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Phenotype integration improves power 
and preserves specificity in biobank-based 
genetic studies of major depressive disorder

Andrew Dahl    1,15 , Michael Thompson2, Ulzee An    2, Morten Krebs    3, 
Vivek Appadurai    3, Richard Border    2,4,5, Silviu-Alin Bacanu    6, 
Thomas Werge    3,7,8, Jonathan Flint    4, Andrew J. Schork3,9,10, 
Sriram Sankararaman    2,4,11, Kenneth S. Kendler    6 & Na Cai12,13,14,15 

Biobanks often contain several phenotypes relevant to diseases such as 
major depressive disorder (MDD), with partly distinct genetic architectures. 
Researchers face complex tradeoffs between shallow (large sample size, 
low specificity/sensitivity) and deep (small sample size, high specificity/
sensitivity) phenotypes, and the optimal choices are often unclear. Here 
we propose to integrate these phenotypes to combine the benefits of each. 
We use phenotype imputation to integrate information across hundreds 
of MDD-relevant phenotypes, which significantly increases genome-wide 
association study (GWAS) power and polygenic risk score (PRS) prediction 
accuracy of the deepest available MDD phenotype in UK Biobank, 
LifetimeMDD. We demonstrate that imputation preserves specificity in its 
genetic architecture using a novel PRS-based pleiotropy metric. We further 
find that integration via summary statistics also enhances GWAS power and 
PRS predictions, but can introduce nonspecific genetic effects depending on 
input. Our work provides a simple and scalable approach to improve genetic 
studies in large biobanks by integrating shallow and deep phenotypes.

Although major depressive disorder (MDD) is the most common psy-
chiatric disorder and the leading cause of disability worldwide, its 
causes are largely unknown1,2. Despite the moderate familial herit-
ability of MDD (~40%)3, genome-wide association studies (GWASs) have 

only recently begun to identify replicable risk loci and polygenic risk 
scores (PRSs)4–9. These discoveries were enabled by increasing power 
along two primary dimensions: depth of phenotyping and sample 
size1. Increasing sample size improves both GWAS and PRS power by 
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history, as well as socioeconomic, demographic and environmental 
phenotypes (Supplementary Note and Supplementary Table 1).

We first imputed the depression phenome using SoftImpute24 
(Methods), a variant of principal component analysis (PCA) that 
identifies latent factors from observed data and uses them to impute 
missing data. We previously found SoftImpute to be the most scalable 
among several established approaches17,24. We tuned SoftImpute’s 
regularization parameter using realistically held-out test data by 
taking unions of missingness patterns across samples17 and also 
used this approach to estimate the imputation accuracy for each 
phenotype (Extended Data Fig. 1)17. Imputation accuracy varied 
widely across phenotypes, ranging from R2 = 1% for being a twin to 
R2 = 97% for neuroticism score. For LifetimeMDD (80% missing), 
we estimated the phenotype imputation R2 to be 40%. This roughly 
translates to doubling its effective sample size17,25 (nobserved = 67,000, 
neffective = 166,000; Methods and Extended Data Fig. 1). Imputation 
accuracy was comparable when stratifying by sex, which is a signifi-
cant MDD risk factor26–28 (Supplementary Fig. 1 and Supplementary 
Table 2). We found that the imputed measures had deflated variances 
and inflated correlations (Supplementary Note and Supplementary 
Fig. 2), as expected17. This effect could bias some downstream tests, 
such as tests for genetic correlation. One main goal of this work was to 
determine whether this approach to phenotype imputation is biased 
for large-scale single-trait genetic studies.

Finally, we applied a new deep-learning imputation method, Auto-
Complete29, to the same phenotype matrix (Methods). AutoComplete 
improved estimated imputation accuracy for most phenotypes with 
>10% missingness (29 of 42) and increased the average estimated by 
R2 by 2.9%.

Phenotype imputation improves GWAS power
We performed GWASs on observed LifetimeMDD (n = 67,164), imputed 
values of LifetimeMDD (ImpOnly, n = 269,962) and the concatenation 
of imputed and observed LifetimeMDD (ImpAll, n = 337,126; Fig. 2 and 
Methods). GWAS on the observed values of LifetimeMDD identified one 
significant locus (Fig. 2e). In GWASs on the imputed values, the number 
of GWAS loci increased to 13 and 18 for SoftImpute and AutoComplete, 
respectively (Fig. 2a, b and Supplementary Table 3). Finally, in GWASs 
on the combination of both imputed and observed values, the number 
of significant loci further increased to 26 and 40 for SoftImpute and 
AutoComplete, respectively (Fig. 2c, d and Supplementary Table 3). 
We confirmed that these improvements in the number of GWAS hits 
over the single hit from observed LifetimeMDD were unlikely to occur 
by chance (Supplementary Fig. 3).

We investigated whether the new GWAS hits from phenotype 
imputation were MDD specific by comparing the ImpOnly GWASs to 
other MDD GWASs. First, we compared the two imputation methods. 
Of the 13 and 18 ImpOnly GWAS loci for SoftImpute and AutoComplete, 
respectively, 8 overlapped (giving a total of 23; Extended Data Fig. 2). 
Further, 9 of the remaining 15 loci had P < 10−5 in both ImpOnly GWASs, 
and all 15 of the 23 loci had P < 0.05/23. Overall, our two imputation 
methods captured highly overlapping genetic signals, but AutoCom-
plete identified more loci. Next, we assessed the eight shared hits 
in four nonoverlapping depression cohorts (Methods and Supple-
mentary Note): observed LifetimeMDD in UK Biobank, self-reported 
depression diagnosis or treatment in 23andMe7, the 29 MDD cohorts 
of the PGC4 (PGC29) and Danish registry data on MDD cases and popu-
lation controls (iPSYCH15,30). For reference, we also compared our 
findings to those for neuroticism in UK Biobank, a personality trait 
that is genetically correlated with, but distinct from, MDD31. We found 
that all eight hits shared by both ImpOnly GWASs had sign-consistent 
effect sizes across all four depression cohorts, as well as in neuroticism. 
Moreover, all eight hits had P < 0.05/23 for observed LifetimeMDD 
in UK Biobank. Finally, of the 23 single-nucleotide polymorphisms 
(SNPs) significant in either of the ImpOnly GWASs, 18 replicated in at 

reducing the standard errors of estimated genetic effects on a given 
MDD phenotype4,10. Alternatively, increasing diagnostic accuracy 
through structured clinical interviews prevents dilution of genetic 
effect sizes, thus improving GWAS power1,9,11 and PRS accuracy11,12. 
In practice, studies have a fixed budget and must trade off between 
increasing sample size or phenotyping depth. The optimal choice for 
current and future MDD studies remains contested11,13,14. Ultimately, 
the choice will depend on the study’s goals.

One important goal is statistical explanation, defined as the num-
ber of GWAS hits or the PRS prediction accuracy. Most MDD GWASs 
have focused on this goal, which is best achieved by maximizing sample 
size11,12. This motivates the use of shallow phenotypes in large biobanks, 
including self-reported depression and treatment5,7. Sample sizes are 
often further increased by including health record information of 
seeking care for depression (for example, the Integrative Psychiatric 
research consortium (iPSYCH15) and the Million Veterans Program8). 
These studies have amassed sample sizes of millions of individuals and 
have identified hundreds of risk loci, as well as PRSs with state-of-the-art 
prediction accuracy in European-ancestry clinical cohorts4–8.

A partly distinct goal is biological insight. This is more difficult to 
measure or even define, but it represents one of the ultimate goals of 
genetics: characterizing biological mechanisms to improve prediction 
and treatment for all. This goal may never be achieved by increasing 
sample size with shallow phenotyping, because shallow phenotypes 
are confounded by genetic effects that do not pertain to MDD biology11. 
In contrast, deep phenotyping in clinical cohorts (for example, the 
Psychiatric Genomics Consortium (PGC)4 and the China, Oxford and 
VCU Experimental Research on Genetic Epidemiology (CONVERGE)9) 
has identified a handful of replicated genetic loci that could potentially 
generate hypotheses on MDD-specific biology. However, this has not 
yet been demonstrated robustly, as current sample sizes simply do 
not provide the power to yield enough genetic signals for definitive 
biological inferences9.

