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Abstract

Many neurologic diseases cause discrete episodic impairment in con-
trast with progressive deterioration. The symptoms of these episodic
disorders exhibit striking variety. Herein we review what is known of the
phenotypes, genetics, and pathophysiology of episodic neurologic disor-
ders. Of these, most are genetically complex, with unknown or polygenic
inheritance. In contrast, a fascinating panoply of episodic disorders ex-
hibit Mendelian inheritance. We classify episodic Mendelian disorders
according to the primary neuroanatomical location affected: skeletal
muscle, cardiac muscle, neuromuscular junction, peripheral nerve, or
central nervous system (CNS). Most known Mendelian mutations al-
ter genes that encode membrane-bound ion channels. These mutations
cause ion channel dysfunction, which ultimately leads to altered mem-
brane excitability as manifested by episodic disease. Other Mendelian
disease genes encode proteins essential for ion channel trafficking or sta-
bility. These observations have cemented the channelopathy paradigm,
in which episodic disorders are conceptualized as disorders of ion chan-
nels. However, we expand on this paradigm to propose that dysfunction
at the synaptic and neuronal circuit levels may underlie some episodic
neurologic entities.
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Complex disorder:
a disease that develops
primarily due to
environmental
influences, although
polygenic inheritance
may increase
susceptibility

NMJ: neuromuscular
junction

Episodic disorder:
a disease in which
symptoms occur in
discrete paroxysms;
between paroxysms,
patients appear to be
normal or near normal
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INTRODUCTION

Whereas many diseases of the nervous system
cause progressive deterioration, a sizable
fraction of them are predominantly episodic in
nature. In this subset of disorders, a patient’s
neurologic function is impaired during an
episode (also known as an attack). Although
some patients may suffer from superimposed,
chronic neurologic dysfunction, between
attacks patients are usually completely normal.
Episodes are often triggered by mundane stim-
uli, such as hunger, fatigue, emotions, stress,
exercise, diet, temperature, or hormones. Why
these commonplace stimuli trigger episodes of
neurologic impairment in some patients but
not others is poorly understood.

Many episodic neurologic disorders ex-
ist, encompassing a protean range of symp-
toms. These may include weakness, stiffness,
paralysis, arrhythmias, pain, ataxia, migraine,
involuntary movements, and seizures. Most
episodic neurologic disorders exhibit complex
inheritance—that is, disease seems to develop
primarily owing to environmental influences
rather than genetic ones. In this review, we
briefly address the complex disorders that are
commonly encountered in clinical practice:

transient ischemic attack, syncope, epilepsy,
and migraine (Figure 1). Aside from these four
diseases, which are complex and common, there
exist a myriad of symptomatically similar dis-
eases that are complex but rare. Of these, many
are in fact progressive neurologic disorders that
happen to feature episodic symptoms but are
not primarily episodic in nature. However, oth-
ers are indeed primarily episodic. In this review,
we focus on those complex, rare disorders with
autoimmune etiology because they have pro-
vided substantial pathophysiological insight.

For the same reason, the remaining bulk
of our review focuses on episodic neurologic
disorders that are Mendelian (Figure 1). Each
is rare. For these disorders, single gene muta-
tions are sufficient to cause disease. However,
even in these genetic diseases, environmental
factors can still be important in triggering
attacks. Over the past two decades, medical
geneticists have extensively clarified the known
phenotypes, identified many novel phenotypes,
and pinpointed scores of disease genes. In many
cases, disease gene discovery has directly led to
pathophysiological insight and, in a few cases,
even novel treatments. We organize these di-
verse disorders on the basis of the primary neu-
roanatomical location affected: skeletal muscle,
cardiac muscle, neuromuscular junction
(NMJ), peripheral nerve, or CNS. As much as
is possible given practical constraints, for each
disorder we review the clinical presentation,
genetics, and pathophysiology, with particular
emphasis on new discoveries and unanswered
questions. Finally, in the concluding section we
present our view of the field’s urgent challenges.

COMPLEX DISORDERS

Complex episodic neurologic disorders de-
velop primarily due to environmental factors,
although in most disorders some evidence
indicates polygenic inheritance, which remains
largely undeciphered (Poduri & Lowenstein
2011, Shyti et al. 2011, Della-Morte et al.
2012). Complex episodic disorders are very
common in aggregate. This group includes
a legion of causes that are each individually

26 Russell · Fu · Ptáček
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rare, such as autoimmune episodic disorders
(see below). Also, four complex disorders are
commonly encountered in clinical practice:
transient ischemic attack, syncope, epilepsy,
and migraine (Figure 1).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 1
The landscape of episodic neurologic disorders.
There are many episodic neurologic disorders, with
a vast range in genetic contribution and prevalence.
Prevalence is depicted in crude approximation by
the size of each ellipse. This fascinating group
includes four common complex disorders (left),
many rare complex disorders including autoimmune
(lower left), and many rare Mendelian forms (right).
Some Mendelian phenotypes exhibit profound
similarity to particular complex disorders, as
depicted by identical coloration (e.g., light green for
idiopathic epilepsy and for Mendelian epilepsy
syndromes). Often, Mendelian phenotypes share
phenotypic and/or genetic characteristics, as
depicted by overlap and/or similar coloration of
each corresponding ellipse. Some complex disorders
seem to have a substantial genetic contribution,
particularly epilepsy, but most of the complex
inheritance remains unexplained (middle).
Abbreviations: ADPEAF, autosomal dominant
partial epilepsy with auditory features; AF, atrial
fibrillation; ATS, Andersen-Tawil syndrome;
AHC, alternating hemiplegia of childhood; CIP,
congenital insensitivity to pain; CMS, congenital
myasthenic syndromes; CPVT, catecholaminergic
polymorphic ventricular tachycardia; EA, episodic
ataxia; ES, Escobar syndrome; FADS, fetal akinesia
deformation sequence; FCM, familial cortical
myoclonus; FHM, familial hemiplegic migraine;
GEFS+, generalized epilepsy with febrile seizures
plus; HH, hereditary hyperekplexia; HyperKPP,
hyperkalemic periodic paralysis; HypoKPP,
hypokalemic periodic paralysis; IEM, inherited
erythromelalgia; JME, juvenile myoclonic epilepsy;
LE, Lambert-Eaton myasthenic syndrome; LQTS,
long QT syndrome; MC, myotonia congenita;
MDS, myoclonus-dystonia syndrome; MG,
myasthenia gravis; PAM, potassium-aggravated
myotonia; PED, paroxysmal exercise-induced
dyskinesia; PEPD, paroxysmal extreme pain
disorder; PKD, paroxysmal kinesigenic dyskinesia;
PMC, paramyotonia congenita; PME, progressive
myoclonic epilepsy; PNKD, paroxysmal
nonkinesigenic dyskinesia; SeSAME, seizures,
sensorineural deafness, ataxia, mental retardation,
and electrolyte imbalance; SQTS, short QT
syndrome; TIA, transient ischemic attack; TPP,
thyrotoxic periodic paralysis.

Four Common Complex Disorders

A transient ischemic attack (TIA) results from
diminished cerebral perfusion that causes
abrupt, focal neurological symptoms in a
pattern corresponding to the compromised
vascular distribution (reviewed by Della-Morte
et al. 2012). Cerebral hypoperfusion usually
arises from platelet emboli or thrombi that
transiently lodge in a cerebral artery but are
dislodged before permanent neurologic injury
develops; by definition, TIA symptoms resolve
within 24 h. Despite prompt resolution, TIAs
typically recur over the course of days to
weeks with a stereotypic symptom cluster.
These patients should be promptly evaluated
and treated, usually by addressing the source
of emboli or by anticoagulation, to decrease
the risk of progression to ischemic stroke
(Della-Morte et al. 2012).

Transient cerebral hypoperfusion also
results in syncope (i.e., fainting) (reviewed
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in Gauer 2011). Causes of hypoperfusion
include orthostatic hypotension, neurovascular
disease, decreased cardiac output (usually from
arrhythmia), and neural reflexes. For example,
a classic scenario is an unpleasant stimulus,
such as extreme fright, triggering a vasovagal
reflex of bradycardia and hypotension that
leads to syncope. The clinical history and pre-
monitory symptoms—fading vision, nausea,
pallor, sweating, etc.—are typically diagnostic.
Syncopal patients occasionally exhibit brief,
mild myoclonic limb jerks or incontinence
but are fully oriented upon awakening, distin-
guishing syncope from the postictal confusion
of a true seizure.

