2.2.7.1) (Zhang et al. (2008)). A custom python script was used to annotate
the peaks and retrieve sequences to identify binding motifs using STREME from the
MEME-suite (version 5.5.2) (Bailey (2021)) and the memes package (version 1.2.5)
in R (Nystrom and McKay (2021)). Similarity between motifs was estimated using
the average log-likelihood ratio (ALLR) (Wang and Stormo (2003)). A mutational
landscape was also visualized using a custom python (version 3.10) script. All possible
k-mers were obtained, where k is the length of the motif. If k > 10, then ends of
the motifs were trimmed, to obtain a minimum bit score of one at the start and end
positions of the motif. Motif trimming was performed using the universalmotif package
(version 1.12.4) in R. The position probability matrix (PPM) was retrieved for the
motif, which indicates the probability of observing a nucleotide n at position i. The
motif score was then calculated as shown below:

Motif Score =
k∑
i

log2
Pn

Bn

where, Pn is the probability of nucleotide n at position i of the k-mer and Bn is
the background frequency of nucleotide n. The mutational landscape was visualized
for the motif using the matplotlib package (version 3.6.2) in python, where all k-mers
were ordered by their Hamming distances to each other and arranged in a grid, with
the z-axis denoting the motif score.

2.5.4 Functional enrichment

Functions regulated by each TF in the four diploid CTG Candida species mentioned
above, were inferred as follows. We obtained Gene Ontology (GO) annotations for
the C. albicans protein-coding genes from the Candida Genome Database (CGD)
(Skrzypek et al. (2016)). We then assigned GO annotation to C. dubliniensis, C.
tropicalis and C. parapsilosis genes based on their orthologous relationships to C.
albicans using OrthoFinder (Emms and Kelly (2015, 2019)). Orthologous gene(s) in
C. albicans were identified for approximately 98% of genes in C. dubliniensis, 90%
of genes in C. tropicalis and 93% of genes in C. parapsilosis. After obtaining the
target genes for each TF, we performed gene list enrichment to identify enriched
biological processes (BP), cellular components (CC), and molecular functions (MF).
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Gene list enrichment analysis was performed using a hypergeometric test with the
clusterProfiler package (version 4.2.2) in R (version 4.1.2) (Wu et al. (2021)). The GO
categories annotated in target genes were compared against all annotated functions
in C. albicans and the p-value denoting significance of enrichment was corrected for
multiple testing using FDR (Benjamini and Hochberg; 1995).

2.5.5 Data visualization

Statistical tests, violin plots, and correlation matrix visualizations were performed
using the ggstatsplot package (version 0.11.1) in R (Patil (2021)). Venn diagrams were
created using the ggvenn package (version 0.1.10) in R. The functional enrichment
heatmaps were created using ggplot2 package (version 3.4.2) in R. Phylogenetic trees
were visualized using the Interactive Tree of Life (iTol) (Letunic and Bork (2021)). R
version 4.1.2 was used for all R packages.

2.5.6 Statistics and statistical tests

Friedman test

The Friedman test (Friedman; 1937) is a non-parametric test for comparing differences
between groups for dependent samples. The test assumes that the dependent variable
is ordinal or continuous. The dependent variable need not be normally distributed.
The test statistic is given as:

χ2(Q) =
12

nk(k + 1)

k∑
j=1

R2
j − 3n(k + 1)

where, n is the number of samples, k is the number of groups, Rj is the sum of
ranks for the group j.

Jensen-Shannon Divergence (JSD)

JSD measures the difference between two probability distributions (Nielsen (2019)).
This metric was used to calculate the difference in degree distributions between
networks. The in-degree of nodes in the network, i.e. the number of TFs regulating
each gene was retrieved and the probability mass function (PMF) of the in-degree
distribution was computed. The JSD of in-degree distribution of two networks are
given as:

JSD(P ||Q) = 0.5(KL(P ||R) +KL(Q||R))

where, P and Q are the PMF of node in-degrees of network p and network q,
respectively. R = 0.5(P + Q) i.e. the midpoints of probability vectors P and Q
and KL(P ||R) is the Kullback-Liebler Divergence (KLD) of P and R, computed as
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KL(P ||R) = 0.5
∑

x∈X P (x) log2(
P (x)
R(x)

) (Kullback and Leibler (1951)). JSD is bounded

by 1, i.e. 0 ≤ JSD(P ||Q) ≤ 1, where 0 indicates that P and Q are identical, whereas
1 indicates maximum divergence and shows that P and Q are completely dissimilar.

The confidence interval and p-value of the observed JSD was estimated using a
permutation test by randomly sampling the in-degree of nodes for the two networks
and calculating the JSD for the permuted networks. This sampling was repeated 1000
times and p-value was computed as the proportion of permuted networks having a
JSD greater than the observed JSD.

Information Content (IC)

IC was calculated using the memes package (version 1.2.5) in R (Nystrom and McKay
(2021)). IC shows the relative entropy at each position and is given using the formula
below:

IC(i) =
∑

n∈A,C,G,T

P (i)× log2(
P (i)

Bi

)

where, P (i) is the probability of the nucleotide in position i and B(i) is the
background frequency of the nucleotide.

Average Log-likelihood Ratio (ALLR)

Representative motifs were selected for each TF in each species by comparing all motif
hits using ALLR, to consolidate similar motif hits (Wang and Stormo (2003)). To
compare two motifs, all possible alignments of the motifs were retrieved and the ALLR
score was computed for all alignments and the best score was reported as the motif
similarity metric. The ALLR score was calculated between a pair of columns in an
aligned motif as given below:

ALLR =

∑
n∈A,C,G,T cnj ln

fni

Pn
+
∑

n∈A,C,G,T cni ln
fnj

Pn∑
n∈A,C,G,T cni + cnj

where, i and j are columns in the two alignment matrices. cni and cnj are count
vectors for nucleotide n and fni and fnj are frequency vectors estimated from the
observed counts plus some pseudocounts to reduce small sample biases. Pn denotes
the background frequency of nucleotide n. Essentially,

∑
n∈A,C,G,T cnj ln

fni

Pn
is the

likelihood of the observed column j being generated by the distribution estimated
from column i. Thus, ALLR measures the joint probability of observing the data
generated by one distribution, given the likelihood ratio of the other distribution over
background nucleotide frequencies (Wang and Stormo (2003)). Higher positive values
of ALLR indicate high similarity and negative values indicate low similarity.
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Chapter 3

Population genomic variants in C.
albicans biofilm components

3.1 Abstract

Candida albicans is rich in genetic diversity driven by single nucleotide polymorphisms,
small insertions and deletions and large structural variations. These different types of
variants have different effects on the binding sites of biofilm regulators. To examine
these effects, we identified variants in 190 C. albicans strains, spanning more than
14 clades and estimated their effects on the regulators and target genes in the
biofilm regulatory network and their cis-regulatory regions. We also estimated the
evolutionary forces acting on the components of the biofilm network. We found that
transcription factor binding site losses are more prevalent than gains and that these
are driven predominantly by single nucleotide polymorphisms and small indels. These
binding site losses are not compensated by gains in other parts of the cis-regulatory
regions. We also found that motifs of some biofilm regulators are gained more readily
than others due to their mutational proximity to other, low-affinity binding sites.
Transcription factors in general have higher rates of nonsynonymous polymorphisms
compared to other genes in the C. albicans genome. These variants are found
predominantly in intrinsically disordered regions, which are segments of DNA-binding
proteins that play critical roles in localizing transcription factors to promoters. In
addition to biofilm regulators, target genes upregulated in biofilm conditions are also
variant-rich compared to genes upregulated in planktonic conditions. This suggests
that intraspecific diversity in biofilm regulatory networks is driven by gene expression
changes due to binding site losses and variants in highly expressed genes, which likely
affects mRNA levels of these genes.
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3.2 Introduction

Biofilm formation is highly varied not only between Candida species (Hawser and
Douglas; 1994; Kuhn et al.; 2002; Villar-Vidal et al.; 2011; Pujol et al.; 2015), but
also among strains (Li et al.; 2003; Jain et al.; 2007; Soll and Daniels; 2016; Huang
et al.; 2019). Importantly, Huang et al. (2019) observed that the downstream effects of
deleting biofilm regulators in C. albicans are dependent on their genetic backgrounds
(Huang et al. (2019)). In addition to observed phenotypic differences of clinical and
environmental strains of C. albicans (?), population structure (Ropars et al.; 2018)
and genomic diversity driven by single nucleotide polymorphisms (SNPs) (Hirakawa
et al.; 2015) and copy number variations (CNVs) (Bensasson et al.; 2019) have also
been reported. Hirakawa et al. (2015) showed that genome-wide heterozygosity is
correlated with increased fitness and hypothesized that adaptive genomic changes
in clinical isolates are enriched for genes involved in the host response (Hirakawa
et al. (2015)). Ropars et al. (2018) showed that a subspecies of C. albicans, Candida
africana, has undergone extensive pseudogenization in genes involved in virulence and
morphogenesis, possibly contributing to its restriction to a specific host environmental
niche (Ropars et al. (2018)). A recent study that identified the genetic diversity of
C. albicans strains within the same host observed high genetic diversity compared to
in vitro strains, suggesting that the host environment likely poses unique adaptive
pressures on C. albicans (Sitterlé et al. (2019)). Together, these studies suggest that
genetic diversity is prevalent in isolates of C. albicans which likely affects biofilm
regulatory network components, and their abilities to form biofilms, consequently
leading to changes in virulence properties in host settings. In this chapter, we
examine the source of genetic variants affecting biofilm network components and make
predictions on the effects of these variants on biofilms.