In this paper, we propose to bridge the shallow–deep gap by inte-
grating information across hundreds of MDD-relevant phenotypes in 
UK Biobank11,16 (Fig. 1). We focus on using phenotype imputation17,18 to 
increase the effective sample size for the deepest MDD phenotype in UK 
Biobank (LifetimeMDD)11, which dramatically improves GWAS power 
and PRS accuracy over any individual MDD phenotype19. We extensively 
characterize the genetic architecture underlying these imputed phe-
notypes and show that they remain specific to LifetimeMDD. Further, 
we develop a novel approach to partly remove nonspecific signals 
from GWASs on shallow phenotypes akin to latent factor corrections 
in expression quantitative trait locus (eQTL) studies20–23. We also 
investigate phenotype integration via GWAS summary statistics using 
multi-trait analysis of GWAS (MTAG), which offers varying specificity 
and sensitivity depending on input choices. Finally, we developed a 
novel metric to quantify the specificity of a given PRS, which demon-
strates that imputed deep phenotypes of MDD are both more specific 
and more sensitive than observed shallow phenotypes.

Results
Phenotype imputation increases effective sample size
We focused on the deepest available measure of MDD in UK Biobank11, 
LifetimeMDD, which we derived by applying clinical diagnostic criteria 
in silico to MDD symptom data from the Patient Health Questionnaire 
9 (PHQ9) and the Composite International Diagnostic Interview Short 
Form (CIDI-SF) in the online Mental Health Questionnaire (MHQ). This 
procedure identified 16,297 LifetimeMDD cases and 50,867 controls. 
Because most individuals did not complete these questionnaires, Life-
timeMDD was missing for 269,962 individuals. We also studied a shallow 
measure of MDD, GPpsy11, defined as seeking help from a general prac-
titioner (GP) for “depression, anxiety, tension, or nerves”. For imputa-
tion and downstream analyses, we used a broad depression-relevant 
phenome with 217 phenotypes, including comorbidities and family 
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least one GWAS of observed MDD at P < 0.05/23 (Fig. 2g). Altogether, 
these results show that the loci underlying imputed LifetimeMDD are 
relevant to MDD.

We then checked whether the ImpOnly GWAS preserved the poly-
genic architecture of LifetimeMDD in terms of heritability and genetic 
correlation. First, we found that the liability-scale SNP-based heritabil-
ity (h2

g(liab)  from LDSC32) was lower for imputed LifetimeMDD 
(Soft-ImpOnly h2

g(liab) = 13.1%, standard error (SE) = 1.0%; Auto-ImpOnly 
h2
g(liab)  = 14.0%, SE = 1.1%) than for observed LifetimeMDD 

(h2
g(liab) = 19.0%, SE = 2.9%; Fig. 2f). Nonetheless, the genetic correlations 

between imputed and observed LifetimeMDD were near 1 
(Soft-ImpOnly: rg = 0.97, SE = 0.02; Auto-ImpOnly: rg = 0.96, SE = 0.03), 
as it was between the two imputation methods (rg = 1.00, SE = 0.004). 
Moreover, the rg between the ImpOnly phenotypes and other depres-
sion phenotypes largely mirrored the rg based on observed Life-
timeMDD (Fig. 2h).

Finally, we tested for effect size heterogeneity between the 
ImpOnly and observed LifetimeMDD GWASs. We used a random-effect 
meta-analysis33 (Methods), as the ImpOnly and observed LifetimeMDD 
GWASs used nonoverlapping individuals. We found no significant het-
erogeneity in effect size between ImpOnly and observed LifetimeMDD 

at genome-wide significance (Extended Data Fig. 2), and across the 13 
and 18 GWAS hits in Soft-ImpOnly and Auto-ImpOnly, respectively, 6 
and 4 SNPs showed significant heterogeneity at P < 0.05/23. Altogether, 
our results show that imputed LifetimeMDD is noisier than observed 
LifetimeMDD but captures similar genetic effects.

Phenome-wide factors index pleiotropic axes of depression 
risk
We examined the top latent factors in SoftImpute to understand what 
phenotypic correlations drive the imputation. We used two statisti-
cal metrics to prioritize significant factors. First, we quantified the 
phenome-wide variance explained (Methods and Fig. 3a): the top hand-
ful of factors clearly stood out, with factors becoming comparable 
to background noise levels around factor 30. Second, we quantified 
factor stability by calculating the R2 between factors estimated on 
separate halves of the data, similar to prediction strength in cluster-
ing34 (Methods and Fig. 3b). We found that the first ten factors were 
very stable (min R2 of ~ 98%), with stability decaying steadily thereafter 
(factors 11–20, average R2 of ~ 80%; factors 21–30, average R2 of ~60%). 
We conservatively conclude that the first ten or so factors are statisti-
cally meaningful.
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Fig. 1 | Study overview. (1), We imputed LifetimeMDD using a partially observed 
matrix of depression-relevant phenotypes in UK Biobank (UKB). We focused on 
using SoftImpute, which also produces latent phenome-wide factors. (2),(3), We 
then performed GWASs on observed and imputed values of LifetimeMDD (2), as 

well as downstream polygenic analyses, including in-sample and out-of-sample 
PRS predictions of MDD (3). (4),(5), We also studied the genetic basis of the latent 
factors of the depression phenome (4) and residualized latent factors from 
shallow MDD phenotypes to remove nonspecific pleiotropic effects (5).

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | December 2023 | 2082–2093 2085

Article https://doi.org/10.1038/s41588-023-01559-9

0

5

10

15

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Auto-ImpOnly 
(n = 269,962, n hits = 18)

0

5

10

15

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Soft-ImpAll
(n = 337,126, n hits = 26)

0

5

10

15

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Auto-ImpAll
(n = 337,126, n hits = 40)

0

5

10

15

–l
og

10
(P

)

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Soft-ImpOnly 
(n = 269,962, n hits = 13)

0

5

10

15

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

LifetimeMDD 
(n = 67,164, n hits = 1)

a b

c d

e f

g

0
0.

01
0.

02
0.

03
0.

04 0
0.

01
0.

02
0.

03 0
0.

05
0.

10

–0
.0

5 0

0.
05

–0
.0

5 0
0.

05
0.

10
0.

15 0
0.

02
0.

04
0.

06 0
0.

01
0.

02
0.

03
0.

04

rs10765273
rs11599236
rs11803263
rs13412552
rs28732114

rs35982947
rs6003482
rs61997596

rs651890
rs9390489

rs10772898
rs11214629
rs12615801

rs143864773
rs215852

rs3115631
rs6460902
rs9393926

rs57820851
rs62098012

rs6456788
rs72694247

rs9611522

β

SN
P

Category Imputed CIDI based EHR based Shallow phenotyping Not MDD

Significant No Yes

Soft
ImpOnly

Auto
ImpOnly LifetimeMDD PGC29 iPSYCH 23andMe Neuroticism

Auto
Im

pO
nly

O
verlap

Soft
Im

pO
nly

AutoImpOnly AutoImpAll

LifetimeMDD SoftImpOnly SoftImpAll

PG
C

29

iP
SY

C
H

G
Pp

sy

23
an

dM
e

N
eu

ro
tic

is
m

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

Phenotype

r g

h

PG
C

29

iP
SY

C
H

G
Pp

sy

23
an

dM
e

N
eu

ro
tic

is
m

PG
C

29

iP
SY

C
H

G
Pp

sy

23
an

dM
e

N
eu

ro
tic

is
m

Category
Not MDD
Shallow phenotyping
EHR based
CIDI based

–l
og

10
(P

)

–l
og

10
(P

)

–l
og

10
(P

)

–l
og

10
(P

)

