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Abstract

Objective: While studies suggested that locus coeruleus (LC) neurodegeneration contributes to 

sleep-wake dysregulation in Alzheimer’s disease (AD), the association between LC integrity and 

circadian rest-activity patterns remains unknown. Here, we investigated the relationships between 
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24-h rest-activity rhythms, cognitive trajectories, and autopsy-derived LC integrity in older adults 

with and without cortical AD neuropathology.

Methods: This retrospective study leveraged multi-modal data from participants of the 

longitudinal clinical-pathological Rush Memory and Aging Project. Indices of 24-h rest-activity 

rhythm fragmentation (intradaily variability) and stability (interdaily stability) were extracted 

from annual actigraphic recordings, and cognitive trajectories were computed from annual 

cognitive evaluations. At autopsy, LC neurodegeneration was determined by the presence of 

hypopigmentation, and cortical AD neuropathology was assessed. Contributions of comorbid 

pathologies (Lewy bodies, cerebrovascular pathology) were evaluated.

Results: Among the 388 cases included in the study sample (age at death=92.1±5.9 years; 

273 women), 98(25.3%) displayed LC hypopigmentation, and 251(64.7%) exhibited cortical AD 

neuropathology. Logistic regression models showed that higher rest-activity rhythm fragmentation, 

measured up to ~7.1 years before death, was associated with increased risk to display 

LC neurodegeneration at autopsy (OR=1.46, CI95%:1.16–1.84, pBONF=0.004), particularly in 

individuals with cortical AD neuropathology (OR=1.56, CI95%:1.15–2.15, pBONF=0.03) and 

independently of comorbid pathologies. In addition, longitudinal increases in rest-activity rhythm 

fragmentation partially mediated the association between LC neurodegeneration and cognitive 

decline (estimate=−0.011, CI95%:−0.023–−0.002, pBONF=0.03).

Interpretation: These findings highlight the LC as a neurobiological correlate of sleep-wake 

dysregulation in AD, and further underscore the clinical relevance of monitoring rest-activity 

patterns for improved detection of at-risk individuals.

Introduction

Human aging is characterized by marked alterations in the regulation of sleep and 

wakefulness,1 which have been identified as important risk factors for the clinical 

and neuropathological trajectories of several neurodegenerative diseases, including 

Alzheimer’s disease (AD).2 AD often involves an exacerbated form of age-related sleep-

wake dysregulation and circadian rhythm disturbances that manifests in micro- and 

macrostructural sleep changes3 along with a disruption of rest-activity rhythms across the 

sleep-wake cycle.4 These modifications in the organization and composition of sleep and 

wake states were linked to abnormal accumulation or reduced clearance of amyloid-β (Aβ) 

and tau proteins, hallmarks of AD pathogenesis, as early as in the preclinical stages of 

the disease.5–7 Accordingly, in older asymptomatic individuals, worsening of cognitive 

symptoms and clinical progression of AD were tightly linked to longitudinal deterioration 

in 24-h rest-activity patterns, as manifested by gradual increases in rest-activity rhythm 

fragmentation and instability.8

Recently, the brainstem locus coeruleus (LC) was put forward as a critical early neural 

substrate connecting AD-related processes and sleep-wake dysregulation.9 Postmortem 

findings indicate that the LC is among the first sites of tau pathology, before any cortical 

tau deposition,10 and undergoes substantial neurodegeneration in AD.11 As part of the 

intricate subcortical sleep-wake circuitry, the LC is critically involved in the regulation of 

sleep and wakefulness states through the timely release of norepinephrine to the entire 
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cortex.12 Animal studies showed that the activity of LC neurons is under circadian influence 

through indirect input from the suprachiasmatic nucleus (SCN),13 the central pacemaker 

located in the anterior hypothalamus, and that LC lesions induced modifications in the 

circadian organization of the sleep-wake cycle.14 In addition, recent in vivo studies reported 

that lower structural integrity of the LC was linked to subjective sleep-wake measures 

of daytime dysfunction15 and nighttime fragmentation in older individuals.16 However, to 

our knowledge, no studies have investigated the relationships between LC integrity and 

24-h rest-activity patterns in humans. Furthermore, while both LC neurodegeneration and 

rest-activity rhythm disruption have been previously reported as correlates of cognitive 

decline in separate studies of older cohorts,8,17,18 the interplay between these two factors 

on longitudinal cognitive trajectories remains to be investigated within a single framework. 

Addressing these important gaps constitutes a critical step to establish the LC as a key 

neurobiological substrate of altered rest-activity rhythms in the context of AD, and to 

disentangle the respective contribution of LC neurodegeneration and rest-activity rhythm 

disruption for AD-related cognitive decline. In turn, this will provide new targets to improve 

the early detection and monitoring of individuals at risk for AD trajectories. Here, we 

leveraged a large, longitudinal clinical-pathological dataset to elucidate the relationships 

between antemortem actigraphy-derived 24-h rest-activity patterns and neuropathological 

evaluation of LC neurodegenerative processes in older individuals with and without 

autopsy-derived cortical AD neuropathology. We further investigated whether the previously 

identified association between LC neurodegeneration and cognitive decline could be 

mediated by a deterioration in rest-activity rhythms over time.