3.2.1 Genetic diversity in C. albicans

C. albicans has a cryptic genomic life cycle, where it can exist as haploid, diploid or
tetraploid at various stages. Some studies that focused on individual genes in the C.
albicans genome observed that inheritance is largely clonal (Lott et al. (1999); Legrand
et al. (2019)). Under some environmental conditions, however, diploid cells of different
mating types can mate to form tetraploid zygotes, which undergo concerted genome
loss to reach the diploid state (McManus and Coleman; 2014). This parasexual cycle
generates high genetic diversity through recombination in the progeny of an otherwise
clonal population (Berman and Hadany; 2012).This parasexual cycle is hypothesized
to be an adaptive stress response, triggered to generate diverse phenotypes to cope
with the stress, hence regulating evolvability (Berman and Hadany; 2012; Radman
et al.; 1999). This process also enables C. albicans to tolerate large scale chromosomal
changes including translocations, copy number variations (CNVs), and maintenance
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and loss of heterozygosity (Selmecki et al.; 2010; Todd et al.; 2019). Indels are also
very common in heterozygous regions in C. albicans strains (Wang et al.; 2018),
predominantly in intergenic regions (Jones et al.; 2004; Ene et al.; 2018). Large
structural variants (SVs) are inherently generated during the C. albicans life cycle,
hence, studying the effects of these variants on components of the biofilm regulatory
networks will provide a broader perspective on the source of biofilm network variation.
Additionally, the higher mutation frequencies observed in intergenic regions suggest
increased variation in the transcription factor binding sites (TFBS). To study the
extent of variation across TFBS, we examined the role of SNPs, indels and SVs on
the cis-regulatory regions and target genes of the biofilm network.

Previous population genetic studies identified 23 clades of C. albicans (Ropars
et al.; 2018; Gong et al.; 2023). In 2001, Tietz et al. (2001) proposed classifying
clade 13 or the C. africana clade as a separate species, due to limitations in its
abilities to undergo morphological transitions typical of C. albicans (Tietz et al.; 2001);
however, phylogenetic comparison of ribosomal DNA sequences indicated that C.
africana is indistinguishable from other C. albicans strains (Romeo and Criseo; 2011).
Nonetheless, the taxonomic classification of C. africana remains highly debated. In
addition to the morphological limitations of the C. africana clade, Ropars et al. (2018)
also showed that this clade has undergone extensive genome reduction, resulting in the
restriction of its strains to very specific host niches (Ropars et al.; 2018). In contrast
to clade 13 (the C. africana clade), the phenotypic characteristics of strains belonging
to clade 1 are broad. Clade 1 is the most commonly found C. albicans clade, and is
geographically widely distributed (Odds et al.; 2007). It is also known to be the most
commonly identified clade among commensal isolates (Odds et al.; 2007). Although,
different C. albicans clades have been reported to have different propensities to cause
infection (Odds et al.; 2007) and occupy different host niches (Ropars et al.; 2018),
the ability to form biofilms does not appear to be significantly different between C.
albicans clades (MacCallum et al.; 2009). We used a set of 190 strains from Hirakawa
et al. (2015), Ropars et al. (2018) and Gong et al. (2023), belonging to 14 C. albicans
clades for this study and identified SNPs, indels and SVs in each strain (Hirakawa
et al.; 2015; Ropars et al.; 2018; Gong et al.; 2023).

3.3 Results

3.3.1 Diversity in C. albicans strains

We identified SNPs in 190 C. albicans strains using the Genome Analysis Toolkit
(GATK) (McKenna et al.; 2010). We then inferred the phylogenetic relationships
between strains using 572541 alignment sites as described in the methods section.
Briefly, we used RAxML-NG (Kozlov et al.; 2019) with the General Time Reversible
(GTR+G) model (Tavaré; 1986) with variable substitution rate at each site (Yang;
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1994) as the substitution model. We used 20 starting trees for branch length estimation
and 100 Felsenstein bootstraps (Felsenstein; 1985) to assess support for the branches.
We visualized the phylogenetic tree (Figure 3.1) using iTOL (Letunic and Bork; 2021).
The annotated the strains with clade designation from previous studies, Hirakawa
et al. (2015); Ropars et al. (2018); Gong et al. (2023), through multilocus sequence
typing (MLST) using seven housekeeping genes (Hirakawa et al.; 2015; Ropars et al.;
2018; Gong et al.; 2023). We identified 13 previously reported clades of C. albicans
as well as C. africana (Figure 3.1) (Hirakawa et al.; 2015; Ropars et al.; 2018; Gong
et al.; 2023). We also identified large SVs in these strains using GRIDSS (Cameron
et al.; 2017, 2021).
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Figure 3.1: Phylogenetic tree of the 190 strains used in this study.
Phylogenetic reconstruction of strains in this study is based on 572541 alignment
sites using RAxML-NG (Kozlov et al.; 2019) with the GTR+G substitution model
(Tavaré; 1986; Yang; 1994) using 20 starting trees and 100 bootstrap trees. The colors
denote clades annotated by Hirakawa et al. (2015); Ropars et al. (2018); Gong et al.
(2023) through multilocus sequence typing (MLST) using seven housekeeping genes.
The tree is visualized using iTol (Letunic and Bork; 2021). Clade 1 also contains
the ubiquitously used reference strain, C. albicans SC5314. Clade 13 is a subspecies
of C. albicans, designated as C. africana. This clade is unique due to differences in
morphology and host-niche occupancy of its strains compared to other C. albicans
clades.
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(a) RFX2

(b) EFG1

(c) BCR1

(d) GAL4
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Figure 3.2: High frequency non-synonymous variants are found in intrinsically
disordered regions of biofilm regulators.
Location of SNPs (x-axis) identified in the protein-coding gene. The y-axis is the
frequency of strains harboring a SNP at the corresponding location. The colors
represent the type of SNP. The yellow bars on the x-axis show intrinsically disordered
regions (IDRs) and gray bars show the protein-protein interaction domain (PPI) or
DNA-binding domain. All domain annotations were obtained from UniProt (The
UniProt Consortium; 2023). IDRs are annotated in UniProt using MobiDB-lite (Necci
et al.; 2020; Piovesan et al.; 2021) and PPIs and DNA-binding domains are annotated
in UniProt using PROSITE (Sigrist et al.; 2012). RFX2 harbors 92 unique SNPs,
most of which are low-frequency mutations. Loss-of-function mutations are present in
EFG1 four strains. High frequency, non-synonymous mutations are abundant in the
IDRs of BCR1. No IDRs are annotated for GAL4 and this gene contains very few
variants (22 unique variants).

3.3.2 SNPs and indels are mostly found in intrinsically
disordered regions of regulators

SNPs and indels in biofilm regulators occur at varying frequencies. The number of
strains harboring mutations varied among biofilm regulators is shown in Figure 3.2a-
Figure 3.2d. RFX2 has the most number of identified SNPs (92 unique SNPs), but
most of them are low-frequency mutations (Figure 3.2a). BCR1 contains 84 unique
SNPs (Figure 3.2c). Approximately 25% of these SNPs are present in at least 50
strains, indicating that these variants are prevalent in the population. We identified
loss-of-function mutations in EFG1, specifically gain of a stop codon in four strains
(Figure 3.2b). These variants truncate Efg1 upstream of the DNA-binding domain,
rendering the protein nonfunctional. Among the strains containing this loss-of-function
mutation is P94015, which has been reported to be biofilm defective (Hirakawa et al.
(2015)). We identified very few mutations for GAL4. We found that biofilm regulators
with one or more annotated IDRs harbor many SNPs and contain frameshift indels as
well. These mutations, especially nonsynonymous mutations, are clustered in IDRs,
suggesting that these regions are under weak purifying selection. Khan et al. (2015)
report that inframe indels are also abundant in IDRs, at a rate similar to pseudogenes
and non-coding regions. Afanasyeva et al. (2018) also identify rapid evolution of IDRs
relative to structured regions, indicating that these regions accumulate mutations
more frequently.
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3.3.3 Genes upregulated during biofilm formation harbor
more variants while their cis-regulatory regions are
more conserved

We then tested whether the abundance of SNPs and indels was different between the
target genes in the biofilm regulatory network and other genes in the genome. We
classified the genes into the following groups: “Upregulated” if the gene is regulated
by at least one biofilm regulator and upregulated (log2-fold change > 0.58 and
FDR-adjusted p-value < 0.05) under biofilm conditions, “Downregulated” if the gene
is regulated by at least one biofilm regulator and upregulated in planktonic conditions,
and “Non-DEG” if the gene is regulated by at least one biofilm regulator and is not
differentially expressed between biofilm and planktonic conditions. All other genes
that are not regulated by any of the TFs are classified as “Background”. We compared
the number of SNPs normalized by the total number of SNPs in each strain, for genes
belonging to the categories mentioned above (Figure 3.3a). We compared indels in
these gene categories as well (Figure 3.3b). We found that both SNPs and indels are
less prevalent in genes upregulated in the planktonic cells. Whereas, SNPs and indels
are more abundant in the genes upregulated during biofilm formation. We used the
Friedman test (Friedman; 1937) to compare the difference in the variants between
the four gene categories and observed significant differences in the abundance of both
SNPs (Kendall’s W effect size=0.99) and indels (Kendall’s W effect size=1) between
the categories. We also calculated the proportion of strains containing synonymous
and nonsynonymous SNPs and the 95% confidence interval of mean proportion of
strains containing these variants across gene categories (Table 3.1). We show that
nonsynonymous SNPs are significantly less frequent in “Downregulated” genes.