Epilepsy is defined as recurrent seizures,
which result from episodic cortical hy-
perexcitability. Generalized hyperexcitability
manifests as unconsciousness, tonic-clonic con-
vulsions, cyanosis, reactive hyperventilation,
excessive salivation, and postictal confusion. In
comparison, when hyperexcitability involves
a focal neurologic region, the symptoms
reflect the affected cortical region and vary
widely depending on the particular epilepsy
syndrome (reviewed by Berg et al. 2010, Berg
& Scheffer 2011). Epilepsy has manifold patho-
physiologies, primarily structural, metabolic,
neurodegenerative, idiopathic, and genetic (in-
cluding some Mendelian forms; see below and

Figure 1). Seizures can be triggered by stres-
sors such as infection, psychosomatic trauma,
or menses.

The final common complex disorder is
migraine. Migraine is characterized by episodic
severe headache accompanied by nausea,
photophobia, and phonophobia. Many patients
experience prodromal symptoms hours to days
before headache, which vary widely, and about
one-quarter of patients experience aura, com-
monly visual, which immediately precedes the
headache. The pathophysiology of migraine re-
mains hotly disputed but probably involves both
alterations in cortical excitability (i.e., cortical
spreading depression) as well as vasodilatation
of cerebral and meningeal vessels (reviewed in
Dodick 2008). Like epilepsy, migraine is com-
monly triggered by stressors (Haut et al. 2006).

A Myriad of Rare Complex Disorders

Episodic neurologic symptoms also occur in
a smorgasbord of complex disorders, each of
which is individually rare (Figure 1). Many
are diseases of progressive deterioration that
happen to feature episodic symptoms, whereas
others are primarily episodic in nature. For a
given clinical finding, the differential diagnosis
is typically extensive (Table 1). For example,
myoclonus is a component of more than 200

Table 1 Diagnosis of complex episodic disorders. Episodic neurologic symptoms occur in a variety
of complex disorders. The differential diagnosis for a given finding can be very broad. We provide
here episodic presentations, along with references containing diagnostic approaches. We have
omitted other presentations, such as weakness, stiffness, paralysis, arrhythmia, hemiplegia, pain,
and ataxia.

Presentation Reference(s) with diagnostic approach
Transient ischemic attack (TIA) Della-Morte et al. (2012)
Syncope Gauer (2011)
Seizures Berg et al. (2010), Berg & Scheffer (2011)
Migraine Haut et al. (2006)
Exaggerated startle Dreissen et al. (2012)
Dyskinesia Fahn (2011)
Myoclonus Caviness & Brown (2004)
Sleep disorder Sehgal & Mignot (2011)
Ophthalmic disorder Sheffield & Stone (2011)
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disorders that span the spectrum of neurologic
disease: structural malformations, infections,
storage disorders, spinocerebellar degener-
ations, dementias, metabolic derangements,
toxin/drug exposures, posthypoxia, malab-
sorption (celiac disease), various epilepsy
syndromes, and many more (Caviness &
Brown 2004). The differential diagnosis can be
just as broad for other episodic presentations
(Table 1). Usually the diagnosis is suggested
by the entire clinical history and examination
rather than by episodic symptoms per se. If
a diagnosis remains elusive, probability of an
autoimmune or Mendelian cause is increased.

Rare complex disorders with autoimmune
etiologies have provided special insight into
pathophysiology (reviewed in Vincent et al.
2006, Kleopa 2011). Classically, these autoim-
mune episodic disorders are caused by autoan-
tibodies against ion channels (Figure 2b). For
example, ion channels at the NMJ are the tar-
gets of autoantibodies that cause muscle weak-
ness in Lambert-Eaton myasthenic syndrome
(LEMS) and myasthenia gravis (MG) (Vincent
et al. 2006). Clinically, LEMS is characterized
by proximal muscle weakness and autonomic
dysfunction, whereas MG patients exhibit strik-
ing fatigability, particularly of ocular muscles.
Both LEMS and MG must be distinguished
from congenital myasthenic syndromes (see
below), which also present with weakness but
are juvenile onset and Mendelian rather than
autoimmune in etiology. LEMS is caused by au-
toantibodies against presynaptic voltage-gated
calcium channels, whereas MG is usually caused
by autoantibodies against the nicotinic acetyl-
choline receptor (AChR) on the motor end
plate. Recent work has tied AChR-seronegative
MG to autoantibodies against muscle-specific
tyrosine kinase (MuSK) (Hoch et al. 2001)
or low-density lipoprotein receptor-related
protein 4 (Lpr4) (Higuchi et al. 2011, Pevzner
et al. 2012). Neither of these targets are ion
channels; instead, they promote postsynaptic
clustering of the AChR channel (Figure 2c).

Another example of an autoimmune
episodic disorder is Isaac’s syndrome (neu-
romyotonia). Isaac’s syndrome is a disorder

STIFF-MAN SYNDROME

A compelling, recently elucidated example of autoantibodies
interfering with targets other than ion channels to cause episodic
disease is stiff-man syndrome (SMS). SMS is characterized
by extreme muscle cramps superimposed on progressive,
fluctuating muscle rigidity and stiffness. Tragically, these
symptoms are so severe that they often cause joint deformities,
skeletal fractures, and even muscle rupture. Cramp attacks are
triggered by movement, unanticipated somatosensory stimuli,
stress, and strong emotions. Solimena et al. (1988) showed
that 80% of patients develop autoantibodies against glutamic
acid decarboxylase (GAD), but anti-GAD antibody infusion
into model animals does not passively transfer SMS symptoms.
Recently, Geis et al. (2010) achieved passive transfer in rats
by infusing antiamphiphysin antibodies collected from human
SMS patients. Furthermore, antiamphiphysin antibodies were
internalized into CNS GABAergic neurons where they inhibited
GABA (γ-aminobutyric acid) release. This work demonstrates
that SMS is caused by autoantibodies directed against not ion
channels but intracellular, presynaptic targets (Figure 2c). It
seems likely that other autoimmune or idiopathic disorders may
be caused by autoantibodies targeting intracellular, synaptic, or
even nonneuronal targets (Lennon et al. 2005).

of motor nerve hyperexcitability that can
present with hyperhidrosis and a range of
muscle symptoms including fasciculations,
cramps, stiffness, myokymia (quivering),
and pseudomyotonia (slow relaxation). For
many years, Isaac’s syndrome and two related
disorders, Morvan’s syndrome and limbic
encephalitis, were thought to result from au-
toantibodies against voltage-gated potassium
channels (Vincent et al. 2006). However,
the data were mixed. Dalmau et al. recently
presented strong evidence that these disorders
are instead caused by autoantibodies against
the Caspr2-Lgi1 complex, which associates
with voltage-gated potassium channels on
the motor nerve (Lai et al. 2010, Lancaster
et al. 2011, Irani et al. 2012, Loukaides et al.
2012). These findings further illustrate an
emerging understanding that in addition
to targeting channels directly (Figure 2b),
autoantibodies may target channel-associated
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Defective regulatory 
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Figure 2
Channelopathy mechanisms. (a) Normally, ion channels are trafficked from the endoplasmic reticulum (ER) via secretory vesicles to the
cell membrane, where they conduct ions across the membrane to control cellular membrane potential and hence excitability. (b) Many
autoimmune episodic neurologic disorders are caused by autoantibodies binding to ion channels, which causes defective channel
function, such as decreased ion permeability (shown here). (c) Investigators have recently associated numerous autoimmune episodic
disorders with autoantibodies against targets other than channels. These autoantibodies bind to channel-associated regulatory proteins,
thereby indirectly causing defective channel function. Shown here are autoantibodies against a regulatory protein that stabilizes the
channel at the membrane. Inhibition of this regulatory protein by autoantibody binding results in decreased channel stability, so more
channels are degraded and overall current is decreased. (d–e) Most episodic neurologic disorders that exhibit Mendelian inheritance are
caused by mutations in ion channel genes. There are many different possible effects of mutations, including absent or decreased
expression (d ), defective trafficking or stability leading to premature degradation, decreased ion permeability (e), increased ion
permeability, and altered channel kinetics (e.g., delayed inactivation). ( f ) Aside from mutations in ion channels themselves, recent work
has identified mutations in genes that do not encode channels. Like the targets of some autoantibodies (c), these genes encode
regulatory proteins that bind to channels and are critical for channel stability and localization. When mutated, defective regulatory
proteins result in aberrant channel trafficking or stability, premature channel degradation, and hence decreased current. For panels b-f,
see text for examples.

regulatory proteins to cause channel dysfunc-
tion indirectly (Figure 2c).

