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Abstract

We present a skill learning model CLARION. Different from
existing models of high-level skill learning that use a top-
down approach (that is, turning declarative knowledge into
procedural knowledge), we adopt a bottom-up approach to-
ward low-level skill learning, where procedural knowledge de-
velops first and declarative knowledge develops later. CLAR-
10N is formed by integrating connectionist, reinforcement, and
symbolic learning methods to perform on-line learning. We
compare the model with human data in a minefield navigation
task. A match between the model and human data is found in
several respects.

Introduction

The acquisition and use of skill constitute a major portion
of human activities. Skills vary in complexity and degree
of cognitive involvement. They range from simple motor
movements and other routine tasks in everyday activities to
high-level intellectual skills. We study “lower-level” cogni-
tive skills, which have not received sufficient research atten-
tion. One type of task that exemplifies what we call low-level
cognitive skill is reactive sequential decision making (Sun et
al 1996). It involves an agent selecting and performing a se-
quence of actions to accomplish an objective on the basis of
moment-to-moment information (hence the term “reactive”).
An example of this kind of task is the minefield navigation
task developed at The Naval Research Lab (see Gordon et al.
1994). This kind of task setting appears to tap into real-world
skills associated with decision making under conditions of
time pressure and limited information. Thus, the results we
obtain from human experiments will likely be transferable
to real-world skill learning situations. Yet this kind of task
is suitable for computational modeling given the recent de-
velopment of machine learning techniques (Sun et al 1996,
Watkins 1989).

The distinction between procedural knowledge and declar-
ative knowledge has been made in many theories of learning
and cognition (for example, Anderson 1982, 1993, Keil 1989,
Damasio 1994, and Sun 1995). It is believed that both pro-
cedural and declarative knowledge are essential to cognitive
agents in complex environments. Anderson (1982) originally
proposed the distinction based on data from a variety of skill
learning studies, ranging from arithmetic to geometric theo-
rem proving, to account for changes resulting from extensive
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Figure 1: Navigating Through Mines

practice. Similar distinctions have been made by other re-
searchers based on different sets of data, in the areas of skill
learning, concept formation, and verbal informal reasoning
(e.g., Fitts and Posner, 1967; Keil, 1989; Sun, 1995).

Most of the work in skill learning that makes the declar-
ative/procedural distinction assumes a top-down approach;
that 1s, learners first acquire a great deal of explicit declar-
ative knowledge in a domain and then through practice, turn
this knowledge into a procedural form (“proceduralization™),
which leads to skilled performance. However, these models
were not developed to account for skill learning in the ab-
sence of, or independent from, preexisting explicit domain
knowledge. Several lines of research demonstrate that in-
dividuals can learn to perform complex skills without first
obtaining a large amount of explicit declarative knowledge
(e.g., Berry and Broadbent 1988, Stanley et al 1989, Lewicki
et al 1992, Willingham et al 1989, Reber 1989, Karmiloff-
Smith 1986, Schacter 1987, and Schraagen 1993). In research
on implicit learning, Berry and Broadbent (1988), Willing-
ham et al (1989), and Reber (1989) expressly demonstrate
a dissociation between explicit knowledge and skilled per-
formance in a variety of tasks including dynamic decision
tasks (Berry and Broadbent 1988), artificial grammar learn-
ing tasks (Reber 1989), and serial reaction tasks (Willingham
et al 1989). Berry and Broadbent (1988) argue that the psy-
chological data in dynamic decision tasks are not consistent
with exclusively top-down learning models, because subjects
can learn to perform the task without being provided a pri-
ori declarative knowledge and without being able to verbal-
ize the rules they used to perform the task. This indicates that
procedural skills are not necessarily accompanied by explicit
declarative knowledge, which would not be the case if top-
down learning is the only way to acquire skill. Willingham
et al (1989) similarly demonstrate that procedural knowledge
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1s not alwayy preceded by declarative knowledge in human
learning, and show that declarative and procedural learning
are not necessarily correlated. There are even indications that
explicit knowledge may arise from procedural skills in some
circumstances (see Stanley et al 1989). Using a dynamic de-
cision task, Stanley et al. (1989) found that the development
of declarative knowledge paralleled but lagged behind the de-
velopment of procedural knowledge.