0

0.1

0.2

23
an

dM
e

G
Pp

sy

So
ft

Im
pO

nl
y

Au
to

Im
pO

nl
y

N
eu

ro
tic

is
m

Au
to

Im
pA

ll

So
ft

Im
pA

ll

PG
C

29

Li
fe

tim
eM

D
D

iP
SY

C
H

Phenotype

h2 SN
P (

Li
ab

ili
ty

) Category
Not MDD
Imputed
Shallow phenotyping
EHR based
CIDI based

Fig. 2 | Genetic architecture of observed and imputed LifetimeMDD. 
 a–e, Manhattan plots for linear regression GWASs on imputed LifetimeMDD 
values from SoftImpute (a) and AutoComplete (c) (Soft-ImpOnly and Auto-
ImpOnly, n = 269,962) and combined imputed and observed LifetimeMDD values 
from SoftImpute (b) and AutoComplete (d) (Soft-ImpAll and Auto-ImpAll,  
n = 337,126) and logistic regression GWAS on observed LifetimeMDD (e) 
(n = 67,164). −log10(P) values shown on the y axis were before adjustment for 
multiple testing; red lines show the genome-wide significance threshold of  

P < 5 × 10−8; P values and test statistics for all GWAS significant SNPs in a–e are 
shown in Supplementary Table 3. f, Liability-scale estimates of SNP-based 
heritability and h, genetic correlation between all UK Biobank phenotypes  
(n values for Soft, Auto and LifetimeMDD GWASs as above; GPpsy n = 332,629; 
neuroticism n = 274,056) and external MDD studies from PGC (n = 42,455), 
iPSYCH (n = 38,128) and 23andMe (n = 307,354). g, Replication of GWAS effect 
sizes from Soft-ImpOnly and Auto-ImpOnly in observed LifetimeMDD and 
external MDD studies. All error bars indicate 95% CI.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | December 2023 | 2082–2093 2086

Article https://doi.org/10.1038/s41588-023-01559-9

0

0.05

0.10

0.15

0.20

0.25

Fa
ct

or
 1

Fa
ct

or
 2

Fa
ct

or
 3

Fa
ct

or
 4

Fa
ct

or
 5

h2  (o
bs

er
ve

d)

Factor 2 Factor 3

G
Pp

sy
Li

fe
tim

eM
D

D
An

xi
et

y.
di

ag
no

si
s

C
hr

on
ot

yp
e

Ed
uc

at
io

n 
ag

e
Ev

er
 s

am
e-

se
x 

pa
rt

ne
r

Ev
er

 s
m

ok
er

Ed
uc

at
io

n 
ag

e
Ev

er
 s

am
e-

se
x 

pa
rt

ne
r

Ev
er

 s
m

ok
er

Ed
uc

at
io

n 
ag

e
Ev

er
 s

am
e-

se
x 

pa
rt

ne
r

Ev
er

 s
m

ok
er

In
co

m
e

In
so

m
ni

a
M

en
ta

l h
ea

lth
.d

is
tr

es
s

N
eu

ro
t.s

co
re

Ev
er

 s
el

f-h
ar

m
Sn

or
in

g
Su

bj
ec

tiv
e 

w
el

l-b
ei

ng

G
Pp

sy
Li

fe
tim

eM
D

D
An

xi
et

y.
di

ag
no

si
s

C
hr

on
ot

yp
e

In
co

m
e

In
so

m
ni

a
M

en
ta

l h
ea

lth
.d

is
tr

es
s

N
eu

ro
t.s

co
re

Ev
er

 s
el

f-h
ar

m
Sn

or
in

g
Su

bj
ec

tiv
e 

w
el

l-b
ei

ng

G
Pp

sy
Li

fe
tim

eM
D

D
An

xi
et

y.
di

ag
no

si
s

C
hr

on
ot

yp
e

In
co

m
e

Ed
uc

at
io

n 
ag

e
Ev

er
 s

am
e-

se
x 

pa
rt

ne
r

Ev
er

 s
m

ok
er

Ed
uc

at
io

n 
ag

e
Ev

er
 s

am
e-

se
x 

pa
rt

ne
r

Ev
er

 s
m

ok
er

In
so

m
ni

a
M

en
ta

l h
ea

lth
.d

is
tr

es
s

N
eu

ro
t.s

co
re

Ev
er

 s
el

f-h
ar

m
Sn

or
in

g
Su

bj
ec

tiv
e 

w
el

l-b
ei

ng

G
Pp

sy
Li

fe
tim

eM
D

D
An

xi
et

y.
di

ag
no

si
s

C
hr

on
ot

yp
e

In
co

m
e

In
so

m
ni

a
M

en
ta

l h
ea

lth
.d

is
tr

es
s

N
eu

ro
t.s

co
re

Ev
er

 s
el

f-h
ar

m
Sn

or
in

g
Su

bj
ec

tiv
e 

w
el

l-b
ei

ng

G
Pp

sy
Li

fe
tim

eM
D

D
An

xi
et

y.
di

ag
no

si
s

C
hr

on
ot

yp
e

In
co

m
e

In
so

m
ni

a
M

en
ta

l h
ea

lth
.d

is
tr

es
s

N
eu

ro
t.s

co
re

Ev
er

 s
el

f-h
ar

m
Sn

or
in

g
Su

bj
ec

tiv
e 

w
el

l-b
ei

ng

–1

0

1

r g

Binary Quantitative

Factor 1
e

0

5

10

15

–l
og

10
(P

)

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

GPpsy: factor 1 (λ = 1.16, n hits = 1)

f g

SoftImpute factor (index)

La
te

nt
 fa

ct
or

 s
tr

en
gt

h 
(%

)

0 50 100 150 200

0

0.5

1.0

1.5

2.0 Neuroticism
Age

SES/EA

Cohabit
Sex/gender

Factor 10
Factor 20

Factor 30

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1.0

SoftImpute factor (index)

Pr
ed

ic
tio

n 
st

re
ng

th
 (R

2 )

Factor 4 Factor 5

NEGR1 
top SNP rs1194283
P = 6.71 × 10–13

a

b
%

 o
f f

ac
to

r e
xp

la
in

ed

0

5

10

15

N
eu

ro
t.s

co
re

N
eu

ro
t.f

ed
up

N
eu

ro
t.m

oo
ds

w
in

gs
N

eu
ro

t.m
is

er
ab

le
ne

ss
N

eu
ro

t.l
on

el
in

es
s

N
eu

ro
t.t

en
se

N
eu

ro
t.a

nx
io

us
G

Pp
sy

N
eu

ro
t.n

er
ve

s
N

eu
ro

t.n
er

vo
us

N
eu

ro
t.g

ui
lt

N
eu

ro
t.s

en
si

tiv
ity

N
eu

ro
t.w

or
ry

to
ol

on
g

N
eu

ro
t.i

rr
ita

bi
lit

y
Ps

yp
sy

H
ap

pi
ne

ss

Factor 1
Neuroticism

0

5

10

15

Ag
e

Re
tir

ed
Pa

id
.e

m
pl

oy
m

en
t

C
ar

to
w

or
k

In
co

m
e

Li
ve

w
.c

hi
ld

re
n

N
in

d.
ho

us
eh

ol
d

M
ot

he
r.a

liv
e

Fa
th

er
.a

liv
e

Ye
ar

s.
cu

rr
en

th
ou

si
ng

M
ot

he
r.a

ge
N

ve
hi

cl
es

H
ig

hB
P

M
ob

ile
us

ew
ee

kl
y

M
ob

ile
us

e
Al

ev
el

s

Factor 2
Age

0

5

10

15

Al
ev

el
s

To
w

ns
en

d
C

ol
le

ge
O

th
er

qu
al

ifi
ca

tio
ns

Se
x

O
le

ve
ls

Ph
ys

w
or

ki
nj

ob
Ed

uc
at

ed
yr

s
C

ur
re

nt
sm

ok
in

g
N

eu
ro

t.w
or

ry
to

ol
on

g
N

eu
ro

t.a
nx

io
us

Si
b.

nb
ro

th
er

s
Re

tir
ed

Si
b.

ns
is

te
rs

Ed
uc

at
io

na
ge

M
ob

ile
us

ew
ee

kl
y

Factor 3
SES/EA

%
 o

f f
ac

to
r e

xp
la

in
ed

0

5

10

15
Li

ve
w

.s
po

us
e

N
ve

hi
cl

es
N

in
d.