MENDELIAN DISORDERS

General Characteristics

Although each is individually rare, many dis-
tinct episodic disorders exhibit Mendelian in-

heritance. Despite very strong genetic contri-
butions, these diseases share striking similarity
with the complex disorders discussed above be-
cause patients are often completely normal be-
tween attacks, and attacks are often triggered
by commonplace environmental stimuli.

We have organized the Mendelian episodic
disorders on the basis of the focus of pathology
within the nervous system: skeletal muscle,
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Channelopathy:
a disease caused by
dysfunction of ion
channels; can be
inherited (Mendelian)
or complex (e.g.,
autoimmune),
neurologic or
nonneurologic

cardiac muscle, NMJ, peripheral nerve, or
CNS (Figure 1). Most are juvenile onset and
autosomal dominant. The vast majority of
known disease genes encode ion channels,
which has led to use of the term chan-
nelopathies to describe this group of disorders
(Figure 2) (Kullmann 2010, Ryan & Ptáček
2010). However, this usage is a misnomer for
two reasons. First, complex episodic disorders
can also result from channel dysfunction,
as exemplified by the autoimmune diseases
discussed above. Second, some nonneurologic
Mendelian diseases are caused by mutations
in ion channels (Benoit et al. 2010). Thus, the
term channelopathy should be reserved for any
disorder, complex or Mendelian, neurologic or
nonneurologic, caused by channel dysfunction.

Most Mendelian channelopathies affect pri-
marily a single organ system, presumably be-
cause a typical ion channel is expressed in one
cell type or a limited number of cell types. The
exact pathophysiology depends on the mutation
severity (e.g., missense or nonsense) and on the
type of channel that is mutated (Kullman 2010,
Ryan & Ptáček 2010). Missense mutations are
often gain-of-function, causing increased ion
flux. However, missense mutations can cer-
tainly cause loss-of-function (Figure 2e), and
dominant-negative mechanisms are also com-
mon because some channels are composed of
subunits encoded by separate genes that homo-
or heteromultimerize into a functional channel.
Nonsense (truncation) mutations are almost
always loss-of-function or dominant-negative
(Figure 2d). Although exceptions abound, gen-
erally mutations in sodium channel genes cause
gain-of-function, whereas potassium and chlo-
ride channel mutations cause loss-of-function.
Sodium, potassium, and chloride channels usu-
ally cause myocyte or neuronal dysfunction. In
contrast, AChR, GABAA receptor, glycine re-
ceptor, and calcium channel mutations typically
disrupt synaptic transmission. In any case, in
the PNS the ultimate pathophysiology rests on
whether the mutation renders the affected cell
hypoexcitable or hyperexcitable. In the CNS,
pathophysiology rests on whether inhibitory or
excitatory neurons are preferentially affected,

thereby resulting in a net hypoexcitable or hy-
perexcitable network (Figure 3b).

Skeletal Muscle

Primary skeletal muscle disorders were the first
episodic disorders for which causative muta-
tions were identified (Ptáček et al. 1991, Rojas
et al. 1991, McClatchey et al. 1992, Ptáček et al.
1992). These entities were central to establish-
ing the channelopathy paradigm, as all known
disease genes encode ion channels. The molec-
ular and cellular pathophysiology has been
thoroughly elucidated, and in some cases this
insight has led to clinical trials and successful
treatments (Tawil et al. 2000). Each disorder
falls on a spectrum ranging from muscle hyper-
excitability to hypoexcitability. Hyperexcitable
muscle presents clinically as myotonia: After
contraction, the muscle is slow to relax. In con-
trast, hypoexcitable muscle presents clinically
as weakness or paralysis.

Myotonia congenita (MC) constitutes the
far hyperexcitable end of the spectrum. Patients
suffer stiffness, particularly after prolonged in-
activity, which is relieved by repetitive muscle
activity (reviewed by Lossin & George 2008).
Mutations in CLCN1, the skeletal muscle chlo-
ride channel, cause myotonia congenita in ei-
ther autosomal dominant (Thomsen disease;
OMIM 160800) or autosomal recessive (Becker
disease; OMIM 255700) forms (Koch et al.
1992). Myotonia in Becker disease tends to be
more severe and can even be accompanied by
episodic weakness.

Like Becker disease, paramyotonia con-
genita (PMC; OMIM 168300) is characterized
by both myotonia and weakness (reviewed
in Jurkat-Rott et al. 2010). PMC can be
distinguished from MC because PMC pa-
tients exhibit paradoxical myotonia, in which
myotonia is exacerbated by exercise and can
transition to weakness (whereas myotonia in
MC is relieved by exercise). Also, PMC attacks
are prominently triggered by cold and mostly
affect the upper extremities and face. PMC
is caused by mutations in SCN4A, a skeletal
muscle voltage-gated sodium channel (Ptáček
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et al. 1992). Different SCN4A mutations cause
potassium-aggravated myotonia (PAM; OMIM
608390) (Ptáček et al. 1994b), in which myoto-
nia is instead triggered by potassium. However,
in PAM the myotonia never transitions to
weakness ( Jurkat-Rott et al. 2010).

On the opposite, hypoexcitable end of the
spectrum are hyperkalemic periodic paralysis
(HyperKPP; OMIM 170500) and hypokalemic
periodic paralysis (HypoKPP; OMIM 170400)
( Jurkat-Rott et al. 2010). Patients suffer from
episodes of weakness or paralysis, triggered by
exercise or stress. During attacks, HypoKPP
patients are always hypokalemic, whereas
HyperKPP patients are often normokalemic.
However, for purposes of diagnosis
HyperKPP attacks can be induced by a potas-
sium load. Aside from serum potassium levels,
the periodic paralyses are clinically distinguish-
able because HypoKPP never causes myotonia,
whereas HyperKPP causes myotonia early in
an attack before evolving to weakness/paralysis.
Both HyperKPP and HypoKPP patients can
develop progressive fixed weakness in those
muscles prone to paralytic attacks. Like PMC
and PAM, HyperKPP and HypoKPP are
caused by mutations in SCN4A (Ptáček et al.
1991, Bulman et al. 1999), which highlights
the relatedness of these disorders. Other cases
of HypoKPP are caused by mutations in
CACNA1S, which encodes a skeletal muscle
voltage-gated calcium channel (Ptáček et al.

1994a). Genotype-phenotype correlations and
pathophysiological mechanisms are reviewed
elsewhere (Raja Rayan & Hanna 2010).

A variant of HypoKPP is thyrotoxic
periodic paralysis (TPP; OMIM 613239)
( Jurkat-Rott et al. 2010). TPP patients suffer
weakness/paralysis in attacks triggered by
thyrotoxicosis. TPP usually afflicts young adult
males of Asian ancestry. Ryan et al. (2010)
recently demonstrated that some TPP cases
are caused by mutations in KCNJ18, encoding
a skeletal muscle potassium channel. KCNJ18
mutations have since been discovered in a
few patients with nonfamilial HypoKPP but
normal thyroid function, so-called “sporadic
periodic paralysis” (Cheng et al. 2011). How-
ever, KCNJ18 mutations account for only
one-fourth to one-third of TPP cases. We have
sequenced many known ion channel genes in
KCNJ18-mutation negative TPP patients but
found no mutations (L.J. Ptáček, unpublished
observations), and the genetic basis underlying
these cases remains to be elucidated.