Methods

Participants

This dataset included individuals aged ≥ 60 years from the Rush Memory and Aging 

Project (MAP), an ongoing observational clinical-pathological study that began in 1997.19 

Participants were recruited from retirement communities and subsidized senior housing 

facilities in Chicago and northeastern Illinois. Inclusion criteria for the MAP study were 

older age, absence of known dementia at enrollment, and consent to annual clinical/

cognitive evaluation and brain donation at death. Eligibility criteria for the present analysis 

sample included data availability for at least two actigraphic assessments and two cognitive 

evaluations prior to death, and for postmortem LC pigmentation ratings. Participants who 

received a final clinical consensus diagnosis of dementia with a primary cause other than 

AD (n = 6) were further excluded. According to these criteria, 388 participants were 

eligible. The MAP study was conducted in accordance with the Declaration of Helsinki and 

was approved by the Human Subjects Committee of Rush University Medical Center. All 

participants signed an informed consent, an Anatomical Gift Act, and a repository consent 

for data sharing.

Actigraphic assessments

Assessments of rest-activity rhythm characteristics were performed annually using 

actigraphy (Fig. 1A), a non-invasive tool to objectively investigate 24-h rest-activity rhythms 

in ecological settings and infer clinically relevant metrics about the circadian organization 
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of the sleep-wake cycle.20 The Actical device (Philips Respironics, Bend, OR, USA) was 

worn on the non-dominant wrist to continuously record locomotor activity (1-second sample 

activity counts summed over 15-second epochs) for up to 10 days during each annual visit. 

Conventional non-parametric indices of intradaily variability (IV) and interdaily stability 

(IS) were computed on hourly-resampled actigraphy data as previously described8,21,22 to 

assess the fragmentation and day-to-day stability, respectively, of participants’ rest-activity 

rhythm. Typically, IV values are higher in individuals with more frequent daytime sleep 

periods or nocturnal awakenings, whereas lower IS values reflects poorer synchronization 

of an individual’s rest-activity rhythm with environmental zeitgebers (“time givers”), such 

as the light-dark cycle.20,21 IV and IS values were extracted at the actigraphy time point 

furthest from death (hereafter referred to as ‘baseline actigraphy’, on average 2.35 ± 2.39 

years after enrollment) and across all actigraphy time points over the follow-up to estimate 

the slope of evolution. The mean number of available actigraphy time points per participant 

was 4.65 ± 2.40, with a mean time of 7.12 ± 3.33 years between the baseline actigraphy time 

point and death.

Neuropathological measures

Upon participants’ death, brains were extracted and weighed, and the brainstem and 

cerebellar hemispheres were removed. The mean time interval between death and brain 

removal was 9.23 ± 8.71 hours. As previously described,18 one hemisphere and the 

brainstem were fixed in 4% paraformaldehyde solution for at least three days, and sectioned 

into 1-cm-thick coronal slabs for neuropathological evaluation.

Locus coeruleus pigmentation

A qualitative rating of the presence of hypopigmentation in the LC (‘Yes’ vs. ‘Maybe’ 

vs. ‘No’), a macroscopic measure of LC neurodegeneration,18 was provided by a trained 

neuropathology technician after examination of the pallor of the LC. To increase the 

reliability and robustness of this qualitative variable, we excluded ambiguous cases (LC 

pigmentation rating of ‘Maybe’, n = 66) and only considered data from clear-cut cases (LC 

pigmentation ratings of ‘Yes’, n = 98, or ‘No’, n = 290) in the statistical analyses.

Cortical Alzheimer’s disease neuropathology

The presence of cortical AD neuropathology was determined using the dichotomized version 

of the modified NIA-Reagan diagnosis of AD,23 which combines information from the 

Braak staging scheme (neurofibrillary tangles)24 and modified Consortium to Establish a 

Registry for AD (CERAD) score (neuritic plaques).25 The dichotomized version aggregates 

scores from the four-level version into ‘Low likelihood/no AD’ vs. ‘High/intermediate 

likelihood of AD’. The modified NIA-Reagan diagnosis of AD was made blinded to the 

final clinical diagnosis.

Additional comorbid pathologies

Lewy body pathology was assessed following examination of paraffin-embedded brain 

tissue sections (midfrontal, midtemporal, inferior parietal, anterior cingulate, entorhinal 

cortices, amygdala, and midbrain) immunostained for α-synuclein (Zymed; 1:50).26 
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The presence of Lewy body disease was rated as ‘not present’, ‘nigral-predominant’, 

‘limbic-type’, or ‘neocortical-type’,26 using modified criteria from McKeith et al.27 As 

in previous work,28 we dichotomized the presence of Lewy body pathology as ‘not 

present’ vs. ‘present’ (nigral-predominant, limbic-type, or neocortical type). Additionally, 

cerebrovascular pathology was investigated by rating the severity of arteriolosclerosis in 

vessels of the anterior basal ganglia with a semi-quantitative grading system ranging from 

0 (none) to 7 (occluded)29 compressed into a four-level scale (‘none’, ‘mild’, ‘moderate’, 

or ‘severe’), and by rating the severity of cerebral atherosclerosis in major arteries at the 

Circle of Willis and their proximal branches with a semi-quantitative scale ranging from 0 

(no atherosclerosis) to 6 (severe atherosclerosis) collapsed into a four-level scale (‘none or 

possible’, ‘mild’, ‘moderate’, or ‘severe’).