ho
us

eh
ol

d
To

w
ns

en
d

Li
ve

w
.c

hi
ld

re
n

Al
ev

el
s

Pu
bt

ra
ns

to
w

or
k

C
en

tr
e.

ba
rt

s
C

ol
le

ge
Ev

er
sa

m
es

ex
pa

rt
ne

r
C

ar
to

w
or

k
O

le
ve

ls
Ed

uc
at

ed
yr

s
si

b.
H

ig
hB

P
Si

b.
he

ar
td

is
ea

se
Si

b.
nb

ro
th

er
s

Factor 4
Cohabit

0

5

10

15

Se
x

Al
co

ho
lfr

eq
Al

co
ho

lu
se

Ev
er

sm
ok

ed
Sn

or
in

g
N

eu
ro

t.r
is

kt
ak

in
g

Pu
bc

lu
b

N
eu

ro
t.i

rr
ita

bi
lit

y
H

ou
rs

jo
bw

ee
k

H
ea

rt
di

se
as

e
H

ig
hB

P
H

om
em

ak
er

Pr
os

ta
te

ca
nc

er
N

ap
du

rin
gd

ay
In

co
m

e
So

ci
al

vi
si

tf
re

q

Factor 5
Sex

c

d

72.672.4

0

2

4

6

8

10

12

14
Plotted SNPs

rs1194283
0.8

r2

0.8
0.4
0.2

←NEGR1

72.8

Position on chr. 1 (Mb)

–l
og

10
(P

)

73.0

0

20

40

60

80

100 Recom
bination rate (cM

 per M
b)

Fig. 3 | Characterizing top latent factors driving SoftImpute. a,b, Statistical 
importance of each factor measured by percentage variance explained in the 
phenotype matrix (a) and factor prediction strength (b). c, Top phenotype 
loadings for the top five SoftImpute factors. d,e, Estimates of heritability (d) 
(n = 337,126 for all factors) and genetic correlation (e) of the top five SoftImpute 

factors with MDD-relevant traits (n values for all MDD-relevant traits can be 
found in Supplementary Table 1). f, Logistic regression GWAS Manhattan plot of 
GPpsy conditioning on SoftImpute factor 1; the red line shows the genome-wide 
significance threshold. g, LocusZoom plot of the significant GWAS locus in gene 
NEGR1. All error bars indicate 95% CI.
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We studied the genetic basis of each factor with GWASs. The num-
ber of GWAS hits ranged from 3 (factor 2, mainly indexing age-related 
phenotypes; Fig. 3c) to 309 (factor 3, mainly indexing socioeconomic 
status and education attainment), with λGC ranging from 1.15 (factor 2) 
to 2.11 (factor 3) (Supplementary Fig. 5). We next estimated heritabili-
ties and found they ranged from h2

g = 1.9% (SE = 0.2%) for factor 2 to 
h2
g = 22.4% (SE = 0.9%) for factor 3 (Fig. 3d and Supplementary Fig. 4). 

Finally, we profiled the genetic correlation between factors and 
MDD-related phenotypes (Fig. 3e and Supplementary Fig. 4). We found 
that the genetic correlations closely mirrored the factor loadings, 
which are based on phenotypic correlations. For example, factor 1 had 
rg = −0.93 (SE = 0.01) with neuroticism and factor 3 was correlated with 
years of education (rg = 0.79 (SE = 0.96) and income (rg = 0.75, SE = 0.03).

Given these results, we hypothesized that our top phenome-wide 
factors partly capture nonspecific pathways contributing to shallow 
MDD phenotypes. To test this hypothesis, we performed GWAS analysis 
on a shallow MDD measure, GPpsy (n = 332,629), conditional on factor 1. 
This is akin to removing confounders such as batch effects in eQTL stud-
ies through conditioning on latent factors. We found that only 1 of the 
25 GWAS hits for GPpsy remained after adjusting for factor 1 (Fig. 3f).  
This hit overlaps NEGR1 (top SNP rs1194283, odds ratio (OR) = 1.05, 
SE = 0.0065, P = 6.71 × 10−13; Fig. 3g), which has been identified as an 
MDD risk locus in multiple GWASs with varying phenotyping approac
hes4,6,8,35–37. Intriguingly, this locus also has replicated associations with 
body mass index and obesity in multiple populations38–41. We also per-
formed GWASs conditioned on each of the other top ten factors, which 
generally had little impact (Supplementary Fig. 6). One clear exception, 
however, was that adjusting for factor 3 increased the number of GPpsy 
GWAS hits from 25 to 35. These additional loci could be false positives 
from collider bias23,42,43.

MTAG improves GWAS power but is sensitive to inputs
As an alternative to phenotype imputation, we next evaluated pheno-
type integration at the GWAS summary statistic level using MTAG19, an 
inverse-covariance-weighted meta-analysis for GWAS on multiple traits. 
We did not use all 217 phenotypes in MTAG for two reasons. First, MTAG 
requires GWAS to be run on each input phenotype, which is computa-
tionally intractable for hundreds of phenotypes. Second, MTAG pro-
duces false positives when applied to large numbers of input GWAS19. 
Instead, we evaluated six different sets of input GWAS to MTAG, pro-
ducing six different integrated LifetimeMDD GWASs (Fig. 4a, Extended 
Data Fig. 3, Supplementary Table 4 and Supplementary Note).

All six MTAG input choices increased the number of GWAS hits 
from observed LifetimeMDD. On the low end, MTAG using family his-
tory measures of depression yielded five GWAS hits (MTAG.FamilyHis-
tory, λGC = 1.20; Fig. 4b). On the high end, MTAG using shallow MDD 
phenotypes and environmental factors (such as recent stressful life 
events, lifetime traumatic experiences and the Townsend deprivation 
index) yielded 33 GWAS hits (MTAG.All, λGC = 1.45; Fig. 4c). We note that 
MTAG.AllDep is analogous to prior depression phenotypes defined by 
manually combining similar depression measures14 and that MTAG.
FamilyHistory is analogous to prior methods that integrated family 
history into GWAS analysis44,45. Of the 51 total hits across all MTAG runs, 
34 overlapped hits from the imputed GWASs (Extended Data Fig. 3). 
Notably, we found that adding more input phenotypes in MTAG always 
increased the number of GWAS hits. This reflects a combination of 
added power by leveraging pleiotropy and an increased false positive 
rate19. Additionally, MTAG GWASs yielded substantially inflated herit-
ability estimates (on both the liability and observed scales), which 
increased with more input GWAS. For example, MTAG.All gave 
h2
g(liab) = 84.9% (SE = 5.6%), compared to h2

g(liab) = 19.0% (SE = 2.9%) for 
observed LifetimeMDD (Fig. 4d and Supplementary Table 5).

We next examined genetic correlations between MTAG and other 
MDD GWASs (Fig. 4e). First, MTAG.All, which included the most input 
GWAS, clustered together with the imputed GWASs, which leveraged 

all 217 phenotypes. Second, MTAG using shallow MDD phenotypes 
(MTAG.AllDep and MTAG.GPpsy) clustered with the GWAS on GPpsy. 
Third, neuroticism was significantly more genetically correlated with 
MTAG.Envs (rg = 0.84, SE = 0.01) than LifetimeMDD (rg  = 0.66, 
SE = 0.06). These results are consistent with prior observations that 
MTAG-based summary statistics modestly inflate genetic correlation 
with the input phenotypes46. Overall, the genetic correlations between 
MTAG and LifetimeMDD were high, with the lowest value derived for 
MTAG.Envs (rg = 0.90, SE = 0.03).

Finally, to compare like to like, we evaluated SoftImpute’s accuracy 
using only the MTAG.All input phenotypes (plus sex, age and 20 PCs). 
We found that imputation performed much worse with this reduced 
set of phenotypes (phenome-wide R2 decreased from 59.6% to 39.5%, 
P < 2 × 10−5, pooled t-test across folds; Supplementary Fig. 2 and Sup-
plementary Table 2).