Finally, periodic paralysis (either HypoKPP
or HyperKPP) is observed in Andersen-Tawil
syndrome (ATS; OMIM 170390) (reviewed by
Tristani-Firouzi & Etheridge 2010). ATS is a
pleiotropic disorder: Periodic paralysis may be
accompanied by neurocognitive deficits, skele-
tal dysmorphisms, and, of paramount clinical
importance, long QT syndrome (see below).
ATS is caused by mutations in KCNJ2, another

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Beyond the channelopathy paradigm: mechanisms of synaptopathy and circuitopathy. (a) A compelling area for future study is the role
of disease genes controlling excitability at the synaptic level, i.e., synaptopathy. In a normal synapse (i ), a neurotransmitter (NT) is
enzymatically synthesized in the presynaptic cell and then released into the synaptic cleft, where it activates postsynaptic NT receptors
that then pass current. Regulatory proteins modulate NT receptor stability and localization. NT is metabolized in the synaptic cleft by
enzymes that can be anchored to the presynaptic cell, the postsynaptic cell, or the basal lamina (depicted). Defects in these processes
can alter synaptic transmission and excitability, as exemplified by defective neuromuscular junction (NMJ) synaptic transmission in the
congenital myasthenic syndromes (CMS). CMS can be caused by mutations in a NT synthesis enzyme (ii ), mutations in proteins that
anchor a NT metabolism enzyme to the basal lamina (iii ), mutations in the NT receptor itself (iv), and mutations in proteins that
regulate NT receptor stability/localization (v). Although this pathophysiology has been heretofore demonstrated only for one type of
synapse—the NMJ in CMS—other episodic disorders of the CNS are likely caused by dysfunction of higher-order synapses. Additional
mechanisms of synaptopathy are conceivable, such as defects in synaptic vesicle release. (b) Another potential mechanism of episodic
disease is defective regulation at the circuit level, i.e., circuitopathy. For example, one type of defective circuit is exemplified by
GEFS+, which is caused by SCN1A mutations that result in decreased GABAergic inhibition by interneurons. Certainly many other
types of defective circuits are possible, but whether they can cause episodic neurologic disease is not yet known.
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potassium channel (Plaster et al. 2001). KCNJ2
mutations are found in only 60% of ATS fami-
lies, suggesting the existence of at least one ad-
ditional disease gene.

Cardiac Muscle

Numerous Mendelian diseases feature episodic
dysfunction of cardiac muscle. These include
atrial fibrillation and four ventricular arrhyth-
mias: long QT syndrome, short QT syndrome,
Brugada syndrome, and catecholaminergic
polymorphic ventricular tachycardia. Most of
the disease genes encode ion channels, but
some do not. For example, atrial fibrillation
(AF) can be caused by autosomal dominant
mutations in five potassium channel genes
(KCNA5, KCNE2, KCNE5, KCNJ2, KCNQ1)
and three sodium channel genes (SCN1B,
SCN2B, SCN5A) (Mahida et al. 2011). How-
ever, monogenic AF can also be caused by
mutations in GJA5, NPPA, or NUP155, which
encode a gap junction protein, an atrial natri-
uretic peptide, and a nucleoporin, respectively.
Pathophysiological mechanisms for these non-
ion channel genes remain elusive (Mahida et al.
2011).

A well-known ventricular arrhythmia, long
QT syndrome (LQTS) is defined by an elon-
gated QT interval per EKG. This electrical
abnormality reflects delayed cardiomyocyte
repolarization, which predisposes to torsades
de pointes arrhythmia that manifests clinically
as palpitations, syncope, or sudden cardiac
death. LQTS presents in four clinical sub-
types: Andersen-Tawil syndrome (see above),
Romano-Ward syndrome (most common;
OMIM 192500), Jervell and Lange-Nielsen
syndrome (includes congenital deafness;
OMIM 220400), and Timothy syndrome (in-
cludes cardiac malformations, syndactyly, and
autism spectrum disorders; OMIM 601005)
(reviewed by McBride & Garg 2010). Like AF,
LQTS is genetically heterogeneous, with 13
known genes, including six potassium channel
genes (KCNE1, KCNE2, KCNH2, KCNJ2,
KCNJ5, KCNQ1), two sodium channel genes
(SCN4B, SCN5A), one calcium channel gene

(CACNA1C), and four genes not encoding
channels: AKAP9, ANK2, CAV3, and SNTA1.
Mutations in the four nonchannel genes seem
to disrupt trafficking or stability of cardiomy-
ocyte ion channels (Figure 2f ) (Mohler et al.
2003, Vatta et al. 2006, Chen et al. 2007, Ueda
et al. 2008).

Patients with short QT syndrome (SQTS;
OMIM 609620) suffer from a shortened QT in-
terval that, like LQTS, predisposes to ventricu-
lar arrhythmia and sudden cardiac death. SQTS
is caused by autosomal dominant mutations
in three potassium channel genes (KCNH2,
KCNJ2, KCNQ1), two of which are also LQTS
genes (McBride & Garg 2010). Thus, SQTS
and LQTS constitute a spectrum ranging from
prolonged to delayed cardiomyocyte repolar-
ization. SQTS can also present in concert
with Brugada syndrome (OMIM 601144)—
defined by elevation of the ST segment in se-
lect EKG leads—in patients with mutations
in CACNA1C and CACNB2, which encode
calcium channel subunits. Alternatively, iso-
lated Brugada syndrome results from muta-
tions in three sodium channel genes (SCN1B,
SCN3B, SCN5A), one potassium channel gene
(KCNE3), and GPD1L, which encodes a pro-
tein that regulates SCN5A phosphorylation
and thereby modulates sodium current density
(Figure 2f ) (Valdivia et al. 2009, McBride &
Garg 2010).

Finally, another important cause of sudden
cardiac death in children is catecholaminergic
polymorphic ventricular tachycardia (CPVT;
OMIM 604772). In CPVT, the catecholamin-
ergic surge associated with strong emotions
or exercise can trigger ventricular tachycar-
dia. The four disease genes, RYR2, CASQ2,
TRDN, and CALM1, encode essential com-
ponents of cardiomyocyte calcium signaling
(McBride & Garg 2010, Nyegaard et al. 2012,
Roux-Buisson et al. 2012). Recently, Watanabe
et al. (2009) elegantly identified flecainide as
a potent inhibitor of arrhythmias in a CPVT
mouse model. This work was validated in hu-
man trials (van der Werf et al. 2011), suggesting
an effective treatment for this otherwise lethal
disease.
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Mendelian disorder:
a disease in which a
mutation in a single
gene causes the
phenotype; cf. complex
genetic disorder

Congenital
myasthenic
syndromes (CMS):
Mendelian disorders of
the neuromuscular
junction

Neuromuscular Junction

Mendelian disorders of the neuromuscular
junction (NMJ) are known as congenital myas-
thenic syndromes (CMS). CMS are distin-
guished from the complex, autoimmune NMJ
disorders LEMS and MG (see above) because
CMS cannot be treated by immunosuppres-
sion. Although CMS subtypes are clinically
and genetically heterogeneous, they are usually
characterized by episodic ocular and respira-
tory weakness (reviewed in Barisic et al. 2011).
Weakness results from impaired neuromuscu-
lar transmission.