Cognitive evaluation and clinical diagnosis

Annual assessments of cognitive function were administered using a battery of 21 

neuropsychological tests (Fig. 1A). Based on 19 tests, summary scores were computed 

for global cognition and across five cognitive domains (episodic memory, working memory, 

semantic memory, perceptual speed, and visuospatial ability/perceptual orientation) at each 

visit, as previously described.30 In addition, clinical diagnosis was determined annually 

by a neuropsychologist and a clinician, and a final consensus diagnosis was made by a 

neurologist after death, blinded to postmortem data, according to the criteria recommended 

by the National Institute of Neurological and Communicative Disorders and Stroke and the 

Alzheimer’s Disease and Related Disorders Association (NINCDS/ADRDA).31

Statistical analyses

Statistical analyses were performed using R (version 4.1.1, www.r-project.org). Logistic 

regression models assessed the relationship between antemortem rest-activity rhythm 

metrics (predictor) and postmortem LC pigmentation ratings (outcome, Fig. 1B). Models 

were adjusted for age at death, sex, education, postmortem interval, and time interval 

from baseline actigraphy to death. Linear mixed effect (LME) models adjusted for age 

and sex were used to extract individual slopes of evolution of IV and IS values across all 

actigraphy time points (median number of longitudinal actigraphic assessments = 4 ± 2.40, 

range 2 – 12). Similarly, LME models aligned with the baseline actigraphic assessment and 

adjusted for age, sex, and education, provided individual slopes of evolution of global and 

domain-specific cognitive performances over all subsequent evaluations until death (median 

number of cognitive assessments following baseline actigraphy time point = 9 ± 3.69, range 

= 2 – 21). Random effects included participants’ intercept and slope (time). A mediation 

analysis was conducted to test the mediating effect of rest-activity rhythm fragmentation 

on the relationship between LC hypopigmentation and global or domain-specific cognitive 

decline (Fig. 1C). These mediation models were performed with the mediation package in R, 

and the indirect effect was tested using a quasi-Bayesian Monte Carlo simulation with 5000 

iterations. Post-hoc sensitivity analyses were conducted by including additional covariates 

related to comorbid pathologies in the logistic regression and mediation models to evaluate 

the potential influence of Lewy body disease and cerebrovascular pathology on the observed 

associations. Threshold for statistical significance in all analyses was two-tailed p < 0.05. 

Adjustment for multiple comparisons across logistic regression models was performed by 
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applying the Bonferroni correction (indicated by pBONF values) per actigraphic metric. For 

the mediation analysis, the Bonferroni correction was applied to the p values associated with 

the indirect effect estimates across all mediation models (i.e., 6 models in total).

Results

Demographic characteristics, actigraphic variables, and postmortem neuropathological 

features of the study sample are summarized in Supplementary Table S1. Among the 388 

participants included in the analysis, mean age at death was 92.07 ± 5.91 years, and 273 

(70.36%) were females. Participants included in the present analyses were diagnosed as 

cognitively unimpaired (CU, n = 299 (77.06%)) or mild cognitive impairment (MCI, n = 89 

(22.94%)) at enrollment. At the time of the baseline actigraphic assessment, 279 (71.91%) 

were CU, 95 (24.48%) were MCI, and 14 (3.61%) were diagnosed with AD dementia. At 

death, 150 (38.66%) individuals received a final clinical consensus diagnosis of CU, 95 

(24.48%) of MCI, and 143 (36.86%) of AD dementia. Sixty-nine (17.78%) individuals were 

carrier of at least one APOE ε4 allele.

At neuropathological examination, 98 (25.26%) participants displayed hypopigmentation 

in the LC. Logistic regression models adjusted for age at death, sex, education, and 

postmortem interval showed that the probability to display LC hypopigmentation at autopsy 

was higher in individuals who received a final clinical consensus diagnosis of AD dementia 

compared to CU individuals (adjusted odds ratio (AOR) = 2.52, 95% confidence interval 

(CI95%): 1.44 – 4.49, p = 0.001), and in males compared to females (AOR = 1.83, CI95%: 

1.09 – 3.06, p = 0.02). Based on the dichotomous NIA-Reagan diagnostic criteria, 251 

(64.7%) cases displayed postmortem evidence of cortical AD neuropathology. In addition, 

individuals who received a final clinical consensus diagnosis of MCI or AD dementia had 

increased odds to display evidence of cortical AD neuropathology (MCI: AOR = 3.08, 

CI95%: 1.77 – 5.45, p < 0.001; AD: AOR = 6.87, CI95%: 3.88 – 12.61, p < 0.001) compared 

to CU individuals.