We then compared the abundance of SNPs and indels in the cis-regulatory region
(5’ intergenic region) of the “Upregulated”, “Downregulated”, “Non-DEG” and
“Background” genes (Figure 3.4). Interestingly, fewer SNPs and indels were found in
the cis-regulatory region of genes upregulated under biofilm conditions. Conversely,
variants were more abundant in the cis-regulatory regions of genes that are not in
the biofilm regulatory network. Both indels (Kendall’s W effect size=0.74) and SNPs
(Kendall’s W effect size=0.74) were less prevalent in the 5’ intergenic region of target
genes in the biofilm regulatory network. This suggests that genes that are highly
expressed in planktonic cells are likely under purifying selection. Genes expressed
under biofilm conditions accumulate more mutations, while their corresponding
cis-regulatory regions accumulate less.
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(a) SNPs in target genes

(b) Indels in target genes

Figure 3.3: Increased abundance of variants observed in genes upregulated
under biofilm conditions.
The number of SNPs and indels were normalized by the number of variants in each
strain per 10 kb. Genes were categorized based on their expression during biofilm
formation. Gene upregulated in biofilm formation (“Upregulated”), genes upregulated
in planktonic cells (“Downregulated”), genes not differentially expressed between the
two conditions (“Non-DEG”) and genes that are not part of the biofilm regulatory
network (indicated by category “Background”) are shown. SNPs and indels are
significantly more prevalent in genes highly expressed in biofilms. Conversely, genes
highly expressed in planktonic cells contain less variants compared to genes that are
“Background” and “Non-DEG”.
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(a) SNPs in 5’ intergenic region of target genes

(b) Indels in 5’ intergenic region of target genes

Figure 3.4: Decreased abundance of variants were observed in cis-regulatory
regions of genes upregulated under biofilm conditions.
The number of SNPs and indels were normalized by the number of variants in each
strain and by the cumulative length of intergenic regions in each gene category.
Genes were categorized based on their expression during biofilm formation. Genes
upregulated in biofilm formation (“Upregulated”), genes upregulated in planktonic
cells (“Downregulated”), genes not differentially expressed between the two conditions
(“Non-DEG”) and genes that are not part of the biofilm regulatory network (indicated
by category “Background”) are shown. In contrast to variants in protein-coding genes,
variants in cis-regulatory elements of genes in the biofilm GRN contain fewer SNPs
and indels.
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Gene Category 95% confidence interval
of mean proportion of

strains with
synonymous variants

95% confidence interval
of mean proportion of

strains with
nonsynonymous variants

Background [0.791 - 0.808] [0.716 - 0.737]
Downregulated [0.760 - 0.804] [0.592 - 0.654]

Non-DEG [0.777 - 0.816] [0.678 - 0.727]
Upregulated [0.805 - 0.833] [0.730 - 0.763]

Table 3.1: Proportion of strains with synonymous and nonsynonymous variants in
gene categories.

3.3.4 Variants in cis-regulatory region drive TFBS gains for
some TFs

Given that we observed fewer variants in the cis-regulatory regions of target genes in
the biofilm network, we wanted to assess if the observed SNPs and indels result in
gains or losses of putative TFBSs in these regions. We searched for the presence of TF
binding motifs obtained in chapter 2 for each strain, and computed the loss-to-gain
ratio for each motif in the strain. Previously, we identified a primary and alternate
motif for each TF in the C. albicans biofilm network. The Brg1 alternate motif
was similar to another TF in the regulatory network, Ndt80. Hence, this motif was
removed. We then used FIMO (Grant et al.; 2011), a motif search tool to identify
motif presence in the intergenic regions of the strains. FIMO requires a motif of at
least seven base pairs in length, hence the primary motif of Brg1 (6 bps) and alternate
motif of Rob1 (6 bps) were removed from further analysis.

In general, TFBSs are more frequently lost than gained, but the loss-to-gain ratio
varies by the motif. The distribution of loss-to-gain ratio for each TF across strains is
shown in Figure 3.5a. We used the Kruskal-Wallis nonparametric test (Kruskal and
Wallis; 1952) to estimate whether the median loss-to-gain ratio varies between TFs.
We found that the ordinal effect size, measured by ϵ2, was 0.17 indicating a moderate
influence of the TF on variation in the TFBS loss-to-gain ratio. We also found that
the loss-to-gain ratio of Efg1 and Tec1 binding motifs have a bimodal distribution
and wanted to verify if this ratio was different between the primary and alternate
motifs. For Efg1, the primary and alternate motif have very distinct loss-to-gain
ratios (Figure 3.5b). The primary motif has a lower loss-to-gain ratio compared to
the alternate motif. Since alternate motifs have different loss-to-gain distribution, we
restricted out comparison to the primary TF motifs (Figure 3.5c). We found that
the ordinal effect size, ϵ2, was 0.49 indicating a strong influence of the TF primary
motifs on variation in the TFBS loss-to-gain ratio. Despite excluding the alternate
motif, the loss-to-gain ratio for the Tec1 motif still followed a bimodal distribution.
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This shows that intraspecific variation is higher in Tec1 motifs. We examined the
strains with increased loss-to-gain ratios of Tec1 motifs and found that these strains
belong to clade 1. Since, the variance of loss-to-gain ratios is heterogeneous between
TFs, we performed the Anderson-Darling test (Scholz and Stephens; 1987) to verify
whether the distributions are similar (Figure 3.5d). We found significant differences
(Anderson-Darling statistic=180.1) in loss-to-gain ratios between the primary motifs
of the TFs. The loss-to-gain ratios of Rob1 and Efg1 motifs are lower than other TF
motifs, driven by TFBS gains for these two motifs. Conversely, the loss-to-gain ratio
of Tec1 is higher than other TF motifs.

3.3.5 TFBS losses and gains are balanced in structural
variants

We observed that SNPs and small indels (less than 10 bp) resulted in losses of TFBS
for all TFs. We wanted to determine whether SVs have a similar impact on TFBSs.
We identified SVs as described in chapter 4 and used custom methods to filter and
annotate the SVs. We then identified instances of TFBS losses in deletions, and
TFBS gains in insertions and duplications. We hypothesized that TFBS gains or
losses due to inversions will occur only at the break-ends of inversion events, so we
did not estimate the effect of inversions on the TFBSs. The frequencies of insertions
were comparable to deletions across strains but the deletions were typically longer
(Figure 3.6b). Large duplications and inversions were also identified in the strains
(Figure 3.6b). We used the Kruskal-Wallis nonparametric test to estimate whether the
median lengths of different types of SV events vary and found that the difference in
median lengths is moderately explained by the SV type (ordinal effect size ϵ2=0.1). We
then estimated the number of TFBS gains using FIMO (Grant et al.; 2011) to detect
possible binding occurrences for the primary and alternate TF motifs as described in
the previous section. We found that TFBS losses and gains are balanced in the SVs
(Figure 3.6a) and the loss-to-gain ratios are approximately one for all TFs. The TFBS
losses driven by large deletions are compensated by large duplications. Duplications
occurred at lower frequencies in the C. albicans strains, but the duplication sizes are
large (median length is 630 bp). Insertion lengths are quite small (median length is
12 bp) to compensate completely for the TFBS losses. This shows that the primary
mode of TFBS loss is driven by SNPs and smaller indels.

3.3.6 Variants driving reduction in motif strength of Efg1
and Rob1 are prevalent in the population

We compared binding site loss, gain and conservation driven by SNPs and indels
in 190 strains, against the common C. albicans lab reference strain SC5314. We
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(a) Loss-to-gain ratio for all motifs (b) Loss-to-gain ratio for Efg1 motifs

(c) Loss-to-gain ratio for primary motifs (d) Loss-to-gain ratio (CDF)

Figure 3.5: Intraspecific variants drive binding site loss for TFs, but binding
site gains are observed for some TFs.
The genome-wide loss-to-gain ratio was estimated for each binding motif. (a) The
loss-to-gain ratio varies by the motif. The distribution of loss-to-gain ratio for each
TF across strains is shown here. ϵ2=0.17 indicating a moderate influence of the TF
on variation in TFBS loss-to-gain ratio. Loss-to-gain ratios of Efg1 and Tec1 binding
motifs have a bimodal distribution. (b) The primary and alternate Efg1 motifs have
very distinct loss-to-gain ratios. (c) The ordinal effect size, ϵ2=0.49, indicating a
strong influence of the TF primary motifs on variation in TFBS loss-to-gain ratios.
(d) The CDF of loss-to-gain ratios the primary motifs. The loss-to-gain ratios of Rob1
and Efg1 motifs are lower and the loss-to-gain ratio of Tec1 is higher compared to
other TF motifs.
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(a) Loss-to-gain ratio in SVs

(b) SV length distribution across strains
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Figure 3.6: TFBS loss-to-gain ratios in SVs are close to one for all TFs.
SVs were identified using GRIDSS (Cameron et al.; 2017, 2021). Binding site loss due
to deletions and binding site gain in insertions and duplications was estimated for each
TF. (a) The loss-to-gain ratios are approximately one for all TFs. The x-axis denotes
the TF and y-axis the loss-to-gain ratios in deletions, duplications and insertions. (b)
TFBS gain is driven primarily by duplications compared to insertions. The x-axis
denotes the type of SV and y-axis the log10(length) of the SV. SV data is aggregated
across all strains.

found that TFBS loss was the most prevalent with a median binding site loss of 1604
across strains. Conservation/retention of binding sites were the second commonly
occurring events following TFBS loss, with a median of 1237 retained sites across
strain. TFBS gains occur less frequently, with a median gain of 854.5. Previously,
we showed that loss-to-gain ratios varied between the TFs. We then compared
the motif strength in the predicted binding site to understand if motif strength is
conserved across TFs (Figure 3.6). We computed the Pearson correlation between
the predicted motif strength in SC5314 and the strains for all conserved TFBSs.
We found that motif strength is highly correlated for Bcr1 (Pearson’s r = 0.94),
Ndt80 (Pearson’s r = 0.91) and Tec1 (Pearson’s r = 0.95). The Efg1 and Rob1 motif
strengths were less correlated between SC5314 and the strains; the Pearson’s r was
0.86 and 0.78, respectively. The slopes of the regression lines for Efg1 and Rob1 were
0.439 and 0.429, respectively, indicating lower motif strength in the strains compared
to the reference SC5314. This shows that even when the number of binding sites are
conserved, the motif strength is lower for Efg1 and Rob1 binding sites in the strains
compared to other TFs. This coupled with our previous finding that TFBS gains
are observed more frequently for Efg1 and Rob1 compared to other TFs indicates
that the mutational accessibility of lower affinity binding sites drives motif gains for
these TFs. Another possibility is that these regulatory regions are under positive
selection, resulting in prevalence of variants that result in binding site gains for the TFs.