Most CMS subtypes are autosomal reces-
sive, caused by mutations in 1 of 14 known
genes. The subtypes/genes are classified by
the NMJ component that is primarily af-
fected: presynaptic, synaptic, or postsynaptic
(Figure 3a) (Barisic et al. 2011). Presynaptic
CMS (OMIM 254210) features prominent
episodic apnea and is caused by mutations
in CHAT, encoding an enzyme critical for
acetylcholine synthesis (Figure 3a, part ii).
Synaptic CMS (OMIM 603034) can be caused
by mutations in COLQ (Mihaylova et al. 2008)
and LAMB2 (Maselli et al. 2009), which encode
proteins that anchor acetylcholinesterase to the
basal lamina (Figure 3a, part iii). The most
common type of CMS, by far, is postsynaptic
CMS (OMIM 608931), usually caused by
defects in AChR subunit genes CHRNA1,
CHRNB1, CHRND, and CHRNE (Figure 3a,
part iv). Mutations in another AChR subunit
gene, CHRNG, cause Escobar syndrome
(OMIM 265000), characterized by joint con-
tractures, pterygia (webbing), and in utero
CMS-like respiratory distress that resolves by
birth (Hoffmann et al. 2006). Finally, rare cases
of postsynaptic CMS are caused by mutations
in non-AChR genes, namely AGRN, DOK7,
GFPT1, MUSK, and RAPSN. These genes
constitute a molecular pathway essential for
AChR aggregation and positioning on the
postsynaptic membrane (Figure 3a, part v)
(Barisic et al. 2011). Mutations in some of these
genes (CHRNA1, CHRNB1, CHRND, DOK7,
and RASPN) cause fetal akinesia deformation

sequence (OMIM 208150), a perinatal lethal
syndrome characterized by developmental
anomalies such as pterygia as well as fetal
akinesia. Given the clinical and genetic over-
lap, fetal akinesia deformation sequence is
considered an extreme phenotype on a con-
tinuum that includes Escobar syndrome and
CMS. Identifying which gene is mutated in a
CMS patient is critical because certain genetic
subtypes respond robustly to otherwise toxic
medications (Barisic et al. 2011). About half of
CMS cases await genetic diagnosis, suggesting
a fruitful area for human genetics to provide
further insights into synaptic physiology.

Peripheral Nerve

Recent studies have shown that mutations
in SCN9A cause an intriguing trio of pain
perception disorders. SCN9A encodes a
sodium channel that is specifically expressed in
those peripheral sensory neurons that function
as nociceptors. Mutations lead to aberrant
excitability of nociceptive nerves and thus alter
the patient’s sensitivity to painful stimuli. Au-
tosomal dominant, gain-of-function mutations
cause hypersensitivity to pain in two disorders:
inherited erythromelalgia (IEM; OMIM
133020) and paroxysmal extreme pain disorder
(PEPD; OMIM 167400) (Yang et al. 2004,
Fertleman et al. 2006). Burning pain occurs in
discrete episodes, accompanied by erythema
and swelling. IEM affects the extremities and
is commonly triggered by exercise, heat, or
dietary components, whereas PEPD affects
submandibular, ocular, and rectal areas and is
triggered by perianal stimulation (e.g., bowel
movements).

Autosomal recessive, loss-of-function
SCN9A mutations cause the opposite phe-
notype: congenital insensitivity to pain (CIP;
OMIM 243000), characterized by complete
absence of pain sensation (Cox et al. 2006).
Although ostensibly appealing, patients with
CIP suffer substantial injuries and early deaths
because of inadvertent trauma. Early studies
suggested that CIP patients are otherwise
normal, but Weiss et al. (2011) recently
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Knockin mouse:
a mouse engineered to
carry a mutation,
usually missense,
found in humans; the
mutant gene is
otherwise intact

demonstrated that the patients cannot smell;
furthermore, mice with olfactory sensory
neuron-specific SCN9A knockout also exhibit
anosmia (Weiss et al. 2011). Nevertheless, the
specificity and degree of pain relief achieved by
genetic inactivation of this channel make it a
promising target for developing drugs to treat
pain (Clare 2010).

Central Nervous System

A mélange of Mendelian episodic disorders
afflict the CNS, with diverse symptoms
depending on which region of the CNS is af-
fected. For example, the cerebellum is the focus
of pathology in episodic ataxia (EA). EA is dis-
tinguished by attacks of ataxia (imbalance and
incoordination) without impaired conscious-
ness (reviewed by Jen et al. 2007, Jen 2008).
Sometimes, attacks include weakness or are
superimposed on progressive ataxia. Seven sub-
types (EA1–EA7) vary in associated symptoms,
such as myokymia, nystagmus, tinnitus, vertigo,
and hemiplegic migraine. Most subtypes share
exertion, emotions, and startle as triggers.
Each is autosomal dominant, with mutations
in KCNA1 (EA1; OMIM 160120), CACNA1A
(EA2; OMIM 108500), CACNB4 (EA5; OMIM
613855), and SLC1A3 (EA6; OMIM 612656).
Despite demonstrated linkage, the genes for
EA3 (OMIM 606554), EA4 (OMIM 606552),
and EA7 (OMIM 611907) have proven elusive.
KCNA1 and CACNA1A/CACNB4 encode
subunits of potassium and calcium channels,
respectively, that are highly expressed in
Purkinje cells of the cerebellum (Tomlinson
et al. 2009), and indeed, mice expressing
mutant channels exhibit aberrant Purkinje
cell activity ( Jen et al. 2007). The EA6 gene,
SLC1A3, encodes a glutamate reuptake trans-
porter expressed in cerebellar astrocytes ( Jen
et al. 2005), but how mutant SLC1A3 alters
cerebellar output remains unknown.

EA2 features migraine, so it is also termed
familial hemiplegic migraine (FHM) type 1
(OMIM 141500). FHM patients suffer from
attacks of headache with hemiplegia during
aura. Whereas FHM1 is associated with ataxia,

two other subtypes, FHM2 and FHM3, are
not. For all subtypes, inheritance is autosomal
dominant. FHM2 (OMIM 602481) is caused
by mutations in ATP1A2 (De Fusco et al.
2003), which encodes a sodium-potassium
ATPase. FHM3 (OMIM 609634) patients
carry mutations in the sodium channel SCN1A
(Dichgans et al. 2005). Knockin mouse models
for both FHM1 and FHM2 have increased
susceptibility to cortical spreading depression
(CSD) (Tottene et al. 2009, Leo et al. 2011), in
keeping with the theory that aberrant cortical
excitability is at least partially responsible for
migraine pathophysiology (see above).

A related disorder is alternating hemiplegia
of childhood (AHC; OMIM 104290), char-
acterized by recurrent attacks of hemiplegia
(reviewed by Neville & Ninan 2007). AHC
often presents with concomitant epilepsy
and developmental delay. As a very rare,
sporadic disorder, the etiology of AHC has
long remained a mystery, but Heinzen et al.
(2012) recently showed that AHC is caused
by de novo mutations in ATP1A3, another
sodium-potassium ATPase gene. The mech-
anism linking sodium-potassium ATPases and
hemiplegia in FHM2 and AHC is not clear.
Distinct ATP1A3 mutations cause a quite
dissimilar phenotype: autosomal dominant
rapid-onset dystonia-parkinsonism (OMIM
128235; de Carvalho Aguiar et al. 2004).

Some families exhibit autosomal domi-
nant migraine without hemiplegia (OMIM
613656). Investigators have proposed two
genes so far. The first, KCNK18, a potassium
channel, was mutated in a single large affected
family (Lafreniere et al. 2010). Moreover, the
mutant subunit suppressed wild-type channel
function in vitro through a dominant negative
effect (Lafreniere et al. 2010). However, the
same group (Andres-Enguix et al. 2012) later
discovered KCNK18 variants in unaffected
controls, variants that also completely abrogate
wild-type channel function. How to reconcile
these data? One possibility is that KCNK18
mutation alone is not sufficiently causative and
that the single affected family carries additional
migraine susceptibility variants. However, it
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Allodynia: pain
resulting from a
typically innocuous
stimulus; a cardinal
symptom of migraine

is extremely unlikely that another locus would
cosegregate with the phenotype in the large
family (nine individuals affected), which sug-
gests that either the KCNK18 linkage region
itself contains additional susceptibility variants
or that KCNK18 is not causally related to the
phenotype. On balance, it is our view that
KCNK18 mutations are likely not causative,
although we would happily recant upon
identification of additional affected families
with KCNK18 mutations. A stronger case
can be made for the second candidate gene,
CSNK1D, which encodes a kinase, because two
independent families carry distinct mutations
(Brennan et al. 2013). These mutations alter
nearby residues that reside in the highly
conserved kinase domain and were shown
in vitro to disrupt kinase activity (Xu et al.
2005; K.C. Brennan, E.A. Bates, R.E. Shapiro,
J. Zyuzin, W.C. Hallows, H.Y. Lee, C.R.
Jones, Y.H. Fui, A.C. Charles, L.J. Ptáček,
forthcoming). Furthermore, a mutant mouse
model exhibits increased peripheral allodynia,
cortical spreading depression, and arterial
dilation, all physiological markers of migraine
(Brennan et al. 2013). In any case, the overlap-
ping, well-characterized phenotypes of these
three families strongly argue for the existence
of Mendelian migraine that is distinct from
FHM and distinct from migraine with complex
inheritance (Eriksen et al. 2004). Heretofore
unnamed, we propose the term autosomal
dominant migraine (ADM) for this disorder.