Consistent with previous findings based on a larger sample of the MAP cohort,8 rest-activity 

rhythm fragmentation and instability were greater in individuals who received a final clinical 

consensus diagnosis of AD dementia compared to CU individuals, both when considering 

baseline IV and IS values (IV: t(382) = 3.40, p = 0.002; IS: t(382) = −2.58, p = 0.03) or 

the slope of changes in IV and IS values (IV: t(384) = 3.79, p < 0.001; IS: t(384)= −3.77, p 
< 0.001, Supplementary Fig. S1). In addition, baseline IS values were lower in individuals 

with autopsy-derived Lewy body disease (t(371) = −2.36, p = 0.02), and baseline IV values 

were higher in the presence of ‘mild’ or ‘moderate’ arteriolosclerosis compared to ‘none or 

possible’ (t(381) = 3.04, p = 0.003, Supplementary Fig. S2).

Rest-activity rhythm fragmentation, but not instability, is associated with postmortem LC 
hypopigmentation

Using logistic regression models, we first found that each 1-SD increase in rest-activity 

rhythm fragmentation measured on average 7.12 years before death, as indicated by baseline 

IV values, was associated with 46% increased probability to display hypopigmentation 

in the LC at autopsy (AOR = 1.46, 95% confidence interval (CI95%): 1.16–1.84, pBONF 
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= 0.004; Fig. 2A, Table 1). Similarly, worsening of rest-activity rhythm fragmentation 

over time, as reflected by a higher slope of changes in IV values across the follow-up, 

was associated with 44% increased odds of postmortem LC hypopigmentation (AOR = 

1.44, CI95%: 1.13–1.85, pBONF = 0.02, Table 1). By contrast, none of the IS values were 

significantly associated with LC pigmentation ratings (all pBONF > 0.51; Supplementary 

Table S2). In a second step, we focused on a subsample of participants with postmortem 
evidence of cortical AD neuropathology based on the dichotomous NIA-Reagan diagnostic 

criteria (n = 251), and found similar associations between higher IV values and presence of 

LC hypopigmentation at autopsy (baseline IV values: AOR = 1.54, CI95%: 1.17–2.07, pBONF 

= 0.01; slope of IV values: AOR = 1.56, CI95%: 1.15–2.15, pBONF = 0.03; Fig. 2B, Table 1). 

Conversely, we did not detect such relationships in individuals with no or low cortical AD 

neuropathology (n = 137, baseline IV values: AOR = 1.18, CI95% = 0.74 – 1.88, p = 0.48; 

slope of IV values: AOR = 1.12, CI95% = 0.71 – 1.76, p = 0.63). In addition, considering 

only individuals who both received a final clinical consensus diagnosis of AD-related 

cognitive impairment (MCI or dementia) and displayed cortical AD neuropathology yielded 

similar significant associations (n = 187, baseline IV: AOR = 1.52, CI95% = 1.13 – 2.07, 

p = 0.006; slope of IV values: AOR = 1.43, CI95% = 1.04 – 1.99, p = 0.03). Furthermore, 

sensitivity analyses showed that including the presence of comorbid pathologies (Lewy 

body disease, cerebrovascular pathology) as additional covariates did not change any of the 

observed associations (Supplementary Tables S3–S4).

Rest-activity rhythm fragmentation mediates LC-related cognitive decline

Given the previously reported associations between cognitive decline and rest-activity 

rhythm disruption8,17 as well as LC neurodegeneration,18 we performed a mediation 

analysis to test hypothesis-driven models integrating the relationships between LC integrity, 

longitudinal rest-activity rhythm fragmentation, and global or domain-specific cognitive 

decline. First, we replicated previous findings by showing that LC hypopigmentation was 

associated with faster global cognitive decline (total effect: t(385) = −3.31, p = 0.001, 

Fig. 3A), and this association remained after adjusting for cortical AD neuropathological 

measures (Supplementary Table S5). Second, as highlighted above, LC hypopigmentation 

was linked to steeper slopes of increase in IV values (t(385) = 2.89, p = 0.004, Fig. 3B). 