Phenotype imputation and MTAG improves PRS accuracy
We then assessed the within-sample prediction accuracy of PRSs built 
from integrated MDD GWAS. We used ten-fold cross-validation to obtain 
the Nagelkerke’s R2 prediction accuracy for LifetimeMDD in white 
British individuals in UK Biobank. We jointly cross-validated the phe-
notype imputation and PRS construction (Methods). For MTAG, we 
jointly cross-validated the GWASs on secondary input phenotypes. For 
context, we compared these PRSs to ones built from observed Life-
timeMDD (n = 67,164; for neffect see Supplementary Table 6) and GPpsy 
(n = 332,629) in UK Biobank11, MDD defined by structured interviews 
in PGC29 (ref. 4) (n = 42,455), affective disorder defined by Danish 
health registries in iPSYCH15 (n = 38,123) and self-reported depression 
in 23andMe7 (n = 307,354; Supplementary Table 6).

We found that imputing LifetimeMDD doubled PRS prediction 
accuracy over observed LifetimeMDD (Fig. 5a; LifetimeMDD: R2 = 1.0%, 
95% confidence interval (CI) = 0.6–1.4%; Soft-ImpAll: R2 = 2.1%, 95% 
CI = 1.3–2.9%; Auto-ImpAll: R2 = 2.2%, 95% CI = 1.4–3.0%). Consistent 
with prior reports11,12, we found that the GPpsy PRS predicted Life-
timeMDD better than the LifetimeMDD PRS itself (R2 = 1.6%, 95% CI 
= 0.6%–2.4%) because it has a roughly four times larger sample size. 
Nonetheless, both the SoftImpute and AutoComplete PRSs outper-
formed the GPpsy PRS, demonstrating that integrating shallow and 
deep phenotypes through imputation can improve PRS accuracy over 
that with either class of phenotypes alone. Finally, we found that the 
imputed LifetimeMDD PRS substantially outperformed the PRSs from 
iPSYCH (R2 = 0.6%, 95% CI = 0.2–0.9%) and 23andMe (R2 = 1.3%, 95% CI = 
0.7–1.9%), even though iPSYCH used deeper phenotypes and 23andMe 
had a large sample size.

The performance of the MTAG PRSs mirrored the MTAG GWAS 
results and depended on the input phenotypes (Fig. 4 and Extended 
Data Fig. 3). First, MTAG.FamilyHistory showed improved accuracy 
compared to observed LifetimeMDD but underperformed in com-
parison to the imputed PRSs (R2 = 1.5%, 95% CI = 0.6–2.5%; Fig. 5a). On 
the other hand, MTAG.All outperformed the imputed PRSs by about 
20% (R2 = 2.6%, 95% CI = [1.3%, 3.9%]; Fig. 5a). In particular, this dem-
onstrates that MTAG with more than ten inputs, which is nonstandard 
and likely yields miscalibrated GWAS results, can significantly improve 
PRS prediction.

Phenotype imputation and MTAG improves PRS portability
We next asked whether phenotype integration improves PRS predic-
tions in different cohorts, diagnostic systems and/or populations. 
Demonstrating portability is essential to establish that phenotype 
integration does not merely reflect dataset-specific biases.

First, we tested PRS accuracy in non-British European-ancestry 
individuals in UK Biobank (UKB.EUR, n = 10,166). These individuals 
were measured on the same LifetimeMDD phenotype as our sample 
of white British UK Biobank individuals and also have European ances-
try, and hence represent the most similar cohort (Supplementary 
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Note and Supplementary Fig. 7). Although the small sample size limits 
definitive conclusions, we observed a nearly identical pattern among 
the PRS methods as in our training sample: imputation and MTAG 
almost always improved prediction accuracy compared to both Life-
timeMDD and GPpsy (Fig. 5b). We next assessed portability to two large 

European-ancestry cohorts from iPSYCH (2012 cohort (n = 42,250) and 
2015i cohort (n = 23,351); Supplementary Note). These nonoverlap-
ping samples were drawn from a nationwide Danish birth cohort with 
diagnoses obtained from national health registers30,47. We again found 
qualitatively identical results, with imputation outperforming both 
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y axis were before adjustment for multiple testing; red lines show the genome-
wide significance threshold of P < 5 × 10−8. d, SNP-based heritability estimates 
on the observed and liability scales for observed, imputed, and MTAG GWASs on 
LifetimeMDD as well as reference phenotypes (neffect is shown in Supplementary 
Table 5). e, Estimated genetic correlations for observed, imputed and MTAG 
analyses of LifetimeMDD and reference phenotypes. All error bars indicate  
95% CI.
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LifetimeMDD and GPpsy and the best MTAG setting outperforming 
imputation (Fig. 5b). Finally, we tested portability to European-ancestry 
individuals in the ATLAS dataset based on MDD as defined in Univer-
sity of California - Los Angeles electronic health record (EHR) data48,49 
(ATLAS.EUR, n = 14,388; Supplementary Note, Supplementary Fig. 8 
and Supplementary Tables 6–8). Again, the small sample size prevented 
definitive comparisons, but phenotype imputation and the best MTAG 
setting improved estimated accuracy (Fig. 5b).

We next tested these PRSs in individuals with non-European 
genetic ancestries, including African-ancestry individuals7 in UK 
Biobank with observed LifetimeMDD status (UKB.AFR, n = 687), as 
well as Han Chinese-ancestry individuals in the CONVERGE cohort9,50 
(n = 10,502; Supplementary Note) who were assessed for severe, recur-
rent MDD (Fig. 5c, Supplementary Note and Supplementary Table 6).  
Consistent with previous studies51–53, we found that the PRSs we 
derived from GWASs on European-ancestry cohorts generally had 
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Fig. 5 | PRS performance using observed, imputed and/or meta-analyzed 
MDD. a, PRS prediction accuracy for LifetimeMDD (n = 67,164) in unrelated white 
British individuals in UK Biobank using ten-fold cross-validation. For the imputed 
PRSs, we also cross-validated the imputation. Median values are shown as a line 
in the box; whiskers of boxplots are 1.5 times the interquartile range; outliers 
outside of the interquartile range are shown as filled dots. b, Out-of-sample 

PRS prediction accuracy in four additional cohorts with European ancestries 
(iPSYCH2012, n = 42,250; iPSYCH2015i, n = 23,351; UKB.EUR, n = 10,193; ATLAS.
EUR, n = 14,366). c, PRS prediction accuracy in African-ancestry individuals 
in UK Biobank (n = 687) and Han Chinese-ancestry individuals in CONVERGE 
(n = 10,502). All error bars indicate 95% CI.
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poorer portability to non-European-ancestry cohorts, making firm 
conclusions difficult. Nonetheless, the best MTAG setting was always 
nearly optimal, and PRSs based on imputed LifetimeMDD always out-
performed the PRS based on observed LifetimeMDD. Finally, we tested 
PRS prediction accuracy in UK Biobank individuals with Asian ancestry 
(UKB.ASN, n = 334), as well as ATLAS individuals who self-identified as 
Latino (ATLAS.LAT, n = 2,454), Black (ATLAS.AFR, n = 1,158) or Asian 
(ATLAS.ASN, n = 1,996). However, the power was too low in these small 
cohorts for meaningful interpretation (Supplementary Fig. 9).

A new metric for the specificity of PRSs
While phenotype integration improves PRS prediction in UK Biobank 
and in external cohorts, this may come at the cost of reduced specific-
ity to MDD. This is because integration explicitly borrows information 
from secondary phenotypes, which could introduce genetic signals 
that are not specific to MDD. To quantify this spillover of nonspecific 
effects into an MDD PRS, we compared prediction accuracy for Life-
timeMDD to prediction accuracy for secondary phenotypes. We call 
this metric of specificity ‘PRS pleiotropy’ (R2

secondary/R2
LifetimeMDD). Because 

core MDD biology is likely partly pleiotropic, its PRS pleiotropy should 
be nonzero for many secondary phenotypes. We further expect that 
shallow MDD phenotypes, such as GPpsy, would generally have higher 
PRS pleiotropy than LifetimeMDD11.