Hereditary hyperekplexia (HH) is a disorder
of the brain stem, featuring an exaggerated
startle reaction (reviewed in Dreissen et al.
2012). Most patients exhibit stiffness at birth
that lasts through infancy. Stiffness is exacer-
bated by handling and is so pronounced that
the baby can be held vertically or horizontally
without a change in posture. Consciousness is
always preserved. Although prolonged stiffness
resolves after infancy, throughout the rest of
their lives patients suffer from stiffness for a few
seconds after an exaggerated startle reaction
to unexpected stimuli. HH inheritance can be
autosomal dominant, autosomal recessive, or
sporadic and is usually caused by mutations

in GLRA1 (OMIM 149400; Shiang et al.
1993). GLRA1 encodes a subunit of the glycine
receptor located in the postsynaptic membrane
of glycinergic neurons (Figure 3a, part iv)
(Dreissen et al. 2012). Less commonly, patients
carry mutations in SCL6A5 (which encodes
a presynaptic glycine transporter) (OMIM
614618; Rees et al. 2006) or, very rarely,
mutations in GLRB, GPHN, or ARHGEF9
(all encode postsynaptic glycinergic proteins;
OMIM 138492, 149400, 300607, respectively).
These mutations decrease the inhibition ex-
erted by glycinergic neurons in the spinal cord
and brain stem, resulting in excessive excitation
as reflected by stiffness and exaggerated startle
(Dreissen et al. 2012).

Another fascinating group of episodic
disorders are the paroxysmal dyskinesias. In
these diseases, excessive excitation manifests
as attacks of involuntary movements that
can include dystonia (sustained contractions),
athetosis (writhing), and chorea (small dance-
like movements) (reviewed by Bhatia 2011).
There are three Mendelian paroxysmal dyski-
nesias: paroxysmal exercise-induced dyskinesia
(PED; OMIM 612126), paroxysmal nonkine-
sigenic dyskinesia (PNKD; OMIM 118800),
and paroxysmal kinesigenic dyskinesia (PKD;
OMIM 128200). All three are autosomal
dominant with juvenile onset.

PED is usually triggered by exercise and
causes dystonia in the heavily exercised mus-
cles. The PED gene, SLC2A1, encodes the
main glucose transporter in the brain (Suls et al.
2008, Weber et al. 2008). Mutations impair
glucose import into the brain such that the
increased energy demand after exercise renders
the basal ganglia hypoglycemic. However, this
defect must not be specific to the basal ganglia
because PED often presents with concomitant
neurologic illness that may include hemiplegic
migraine, developmental delay, and especially
epilepsy. Indeed, De Vivo disease, which is also
caused by SLC2A1 mutations, features severe,
global developmental delay and epilepsy; PED
may not be appreciable (De Vivo et al. 1991,
Seidner et al. 1998). Diagnosis of any phe-
notype along this PED–De Vivo spectrum is
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Pleiotropy:
a mutation in a single
gene causes multiple
phenotypic effects,
such as in multiple
organ systems

critical because the ketogenic diet is a highly
effective treatment (Leen et al. 2010). Ketone
bodies use a different transporter to enter the
CNS and thereby provide an alternative energy
source.

In contrast with PED, PKD attacks are
often triggered by startle or sudden move-
ments (hence kinesigenic) (Bruno et al. 2004).
PNKD attacks are, by definition, not triggered
by movement. Instead, PNKD is induced by
ethanol, caffeine, or stress. In both PKD and
PNKD, hormones play a role: PKD attacks
peak in puberty but decrease in pregnancy, and
PNKD attacks increase with menses and there-
after improve with age. However, the exact role
of hormones in the genesis of attacks is un-
clear. PNKD is caused by mutations in the gene
PNKD, which encodes an enzyme that seems to
modulate dopamine release in the striatum in
response to ethanol, caffeine, and redox status
(Lee et al. 2004, 2012b; Rainier et al. 2004). One
hypothesis is that PNKD mutations, which al-
ter protein stability and cleavage (Ghezzi et al.
2009, Shen et al. 2011), are gain-of-function,
rendering a patient more susceptible to stim-
uli that trigger dopamine dysregulation in the
basal ganglia (Lee et al. 2012b).

Numerous groups recently identified the
PKD disease gene, PRRT2 (Chen et al. 2011,
Wang et al. 2011, Heron et al. 2012, Lee et al.
2012a, Li et al. 2012). Within affected families,
there is remarkable pleiotropy; some patients
suffer from episodic ataxia or hemiplegic mi-
graine (Cloarec et al. 2012, Gardiner et al. 2012,
Marini et al. 2012), and others from benign,
afebrile infantile epilepsy prior to PKD on-
set [termed infantile convulsions with choreoa-
thetosis (ICCA)] (Cloarec et al. 2012, Heron
et al. 2012, Lee et al. 2012a). In fact, some
patients suffer from benign familial infantile
epilepsy (BFIE) that resolves in infancy and is
never succeeded by PKD (Heron et al. 2012).
Given the phenotypic and genetic overlap of
these disorders, we have proposed the term
PKD/infantile convulsions (PKD/IC) for the
diagnosis of any PRRT2 mutation-positive pa-
tient with BFIE, PKD, or both (ICCA) (Cloarec
et al. 2012, Lee et al. 2012a). PRRT2 encodes

a transmembrane protein that lacks character-
istic ion channel motifs, and its function is not
known. Lee et al. (2012a) found that mutations
disrupt in vitro binding of PRRT2 to SNAP-25,
a synaptic protein integral for neurotransmit-
ter release. However, PRRT2 predominantly
localizes to axons rather than to dendritic pro-
cesses (Lee et al. 2012a), and it is a widespread
misconception that individual protein-protein
interactions are critical to physiological func-
tion (Gillis & Pavlidis 2012). Nevertheless, one
possible unifying hypothesis is that PKD and
PNKD are both disorders of synaptic regula-
tion (Figure 3a), although this certainly re-
mains unproven.

Two other Mendelian movement disor-
ders are marked by the primary symptom of
myoclonus. Myoclonus is defined as sudden,
brief, involuntary movements, i.e., twitches.
Myoclonus is commonly a component of
epilepsy, but in these two disorders seizures do
not occur. The first, myoclonus-dystonia syn-
drome (MDS; OMIM 159900), is character-
ized by juvenile-onset myoclonus and/or dys-
tonia (Nardocci et al. 2008, Roze et al. 2008).
MDS patients suffer severe psychiatric comor-
bidity, especially depression, although MDS
symptoms are clearly ameliorated by ethanol,
so depression may simply be a by-product of
self-medication by intoxication. MDS is caused
by autosomal dominant mutations in SGCE
(Zimprich et al. 2001), which, like PRRT2, en-
codes a non-ion channel transmembrane pro-
tein. Although SGCE was cloned in 2001, there
has been almost no mechanistic insight since,
and its function continues to be obscure.

The second myoclonic disorder, familial
cortical myoclonus (FCM), was recently
described by our group (Russell et al. 2012).
Several features distinguish FCM from MDS:
FCM myoclonus is adult onset and slowly
progressive, there is neither dystonia nor
psychiatric comorbidity, ethanol does not
ameliorate symptoms, and FCM exhibits cor-
tical rather than subcortical hyperexcitability.
FCM is autosomal dominant and is likely
caused by mutation in the gene NOL3 (Russell
et al. 2012). Although we presented substantial
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Knockout mouse: a
mouse engineered to
entirely lack a gene

genetic, bioinformatic, and biochemical evi-
dence that NOL3 is the FCM gene (Russell
et al. 2012), we could identify only a single,
albeit large, affected family, so definitive
assignment of NOL3 as the disease gene
awaits discovery of independent FCM families
with NOL3 mutations and/or validation via a
knockin animal model (both of which are in
progress). NOL3 encodes a well-characterized
inhibitor of apoptosis (Koseki et al. 1998,
Nam et al. 2004, Donath et al. 2006), but
the mechanism linking NOL3 mutations and
hyperexcitability, as manifested by myoclonus
in patients, remains entirely speculative.