Similar claims concerning the development of procedural
knowledge prior to the development of declarative knowl-
edge have surfaced in a number of research areas outside
the skill learning literature and provided additional support
for the bottom-up approach. Implicit memory research (e.g.,
Schacter 1987) demonstrates a dissociation between explicit
and implicit knowledge/memories in that an individual’s per-
formance can improve by virtue of implicit “retrieval” from
memory and the individual can be unaware of the process.
This is not amenable to the exclusively top-down approach.
Instrumental conditioning also reflects a learning process that
differs from the top-down approach, because the process is
typically non-verbal and involves the formation of action se-
quences without requiring explicit knowledge. It may be
applied to simple organisms as well as humans (Gluck and
Bower 1988). In developmental psychology, Karmiloff-Smith
(1986) proposed the idea of “representational redescription”.
During development, low-level implicit representations are
transformed into more abstract and explicit representations
and thereby made more accessible. This process is not top-
down either, but in the opposite direction.

The Model

The distinction between declarative and procedural knowl-
edge leads naturally to “two-level” architectures (Sun 1995).
We thereby developed the model CLARION, which stands for
Connectionist Learning with Adaptive Rule Induction ON-
line. It embodies the distinction of declarative and procedu-
ral knowledge (or, conceptual and subconceptual knowledge),
and it performs learning in a bottom-up direction. It con-
sists of two main components: the top level encodes explicit
declarative knowledge in the form of propositional rules, and
the bottom level encodes implicit procedural knowledge in
neural networks. In addition, there is an episodic memory,
which stores recent experiences in the form of “input, output,
result” (i.e., stimulus, response, and consequence).

A high-level pseudo-code algorithm that describes CLAR-
ION is as follows:

1. Observe the current state .

2. Compute in the bottom level the Q-value of each of the
possible actions (a,'s) associated with the perceptual state
z: Q(z.a1). Q(zr,a2), ..., Q(x,a,).

3. Find out all the possible actions (b1, b2, ..., bm) at the
top level, based on the the perceptual information z and
other available information (which goes up from the bot-
tom level) and the rules in place at the top level.

4. Choose an appropriate action a, considering the values of
a,’s and b;’s (which are sent down from the top level).

5. Perform the action a, and observe the next state y and (pos-
sibly) the reinforcement r.

6. Update the bottom level in accordance with the Q-Learning-
Backpropagation algorithm, based on the feedback infor-
mation,

7. Update the top level using the Rule-Extraction-Refinement
algonthm.,

8. Go back to Step 1.

In the bottom level, a Q-value is an evaluation of the “qual-
ity” of an action in a given state: Q(z,a) indicates how de-
sirable action a is in state . We can choose an action based
on Q-values. To acquire the Q-values, supervised and/or re-
inforcement learning methods may be applied. A widely ap-
plicable option is the Q-learning algorithm (Watkins 1989), a
reinforcement learning algorithm. In the algorithm, Q(z, a)
estimates the maximum discounted cumulative reinforcement
that the agent will receive from the current state z on. The up-
dating of Q(z, a) is based on minimizing

r + ve(y) — Q(z,a) (1

where 7 is a discount factor, y is the new state resulting from
action a in state z, and e(y) = max, Q(y,a). Thus, the up-
dating is based on the temporal difference in evaluating the
current state and the action chosen: In the above formula,
Q(z,a) estimates, before action a is performed, the (dis-
counted) cumulative reinforcement to be received if action a
is performed, and r + ye(y) estimates the (discounted) cumu-
lative reinforcement that the agent will receive, after action a
is performed; so their difference (the temporal difference in
evaluating an action) enables the learning of Q-values that ap-
proximate the (discounted) cumulative reinforcement. Using
Q-learning allows sequential behavior to emerge in an agent.
Through successive updates of the Q function, the agent can
learn to take into account future steps in longer and longer
sequences.

To implement Q functions, we chose to use a four-layered
network (see Figure 2), in which the first three layers form
a (either recurrent or feedforward) backpropagation network
for computing Q-values and the fourth layer (with only one
node) performs stochastic decision making. The output of the
third layer (i.e., the output layer of the backpropagation net-
work) indicates the Q-value of each action (represented by an
individual node), and the node in the fourth layer determines
probabilistically the action to be performed based on a Boltz-
mann distribution (i.e., Luce’s choice axiom; Watkins 1989):

Q(z.a)/a
p(ﬂ.lx) == Z‘- eQ(-’--“i:‘/G (2)

This learning process performs both structural credit assign-
ment (with backpropagation), so that the agent knows which
element in a state should be assigned credit/blame, as well
as temporal credit assignment, so that the agent knows which
action leads to success or failure. This learning process en-
ables the development of procedural skills potentially solely
based on the agent independently exploring a particular world
on a continuous and on-going basis.