For all PRSs based on observed and integrated MDD, we calculated 
PRS pleiotropy for 172 secondary phenotypes used in imputation. We 
then investigated the 62 secondary phenotypes that were significantly 
predicted by any examined PRS (P < 0.05/172; Methods). Visualizing 
PRS pleiotropy for observed LifetimeMDD across this depression phe-
nome showed a spectrum of highly linked traits, including shallow MDD 
phenotypes such as GPpsy and genetically correlated traits such as neu-
roticism, that quickly faded across successive phenotypes (Fig. 6a). By 
comparison, GPpsy broadly had higher PRS pleiotropy across second-
ary phenotypes, indicating that GPpsy captures less-specific biology 
than LifetimeMDD, as expected. We also found that the 23andMe GWAS 
had similar PRS pleiotropy to GPpsy, consistent with the fact that both 
measure MDD by self-reported depression.

Our main question here was whether phenotype integration has 
more PRS pleiotropy than self-reported depression as in GPpsy and 
23andMe. We first evaluated PRS pleiotropy for MTAG and found that 
specificity highly depended on the input GWAS (Fig. 6b). First, MTAG.
Envs had far higher PRS pleiotropy than GPpsy, showing that its high 

PRS power comes at a high cost to specificity. On the other hand, MTAG.
All had a similar PRS pleiotropy as GPpsy and nearly double the PRS 
R2; hence, MTAG.All is clearly superior to GPpsy. MTAG.FamilyHistory 
had the opposite properties: it only modestly improved PRS R2 over 
observed LifetimeMDD, but this benefit came without loss of specific-
ity. We then evaluated PRS pleiotropy for imputed phenotypes (Fig. 6c).  
The SoftImpute ImpAll and ImpOnly PRSs were both more specific 
to LifetimeMDD than the GPpsy PRS, which is notable given that the 
imputed values were constructed from more than 200 phenotypes, 
including GPpsy. The AutoComplete ImpOnly PRS was less specific 
than GPpsy, although the ImpAll PRS was comparable.

Finally, we evaluated PRS pleiotropy relative to observed Life-
timeMDD to ask which of the phenotypes had excess pleiotropy in the 
integrated PRSs. We defined ‘excess PRS pleiotropy’ as the PRS pleiot-
ropy minus the PRS pleiotropy of observed LifetimeMDD11. As expected, 
self-reported depression PRSs (GPpsy and 23andMe) had high excess 
PRS pleiotropy, especially when compared to shallow MDD measures 
(Extended Data Fig. 4a). Likewise, MTAG.Envs had substantial excess 
PRS pleiotropy, especially for socioeconomic measures such as years of 
education (Extended Data Fig. 4b). Notably, MTAG.FamilyHistory had 
far less excess PRS pleiotropy than other MTAG settings or GPpsy, as 
well as reduced pleiotropy for several socioeconomic measures. Finally, 
SoftImp-All had lower excess PRS pleiotropy than GPpsy (41/62 pheno-
types); however, AutoImp-All had higher excess PRS pleiotropy (Extended 
Data Fig. 4c). Overall, MTAG can outperform imputation in PRS sensitivity 
or specificity depending on input, while imputation provides a simple 
and scalable approach that performs well in both power and specificity.

We then downsampled each GWAS used to build a PRS to assess 
the impact of sample size (Supplementary Note). Overall, we found 
that PRS pleiotropy was stable, although it can be upwardly biased 
for sample sizes below 100,000 (due to low power). In particular, our 
results were robust to differences in the training PRS sample sizes, 
except that observed LifetimeMDD PRS pleiotropy is a conservative 
baseline because it is trained on 67,000 individuals (Extended Data 
Fig. 5 and Supplementary Figs. 10 and 11). Further, we confirmed that 
these results persisted when we used the same SNPs in each PRS (Sup-
plementary Note and Extended Data Fig. 6).

Discussion
In this paper, we address the power–specificity tradeoff between deep 
and shallow MDD phenotypes by integrating them using phenotype 
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Fig. 6 | Phenome-wide PRS pleiotropy quantifies nonspecificity. PRS 
pleiotropy spectra across the depression-relevant phenome, defined as the ratio 
of PRS prediction accuracy for secondary traits relative to LifetimeMDD (PRS 
pleiotropy = R2

secondary/R2
LifetimeMDD). a, PRSs derived from GWAS on shallow MDD 

phenotypes (GPpsy or 23andMe) are less specific to LifetimeMDD than the PRS 
derived from the GWASs on LifetimeMDD. b, MTAG-based PRSs range from highly 

specific (MTAG.FamilyHistory) to less specific (MTAG.Envs) compared to PRSs 
derived from shallow MDD phenotypes. c, SoftImpute PRSs are more specific 
than PRSs derived from shallow MDD phenotypes, while AutoComplete PRSs are 
similar. Note that GPpsy and LifetimeMDD are each used in two ways: (1) to build 
the PRS and (2) to evaluate PRS pleiotropy.
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imputation or MTAG. We show that the integrated MDD phenotypes 
greatly improve GWAS power and PRS accuracy while, crucially, pre-
serving the genetic architecture of MDD. We propose a novel metric 
to assess the disorder specificity of a PRS that is widely applicable to 
biobank-based GWASs. This metric characterizes a power–specificity 
tradeoff. For MTAG, adding more phenotypes increases power but 
generally sacrifices specificity. Imputing LifetimeMDD with SoftIm-
pute, on the other hand, better preserves specificity. Overall, both 
approaches to phenotype integration outperform either deep or shal-
low phenotypes alone.

Phenotype imputation is a simple and scalable approach that 
should be considered for most biobank-based genetic studies. An 
important but challenging future application will be longitudinal data, 
which are often sporadically measured across time and individuals 
with potentially extreme nonrandom missingness. One limitation of 
our specific imputation approaches is that they distort higher-order 
moments (Supplementary Fig. 1), which will bias some downstream 
analyses such as genetic correlation. In future work, this could be 
addressed with multiple imputation54 or with heteroskedasticity-aware 
downstream tests55.

MTAG has several important strengths that complement impu-
tation. First, it operates on summary statistics, which enables incor-
porating external GWASs and is computationally cheap once GWASs 
have been performed. Second, we found that MTAG.All generally out-
performs imputation in GWAS hits and PRS power and portability. 
However, MTAG generally has less specificity. A striking exception is 
MTAG.FamilyHistory, consistent with prior methods that specifically 
leverage family history to improve genetic studies44,45,56. However, 
MTAG is highly sensitive to input phenotype selection and therefore 
requires extensive domain knowledge, similar to other work combin-
ing multiple depression measures14. There are several extensions to 
further improve MTAG for phenotype integration. First, we could 
incorporate local estimates of genetic correlation in MTAG, which 
has improved LifetimeMDD PRSs in UK Biobank57. Second, we could 
directly combine PRSs for multiple traits using weights to optimize 
prediction58–60. Third, we could develop a more systematic approach to 
choosing MTAG inputs, but this search is limited by the computational 
cost of performing cross-validated GWASs on each considered trait. 
Fourth, parametric models of confounding in summary statistics, such 
as GWAS-by-subtraction61, could improve specificity. However, these 
models rely on choosing appropriate inputs and causal models, which 
is not straightforward for heterogeneous disorders. Finally, we could 
input the GWASs on imputed phenotypes to MTAG; however, this may 
exacerbate their biases because imputation inflates the correlations 
between traits that MTAG leverages (Supplementary Fig. 1).

Our study has implications for improving disorder specificity in 
future MDD studies. We have worked on the deepest MDD phenotype 
in UK Biobank, LifetimeMDD, which is derived by applying DSM-5 cri-
teria in silico to self-rated MDD symptoms in the MHQ. Although it lies 
on essentially the same genetic liability continuum as gold-standard 
MDD11, LifetimeMDD is shallow compared to a clinical diagnosis based 
on a structured in-person interview due to self-report biases and misdi-
agnoses62–65. In the future, this bias could be mitigated using probability 
weights, which have recently been used for GWASs66,67. More broadly, 
the DSM-5 criteria for MDD have substantial shortcomings in reliabil-
ity68–70. Nonetheless, improving the MDD diagnostic criteria may be 
only achievable through epistemic iterations64, a series of efforts to 
characterize specific genetic signals for the deepest available MDD defi-
nition and, in turn, refine our definition of MDD. Our efforts to improve 
GWAS power and specificity in noisy biobanks advance this process.