3.3.7 Selection pressure in components of the biofilm
regulatory network

We examined the role of selection on cis-regulatory elements, and protein-coding
genes. Specifically, we used Tajima’s D (Tajima; 1989) to verify if the cis-regulatory
regions of target genes in the biofilm regulatory network were under positive or
purifying selection. We did not find a significant difference between the cis-regulatory
network of target genes in the network compared to other genes in the C. albicans
genome. We also did not find a difference in Tajima’s D for cis-regulatory regions
where multiple TFs bind, compared to the cis-regulatory regions regulated by a single
TF. This was surprising, since we were expecting cis-regulatory regions with binding
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Figure 3.6: Binding strengths of TFs are correlated at conserved binding
sites.
For binding sites that are conserved in both the reference SC5314 and the C. albicans
strains, the strength of the binding site is denoted by the sequence similarity of the
binding site to the consensus motif identified using the reference strain. The strength
of the binding site in the reference is shown in the x-axis and the strength of the
corresponding binding site in the strain is shown in the y-axis. Motif strengths are
highly correlated for Bcr1, Ndt80 and Tec1. Efg1 and Rob1 motif strength is weaker
and less correlated between the reference strain SC5314 and other C. albicans strains,
compared to other TFs.

sites for multiple TFs to be indicative of cooperative binding of TFs, which would
be more evolutionarily constrained. One possible explanation for this unexpected
finding is potential bias in our Tajima’s D estimates. Tajima’s D estimates are
known to be biased when the recombination rate is high (Booker et al.; 2020) or
when population bottlenecks are frequent (Gattepaille et al.; 2013; Fijarczyk and
Babik; 2015). C. albicans undergoes population bottlenecks (Ene et al.; 2021) and its
genome is characterized by high rates of recombination (Wang et al.; 2018; Anderson
et al.; 2019). Hence, accounting for these events may uncover differences in selection
pressures in the cis-regulatory regions (Booker et al.; 2020).

We also calculated the rate of nonsynonymous polymorphisms (dN) and rate of
synonymous polymorphisms (dS) to compare the ratio (dN/dS) for protein-coding
genes. dN/dS is conventionally used to compare rates of nonsynonymous substitutions
against synonymous substitutions between species. For interspecific comparisons using
this ratio, dN/dS = 1 implies that the gene is under neutral selection, dN/dS > 1 is
indicative of positive selection and dN/dS < 1 is indicative of negative selection. When
measuring dN/dS within a population, this ratio could be overestimated (Kryazhimskiy
and Plotkin; 2008). Therefore, instead of using the absolute dN/dS to compare genes,
we performed a gene set enrichment analysis (GSEA) by ranking the genes by their
dN/dS ratio (Figure 3.7). We found that transcription factors have higher dN/dS
ratios compared to other genes. We also found that genes involved in biofilm-related
functional categories such as “interspecies interaction” and “filamentous growth” have
elevated dN/dS ratios. The enrichment of these categories is also driven primarily by
TFs, indicating TFs have a higher rate of nonsynonymous polymorphisms. Overall,
only 43 genes had dN/dS values greater than 1. This indicates that most of the
C. albicans genes in the genome are evolving under purifying selection, while genes
involved in biofilm formation are also evolving under purifying selection, but have
greater dN/dS values compared to the rest of the genes in the genome.
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Figure 3.7: TFs have elevated dN/dS ratios compared to other genes in the
C. albicans genome.
GSEA was performed by ranking protein-coding genes by their dN/dS ratios. The
molecular functions comprising genes with elevated dN/dS ratios includes the
functional category “DNA-binding transcription factor activity”.

3.4 Discussion

In this study we found that variants are abundant in IDRs. Other studies have
made similar observations in other yeast species such as Saccharomyces cerevisiae
and S. paradoxus (Nilsson et al.; 2011; Khan et al.; 2015), Drosophila (Ridout et al.;
2010) and mammals (Khan et al.; 2015; Afanasyeva et al.; 2018). Specifically, Nilsson
et al. (2011) show that IDRs are evolving under positive selection compared to other
structural domains of proteins (Nilsson et al.; 2011). IDRs are unstructured regions
of proteins, that are devoid of hydrophobic residues and rich in charged amino acids
(Oldfield and Dunker; 2014; Mao et al.; 2010). These regions play a vital role in
localizing TFs to promoters (Brodsky et al.; 2020). Importantly, Brodsky et al.
(2020) show that the entirety of the IDR is required to target TFs to promoters
and truncation of these regions result in partial loss of targets. IDR-rich TFs in C.
albicans form phase-separated condensates (Frazer et al.; 2020). In higher eukaryotes,
such condensates are known to recruit transcriptional machinery. Hence, the high
prevalence of variants in IDRs suggest flexibility in interaction between TFs. One
caveat to note is that IDRs can tolerate mutations while maintaining functional
interactions with other proteins (Hultqvist et al.; 2017). Hence, they might still be
evolving more neutrally compared to other domains in the protein, which might be
evolving under purifying selection.

We found that target genes upregulated under biofilm conditions are variant-rich
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compared to the genes upregulated under planktonic conditions. This is likely due
to either weaker purifying selection or balancing selection in the genes upregulated
during biofilm formation. A recent study showed that genes expressed in later stages
of the life history of invertebrates and vertebrates experience weak purifying selection,
resulting in increased frequencies of observed deleterious mutations (Cheng and
Kirkpatrick; 2021). If we equate this to biofilm formation as a developmental process,
we can expect that genes highly expressed in mature biofilms could be evolving under
weaker purifying selection compared to genes highly expressed in planktonic cells.
Balancing selection is an alternate possible explanation for this observation. Even
deleterious mutations observed in EFG1, for example, result in increased fitness of
C. albicans as a commensal (Hirakawa et al.; 2015). Additionally, when balancing
selection is in play, heterozygotes have higher fitness, compared to homozygotes in the
population. In C. albicans, higher levels of heterozygosity is associated with increased
fitness (Hirakawa et al.; 2015).

We observed increased TFBS loss among the C. albicans strains (53.7%-73%)
compared to TFBS gains (23.1%-46.3%). Previously, some studies have estimated
that binding site turnover is common between species (Dermitzakis and Clark; 2002;
Ludwig et al.; 2000; Moses et al.; 2006), where binding site losses are compensated by
gains elsewhere in the promoter region. We observed, however, an increase in binding
site loss without a corresponding compensatory gain. A recent study comparing
TFBS gains and losses between two yeast species, S. cerevisiae and S. paradoxus,
found that losses and gains are more frequent than binding site turnover (Krieger
et al.; 2022). In our intraspecific comparison, we found that TFBS losses are the most
common, followed by turnover (where the losses are compensated by gains), and then
conservation of the cis-regulatory region. TFBS gains occur at lower frequency and
are dependent on the TF motifs. Binding site gains for Efg1 and Rob1 are higher than
other TFs. We compared the mutational landscape of these binding motifs (Figure 3.8)
with the landscape of the Ndt80 motif, which was gained at lower frequencies among
strains. We found that the Efg1 (Figure 3.8a) and Rob1 (Figure 3.8b) landscapes are
more rugged with multiple accessible, lower affinity binding sites, whereas the Ndt80
(Figure 3.8c) landscape is more smooth with a single, broad peak. The mutational
landscape is consistent with our observation of increased gains in Efg1 and Rob1 as
well as decreased correlation between motif strengths. The narrow peak, especially for
Efg1 suggests that mutations in the binding site are more likely to result in lower motif
strength, compared to Ndt80. Since Ndt80 has a broader peak, mutational neighbors
are likely to have similar motif strength, hence the higher correlation between motif
strength in the reference SC5314 and other C. albicans strains.

It is more likely that the TFBS gains and losses are driven by neutral selection.
The determining factor of the consequence of the mutation is dependent on the binding
motif and the mutational landscape of the motif, where some motifs are more tolerant
of variations compared to others. We estimate the effect of variants on binding using
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the position probability matrices (PPMs) of the motifs. One disadvantage of using
PPMs is that they assumes that positions in the motifs are independent of each other
and do not account for epistasis and positional dependency of nucleotides. Although
recent studies show that PPMs are predictive of binding affinity to alternative alleles
(Boytsov et al.; 2022), other factors such as DNA shape (Schnepf et al.; 2020) and
motif context (Avsec et al.; 2021) can affect binding. Hence, the TFBS losses that we
observe are likely underestimates. Additionally, we note that not all binding sites are
functional and we would need additional information such as gene expression and/or
in vivo binding data from ChIP-Seq experiments to accurately predict the effect of
the cis-regulatory variants.

There is one other notable limitation in our estimates of dN/dS and Tajima’s D,
measuring the effect of selection on protein-coding and non-coding regions, respectively.
As mentioned earlier, dN/dS is conventionally used for estimating nonsynonymous
and synonymous substitutions between species. Studies, however, have used dN/dS
to measure intraspecific nonsynonymous and synonymous polymorphisms in bacteria
(Fleischmann et al.; 2002; Feil et al.; 2003) and laboratory evolved S. cerevisiae strains
(Johnson et al.; 2021). When we use population genetic approaches to estimate dN/dS,
it is more likely to be biased to assumptions on population size and demography
(Kryazhimskiy and Plotkin; 2008). Additionally, variation in sequencing depth can
also introduce errors when comparing these statistics between genomic regions. As
part of future work, we plan to address these biases by accounting for read depth
variation between different sites and strains (Korneliussen et al.; 2013).

3.5 Methods

3.5.1 Data acquisition

To identify variants segregating in the C. albicans population, we obtained 190 publicly
available, short-read, genome sequences for C. albicans clinical strains from previous
studies (Hirakawa et al.; 2015; Ropars et al.; 2018; Li et al.; 2022; Gong et al.; 2023).
These sequences were obtained for samples from individuals with superficial and
systemic Candida infections, as well as commensal strains from healthy individuals.
We used these 190 geographically distributed strains to estimate genetic diversity
in components of the biofilm GRN. Raw, paired-end reads were retrieved using the
sra-toolkit (version 3.0.3) from National Center for Biotechnology Information (NCBI).