Third, higher IV slope values were related to steeper global cognitive decline (t(385) = 

−4.34, p < 0.001). This association was independent of the effect of LC hypopigmentation 

when considered jointly in a regression model (IV slope: t(384) = −3.92, p < 0.001; LC 

hypopigmentation: t(384) = −2.77, p = 0.006, Fig. 3C). A commonality analysis using an 

unadjusted model indicated that IV slope values explained 71.10% of unique variance in 

global cognitive decline and 17.28% was attributed to LC hypopigmentation, whereas the 

shared variance explained by both factors was 11.62%. Evaluation of the indirect effect 

revealed that the relationship between LC hypopigmentation and global cognitive decline 

was partially mediated by a worsening of rest-activity rhythm fragmentation over time 

(estimate = −0.010, CI95%: −0.021 – −0.002, pBONF = 0.02, proportion mediated = 0.17; 

Fig. 3D). Furthermore, slopes of IV values partially mediated the association between LC 

hypopigmentation and cognitive decline for all domains, although only the mediation effect 

on episodic memory decline survived the correction for multiple comparisons (estimate = 

−0.011, CI95%: −0.023 – −0.002, pBONF = 0.03, proportion mediated = 0.18, Supplementary 
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Fig. S3). Finally, the magnitude of these mediating effects was greater in the subsample of 

individuals with postmortem evidence of cortical AD neuropathology (estimate = −0.014, 

CI95%: −0.030 – −0.003, pBONF = 0.02, proportion mediated = 0.22). Including comorbid 

pathologies as additional covariates in all branches of the mediation analysis did not modify 

the statistical outputs obtained in the whole sample or in the cortical AD neuropathology 

subsample.

Discussion

Recently, LC neurodegeneration has been proposed to crucially contribute to the behavioral 

and neuropsychiatric manifestations that emerge as early as in the preclinical stages of 

AD, such as sleep-wake dysregulation.15,16,32 In the present clinical-pathological analysis, 

we found that worse rest-activity rhythm fragmentation, measured on average 7.12 years 

before death, was associated with increased probability to display LC hypopigmentation 

at autopsy, and this relationship was driven by individuals with postmortem evidence of 

cortical AD neuropathology. In addition, our mediation analysis indicated that worsening of 

rest-activity rhythm fragmentation over the follow-up was partially mediating the association 

between LC hypopigmentation and cognitive decline, with the most robust effect observed 

for episodic memory. Furthermore, all the highlighted relationships were independent of the 

effect of comorbid pathologies. Altogether, these findings expand on previous animal and 

human studies by highlighting novel associations between LC neurodegeneration and early 

AD-related clinical changes, including fragmentation of 24-h rest-activity rhythms, and they 

further emphasize the relevance of monitoring rest-activity patterns in older populations to 

identify individuals at higher risk for AD trajectories.

Our results support that rest-activity rhythm fragmentation may constitute an objective 

marker associated with increased likelihood of LC neurodegeneration in the context 

of AD-related processes. The actigraphy-derived IV metric is directly influenced by 

the presence of daytime rest or nighttime activity and is often considered as a proxy 

measure of sleep-wake fragmentation, i.e. the inability to sustain consolidated periods 

of wakefulness and/or sleep.20,33 Animal studies established that the LC plays a major 

role in sleep-to-wake transitions12,34 and in the circadian regulation of arousal across 

the sleep-wake cycle.13,14 Thus, our findings corroborate these observations and expand 

on previously identified associations between in vivo quantification of LC structural 

integrity and subjective variables of daytime dysfunction and sleep disturbances,15,16 

by demonstrating a relationship with a broader and objective metric of sleep-wake 

fragmentation in humans. Furthermore, the association between rest-activity rhythm 

fragmentation and LC hypopigmentation was particularly expressed in individuals exhibiting 

AD neuropathological hallmarks. Accordingly, we previously showed that the relationship 

between LC integrity and self-reported nocturnal awakenings was moderated by plasma 

total tau levels in older individuals.16 Although IV values do not discriminate between 

fragmentation of daytime and nighttime periods, this metric has been linked to subjective 

reports of naps6,33 and specifically correlates with a focal actigraphy-derived measure of 

wakefulness fragmentation in older individuals.35 Interestingly, chronic daytime napping 

behavior, which reflects fragmentation of the wakefulness period, was recently highlighted 

as an important risk factor for AD-related trajectories,36 although the underlying 
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neurobiological substrates were not investigated in that study. Our findings therefore support 

neurobiological frameworks positing that the integrity of the LC may constitute a pivotal 

interface between sleep-wake fragmentation and AD.9,37

Rest-activity rhythm fragmentation was reported to be increased as early as in the preclinical 

stages of AD.6 Critically, the time windows considered in our analyses indicate that a single 

assessment of rest-activity rhythm fragmentation several years before death, at a time when 

individuals display limited or no cognitive symptoms, may provide valuable information 

regarding the likelihood of ongoing neurodegenerative processes in the LC. Thus, beside the 

previously identified clinical relevance of longitudinal recordings of rest-activity rhythms to 

predict cognitive decline in older individuals,4,8,36 our results pinpoint rest-activity rhythm 

fragmentation as an early marker of increased risk of displaying neurodegeneration within 

a key region associated with the earliest AD-related processes. By contrast, we observed no 

associations between LC hypopigmentation and IS values. The actigraphy-derived IS metric 

reflects the ability of the circadian timing system to synchronize the rest-activity rhythm 

with mainly photic (light-dark cycle) environmental time givers.20 It is therefore possible 

that, rather than neurodegeneration only within the LC, the integrity of the connections 