The broadest category of inherited episodic
CNS disorders is composed of the Mendelian
epilepsy syndromes (reviewed by Poduri &
Lowenstein 2011). An illustrative example is
generalized epilepsy with febrile seizures plus
(GEFS+). Whereas febrile seizures are com-
mon and typically benign in young children,
their persistence after age six defines GEFS+.
Most GEFS+ cases are genetically complex,
but ∼10% are autosomal dominant. So far,
all known disease genes encode ion channels,
including three voltage-gated sodium channel
genes (SCN1A, SCN1B, SCN2A) and two
GABAA receptor (GABAAR) subunit genes:
GABRG2 and GABRD (Wallace et al. 1998,
Escayg et al. 2000, Baulac et al. 2001, Sugawara
et al. 2001, Dibbens et al. 2004). Thirteen
additional loci have been linked to GEFS+
and await gene identification (Morar et al.
2011, Poduri & Lowenstein 2011). Mutations
in SCN1A are most common. In fact, other
SCN1A mutations cause more severe pheno-
types along the GEFS+ continuum: severe
myoclonic epilepsy of infancy (SMEI, also
known as Dravet syndrome), borderline SMEI,
and intractable epilepsy of childhood (IEC)
(OMIM 604403; Stafstrom 2009). SCN1A
knockout and knockin mice die young from
epilepsy, and their hippocampal GABAergic
interneurons are hypoexcitable, leading to
a net hyperexcitable state (Figure 3b) (Yu
et al. 2006, Martin et al. 2010). Given that
GEFS+ can also be caused by mutations in
GABAAR subunits, interneuron dysfunction

is likely a common mechanism underlying the
entire GEFS+ continuum, although to our
knowledge this hypothesis remains to be tested
in GABRG2 and GABRD knockout mice.

Predictably, many other Mendelian epilepsy
syndromes are caused by mutations in ion
channels. These phenotypes and the associ-
ated genes are extensively reviewed elsewhere
(Helbig et al. 2008, Mantegazza et al. 2010,
Nicita et al. 2012). The known genes in-
clude two GABAAR subunits, two AChR sub-
units, the brain glucose transporter, a sodium-
potassium ATPase, four potassium channels,
one calcium channel subunit, one chloride
channel, and one sodium channel. Two other
sodium channel genes, SCN3A and SCN8A,
have been associated with childhood epilepsy
(Holland et al. 2008, Estacion et al. 2010,
Veeramah et al. 2012), but mutations were each
detected in only a single patient; therefore,
definitive assignment of these genes will require
the discovery of distinct mutations in additional
patients.

Recent work has demonstrated that muta-
tions in nonchannel genes can cause Mendelian
epilepsy. For example, patients with a pheno-
type along the GEFS+ spectrum who lack an
SCN1A mutation and are female sometimes
harbor PCDH19 mutations (OMIM 300088;
Depienne et al. 2009, 2011). PCDH19 encodes
a calcium-dependent cell adhesion protein
(Morishita & Yagi 2007). Two fascinating
unanswered questions are, how do mutations
in a cell adhesion protein cause epilepsy, and
why do these mutations cause disease only in
females?

Another well-characterized epilepsy syn-
drome caused by mutations in a nonchannel
gene is autosomal dominant partial epilepsy
with auditory features (ADPEAF; OMIM
600512). The disease gene is LGI1 (Kalachikov
et al. 2002). Lgi1 associates with voltage-gated
potassium channels, and autoantibodies to the
Lgi1-Caspr2 complex are associated with the
autoimmune, peripheral nerve disorder known
as Isaac’s syndrome (see above). How LGI1 mu-
tations cause temporal lobe epilepsy without
any peripheral nerve hyperexcitability is not
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Exome sequencing: a
method of sequencing
and analyzing all
protein-coding
sequence from a given
patient (that patient’s
“exome”)

clear, and in fact, Lgi1 function is essentially un-
known. Recent work suggests that Lgi1 inhibits
seizure-induced trafficking of potassium chan-
nels in thalamocortical neurons (Figure 2c)
(Smith et al. 2012); however, it also seems to
function in remodeling of synapses and sensory
axons (Zhou et al. 2009, 2012), and it is unclear
how these findings can be reconciled into a uni-
fying hypothesis.

Yet another nonchannel epilepsy gene,
EFHC1, is mutated in one subset of juvenile
myoclonic epilepsy ( JME; OMIM 254770)
(Suzuki et al. 2004). EFHC1 encodes a
microtubule-associated protein that regulates
cell division and neuronal migration during
cortical development (de Nijs et al. 2009). In
fact, many genes that function in neuronal mi-
gration are mutated in Mendelian syndromes
that feature epilepsy as one symptom along
with dramatic, radiologically evident malfor-
mations of cortical development (Andrade
2009, Barkovich et al. 2012). For example,
severe mutations in a gene essential for in-
terneuron migration, ARX, cause gross cortical
malformations, but milder mutations result in
less severe phenotypes such as early infantile
epileptic encephalopathy or even isolated men-
tal retardation (Kitamura et al. 2002, Stromme
et al. 2002, Shoubridge et al. 2010). Like-
wise, severe infantile epilepsy phenotypes are
caused by mutations in CDKL5, STXBP1, and
TBC1D24, which are nonchannel genes that are
clearly essential for normal brain development,
although their exact function remains unknown
(Weaving et al. 2004, Saitsu et al. 2008, Corbett
et al. 2010, Falace et al. 2010). On the basis of
these data, it seems likely that many complex
cases of epilepsy—which have a substantial
genetic contribution (Figure 1)—may result
from a constellation of more subtle, genetically
influenced defects in cortical development.

One last class of Mendelian epilepsies
is progressive myoclonic epilepsy (PME):
juvenile-onset, myoclonic epilepsy in asso-
ciation with neurodegeneration, dementia,
and early death (reviewed by Ramachandran
et al. 2009). There are many PME subtypes
and causative genes, mostly encoding lyso-

somal proteins (Ramachandran et al. 2009).
Some clinical variants also feature substantial
pathology outside the CNS, such as action
myoclonus-renal failure (AMRF; OMIM
254900) syndrome (Badhwar et al. 2004). A
similar disorder, deemed SeSAME syndrome
(seizures, sensorineural deafness, ataxia, mental
retardation, and electrolyte imbalance; OMIM
612780), is caused by mutations in the potas-
sium channel KCNJ10 (Bockenhauer et al.
2009, Scholl et al. 2009). Epilepsy in SeSAME
syndrome is less severe, does not progress, and
is not accompanied by neurodegeneration, so
it does not qualify as a PME subtype. We high-
light it here to emphasize a somewhat unusual
case in which ion channel mutations cause
dramatic pleiotropy in diverse organ systems.

Finally, primary episodic sleep disorders, a
few of which are Mendelian, are reviewed else-
where (Sehgal & Mignot 2011, Zhang et al.
2011). Mendelian ophthalmic disorders are ex-
traordinarily diverse and have been very well
characterized; however, they are usually pro-
gressive rather than episodic, as reviewed by
Sheffield & Stone (2011).

BEYOND THE
CHANNELOPATHY PARADIGM

We have highlighted the immense progress
made in characterizing the phenotypes, genet-
ics, and pathophysiology of episodic neurologic
disorders. In our view, four main objectives
should be the focus of future work.