GRN components were comprised of master regulators of biofilm formation (Bcr1,
Brg1, Efg1, Ndt80, Rob1 and Tec1), the target genes they bind to and the upstream
(5’) intergenic region of the target genes. An updated biofilm regulatory network was
constructed using ChIP-seq data from Mancera et al. (2021) as described in chapter 2.
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Figure 3.8: Mutational landscapes of Efg1, Rob1 and Ndt80 primary motifs.
The mutational landscapes of Efg1 and Rob1 are more rugged with many accessible
peaks compared to Ndt80. The x-axis and y-axis indicate all possible k-mers, where k
is the motif length and the z-axis denotes the motif score calculated from the PPM of
the motif. The breadth of the global peak corresponds to mutational robustness.

Briefly, we obtained single-end raw reads from ChIP-Seq experiments published by
Mancera et al. (2021) from the NCBI Gene Expression Omnibus (GEO). We aligned
the reads to the C. albicans reference genome SC5314 using Bowtie2 (version 2.2.5)
(Langmead and Salzberg (2012)). A custom peak-calling workflow was developed to
increase sensitivity in the peak calling step using MACS2 (version 2.2.7.1) (Zhang
et al. (2008)). A custom python script was used to annotate the peaks and retrieve
sequences to identify binding motifs using STREME from the MEME-suite (version
5.5.2) (Bailey (2021)) and the memes package (version 1.2.5) in R (Nystrom and
McKay (2021)). The workflow is described in detail in chapter 4. Gene expression of
target genes in the updated GRN was obtained from Nobile et al. (2012). Differential
gene expression in biofilm growth conditions relative to planktonic growth conditions
was determined by Nobile et al. (2012) by reconciling information from microarray
and RNA-Seq assays (Nobile et al.; 2012).
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3.5.2 Variant calling and variant effect prediction

Single nucleotide variants (SNPs) and indels were identified using a custom,
reproducible pipeline, as described in chapter 4. Briefly, paired-end reads were
aligned to the C. albicans reference strain SC5314 using Bowtie2 (version 2.2.5)
(Langmead and Salzberg; 2012). SNPs and indels were identified for each strain
using the HaplotypeCaller function in GATK (version 4.2.0) (McKenna et al.; 2010).
SVs were identified using the Genome Rearrangement IDentification Software Suite
(GRIDSS) (version 2.12.0) (Cameron et al.; 2017, 2021). Simple SV events such as
insertions, deletions, duplications and inversions were annotated with a custom R
script using the StructuralVariantAnnotation package (version 1.10.1) (Cameron and
Dong; 2021).

Effect of SNPs and indels on protein-coding genes were estimated using the Variant
Effect Predictor (VEP) (version 104.3) (McLaren et al.; 2016). Effects of SVs on
protein-coding genes were estimated with a custom python script (version 3.10) to
annotate genes disrupted by insertions. Protein-coding genes overlapping deletions
and inversions were annotated using BEDTools (version 2.30.0) (Quinlan and Hall;
2010). Effects of SNPs, indels and SVs on TFBS in the cis-regulatory regions were
estimated using a custom pipeline. Primary and alternate motifs, representing binding
preferences, were identified for the TFs. The motifs were represented as position
probability matrices (PPMs), as described in chapter 2. Motif occurrences were
identified in the intergenic region of all genes in the C. albicans reference genome
using the motif PPM as input with the FIMO tool in the MEME-suite (version 5.5.2)
(Grant et al.; 2011). The reference genome was updated based on the identified SNPs
and indels in each strain using the FastaAlternateReferenceMaker function in GATK
(version 4.2.0) (McKenna et al.; 2010). FIMO (version 5.5.2) (Grant et al.; 2011)
was then run independently on each strain to obtain loss and gain of motifs for the
TFs in each strain. Loss of motifs due to structural variations such as inversions and
deletions were identified using BEDTools (version 2.30.0) (Quinlan and Hall; 2010).
Gain of motifs due to insertions identified by retrieving inserted sequences and using
FIMO (version 5.5.2) (Grant et al.; 2011), as mentioned above to identify motifs in
these SVs.

3.5.3 Phylogenetic reconstruction

The SNPs obtained across all strains were used to reconstruct the phylogenetic
relationships between the strains. Phylogenetic inference is sensitive to the choice
of the DNA substitution model (Huelsenbeck and Crandall; 1997). ModelTest-NG
(version 0.1.7) (Darriba et al.; 2020) was used to calculate the goodness-of-fit of 88 DNA
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substitution models to the SNP data. ModelTest-NG ranks the substitution models
based on Akaike Information Criterion (AIC) (Akaike; 1974) and Bayesian Information
Criterion (BIC) (Schwarz; 1978) and identified the General Time Reversible (GTR+G)
model as the substitution model that best fits the data (Tavaré; 1986). The GTR
model is a widely used, flexible DNA substitution model (Barba-Montoya et al.;
2020), which assumes unequal base frequencies as well as unequal substitution rates
between bases (Tavaré; 1986). The GTR model assumes that the substitution rates
are homogeneous across sites, so we included the discrete-gamma model (Yang; 1994)
to specify variable substitution rate at each site. RAxML-NG (version 1.2.0) (Kozlov
et al.; 2019) was used for phylogenetic inference using 20 starting trees for branch
length estimation and 100 Felsenstein bootstraps (Felsenstein; 1985) to assess support
for the branches. The phylogenetic tree estimated by RAxML-NG (Kozlov et al.;
2019) was visualized using iTOL (Letunic and Bork; 2021).

3.5.4 Detecting modes of selection

We used the SNPs identified across strains to infer the mode of selection acting on
the protein-coding genes and cis-regulatory regions in the C. albicans genome. We
used dN/dS to infer the role of selection in protein-coding genes and Tajima’s D for
cis-regulatory regions. We extended the alnpi module in the FAST toolkit (Lawrence
et al.; 2015) to compute dN and dS from MSA, as described in chapter 4.

Tajima’s D

Tajima’s D is a statistic that summarizes the allele frequency spectrum in a genomic
region (Tajima; 1989). The deviation of the allele frequencies from an expected
frequency spectrum under assumptions of neutral evolution indicates that natural
selection is acting on the genomic region of interest. Tajima’s D is the normalized
difference between the observed average pairwise differences between strains (π) and
expected pairwise differences (θ). Tajima’s D is computed as shown below:

θ = expectation of π =
S∑n−1
i=1

1
i

where, S is the number of segregating sites (polymorphic sites) and n denotes the
number of sequences compared. Under the null hypothesis, we expect the observed
pairwise differences between strains (π) and expected pairwise differences (θ) to be
equal, and the coefficient of variation d = π − θ would be small. Tajima’s D is the
coefficient of variation computed as

D =
d

V ar(d)
=

π − θ√
e1S + e2S(S − 1)

where, the coefficients are calculated as follows
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e1 =
c1
a1

and e2 =
c2

a21 + a2

c1 = b1 −
1

a1
and c2 = b2 −

n+ 2

a1n
+

a2
a21

b1 =
n+ 1

3(n− 1)
and b2 =

2(n2 + n+ 3)

9n(n− 1)

a1 =
n−1∑
i=1

1

i
and a2 =

n−1∑
i=1

1

i2

Tajima’s D was calculated genome-wide in 1000 bp windows and the formula for
calculation was obtained from Tajima (1989).

3.5.5 Statistical tests

All statistical tests were conducted in R (version 4.1.2). For comparing normalized SNP
and indel abundance in the 190 strains across gene categories, we used the Friedman
test (Friedman; 1937). The Friedman test is a non-parametric test for differences
between groups for dependent samples. The test assumes that the dependent variable
is ordinal or continuous. The dependent variable need not be normally distributed.
The Friedman χ2 test statistic, also known as Q is given as:

χ2(Q) =
12

nk(k + 1)

k∑
j=1

R2
j − 3n(k + 1)

where, n is the number of samples, k is the number of groups, Rj is the sum of
ranks for the group j.

The effect size for the Friedman test is used to assess the strength of the relationship
between the dependent and the independent variables. The effect size for the Friedman
test (known as Kendall’s W) is estimated using using the formula W = Q

n(k−1)
, where

Q, n and k denote the Friedman test statistic, number of samples and number of
groups respectively.

For comparing the TFBS loss-to-gain ratio between TFs and the length of SVs
between SV type, we used the Kruskal-Wallis nonparametric test (Kruskal and Wallis;
1952). The Kruskal-Wallis χ2 test statistic, also known as H is given as:

χ2(H) =
12

N(N + 1)

k∑
j=1

R2
j

nj

− 3(N + 1)

where, N is the total number of samples, k is the number of groups, Rj is the sum
of ranks for sample j, nj is the sample size of group j.
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The effect size for the Kruskal-Wallis test is estimated using the formula, H =
(H−k+1)
(N−k)

, where H, k and N denote the Kruskal-Wallis test statistic, number of groups
and total number of samples respectively.

The Kruskal-Wallis test assumes equal variance in each category. When this
assumption was violated, we used the nonparametric k-sample Anderson-Darling test
(Scholz and Stephens; 1987), to test if the distribution of the random variable in two
or more groups are identical. The k-sample Anderson-Darling test was performed
using the kSamples package (version 1.2-9) in R.

Gene Set Enrichment Analysis (GSEA)

GSEA (Subramanian et al.; 2005) is used to identify functionally enriched pathways
or processes in a set of genes ranked by specific properties such as gene expression.
We used genes ranked by their dN/dS estimates to identify enriched functions using
the clusterProfile package (version 4.2.2) (Wu et al.; 2021) in R. We obtained gene
function annotations (Gene Ontology (GO) annotations) for the C. albicans protein-
coding genes from the Candida Genome Database (CGD) (Skrzypek et al. (2016)).
GSEA determines if members of a gene set with a specific functions S tend to occur
towards the top or bottom of the ranked list L. Hence, this method uses a weighted
Kolmogorov-Smirnov test statistic to test whether distribution of genes in the gene
set S differs from a uniform distribution. For N genes in the comparison, hits of genes
g into gene set S is calculated as

Phit(S, i) =
∑
gj∈S
j≤i

|rj|
NR

where, NR =
∑

gj∈S |rj|, rj is the ranking of gene at position j. The genes outside
the gene set S are calculated using the formula below:

Pmiss(S, i) =
∑
gj /∈S
j≤i

1

N −NH

where, NH is the gene set size and N is the total number of genes. The enrichment
score ES is the maximum deviation of 0 from Phit−Pmiss. The ES value is normalized
by the size of the gene set S. The statistical significance of ES is then calculated by
permuting the annotation labels of the genes using a permutation test (Subramanian
et al.; 2005).