In the top level, declarative knowledge is captured in a sim-
ple propositional rule form. To facilitate correspondence with
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Figure 2: The implementation of CLARION.
The top level contains localist encoding of propositional rules. The
bottom level contains connectionist networks for capturing procedu-
ral skills.

the bottom level and to encourage uniformity and integration
(Clark and Karmiloff-Smith 1993), we chose to use a localist
connectionist model for implementing these rules (e.g., Sun
1992). Basically, we translate the structure of a set of rules
into that of a network. For each rule, a set of links are es-
tablished, each of which connects a node representing an el-
ement in the condition of a rule to the node representing the
conclusion of the rule. For more complex rule forms includ-
ing predicate rules and variable binding, see Sun (1992).

To fully capture bottom-up learning processes, we devised
a new algorithm for learning declarative knowledge (rules)
using information in the bottom level (the Rule-Extraction-
Refinement algorithm). The basic idea is as follows: if an
action decided by the bottom level is “successful”, then the
agent extracts a rule (with its action corresponding to that
selected by the bottom level and with its conditions corre-
sponding to the current sensory state), and adds the rule to
the top-level rule network. Then, in subsequent interactions
with the world, the agent refines the extracted rule by con-
sidering the outcome of applying the rule: if the outcome is
“successful”, the agent may try to generalize (“expand™) the
condition of the rule to make it more universal; if the outcome
is not successful, then the agent may specialize (“shrink™) the
condition of the rule.

Specifically, at each step, we compute an information
gain measure that compares the qualities of two candidate
rules. To do that, we examine the following information:
(z,y,r,a), where z is the state before action a is performed,
y is the new state after an action a is performed, and r is
the reinforcement received after action a. Based on that, we
update rule statistics: the positive match and the negative
match counts for each rule condition and each of its minor
variations (i.e., the rule condition plus/minus one possible
value in one of the input dimensions) C, with regard to the
action a performed; that is, PM,(C') (i.e., Positive Match,
which equals the number of times that an input matches the
condition C, action a is performed, and the result is posi-
tive) and N M,(C) (i.e., Negative Match, which equals the

number of times that an input matches the condition C, ac-
tion a is performed, and the result is negative). Here, pos-
itivity/negativity is determined by the following inequality:
maxp Q(y,b) — Q(z,a) + r > threshold, which indicates
whether or not the action is reasonably good (Sun and Peter-
son 1998). Based on these statistics, we calculate the infor-
mation gain measure; that is,

PMa(A) +1 ) PMa(B) +1
PMa(A) + NMa(A)+2 P2 PMa(B)+ NMa(B) +2

IG(A, B) = loga

where A and B are two different conditions that lead to the
same action a. The measure compares essentially the per-
centage of positive matches under different conditions A and
B (with the Laplace estimator; Lavrac and Dzeroski 1994).
If A can improve the percentage to a certain degree over B,
then A is considered better than B. In the algorithm, if a rule
is better compared with the match-all rule (i.e, the rule with
the condition that matches all inputs), then the rule is consid-
ered “successful” (for the purpose of deciding on expansion
or shrinking operations).

We decide on whether or not to construct a rule based on
a simple success criterion which is fully determined by the
current step (z,y,r, a):

e Construction: if r +~ve(y) — Q(z,a) > threshold, where
a is the action performed in state z and y is the resulting
new state [that is, if the current step is successful], and
if there is no rule that covers this step in the top level, set
up arule C —» a, where C specifies the values of all the
input dimensions exactly as in z.

The criterion for applying the expansion and shrinking op-
erators, on the other hand, is based on the afore-mentioned
information gain measure. Expansion amounts to adding an
additional value to one input dimension in the condition of a
rule, so that the rule will have more opportunities of matching
inputs, and shrinking amounts to removing one value from
one input dimension in the condition of a rule, so that it will
have less opportunities of matching inputs. Here are the de-
tailed descriptions of these operators:

e Expansion: if IG(C,all) >  thresholdl and
maxe IG(C',C) > 0, where C is the current con-
dition of an applicable rule, all refers to the match-all
rule (with regard to the same action specified by the rule),
and C' is a modified condition such that C' = C plus
one value (i.e., C' has one more value in one of the input
dimensions) [that is, if the current rule is successful
and an expanded condition is potentially better], then
set C" = argmazc-IG(C',C') as the new (expanded)
condition of the rule. Reset all the rule statistics. Any rule
covered by the expanded rule will be placed in its children
list. !