Our implementation of phenotype integration uses shallow MDD 
phenotypes to improve power for LifetimeMDD, and as such its speci-
ficity is limited by the specificity of LifetimeMDD. Future statistical 
methods could go further and improve specificity over existing phe-
notypes. We have taken a step in this direction with SoftImpute factors, 

which revealed a specific locus from a shallow phenotype. This is akin 
to latent factor correction in genomic studies23,71–74, and it could be 
adapted to AutoComplete using, for example, Integrated Gradients 
methods75. However, it is challenging to remove nonspecific signals 
without removing specific signals or, worse, introducing artificial 
signals due to collider bias23,42,76. This is especially true for disorders 
such as MDD where epistemic uncertainty clouds what signals are 
most biomedically useful.

Phenotype integration is broadly applicable to biobank-based 
genetic studies, which often evaluate a mixture of biomarker-, nurse-, 
GP-, specialist- and/or patient-defined disorder measures. Further, 
biobanks offer diverse disorder-relevant phenotypes, such as age of 
onset, medical procedures, prescriptions, environmental risk factors, 
family history and socioeconomic measures. While the degree of speci-
ficity of phenotype integration will vary between applications, this 
can be assessed with our novel PRS pleiotropy metric. This empirical 
measure complements prior theoretical derivations of power–speci-
ficity tradeoffs in the meta-analysis of heterogeneous traits77. In the 
future, PRS pleiotropy can be used to evaluate the specificity of newly 
constructed phenotypes.

Our results have complex implications for equity in genetic stud-
ies and clinical care. On the one hand, EHR-derived phenotypes have 
a history of exacerbating inequities that continues to this day78–81. 
Moreover, phenotype integration uses a reference phenome, which 
has the potential to propagate systematic biases present in biobank 
data. Although we found that phenotype integration can improve PRS 
portability across ancestries, the results are less statistically clear than 
those in European ancestries. This highlights the need for greater sam-
ple sizes in diverse ancestries and better methods for cross-ancestry 
portability. Careful extensions of our approach, such as residualizing 
phenome-wide factors, have the potential to improve portability by 
eliminating confounders. Given the extreme Eurocentric biases in avail-
able genomics data, these and other statistical approaches to improve 
the utility of PRSs for all people are urgently needed.
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Methods
Ethical approval
This research was conducted under the ethical approval from the UK 
Biobank resource under application no. 28709 and 33217. The use of 
iPSYCH data follows the standards of the Danish Scientific Ethics Com-
mittee, the Danish Health Data Authority, the Danish Data Protection 
Agency and the Danish Neonatal Screening Biobank Steering Com-
mittee. Data access was via secure portals in accordance with Danish 
data protection guidelines set by the Danish Data Protection Agency, 
the Danish Health Data Authority and Statistics Denmark. Retrospec-
tive data collection and analysis for ATLAS was approved by the UCLA 
Institutional Review Board (IRB)48. Patient Recruitment and Sample Col-
lection for Precision Health Activities at UCLA” is an approved study by 
the UCLA IRB (UCLA IRB17-001013). All necessary patient/participant 
consent has been obtained and the appropriate institutional forms 
have been archived. The CONVERGE study was approved by the ethi-
cal review boards of Oxford University and participating hospitals. All 
participants provided written informed consent9.

Phenotypes used in phenotype imputation
We considered 217 relevant phenotypes to impute LifetimeMDD11 in 
337,127 individuals of white British ancestry in UK Biobank (Supplemen-
tary Table 1). These included (1) LifetimeMDD as defined in Cai et al.11; (2) 
minimal phenotyping definitions of depression based on help-seeking, 
symptoms, self-reports and/or EHRs as defined in Cai et al.11; (3) indi-
vidual lifetime and current MDD symptoms from the CIDI-SF82 and 
PHQ9 from which we derived LifetimeMDD; (4) psychosocial factors; (5) 
self-reported comorbidities; (6) family history of common diseases; (7) 
early life factors; (8) socioeconomic phenotypes; (9) lifestyle and envi-
ronment phenotypes; (10) social support status; and (11) demographic 
features including age, sex, UK Biobank assessment center as a proxy 
for geographical residence and 20 genetic PCs. These phenotypes 
were selected based on their established relevance to MDD and were 
all collected through either a touchscreen questionnaire completed at 
the assessment center or the online mental health follow-up question-
naire (MHQ). All UK Biobank data fields, sample sizes and prevalence of 
binary outcomes are detailed in Supplementary Table 1, and we report 
levels of missingness for all inputs for multi-phenotype imputation in 
Extended Data Fig. 1. For PRS pleiotropy analyses, we excluded the 20 
genetic PCs, 22 assessment centers and the genotyping array.

Phenotype imputation with SoftImpute
We fit SoftImpute with the ALS method24 on the 217 phenotypes making 
up the MDD-related phenome in UK Biobank, using cross-validation to 
optimize the nuclear norm regularization parameter. We used our prior 
approach to make the cross-validation more realistic by copying real 
missingness patterns instead of completely random entries17,83, which 
provides more realistic estimates of imputation accuracy (Extended 
Data Fig. 1). We previously studied SoftImpute at a smaller scale in com-
prehensive simulations and several real datasets17, and we have since 
used it in several larger studies17,83,84. Overall, SoftImpute is extremely 
simple, robust and scalable. We summarize the SoftImpute model fit by 
the latent factors (Fig. 3c) and the variances they explain (Fig. 3a), which 
are akin to the eigenvectors (or PCs) and eigenvalues of the phenotype 
covariance matrix, respectively. We also estimate the prediction strength 
(Fig. 3b), which is the squared correlation between two latent factors 
estimated after splitting the sample into two nonoverlapping halves (R2). 
We define the effective sample size after-imputation as Nobs + Nmiss ⨯ R2, 
analogous to genotype imputation17,18,25; we note that this approximates 
the power-equivalent number of observed phenotypes.

Phenotype imputation with AutoComplete
We developed a new deep learning-based method, AutoComplete, in a 
companion paper29. AutoComplete consists of several fully connected 
layers with nonlinearities and learns to optimize reconstruction of 

realistically held-out missing entries. The model is fully differenti-
able and is fit using stochastic gradient descent. Unlike SoftImpute, 
AutoComplete’s objective function models binary phenotypes. As with 
SoftImpute, the hyperparameters for AutoComplete were determined 
through cross-validation on realistically held-out missing data. In this 
paper, we focus on its application to imputing LifetimeMDD.

GWASs on observed or imputed phenotypes
GWASs on directly phenotyped and imputed phenotypes in UK Biobank 
were performed using imputed genotype data at 5,781,354 SNPs (minor 
allele frequency > 5%, INFO score > 0.9) using logistic regression and 
linear regression implemented in PLINK v2 (ref. 85) for binary and 
quantitative traits, respectively. We used 20 PCs computed with flash-
PCA86 on 337,129 white British individuals in UK Biobank and genotyp-
ing arrays as covariates for all GWASs (see Supplementary Note for 
details of sample and genotype quality control in UK Biobank). To 
test for heterogeneity between genetic effects found in GWASs on 
observed LifetimeMDD and imputed measures of MDD from Soft-
Impute (Soft-ImpOnly) and AutoComplete (Auto-ImpOnly), we per-
formed a random-effect meta-analysis using METASOFT33 and tested 
for heterogeneity between effect sizes at each SNP.

SNP-based heritability and genetic correlation
To test for SNP-based heritability of each phenotype and the genetic 
correlation between pairs of phenotypes, linkage disequilibrium (LD) 
score regression implemented in LDSC v1.0.11 (refs. 32,87) was per-
formed on the GWAS summary statistics using in-sample LD scores 
estimated in 10,000 random white British UK Biobank individuals at 
SNPs with minor allele frequency > 5% as reference. For MTAG results, 
we used the effective sample size estimated in MTAG as the sample 
size entry in LDSC; for all other GWASs, we used the actual sample 
size. When we estimated the liability-scale heritability, we assumed the 
population prevalence of binary phenotypes equaled their prevalence 
in UK Biobank. For all GWASs, we have indicated their effective sample 
sizes accounting for imbalance between cases and controls (neffective = 4/
(1/ncases + 1/ncontrols)) in Supplementary Tables 5 and 6. We note that this 
is different from the imputation-related definition of effective sample 
size and also differs from MTAG’s definition.