3.5.6 Data visualization

The phylogenetic tree was annotated and visualized using iTOL (Letunic and Bork;
2021). Statistical tests, violin plots, density plots, plots depicting variant frequencies
and correlation visualizations were performed using ggstatsplot package (version 0.11.1)
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in R (Patil (2021)). Results from GSEA were visualized using the clusterProfiler
package (version 4.2.2) in R (Wu et al.; 2021). R version 4.1.2 was used for all R
packages.
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Tavaré, S. (1986). Some probabilistic and statistical problems on the analysis of DNA
sequence., Lecture of Mathematics for Life Science 17: 57.

The UniProt Consortium (2023). UniProt: the universal protein knowledgebase in
2023, Nucleic Acids Research 51(D1): D523–D531.



90

Tietz, H.-J., Hopp, M., Schmalreck, A., Sterry, W. and Czaika, V. (2001). Candida
africana sp. nov., a new human pathogen or a variant of Candida albicans?, Mycoses
44(11-12): 437–445.

Todd, R. T., Wikoff, T. D., Forche, A. and Selmecki, A. (2019). Genome plasticity in
Candida albicans is driven by long repeat sequences, Elife 8: e45954.

Villar-Vidal, M., Marcos-Arias, C., Eraso, E. and Quindós, G. (2011). Variation in
biofilm formation among blood and oral isolates of candida albicans and candida
dubliniensis, Enfermedades Infecciosas y Microbiologia Clinica 29(9): 660–665.

Wang, J. M., Bennett, R. J. and Anderson, M. Z. (2018). The genome of the human
pathogen Candida albicans is shaped by mutation and cryptic sexual recombination,
MBio 9(5): 10–1128.

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan,
L. et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting
omics data, The Innovation 2(3): 100141.

Yang, Z. (1994). Maximum likelihood phylogenetic estimation from dna sequences
with variable rates over sites: approximate methods, Journal of Molecular evolution
39: 306–314.

Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E.,
Nusbaum, C., Myers, R. M., Brown, M., Li, W. et al. (2008). Model-based analysis
of ChIP-Seq (MACS), Genome biology 9(9): 1–9.



Chapter 4

Bioinformatic tools for identifying
transcription factor binding sites,
variants within species and
calculating selection statistics

4.1 Introduction

This chapter is comprised of three bioinformatic tools that I developed for the work
presented in chapter 2 and chapter 3. These tools serve as standalone workflows
that can be used to process high-throughput, next-generation sequenced data. The
first workflow was developed for end-to-end processing of ChIP-Seq data, from read
alignment to binding site annotation and motif calling. This ChIP-Seq workflow
was developed to improve sensitivity in identifying binding sites for TFs, especially
for single-end and short-reads (approximately, 50 bps). The second workflow was
developed for variant calling, integrating identification of SNPs and SVs in microbial
species. This variant calling workflow is tailored for variant identification in non-model
organisms without benchmarked, known variants, which are traditionally used to
distinguish sequencing errors from real variants. In the absence of these benchmark
datasets, we leverage multiple rounds of error correction to increase precision of SNP
identification. Furthermore, a variant effect prediction function was also developed to
predict the effect of variants on binding site loss and gain in cis-regulatory regions
for known motifs. The manuscript for this workflow is currently in preparation for
submission to Current Protocols in Bioinformatics. The last section of this chapter is
dedicated to the expansion of a previously published module alnpi (Lawrence et al.;
2015). This module was published as part of the FAST toolkit (Lawrence et al.; 2015)
and is used to compute commonly used molecular evolution statistics from multiple
sequence alignments MSA.
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4.2 Identifying transcription factor binding sites

and motifs

This workflow was developed to identify transcription factor binding sites (TFBSs)
from single-end reads generated from ChIP-Seq experiments. ChIP-Seq experiments
are used to determine genome-wide transcription factor (TF) binding events.
The general approach of a ChIP-Seq experiment is depicted in Figure 4.1. The
genomic loci bound by the TFs are purified, amplified and sequenced. The
reads are then mapped to the reference genome, and binding peaks are identified
using the workflow described below. This module is available for download at
(https://github.com/dgunasekaran/chipper motif.git).

TFBS

Crosslinking 
and 

fragmentation

d

Immuno-
precipitation

Purify 
DNA

Amplification 
and 

sequencing

Align to 
reference 

and estimate 
fragment size

Figure 4.1: ChIP-Seq overview.
General approach of a ChIP-Seq experiment. TFs (DNA-binding proteins) bind to
genomic DNA and ChIP-Seq is used to determine the binding loci of the TFs. First,
the protein-DNA interaction is stabilized by cross-linking. The DNA is then sheared
to obtain smaller fragments. The samples are then treated with an antibody that
interacts with the TF of interest, which is then used to extract binding loci specific
to the corresponding TF. The TF is then decoupled from the genomic DNA and the
binding loci of interest are purified, amplified and sequenced. The reads are sequenced
from the 5’-ends, therefore, mapping of the reads to the reference genomes gives us a
set of reads mapping to the sense (Watson) strand and a set of reads mapping to the
anti-sense (Crick) strand. The peaks of reads in the sense and anti-sense strands are
separated by a distance d and the actual binding site is located at approximately d/2.
BioRender was used to make this figure.
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4.2.1 Data source

The workflow for processing ChIP-Seq data was developed using the Snakemake
workflow management systems (version 6.10.0) (Mölder et al.; 2021) for reproducible
data analyses. This workflow management system also helps with optimum utilization
of compute resources, especially for analyzing high-throughput (epi-)genomic data.
This workflow was used to analyze data from Mancera et al. (2021) used in chapter 2.
ChIP-Seq binding data was obtained from NCBI Gene Expression Omnibus (GEO)
repository. We obtained the unphased reference genome and annotation for C. albicans
from the Candida Genome Database (Skrzypek et al.; 2016). C. dubliniensis, C.
tropicalis and C. parapsilosis genomes were obtained from NCBI. We selected the
genomes for the same strains as the ones used for ChIP-Seq experiments by Mancera
et al. (2021). To facilitate comparison of binding events across species, orthologs of
protein-coding genes were identified across the four species as described in chapter 2.
Briefly, orthologs and paralogs of C. albicans genes were identified across species
using OrthoFinder (version 2.5.4) (Emms and Kelly (2015, 2019)). OrthoFinder was
run with parameters -S diamond to identify sequence similarity using DIAMOND
(Buchfink et al. (2015)) and -M msa to perform multiple sequence alignment (MSA)
of orthogroups with MAFFT (Katoh and Standley (2013)) and infer gene trees from
MSA using FastTree (Price et al. (2010)). Although we used the above-mentioned
dataset for this study, the pipeline was developed to handle any single-end ChIP-seq
data, with corresponding reference genome (in FASTA format) and protein-coding
gene annotations (in GFF format) as inputs.

4.2.2 Data quality control and read mapping

Quality of raw, single-end reads, sequenced using Illumina HiSeq 2500 or 4000
platforms was verified using FastQC (version 0.11.9) (Andrews et al.; 2010). Bowtie2
(version 2.2.5) was used to map the reads to the indexed reference genome (Langmead
and Salzberg; 2012). Bowtie2 uses a seed-and-extend based alignment, where the
reads are split into “seeds” of length 20, which are aligned to the reference without
permitting gaps or mismatches. Seeds are weighted based on the number of query
sequences they bind to, where unique seed are weighted higher. To ensure adapter
sequences are removed, a local alignment was performed (--local parameter) to
soft-clip parts of reads that have low quality scores. Reads that map to multiple loci
in the genome (multi-mapping reads) were randomly assigned to a locus (using the
--non-deterministic flag). Only the best match of the read to the reference (also
known as primary reads) are retained using samtools (version 1.15.1) (Li et al.; 2009;
Danecek et al.; 2021).
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4.2.3 Identifying and annotating binding sites

Binding sites of TFs are identified by separating signals in immunoprecipitated (IP)
samples (Figure 4.1) from background noise. An important parameter used for peak
calling is the average fragment size (also known as shift size parameter). As shown in
Figure 4.1, the reads obtained from ChIP-Seq experiments are sequenced from the
5’-ends, therefore, mapping of the reads to the reference genomes results in a peak
in the sense strand and another in the anti-sense strand. These peaks are separated
by a distance d and the actual binding site is located at approximately d/2. This
estimated distance d is the average fragment size. We estimate d using a custom R
script (version 4.1.2) with the package csaw (version 1.28.0) (Lun and Smyth; 2014,
2016). The reads on the sense and anti-sense strands were shifted by 10 base pairs
(bps) using a sliding window approach and the cross-correlation was measured for
each of the distances. The fragment distance with the maximum cross-correlation
value is estimated to be the average fragment size. When binding loci are enriched in
repeat regions, this can result in a bias in estimation of the average fragment size,
since this results in the size corresponding to the read length having the highest
cross-correlation value. To overcome this bias, we deduplicate the reads to estimate
the average fragment size. Using deduplicated data for peak calling, however, reduces
sensitivity. Therefore, we retain duplicate reads for subsequent steps.

We then identify the binding sites using the peak caller, MACS2 (version 2.2.7.1)
(Zhang et al.; 2008). MACS2 uses the average fragment size, the effective genome
size and the control sample (without the immunoprecipitation step) to identify peaks
in the IP samples. The control provides an estimate of the background noise, since
the genome-wide binding signal is highly variable and very sensitive to local context
such as chromatin structure and accessibility (Ramachandran et al.; 2015). To handle
duplicated reads, we set the parameter --keep-dup auto. When this parameter
is specified, MACS2 estimates the maximum number of reads to use in a genomic
location based on a binomial distribution (with a p-value threshold of 1e − 5). If
more than the expected number of duplicated reads are identified in the locus, they
are discarded. The distribution of reads along the genome is then estimated using a
Poisson distribution, with λ denoting the expected number of reads in a window.