between the LC and the SCN (e.g., the SCN-dorsomedial hypothalamus-LC pathway)13 

may be more closely associated with day-to-day stability in the circadian organization of 

rest-activity rhythms.38

Importantly, the LC is embedded in a complex subcortical circuitry comprising sleep- and 

wake-promoting neuronal populations that are also vulnerable early in AD, such as the 

hypothalamic orexinergic or histaminergic neurons.11,37,39 While animal studies suggested 

that the LC may constitute a crucial effector of the inputs from upstream wake-promoting 

neuronal populations, including the hypothalamic orexinergic neurons,40 future studies 

assessing the respective contribution of neurodegeneration among these nuclei to circadian 

dysregulation of the sleep-wake cycle in AD are therefore warranted to better characterize 

the role of the LC in this pathway.

Our mediation analyses suggest that part of the previously reported relationship between 

LC neurodegeneration and cognitive decline involves increasing fragmentation of the rest-

activity rhythm over time. In addition, this indirect effect was more robustly observed 

for episodic memory decline, a hallmark cognitive impairment of the early phases of 

AD.41 Interestingly, the LC and its neuromodulatory norepinephrine system play a key 

role in learning and memory,42 not only during wakefulness but also through sleep-

dependent pathways.9,12,43 We therefore speculate that LC neurodegeneration may be 

related to episodic memory decline not only directly through its neuromodulatory effect, 

but also indirectly by driving fragmentation of wakefulness and sleep which would 

impede LC-related memory processing. In turn, increased fragmentation of the sleep-

wake cycle may precipitate cognitive decline by contributing to the unfolding of AD 

pathophysiological processes, including the accumulation of tau pathology in LC neurons 

and their neurodegeneration.44,45

Importantly, results from the sensitivity analyses indicated that all the highlighted 

relationships were independent of the presence of Lewy body disease and arteriolosclerosis/
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atherosclerosis. Sleep-wake fragmentation and circadian disturbances have been previously 

linked to both the presence of Lewy bodies46,47 and cerebrovascular pathology.22,48 

Similarly, LC neurons are particularly affected by alpha-synuclein pathology49,50 and recent 

autopsy studies showed that LC neurodegeneration was associated with cerebrovascular 

pathology.28,51 Our sensitivity analyses therefore support some degree of specificity 

in the observed relationships between rest-activity rhythm fragmentation and LC 

hypopigmentation, independently of the potential contributing effects of key comorbid 

pathologies on both of these factors.

This study also has limitations. First, LC neurodegeneration was assessed with a semi-

subjective evaluation of LC hypopigmentation during neuropathological examination. 

Although LC pigmentation ratings were produced following a standardized protocol within 

a unique laboratory, the use of more unbiased and quantitative measures of LC integrity, 

such as stereological quantification of total or tau-positive LC neuronal count,18,39 would 

constitute a more robust and fine-grained approach to elucidate the relationship between 

rest-activity rhythms and LC integrity in aging and AD. Even though similar quantitative 

LC measures have been collected for a small subsample of the MAP cohort,18 the 

eligibility criteria related to the present study and the limited overlap in data availability 

with actigraphic recordings prevented us from using these more detailed LC metrics. 

Nevertheless, we aimed to increase the reliability of the current qualitative variable by 

excluding ambiguous cases (LC pigmentation rating of ‘Maybe’), thus only considering 

clear-cut options (‘Yes’ and ‘No’ pigmentation ratings) in our analysis. Second, while 

actigraphic recordings provide useful information about the circadian organization of 

rest and activity periods in ecological conditions, the use of actigraphy-derived metrics 

precludes from drawing specific conclusions about sleep-wake phenotypes, which would 

require polysomnographic assessments. Such polysomnographic recordings would further 

help identifying individuals with sleep-wake comorbidities (e.g. sleep apnea, insomnia) that 

may contribute to rest-activity rhythm fragmentation and potentially confound the reported 

associations. In particular, sleep apnea has been linked to increased accumulation and/or 

reduced clearance of Aβ and tau proteins,52,53 as well as earlier onset of AD cognitive 

symptoms.54 Third, due to unavailability in LC pigmentation ratings and/or actigraphic data 

for a portion of the MAP cohort, the sample used in the present study only included White 

individuals. In light of the reported influence of race/ethnicity on AD risk55 as well as sleep 

and circadian rhythms,56 future studies of more diverse populations are warranted to extend 

the present findings to other racial/ethnic groups. Finally, antemortem information about 

the presence and magnitude of AD pathology was not available in this sample. Given the 

previously reported link between AD pathophysiological measures and actigraphy-derived 

24-h rest-activity patterns6,57 or LC integrity18,58 in asymptomatic individuals, collecting 

in vivo data related to ongoing AD pathophysiological processes would allow to evaluate 

their role in the highlighted associations already in the preclinical stage of the disease. 