In-sample PRS prediction of phenotypes in UK Biobank with 
ten-fold cross-validation
We performed SoftImpute24 and AutoComplete imputations ten times. 
Each time we used 90% of the individuals in the input phenotype matrix 
and then built the PRS from the GWAS results with PRSice v2 (ref. 88) 
and evaluated predictive accuracy for observed LifetimeMDD and 
the depression-related phenome (217 phenotypes, used as input in 
imputation) in the 10% of individuals who were held out. For MTAG19, 
we performed a GWAS on each set of input phenotypes (as shown in 
Fig. 4) ten times, each time using 90% of the individuals in UK Biobank. 
We then ran MTAG on the GWAS summary statistics on this 90%, built 
a PRS from the resulting MTAG summary statistics with PRSice v2 and 
evaluated predictive accuracy for observed LifetimeMDD in the 10% 
of individuals who were held out. For all PRS predictions, we used 20 
genomic PCs and the genotyping array used as covariates. For binary 
phenotypes, including LifetimeMDD, we evaluated accuracy using 
Nagelkerke’s R2. For all quantitative phenotypes, including neuroticism, 
we evaluated accuracy using ordinary R2.

PRS prediction of phenotypes in UK Biobank from external 
GWAS summary statistics
We constructed PRSs from MDD GWAS summary statistics from PGC29 
(ref. 4), iPSYCH15 and 23andMe7, as detailed in Supplementary Table 6,  
and predicted phenotypes in UK Biobank using PRSice v2, with 20 
genomic PCs and the genotyping array used in UK Biobank as covari-
ates. For each of these studies, we used only SNPs with imputation INFO 
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score > 0.9 and minor allele frequency > 5% for constructing the PRS. 
For binary phenotypes, including LifetimeMDD, we evaluated accuracy 
using Nagelkerke’s R2. For all quantitative phenotypes, including neu-
roticism, we evaluated accuracy using ordinary R2. We calculated PRS 
pleiotropy on all secondary phenotypes (not including LifetimeMDD) 
used in imputation, except for 20 PCs, array and assessment center 
(total of 172 phenotypes).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
UK Biobank genotype and phenotype data used in this study are from 
the full release (imputation version 2) of the UK Biobank Resource 
obtained under application no. 28709 and 33217. We used pub-
licly available summary statistics from PGC29 and 23andMe from 
the Psychiatric Genomics Consortium (https://www.med.unc.edu/
pgc/results-and-downloads), as well as summary statistics for affec-
tive disorders in the iPSYCH2012 cohort (https://doi.org/10.6084/
m9.figshare.20517330), with references in Supplementary Table 4. 
The individual-level CONVERGE, Danish and UCLA datasets are not 
publicly available due to institutional restrictions on data sharing and 
privacy concerns. Summary statistics of all GWASs used in this paper 
are available at: https://doi.org/10.6084/m9.figshare.19604335. PRSs 
for all imputed and MTAG GWASs in this study have been submitted to 
the PGS Catalogue under publication ID PGP000461 and have been 
assigned score IDs from PGS003576 to PGS003585.

Code availability
Publicly available tools that were used in data analyses are described 
wherever relevant in the Methods and Reporting Summary. Custom 
code for SoftImpute imputation of the MDD-relevant phenome and 
calculating PRS pleiotropy is available at https://github.com/andyw-
dahl/mdd-impute and https://github.com/caina89/MDDImpute. The 
AutoComplete software is available at https://github.com/sriramlab/
AutoComplete.
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Extended Data Fig. 1 | Imputation accuracy metrics across our depression-
relevant UKB phenome. a, Scatter plot of estimated imputation accuracy 
against phenotype missingness. b, Scatter plot of estimated imputation 
accuracy using our copy-masking approach against naive estimates masking 

entries uniformly at random. c, Distribution across phenotypes of gained 
effective sample size from phenotype imputation. d, Distribution of imputed 
LifetimeMDD values for held-out observations, which informally reflect the 
probabilities of having LifetimeMDD.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01559-9

Extended Data Fig. 2 | Quality control on GWAS loci identified from imputed 
LifetimeMDD. a, Venn diagram showing the overlap of GWAS loci identified 
from GWAS on ImpOnly and ImpAll measures of LifetimeMDD from Softimpute 
and Autocomplete. b,c, Manhattan plots of Cochran′s Q statistic’s P-value for 
heterogeneity, obtained through a random effect meta-analysis performed 

with METASOFT, between genetic effects identified from GWAS on observed 
LifetimeMDD and GWAS on ImpOnly measures of LifetimeMDD; −log10(P) values 
shown on the y-axis were before adjustment of multiple-testing; red line shows 
the genome-wide significance threshold corresponding to P = 5 × 10−8.
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Extended Data Fig. 3 | MTAG GWAS and genetic architecture. a-d, Manhattan 
plots showing MTAG results for LifetimeMDD for the MTAG runs, MTAG.GPpsy, 
MTAG.Envs, MTAG.AllDep and MTAG.All, which are described in Fig. 4a; red 
line shows the genome-wide significance threshold (P = 5 × 10−8). e, Replication 
of LifetimeMDD GWAS effect sizes for loci identified only by MTAG and those 

identified by bothMTAG and imputation (Softimpute or Autocomplete). Effect 
sizes are shown for observed LifetimeMDD and external MDD studies from 
PGC (n = 42,455), iPSYCH (n = 38,128), and 23andMe (n = 307,354). All error bars 
indicate 95% confidence intervals.
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Extended Data Fig. 4 | Excess PRS Pleiotropy. Excess PRS Pleiotropy measures 
the pleiotropy of a given PRS relative to the PRS from observed LifetimeMDD. 
PRS Pleiotropy is defined as the PRS prediction ratio for a secondary trait relative 
to observed LifetimeMDD (PRS Pleiotropy = R2secondary/R2LifetimeMDD), and excess 
pleiotropy is the increase relative to the LifetimeMDD PRS (Excess PRS Pleiotropy 
= (PRS Pleiotropy − LifetimeMDD PRS Pleiotropy)/LifetimeMDD PRS Pleiotropy). 
Plots are ordered by Excess PRS Pleiotropy for each PRS. a, The PRS derived 

from GPpsy and 23andMe are less specific to LifetimeMDD than the observed 
LifetimeMDD PRS, especially for shallow MDD phenotypes and neuroticism. 
b, MTAG.Envs has high Excess PRS Pleiotropy to secondary traits like college 
education, smoking, and maternal smoking, while MTAG.FamilyHistory actually 
reduces PRS Pleiotropy for these traits. c, Both ImpOnly and ImpAll SoftImpute 
phenotypes show lower Excess PRS Pleiotropy than GPpsy, and the ImpAll GWAS 
from Autocomplete is comparable to GPpsy.
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Extended Data Fig. 5 | PRS Pleiotropy is robust to GWAS sample size in practice. a-d, PRS Pleiotropy of GPpsy (n = 332,629) (a,b) and Soft-ImpAll (n = 337,126) (c,d) 
at full sample size and down-sampled to n = 50K and 100K for 62 phenotypes in UKB. Plotted values show the mean PRS Pleiotropy from 10-fold cross-validation in UKB.
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Extended Data Fig. 6 | PRS Pleiotropy is robust to SNP pruning. a-d, PRS 
Pleiotropy of imputed and MTAG GWAS for 62 phenotypes in UKB (which are 
significantly predicted by at least one full-sample PRS, as shown in Fig. 6), where 

the PRS is constructed with 136,563 LD-pruned SNPs (r2 < 0.2) in UKB (a,b) and 
91,315 SNPs from PGC29 GWAS clumped at Pthreshold = 1 (c,d). Plotted values show 
the mean PRS Pleiotropy from 10-fold cross-validation in UKB.
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