Pλ(X = k) =
λk

k! ∗ e−λ

λ =
Read length ∗ number of reads

Effective genome size

MACS2 estimates λ dynamically in regions of 1 kb, 5 kb and 10 kb regions in
addition to genome-wide. A region in the IP sample is considered significantly enriched
if the p-value, computed as shown above and corrected for multiple comparisons using
the Benjamini-Hochberg correction (Benjamini and Hochberg; 1995), is less than 0.01.
The identified binding sites are then annotated using a custom python script (version
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3.10). The annotation generates an output with the protein-coding genes immediately
downstream of the binding sites as well as an additional file summarizing the number,
strength and location of TF binding events for each gene in the genome.

4.2.4 Motif finding

The binding peaks identified using MACS2 were sorted based on the enrichment of
signal in the IP sample compared to the control. The summits of the binding peaks
were extended to 250 bp on either side and this 500 bp sequence was used as the
input to identify motifs using STREME from the MEME-suite (version 5.5.2) (Bailey
(2021)) and the memes package (version 1.2.5) in R (Nystrom and McKay (2021)).
The minimum allowed motif width was 6 and the maximum was 15. A supplementary
python script generates a mutational landscape for a motif (as shown in Figure 2.17)
with the position probability matrix of the motif as an input. This script uses python
version 3.10 and the python packages scipy (version 1.10.0), matplotlib (version 3.6.2)
and numpy (version 1.23.5).

4.3 Identifying SNPs and SVs in C. albicans

This workflow was developed to identify SNPs and SVs from short-read paired-end
data. The workflow was developed using the Snakemake workflow management systems
(version 6.10.0) (Mölder et al.; 2021) for reproducible data analyses. Optimizing
compute resources is crucial for this workflow, especially when working with multiple
strains. In addition to variant calling, custom scripts are used to annotate structural
variants and variants in cis-regulatory regions. Although, we used this pipeline for
C. albicans, this workflow was developed for identifying SNPs and SVs in non-model
organisms without known, experimentally verified variant data. The steps in this
pipeline is depicted in Figure 4.2 and this module is available for download at
(https://github.com/dgunasekaran/snp svant.git).

4.3.1 Data acquisition, quality control and read mapping

This workflow takes as input sequence read archive (SRA) identifiers. Paired-end,
short-read, genomic DNA sequences are retrieved from NCBI using the SRA toolkit
(version 3.0.3). The quality of raw data are verified using FastQC (version 0.11.9)
(Andrews et al.; 2010). Bowtie2 (version 2.2.5) is used to map the reads to the indexed
reference genome (Langmead and Salzberg; 2012) as described in the previous section
with --local and --non-deterministic parameters. Aligned reads are sorted by
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Figure 4.2: Variant calling workflow.
We developed a reproducible, scalable variant calling pipeline to identify SNPs, indels
and SVs in non-model organisms. The boxes in purple indicate steps using published
tools and the boxes in yellow depict modules that we developed.

genomic loci using samtools (version 1.15.1) (Li et al.; 2009; Danecek et al.; 2021).

4.3.2 Identifying SNPs and Indels

We then mark duplicated reads in the alignment using the MarkDuplicates command in
the Picard Toolkit (version 2.25.4) (Picard toolkit; 2019). In this step, reads duplicated
during the PCR amplification step of sequencing are marked to ensure that PCR
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duplicated reads are excluded from calculation of statistics to assess variant quality.
Summary of read alignment statistics, insert size distribution, and read depth, are
also generated to verify quality of sequenced data and alignment, using the Picard
Toolkit (version 2.25.4) (Picard toolkit; 2019) and samtools (version 1.15.1) (Li et al.;
2009; Danecek et al.; 2021). The HaplotypeCaller function in GATK (version 4.2.0)
(McKenna et al.; 2010) is used to perform the first round of variant calling to identify
SNPs and short indels. The identified SNPs are retained if they meet all the criteria
listed below:

1. Quality score of the variant normalized by depth > 2.

2. Phred-scaled probability that the site has a strand bias < 60, where the Phred
score Q = −logP (strandbias). The probability of strand bias is calculated using
Fisher’s exact test (Fisher; 1970).

3. The strand odds ratio is another metric that estimates the strand bias, especially
for regions with high coverage. Variant with strand odds ratio < 4 are retained.

4. Root mean squared mapping quality over all the reads at the site of the variant
> 40.

5. Approximation from the rank sum test (Mann and Whitney; 1947) for mapping
qualities of reads supporting the reference allele and reads supporting the
alternate allele > −12.5.

6. Approximation from the rank sum test (Mann and Whitney; 1947) for the variant
site position within the reads > −8.

The identified indels are retained if they meet all the criteria listed below:

1. Quality score of the variant normalized by depth > 2.

2. Phred-scaled probability that the site has a strand bias < 200. The probability
of strand bias is calculated using Fisher’s exact test (Fisher; 1970).

3. The strand odds ratio < 10.

The above thresholds are set according to GATK best practices based on comparing
these metrics between true, known variants in humans and variants called using the
HaplotypeCaller. These thresholds can be modified by users based on the distributions
of these metrics in their data. The variants that did not meet any of the above criteria
are filtered out. Base quality scores of the aligned reads are then recalibrated using
the filtered, high-quality variants with the BaseQualityScoreRecalibration step. This
step accounts for non-random errors during sequencing that can arise from sequence
context and position of the base in the read and recalibrates the quality score of the
base. This step is repeated twice and the aligned reads with the recalibrated base
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scores are used to perform another round of variant calling using HaplotypeCaller
followed by filtering using the above criteria. These filtered variants following the
second round of variant calling are retained as the final, high-confidence variants. The
effect of these variants on protein coding regions is predicted using the Variant Effect
Predictor (VEP) (version 104.3) (McLaren et al.; 2016)

4.3.3 Identifying and annotating structural variations

SVs can be identified from short paired-end reads based on the distance and orientation
of the read pairs. Different types of structural variations result in different patterns
of mapping of the read pair (Mahmoud et al.; 2019). The Genome Rearrangement
IDentification Software Suite (GRIDSS) (version 2.12.0) (Cameron et al.; 2017, 2021)
uses short paired-end reads to identify SVs. GRIDSS retrieves partially aligned reads,
reads with incorrect orientation, reads with only one mapped end and reads with
unusual insert sizes and performs further filtering based on mapping quality and
complexity in mapped bases. These reads are then used to construct a positional de
Bruijn graph which is used to identify break-ends iteratively. The break-end contigs
are aligned to the reference and all breakpoints are identified. GRIDSS reports only
the break-ends and does not annotate the variants. Hence, a custom R (version
4.1.2) script was used to annotate SVs using the StructuralVariantAnnotation package
(version 1.10.1) (Cameron and Dong; 2021). During the annotation step, we further
filter the identified SVs based on the reported break-ends. If the break-ends are not
paired, these SVs are removed from final annotation. Since GRIDSS is optimized for
sensitivity, we perform this filtering to reduce false-positive SVs.

4.4 alnpi 2.0: Calculating selection statistics from

multiple sequence alignments

alnpi was originally published as part of the FAST toolkit to compute selection
statistics from multiple-sequence alignments (Lawrence et al.; 2015). In this study,
we expanded the alnpi module (referred to as alnpi 2.0) to include computation of
selection statistics in a pairwise manner between sequences and included computation
of dN/dS, a codon-based metric to estimate selection in protein-coding genes. This
updated module is written in Perl and was executed with Perl version 5.30.3. This
module is available for download at (https://github.com/dgunasekaran/alnpi 2 0.git).

4.4.1 Previous work

alnpi was developed by Lawrence et al. (2015). alnpi takes as input a multiple sequence
alignment and returns as output the following statistics:
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1. Heterozygosity.

2. Expected number of alleles (Ewens; 1972).

3. Watterson’s θ (Watterson; 1975), to estimate the genetic diversity in a population
with no recombination. The standard error of the estimate is also reported under
assumption of no recombination, or free recombination.

4. Nucleotide diversity (π) (Nei and Li; 1979) and its standard error under
assumption of no recombination, or free recombination.

5. Tajima’s D (Tajima; 1989), to detect departures of allele frequency from neutral
expectations based on estimates of number of segregating sites and mean pairwise
difference between sequences.

6. Fu and Li’s D* (Fu and Li; 1993), to detect recent selection events by comparing
singleton mutations to total number of derived variants.

7. Fu and Li’s F* (Fu and Li; 1993; Simonsen et al.; 1995), to detect selection
events and demographic changes by comparing singleton mutations to the average
number of nucleotide differences.

I expanded this module to include estimation of synonymous and nonsynonymous
substitution rates to detect selection events in protein coding genes.