Likewise, given the nature of the study sample, it mainly comprises very old individuals 

and additional studies in younger populations are therefore still required to examine 

earlier associations (e.g. during midlife) between rest-activity patterns and LC integrity, 

for example by leveraging MRI-derived investigation of LC structure and function in vivo,59 

in the context of initial AD-related processes.
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Over the recent years, growing interest emerged regarding the role of the LC in the 

disruption of wakefulness and sleep typically observed during the course of AD.9 In line 

with this framework, this clinical-pathological study showed that antemortem rest-activity 

rhythm fragmentation was associated with increased probability of LC neurodegeneration 

at autopsy, and mediated LC-related cognitive decline. These findings highlight the LC 

as a neurobiological correlate of sleep-wake dysregulation in aging and AD, and further 

emphasize the clinical relevance of monitoring rest-activity patterns in older populations to 

identify at-risk individuals for the successful implementation of preventive strategies.
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Summary for Social Media If Published:

@DrMVanEgroo, @grinberg_t, @HeidiJacobsLab

While recent studies suggested that neurodegeneration of the brainstem locus coeruleus 

(LC) is critically involved in sleep-wake dysregulation in Alzheimer’s disease (AD), 

the associations between LC integrity, circadian rest-activity patterns, and cognitive 

trajectories remain unknown. This study therefore investigated the relationships between 

antemortem 24-h rest-activity rhythms, postmortem LC pigmentation, and cognitive 

decline in older adults with and without autopsy-derived cortical AD neuropathology. 

Our results demonstrate that fragmentation of the rest-activity rhythm, measured up to 

~7.1 years before death, is associated with increased risk to display neurodegeneration 

in the LC at autopsy, particularly in individuals with cortical AD neuropathology 

and independently of other comorbid pathologies. In addition, worsening of rest-

activity rhythm fragmentation over time partially mediated the relationship between 

LC neurodegeneration and cognitive decline. These findings highlight the LC as a 

neurobiological correlate of sleep-wake dysregulation in aging and AD, and further 

underscore the clinical relevance of monitoring rest-activity patterns for improved 

detection of individuals at risk for AD trajectories.

Draft tweet:

Van Egroo et al. report that rest-activity rhythm fragmentation is associated with 

postmortem LC neurodegeneration, and mediates LC-related cognitive decline in 

Alzheimer’s disease
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Figure 1. Graphical representation of the study design and statistical analyses.
(A) Illustrative timeline of the measurements of interest for a representative participant. 

Baseline and longitudinal changes in rest-activity rhythm fragmentation (intradaily 

variability, IV) and stability (interdaily stability, IS) were derived from annual actigraphic 

recordings. Slopes of cognitive decline were computed based on annual neuropsychological 

assessments. At autopsy, locus coeruleus (LC) pigmentation ratings were obtained after 

neuropathological examination of the brainstem. Cortical Alzheimer’s disease (AD) 

neuropathology was assessed using the modified NIA-Reagan diagnostic criteria, and 

presence of comorbid pathologies (Lewy bodies, cerebrovascular pathology) was also 

evaluated. (B) Visual representation of the logistic regression models testing whether the 

presence of postmortem LC hypopigmentation is predicted by antemortem IV and IS 

values derived from the baseline actigraphic recording (on average 7.1 years before death, 

left panel) and over the duration of the follow-up (lasting on average 4.7 years, right 

panel). (C) Visual representation of the hypothesis-driven mediation models integrating the 

relationships between LC integrity, longitudinal rest-activity rhythm changes, and global or 

domain-specific cognitive decline. Abbreviations: AD, Alzheimer’s disease; IS, interdaily 

stability; IV, intradaily variability; LC, locus coeruleus.
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Figure 2. Statistical outputs of the logistic regression analysis.
Forest plot of adjusted odds ratios (left) and cumulative probability plot (right) of the logistic 

regression models testing the association between actigraphy-derived intradaily variability at 

baseline and postmortem LC hypopigmentation for (A) the whole sample (n = 388) and (B) 
in a sub-sample of individuals with postmortem evidence of cortical AD neuropathology (n 
= 251). Horizontal lines and shaded areas represent 95% confidence intervals related to the 

respective estimates. Abbreviations: CI, confidence interval; LC, locus coeruleus. *p < 0.05, 

**p < 0.005
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Figure 3. Statistical outputs of the mediation analysis in the whole sample (n = 388).
(A) Violin plots showing that individuals displaying postmortem LC hypopigmentation 

exhibit steeper slopes of global cognitive decline (t(385) = −3.31, p = 0.001). (B) 
Violin plots showing that individuals with postmortem LC hypopigmentation display 

higher longitudinal increases in intradaily variability values (t(385) = 2.89, p = 0.004). 

(C) Scatterplot of the relationship between higher longitudinal increases in intradaily 

variability values and steeper slopes of global cognitive decline (t(384) = −3.92, p < 

0.001), independently of the effect of LC hypopigmentation. (D) Graphical representation 

of the mediation model testing the likelihood of longitudinal increase in rest-activity rhythm 

fragmentation (IV slopes) as mediator of the relationship between LC hypopigmentation 

and global cognitive decline. Numerical values along the arrows represent regression 

coefficients. Abbreviations: LC, locus coeruleus. *p < 0.05, **p < 0.01, ***p < 0.005
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Table 1.