"The children list of a rule is created to keep aside and make in-
active those rules that are more specific (thus fully covered) by the
current rule. It is useful because if later on the rule is deleted or

shrunk, some or all of those rules on its children list may be reacti-
vated if they are no longer covered.
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Figure 3: The Navigaton Input
The display at the upper left corner is the fuel gauge; the vertical
one at the upper right comner is the range gauge; the round one in the
middle is the bearing gauge: the 7 sonar gauges are at the bottom,

e Shrinking: if IG(C,all) <  threshold2 and
maxc IG(C',C) > 0, where C is the current con-
dition of an applicable rule, all refers to the match-all
rule (with regard to the same action specified by the
rule). and C' is a modified condition such that C' = C
minus one value (i.e., C' has one less value in one of
the input dimensions) [that is, if the current rule is
unsuccessful, but a shrunk condition is better], then set
C" = argmazc- IG(C', C) as the new (shrunk) condition
of the rule. Reset all the rule statistics. Restore those rules
in the children list of the original rule that are not covered
by the shrunk rule. If shrinking the condition makes it
impossible for a rule to match any input state, delete the
rule.

e Deletion: included in Shrinking.

Note that although the accumulation of statistics is gradual,
the acquisition and revision of rules are one-shot and all-or-
nothing, as opposed to the gradual changes in the bottom
level.

In choosing an action to be performed at each step, we
combine the corresponding values for each action from the
two levels (at step 4 of the overall algorithm) by a weighted
sum; that is, if the top level indicates that action a has an acti-
vation value v (which should be 0 or 1 as rules are binary) and
the bottom level indicates that a has an activation value g (the
Q-value), then the final outcome is w; * v+ w2 *q. Stochastic
decision making with Boltzmann distribution (based on the
weighted sums) 1s then performed to select an action out of
all the possible actions (Willingham et al 1989). w; and we
are automatically determined through probability matching.

Experiments

In all of the human experiments, subjects were seated in front
of a computer monitor that displayed an instrument panel
containing several gauges that provided current information
(see Figure 3). The following instruction was given to ex-
plain the setting:

I. Imagine yourself navigating an underwater submarine that
has to go through a minefield to reach a target location. The
readings from the following instruments are available:

(1) Sonar gauges show you how close the mines are to the sub-
marine. This information is presented in 7 equal areas that
range from 45 degrees to your left, to directly in front of you
and then to 45 degrees to your right. Mines are detected by

the sonars and the sonar readings in each of these directions
are shown as circles in these boxes. A circle becomes larger as
you approach mines in that direction.

(2) A fuel gauge shows you how much time you have left be-
fore you run out fuels. Obviously, you must reach the target
before you run out of fuel to successfully complete the task.

(3) A bearing gauge shows you the direction of the target from
your present direction; that is, the angle from your current di-
rection of motion to the direction of the target.

(4) A range gauge shows you how far your current location is
from the target.

II. At the beginning of each episode you are located on one
side of the minefield and the target is on the other side of the
minefield. You task is to navigate through the minefield to get
to the target before you run out of fuel. An episode ends when:
(a) you get to the goal (success); (b) you hit a mine (failure);
(c) you run out of fuel (failure).

A random mine layout was generated for each episode.

This setting was stochastic and non-Markovian. Because of
the tight time limit, the subjects were forced to be reactive and
use bottom-up learning. Five training conditions were used,
in order to produce differences of performance resulting from
differential emphases placed on the two levels respectively:

The standard training condition. Subjects received five
blocks of 20 episodes on each of five consecutive days (100
episodes per day). In each episode the minefield contained
60 mines. The subjects were allowed 200 steps.

The verbalization conditions. They were identical to the
standard condition except that subject were asked to step
through replays of selected episodes and to verbalize what
they were thinking during the episode. One group of sub-
jects verbalized for five of the first 20 episodes and five of
the last 20 episodes on the first, third, and fifth days, while
another group verbalized on the fifth day only.

The over-verbalization condition. Subjects were required
to perform verbalization on 15 of the 25 episodes that they
received during one session of training.

The dual-task condition. Subjects performed the naviga-
tion task while concurrently performing a category deci-
sion task. (In the category decision task, subjects listened
to a series of exemplars from five semantic categories at the
rate of one every three seconds (on average). One category
was designated the target category cach day and subjects
had to respond verbally when an exemplar of the category
was presented.)

The transfer conditions. Subjects were trained in 30 mine
minefields until they reached the criterion of 80% success
on two consecutive blocks. One group was trained under
the single task condition, while the other under the dual
task condition (as described earlier). Then they were both
transfered to the 60 mine fields (without secondary tasks).