4.4.2 Codon analysis using dN/dS in protein-coding genes

The dN/dS ratio is one of the most widely used measures to detect evolutionary
pressures acting on protein-coding genes. This measure is the ratio of nonsynonymous
substitutions to synonymous substitutions, where dN/dS > 1 is indicative of positive
selection dN/dS < 1 is indicative of negative selection and dN/dS = 1 indicates
neutrality. We implemented the dN and dS estimation using the Nei and Gojobori
method (Nei and Gojobori; 1986). We first calculate the number of possible
synonymous (s) and nonsynonymous (n) sites, assuming equal probabilities of all
nucleotide changes.

s =
3∑

i=1

fi

where i denoted the i-th nucleotide of the codon and fi is the ratio of synonymous
changes to the sum of synonymous and nonsynonymous changes at nucleotide position
i. The number of possible nonsynonymous sites is given by n = 3− s. Total number
of possible synonymous (S) sites and nonsynonymous (N) sites across the sequence
are obtained using the formulae, S =

∑C
j=1 sj and N = 3C − S, respectively. C is the

total number of codons in the sequence and sj is the value of s for the j-th codon.
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After obtaining S and N , we calculate the number of observed synonymous Sd and
nonsynonymous Nd changes. For each codon pair, sd and nd are calculated. If more
that one position of the codon is different between the sequences, all mutational paths
between the codons are considered, and sd is a fraction of the number of synonymous
changes in all paths over the number of mutational paths. Therefore, Sd =

∑C
j=1 sdj

and Nd =
∑C

j=1 ndj . The proportion of synonymous and nonsynonymous substitutions
are estimated using pS = Sd/S and pN = Nd/N , respectively. These proportions
are corrected to account for multiple substitutions using the Jukes-Cantor correction
(Jukes et al.; 1969) and the number of synonymous and nonsynonymous substitutions
per site are estimated using the formulae below:

dS = −3

4
ln(1− 4

3
pS)

dN = −3

4
ln(1− 4

3
pN)

The variance of these estimated are also calculated using:

V ar(dS) =
pS(1− pS)

(1− 4
3
pS)2S

V ar(dN) =
pN(1− pN)

(1− 4
3
pN)2N
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Chapter 5

Conclusion

5.1 Scientific Impact

In this study, we used a well-defined gene regulatory network (GRN) in Candida
albicans to identify sources of phenotypic diversity within species and divergence
of this network across species. We found that the network structure has diverged
between Candida species and diversity in C. albicans strains is driven by genomic
variants in transcriptional regulators and loss of binding sites of these regulators.
We developed three tools to analyze genomic and epigenomic data and to compute
population genomic statistics. Tools that identify genomic variants and predict effects
of variants in protein-coding genes as well as cis-regulatory regions are available for
well studied species, such as humans, with an abundance of population genomic data.
In this work, we optimized these tools for use with non-model organisms that do
not have benchmarked, ground-truth datasets. Using these tools, we identified novel
functional targets of the biofilm GRN in C. albicans. Most studies exploring genomic
variation of cis-regulatory regions have focused on SNPs and genomic variants that
affect individual transcription factor binding sites. Here, we also identified the effect
of larger structural variations SVs on cis-regulatory regions using the variant calling
tool we developed. The tool we developed for identifying binding sites and motifs was
optimized for sensitivity and this helped us understand the divergence in regulatory
network structures across different Candida species. This tools also uses ortholog
information across multiple species to annotate divergence in target genes in the
network. By comparing the motif preferences of transcription factors TFs across
species, we were able to visualize the mutational landscape of the motifs based on the
estimated binding strength of mutational neighbors.

Using these tools we answered broad questions about the divergence and evolution
of the biofilm regulatory network. We found that interspecific divergence of the
biofilm regulatory network is driven primarily by altering the network structure to
regulate genes in a concerted manner. This is consistent with the enhanceosome
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model as opposed to the billboard model of regulation (Arnosti and Kulkarni; 2005).
These models posit different theories on the roles of multiple binding sites found in
cis-regulatory regions. According to the enhanceosome model (also known as the
regulatory grammar model (Weingarten-Gabbay and Segal; 2014)), transcription
factors are highly cooperative, binding to the cis-regulatory regions and altering
gene expression of their downstream genes in a concerted manner. This cooperative
binding is highly dependent on orientation, ordering and spacing of binding sites. This
implies that individual binding sites are evolutionarily constrained since mutations
that affect binding of even a single transcription factor affect the assembly of the
complex that drives gene expression. In contrast, the billboard model suggests that
binding sites are flexible and the the relative orientation of binding sites are less
relevant to transcriptional regulation. According to this model, individual binding
sites in cis-regulatory regions are less conserved, relying instead on the additive
recruitment of transcription factors. This indicates that the number of binding sites
in a regulatory region are conserved. In our study, we see that binding site loss is
prevalent but the frequency of indels and SNPs are lower in regulatory regions of the
biofilm network. Additionally, we also show that intrinsically disordered regions in
protein-coding genes, regions that are essential for recruiting other regulators to the
promoter, frequently accumulate mutations and are likely under weaker purifying
selection or balancing selection. Regulators with intrinsically disordered regions can
recruit other transcription factors to the cis-regulatory region, which can bind to
lower affinity or non-cognate motifs (Staller; 2022). This implies that motif spacing
between regulators is more constrained than motif strength. This theory fits our
observation of prevalent binding site losses and gains of lower affinity binding sites.

We also found different sources of genetic variation in the biofilm network
components of C. albicans. Large structural variants are widely found in C. albicans
strains. A recent study found frequent structural variations in commensal strains even
within the same host (Anderson et al.; 2023). Hence, structural variations contribute
significantly to genetic diversity in C. albicans. When we examined the effect of these
structural variations on binding sites, we found that losses of binding sites due to large
deletions are compensated by binding site gains in duplications. Although insertions
were also found in C. albicans strains, the insertion sizes are small and the binding
site gains in these insertions do not compensate completely for binding site losses due
to deletions. Although binding site losses are compensated at a genome-wide scale,
individual regulatory regions are more likely subjected to dosage effects caused by
structural variations (Chiang et al.; 2017). The variant allele frequencies of structural
variations, however, are typically low (Sudmant et al.; 2015), hence, we expect this
dosage effect to be minimal.

We estimated the empirical rates of losses and gains of binding sites for each
transcription factor in the biofilm regulatory network. We also found some functional
gene categories with more binding site gains than losses. These include, for example,



106

the GPI-anchored cell wall adhesins, a family of proteins that has expanded in C.
albicans (Nather and Munro; 2008) and is important for host-pathogen interactions
(Martin et al.; 2021). We also found that GPI-anchored proteins are recruited to
the C. albicans biofilm regulatory network by multiple transcription factors, possibly
through binding site gains.

5.2 Limitations

In this study, we assessed the conservation of biofilm regulators and target genes across
species. We identified that orthologous relationships for some genes (for example,
EFG1 and FLO8 ) were mispredicted in some species due to gaps in genome assembly
or due to missense variants unique to the reference strain of the species. Even though
this issue is not pervasive and we can select assemblies and strains with higher quality
annotations, there are likely to be discrepancies for individual genes. One solution is
to manually curate the results, but for large numbers of gene comparisons or in studies
that include comparisons across many species, this is not feasible. To more accurately
estimate orthologous relationships, we can add a verification step to align the protein
to nucleotide genomes using tblastn (Altschul et al.; 1990; Camacho et al.; 2009). We
can also improve accuracy by using multiple strains in addition to reference strains
for each species. We plan to include these expansions to our tools in the future.

Another important caveat to note in our study is that the transcription factors we
studied play functional roles in processes other than biofilm formation. Therefore,
some of our observations such as colocalization or cooperative binding could also
be driven by functions outside of the biofilm regulatory network. Additionally, the
biofilm regulatory network itself is tightly coupled with other processes such as
the commensal-pathogen transition and morphological switching between cell types
(Rodriguez et al.; 2020). Hence, it is important to consider the pleiotropic roles
of these transcription factors (Kittelmann et al.; 2018) to better understand the
constraints they evolve under.

It is also worth mentioning that not all interspecific binding events predicted
using ChIP-Seq data and intraspecific binding site losses and gains observed using
genomic data have functional consequences. Other factors such as co-binding of
other regulators, chromatin accessibility and local genomic context also play roles in
determining functional consequence of binding (Jiang and Mortazavi; 2018). Hence,
we would need additional data, such as gene expression profiles and chromatin
structure to verify our findings. A recent study conducted on a hybrid yeast strain of
Saccharomyces cerevisiae and S. paradoxus showed that by combining information on
motif preference and contextual binding of transcription factors, we can predict the
effect of variants in binding sites on changes in expression of target genes (Krieger
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et al.; 2022). Thus, by including gene expression information to our motif based
predictions, we can associate changes in cis-regulatory regions to changes in expression
of downstream genes.

5.3 Future work

In light of the limitations and key findings in this study, below we present exciting
future directions and developments to follow up on. We inferred biofilm regulatory
networks across several Candida species and identified genetic variants in C. albicans
strains spanning multiple clades and host niches. This data can be leveraged to
further understand Candida biology and developmental processes. The tools we
developed can be further refined to improve accuracy and can be expanded for
additional functionality. To better understand the molecular mechanisms involved in
biofilm formation, we can update the biofilm regulatory network using our workflow
with improved sensitivity for binding site prediction. Additionally, we can also use
metrics and methods from graph theory to identify network motifs for interspecific
comparisons (Alon; 2007; Benson et al.; 2016).

We identified large structural variations and hypothesize that these are present at
low frequencies. We can test this hypothesis using read depths spanning the structural
variants to infer variant allele frequencies (Sudmant et al.; 2015). This will help
also help us estimate the heterogeneity in the population as well as plasticity in the
C. albicans genome. Additionally, we can also verify the structural variants using
long-read genomic data when available. This will help in improving annotation of the
structural variants. We also collected metadata on the strains including the geographic
location, host infection status, host niche and clade. We can use this information to
associate clade-specific and host niche-specific variants. Such genome-wide association
studies can help identify causal relationships between variants and specific phenotypes
(Uffelmann et al.; 2021).

We compared the variants and binding motifs qualitatively to the mutational
landscape of the motifs. We can further add quantitative metrics to describe the
mutational robustness of the motif. Specifically, we can quantify the ruggedness
(Van Cleve and Weissman; 2015), robustness (Vaishnav et al.; 2022), and navigability
(Aguilar-Rodŕıguez et al.; 2017) of the landscapes and use them as predictive measures
for expectation in terms of binding site losses and gains. Alternatively, we can also
compute expectation of binding site losses and gains based on motif information
content, background nucleotide frequencies and genomic context (Doniger and Fay;
2007). We can also model cooperative binding to estimate expected rates of losses and
gains of binding sites (Tuğrul et al.; 2015). This will allow for comparisons between
the deviation of our observed, empirical losses and gains of binding sites from neutral
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models of binding site evolution.

An additional future development of the tools presented here include refinement of
methods used to compute population genetic statistics from whole-genome sequencing
data. Statistics used to measure selection can be biased due to variations in
sequencing depth between genomic regions. As part of future work, we will address
these biases by accounting for read depth variations between different sites and strains
(Korneliussen et al.; 2013). We also plan to incorporate other statistics commonly used
to measure positive selection in cis-regulatory regions in the future (Moon et al.; 2019).
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