Statistical outputs of the logistic regression models with antemortem rest-activity rhythm fragmentation 
(intradaily variability values over time windows of interest) as predictor and postmortem LC 
hypopigmentation as output, both for the whole analysis sample (n = 388) and in the subsample of 

individuals with postmortem evidence of cortical Alzheimer’s disease neuropathology (n = 251).

Whole sample (n = 388)

Baseline actigraphy time point Longitudinal slope

Odds ratio (CI95%) P value Odds ratio (CI95%) P value

Intradaily variability, 1-SD increase 1.46 (1.16–1.84) 0.004* 1.44 (1.13–1.85) 0.02*

Age at death, 1-unit increase 1.00 (0.96–1.04) 0.91 1.00 (0.95–1.04) 0.88

Male sex 1.74 (1.04–2.89) 0.03 1.79 (1.07–2.98) 0.02

Education, 1-unit increase 0.99 (0.91–1.08) 0.81 0.99 (0.91–1.08) 0.86

Postmortem interval, 1-unit increase 0.99 (0.95–1.02) 0.42 0.99 (0.95–1.02) 0.44

Time interval from baseline to death, 1-unit increase 1.04 (0.96–1.12) 0.34 1.05 (0.97–1.14) 0.23

Cortical AD neuropathology subsamplea (n = 251)

Baseline actigraphy time point Longitudinal slope

Odds ratio (CI95%) P value Odds ratio (CI95%) P value

Intradaily variability, 1-SD increase 1.54 (1.17–2.07) 0.01* 1.56 (1.15–2.15) 0.03*

Age at death, 1-unit increase 0.97 (0.92–1.03) 0.38 0.97 (0.92–1.03) 0.37

Male sex 1.49 (0.76–2.90) 0.24 1.64 (0.83–3.18) 0.15

Education, 1–unit increase 1.05 (0.95–1.17) 0.32 1.06 (0.95–1.17) 0.29

Postmortem interval, 1-unit increase 1.00 (0.95–1.03) 0.81 0.99 (0.95–1.03) 0.74

Time interval from baseline to death, 1-unit increase 1.06 (0.96–1.17) 0.26 1.08 (0.98–1.20) 0.12

Abbreviations: AD, Alzheimer’s disease; CI, confidence interval; LC, locus coeruleus.

a
based on dichotomous NIA-Reagan Alzheimer’s disease pathology criteria.

*
Bonferroni-corrected P values.
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Table 2.

Statistical outputs of the logistic regression models with antemortem rest-activity rhythm fragmentation 
(intradaily variability values over time windows of interest) as predictor and postmortem LC 
hypopigmentation as output, both for the whole analysis sample (n = 388) and in the subsample of 

individuals with postmortem evidence of cortical Alzheimer’s disease neuropathology (n = 251).

Whole sample (n = 388)

Baseline actigraphy time point Longitudinal slope

Odds ratio (CI95%) P value Odds ratio (CI95%) P value

Intradaily variability, 1-SD increase 1.46 (1.16–1.84) 0.004* 1.44 (1.13–1.85) 0.02*

Age at death, 1-unit increase 1.00 (0.96–1.04) 0.91 1.00 (0.95–1.04) 0.88

Male sex 1.74 (1.04–2.89) 0.03 1.79 (1.07–2.98) 0.02

Education, 1–unit increase 0.99 (0.91–1.08) 0.81 0.99 (0.91–1.08) 0.86

Postmortem interval, 1-unit increase 0.99 (0.95–1.02) 0.42 0.99 (0.95–1.02) 0.44

Time interval from baseline to death, 1-unit increase 1.04 (0.96–1.12) 0.34 1.05 (0.97–1.14) 0.23

Cortical AD neuropathology subsamplea (n = 251)

Baseline actigraphy time point Longitudinal slope

Odds ratio (CI95%) P value Odds ratio (CI95%) P value

Intradaily variability, 1-SD increase 1.54 (1.17–2.07) 0.01* 1.56 (1.15–2.15) 0.03*

Age at death, 1-unit increase 0.97 (0.92–1.03) 0.38 0.97 (0.92–1.03) 0.37

Male sex 1.49 (0.76–2.90) 0.24 1.64 (0.83–3.18) 0.15

Education, 1-unit increase 1.05 (0.95–1.17) 0.32 1.06 (0.95–1.17) 0.29

Postmortem interval, 1-unit increase 1.00 (0.95–1.03) 0.81 0.99 (0.95–1.03) 0.74

Time interval from baseline to death, 1-unit increase 1.06 (0.96–1.17) 0.26 1.08 (0.98–1.20) 0.12

Abbreviations: AD, Alzheimer’s disease; CI, confidence interval; LC, locus coeruleus.

a
based on dichotomous NIA-Reagan Alzheimer’s disease pathology criteria.

*
Bonferroni-corrected P values.
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