The rationale for designing these experiments was to manip-
ulate training settings so as to allow differential emphases
on the two levels in subjects, which serves to illustrate the
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effects of the two levels in an indirect way, and thus verify
the model indirectly (there is no way that we can verify the
contributions of the two levels directly). For instance, with
verbalization, subjects might be forced to be more explicit,
and thus their top-level mechanisms might be more engaged
and the performance enhanced to some extent (Stanley et al
1989, Willingham et al 1989). When subjects were forced to
be completely explicit, their top-level mechanisms might be
overly engaged and thus the bottom-level mechanisms might
be hampered; thus the performance might be worsened (Re-
ber 1989, Schooler et al 1993). When subjects were dis-
tracted by a secondary (explicit) task, their top-level mech-
anisms might be less available to the primary task (since at-
tentional manipulation affects explicit processes more than
implicit processes; Stadler 1995, Nissen and Bullemer 1987),
which led to worsened performance.

CLARION was applied to the task in the same ways as
human subjects. The effect of (regular) verbalization was
posited to stem from heightened explication (rule learning)
activities (Stanley et al 1989) and to a lesser extent, from re-
hearsing previous episodes. Thus for the model, we reduced
the rule learning thresholds (to encourage more rule learning)
and also used episodic memory replay (to capture rehearsal).
To capture the effect of over-verbalization, we assumed that
too much verbalization (e.g., verbalizing for more than half
of the training episodes) reduced the rule learning thresholds
even further. The effect of the dual task was conjectured to
be hampering the top level. Thus in the model, the effect of
the dual task was captured by significantly increasing the rule
learning thresholds at the top level (which discouraged rule
learning).

10 human subjects were compared to 10 model subjects
(randomly selected) in each experiment. We obtained perfor-
mance data for each subject separately. These were divided
into blocks of 20 episodes each.

The effect of the dual task condition on learning. Suc-
cess rates were averaged for each human or model subject.
Comparing human and model performance with single vs.
dual task training, 2x2 ANOVA (human vs. model x single
vs. dual task) indicated a significant main effect for single vs.
dual task (p < .01), but no interaction between groups and
task types, indicating similar effects of the dual task condition
on the learning of human and model subjects. See Figure 4.

The effect of the dual task condition on transfer. 2x2
ANOVA (human vs. model x single vs. dual task) revealed a
significant main effect of single vs dual task (p < .05), and no
interaction between groups and task types, again indicating
similar effects of the dual task condition on the transfer of
human and model subjects. See Figure 5.

The effect of verbalization. The effect was revealed by
comparing performance of the two groups of verbalization
subjects (one started verbalization on the first day and the
other on the fifth day). The first four days were used to ex-
amine the effects of verbalization. We averaged success rates
across each of these 4 days for each subject, and subjected
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Figure 4: Single vs. Dual Task Training
The left panel contains averaged human data, and the right averaged
model data.
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Figure 5: Single vs. Dual Task Transfer
The left panel contains averaged human data, and the right averaged
model data.

the data to a 4 (days) x 2 (human vs. model) x 2 (verbal-
ization vs. no verbalization) ANOVA. The analysis indicated
that both human and model subjects exhibited a significant
increase in performance due to verbalization (p < .01), but
that the difference associated with verbalization for the two
groups was not significant. See Figure 6.

The effect of over-verbalization. In the over-
verbalization condition, virtually all subjects were perform-
ing at floor at the end of their 25 episodes of training. 2
CLARION captured this effect through the aforementioned re-
duction of the rule learning thresholds.

In addition, we compared the human and model subjects
under the standard, the verbalization (starting the first day),
and the dual-task condition. They were highly similar. The
model data were within the standard error of the human data.
Two corresponding sets of data in each condition were both
best fit by power functions. A Pearson product moment corre-
lation coefficient was calculated for each pair, which yielded
high positive correlations (r ranged from .82 to .91), indicat-
ing a high degree of similarity between human and model
subjects in how practice influenced human and model perfor-
mance in each condition.

Concluding Remarks

In sum, we discussed a hybrid connectionist model CLARION
as a demonstration of the approach of bottom-up skill learn-

2Qverall, these subjects achieved a 10% success rate, whereas
the subjects in the regular verbalization condition achieved a success
rate of 33%. If we eliminate the one subject who performed at 60%
in the over-verbalization condition, the remaining subjects achieved
a success rate of approximately 3%.



Figure 6: Verbalization vs. No Verbalization
The left panel contains averaged human data, and the right averaged
model data.

ing. The model essentially consisted of two levels for captur-
ing both procedural and declarative knowledge and enabling
bottom-up learning, which differed markedly from existing
models. Initial experiments demonstrated some matches of
the model with human data across a number of manipulations.
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