The first two objectives are broadly ap-
plicable to human genetics. First, we should
identify all Mendelian phenotypes and disease
genes. This goal is realistic given the advent
of inexpensive, high-throughput sequencing
(Gonzaga-Jauregui et al. 2012). Many spo-
radic or seemingly idiopathic cases of severe,
stereotyped disorders are likely the result of
mutations that are remarkably straightforward
to detect via exome sequencing (Choi et al.
2009, Bamshad et al. 2011). On the other
hand, many of the disorders described above
were characterized in large families with highly
significant linkage; yet, cloning of the disease
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Allelic
heterogeneity:
distinct mutations in
the same gene cause
identical/similar
phenotypes; the gold
standard of
establishing causality
in genetics

Genome-wide
association study
(GWAS): method
using sets of cases and
controls in which
polymorphisms across
the genome are tested
for statistical
association with
disease

genes at linked loci remained elusive for years,
often because of the sheer number of candidate
genes within the critical regions. This problem
is now easily circumvented by high-throughput
sequencing (Lee et al. 2012b, Russell et al.
2012).

However, there will be challenges. Foremost
among them is evaluating whether a rare variant
is truly causative. Numerous “disease genes”
have been assigned on the basis of a single af-
fected patient carrying a variant (Holland et al.
2008, Veeramah et al. 2012). Although these
data certainly represent grounds for functional
investigation, the gold standard should con-
tinue to be allelic heterogeneity. In fact, every
human carries hundreds of rare, novel variants
(Tennessen et al. 2012), so even using the
identification of two rare variants in the same
gene from a large collection of patients to claim
causality may be unwarranted (O’Roak et al.
2012, Sanders et al. 2012). Instead, large fam-
ilies with the statistical power to detect linkage
will remain valuable because linkage constrains
the pool of rare variants that must be considered
for causality. Even when the evidence includes
a highly penetrant phenotype, large families,
linkage, and allelic heterogeneity, some mu-
tations are not sufficient to cause disease in
unrelated patients (Klassen et al. 2011).
The sobering reality is that determining the
causal relationships between mutations and
Mendelian diseases may take many years to
unravel, particularly for genes of unknown
function.

The second main objective is to identify
genetic risk factors for related, genetically
complex disorders (Figure 1). It was hoped
that genome-wide association studies (GWAS)
would provide an unbiased method for doing
so; however, except for a few remarkable early
findings (Hageman et al. 2005, Duerr et al.
2006), despite extensive patient collections the
calculated effect sizes have been very small.
Consequently, the overwhelming majority of
GWAS associations have been insufficient to
induce researchers to pursue functional bio-
logical investigation or, when investigated, are
found to have no functional effect. It remains

an open question whether high-throughput se-
quencing will prove fruitful where GWAS was
not, although we remain hopeful. In our view,
one possibility merits serious consideration:
the null hypothesis. Perhaps the “missing heri-
tability” (Eichler et al. 2010) is not missing after
all but has instead been grossly overestimated
by inherently biased measures of heritability.
Only time will tell. Given this history, we
are puzzled as to why more resources are not
directed toward the tried-and-true approach of
applying our comprehension of rare Mendelian
disorders to understand pathophysiology of
related complex diseases, as exemplified by
Brown & Goldstein’s (2009) elucidation of
familial hypercholesterolemia, which sparked
development of the blockbuster statin drugs.
This approach has seemingly fallen out of favor.
In this regard, episodic neurologic disorders
are particularly tantalizing because Mendelian
forms exhibit very specific symptoms and
symptom clusters (e.g., congenital insensitivity
to pain) that may allow for pharmacological
treatments with minimal side effects.

A third goal is to understand why these
disorders are episodic in nature. Typically,
patients appear to be normal between attacks
and yet suffer extreme dysfunction during an
attack. Furthermore, attacks are triggered by
precipitants that are routinely encountered by
affected patients and unaffected patients alike,
and even in affected patients, these precipitants
do not always trigger an attack. The link
between the precipitant and an attack is clear
for some disorders, such as the primary skeletal
muscle disorders in which altered extracellular
ion concentrations affect myocyte excitability.
Another well-characterized example is PED, in
which exercise depletes blood glucose to cause
CNS hypoglycemia and hence dyskinesia.
However, other triggers remain baffling. For
example, strong emotion is a common trigger,
but how do psychological factors trigger
neurological dysfunction? No one knows.

Finally, the fourth objective is to expand
on the channelopathy paradigm (Figure 3).
Although more mutations in ion channels will
likely be found, it has become evident that many
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genes that do not encode channels can be mu-
tated to cause episodic disorders. For some, the
effect of gene mutation is easily tied to changes
in excitability, such as when the genes encode
proteins essential for ion channel trafficking,
stability, or function (Figure 2f ). However, as
we have repeatedly noted, for many genes the
link to cellular excitability remains poorly un-
derstood. We propose that rather than disease
genes affecting excitability in a cell-intrinsic
way (e.g., ion channel expression or localization
on the cell membrane), a compelling area for
future study is the role of disease genes in
modulating excitability at the synaptic level.
This concept of a synaptopathy is certainly not
new because the congenital myasthenic syn-
dromes have long been known to be disorders
of synaptic regulation (Figure 3a). However,
the concept of synaptopathy has, to date, been
restricted to the NMJ (Figure 3a), and it
seems probable that higher synapses may be
dysfunctional in episodic disorders of the CNS.
We cannot help but speculate that the lessons
learned by investigating synaptic function in
Mendelian episodic disorders may apply to var-
ious complex disorders such as autism that are
known synaptopathies (Grabrucker et al. 2011).

Likewise, disordered regulation of excitabil-
ity at the circuit level (circuitopathy) likely
contributes to episodic disorders of the CNS
(Figure 3b). For example, SCN1A mutations in
GEFS+, in which sodium channel dysfunction
results in aberrant interneurons, can be concep-
tualized as a channelopathy or a circuitopathy
because ion channels and also neuronal circuits
are defective. Many other types of aberrant
circuits are possible, and we anticipate that
some nonchannel genes, especially those impli-
cated in brain development and/or mutated in
Mendelian epilepsy syndromes, cause disease
by altering circuit wiring.

In summary, the past two decades have
borne witness to the description of many novel
episodic neurologic phenotypes, the identifica-
tion of causative mutations, and the elucidation
of underlying pathophysiology. On all three
fronts—syndromes, genes, and mechanisms—
much work remains. With the widespread ap-
plication of high-throughput genomic technol-
ogy, we expect progress to continue apace. In
time, we expect that these fronts will be con-
quered and the spoils will redound in the form
of novel treatments for these tragic diseases. We
owe as much to our patients.

SUMMARY POINTS

1. Episodic neurologic disorders cause symptoms in discrete attacks. Between attacks, pa-
tients appear to be normal.

2. Attacks are often triggered by commonplace stimuli such as hunger or emotional stress.
For most disorders, we do not understand how these stimuli trigger attacks.

3. Episodic neurologic disorders can be caused by a mutation in a single gene (Mendelian).
Alternatively, they may be genetically complex: influenced primarily by environmental
factors, with some polygenic genetic contribution. The four common complex disorders
are transient ischemic attack, syncope, epilepsy, and migraine.

4. Many rare complex episodic neurologic disorders exist. For example, autoimmune
episodic disorders are caused mostly by autoantibodies against ion channels or channel-
related proteins.

5. Many Mendelian episodic neurologic disorders exist, each of which is rare. Most affect
a single anatomical location: skeletal muscle, cardiac muscle, neuromuscular junction,
peripheral nerve, or CNS.
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6. Most Mendelian episodic disorder genes encode ion channels. Mutant channels are dys-
functional, and ensuing alterations in membrane excitability cause disease.

7. Investigators have recently identified many causative genes that do not encode ion chan-
nels. Some alter expression, localization, or function of channels. However, for many
others we do not know yet how the mutant gene leads to changes in excitability.

8. Recent progress indicates that episodic neurologic disorders may also be caused by dys-
function at the synaptic and neuronal circuit levels, suggesting an expansion of the chan-
nelopathy paradigm.

FUTURE ISSUES

1. Characterize all Mendelian phenotypes, and for each disorder, identify all causative genes.

2. Identify genetic risk factors for related, genetically complex disorders.

3. Investigate why these disorders are episodic in nature.

4. Expand on the channelopathy paradigm: Investigate dysfunction at the level of the
synapse and neuronal circuit in episodic disorders of the CNS.
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