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[1] Markov Chain Monte Carlo (MCMC) methods have become increasingly popular for
estimating the posterior probability distribution of parameters in hydrologic models.
However, MCMC methods require the a priori definition of a proposal or sampling
distribution, which determines the explorative capabilities and efficiency of the sampler
and therefore the statistical properties of the Markov Chain and its rate of convergence. In
this paper we present an MCMC sampler entitled the Shuffled Complex Evolution
Metropolis algorithm (SCEM-UA), which is well suited to infer the posterior distribution
of hydrologic model parameters. The SCEM-UA algorithm is a modified version of the
original SCE-UA global optimization algorithm developed by Duan et al. [1992]. The
SCEM-UA algorithm operates by merging the strengths of the Metropolis algorithm,
controlled random search, competitive evolution, and complex shuffling in order to
continuously update the proposal distribution and evolve the sampler to the posterior
target distribution. Three case studies demonstrate that the adaptive capability of the
SCEM-UA algorithm significantly reduces the number of model simulations needed to
infer the posterior distribution of the parameters when compared with the traditional
Metropolis-Hastings samplers. INDEX TERMS: 1894 Hydrology: Instruments and techniques; 1836

Hydrology: Hydrologic budget (1655); 1821 Hydrology: Floods; 1860 Hydrology: Runoff and streamflow;

1869 Hydrology: Stochastic processes; KEYWORDS: parameter optimization, uncertainty assessment, Markov

Chain Monte Carlo, automatic calibration, proposal distribution, hydrologic models
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1. Introduction and Scope

[2] Hydrologic models often contain parameters that
cannot be measured directly but which can only be inferred
by a trial-and-error (calibration) process that adjusts the
parameter values to closely match the input-output behavior
of the model to the real system it represents. Traditional
calibration procedures, which involve ‘‘manual’’ adjustment
of the parameter values, are labor-intensive, and their
success is strongly dependent on the experience of the
modeler. Automatic methods for model calibration, which
seek to take advantage of the speed and power of computers
while being objective and relatively easy to implement,
have therefore become more popular [e.g., Boyle et al.,
2000]. Since the early work reported by Dawdy and
O’Donnell [1965], automatic calibration procedures have
evolved significantly. However, many studies using such
methods have reported difficulties in finding unique (global)
parameter estimates [Johnston and Pilgrim, 1976; Duan et
al., 1992; Sorooshian et al., 1993; Gan and Biftu, 1996].

[3] Regardless of the methodology used, most hydrologic
models suffer from similar difficulties, including the exis-
tence of multiple local optima in the parameter space with
both small and large domains of attraction (a subregion of
the parameter space surrounding a local minimum), discon-
tinuous first derivatives, and curving multidimensional
ridges. These considerations inspired Duan et al [1992]
to develop a powerful robust and efficient global optimi-
zation procedure, entitled the shuffled complex evolution
(SCE-UA) global optimization algorithm. Numerous case
studies have demonstrated that the SCE-UA algorithm is
consistent, effective, and efficient in locating the optimal
model parameters of a hydrological model [e.g., Duan et al.,
1992, 1993; Sorooshian et al., 1993; Luce and Cundy, 1994;
Gan and Biftu, 1996; Tanakamaru, 1995; Kuczera, 1997;
Hogue et al., 2000; Boyle et al., 2000].
[4] While considerable attention has been given to the

development of automatic calibration methods which aim to
successfully find a single best set of parameter values, much
less attention has been given to a realistic assessment of
parameter uncertainty in hydrologic models. Estimates of
hydrologic model parameters are generally error-prone, be-
cause the data used for calibration contain measurement
errors and because the model never perfectly represents the
system or exactly fits the data. Consequently, it is generally
impossible to find a single point in the parameter space
associated with good simulations; indeed, there may not even
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exist a well-defined region in the sense of a compact region
interior to the prior parameter space. Although the SCE-UA
global optimization algorithm can reliably find the global
minimum in the parameter space, it still remains typically
difficult, if not impossible, to find a unique ‘‘best’’ parameter
set, whose performance measure differs significantly from
other feasible parameter sets within this region. Such poor
parameter identifiability may result in considerable uncer-
tainty in the model output and, perhaps more important,
make it virtually impossible to relate these parameter values
to easily measurable soil or land-surface characteristics
[Schaap et al., 1998; Duan et al., 2001; Vrugt et al., 2002].
[5] Only recently have methods for realistic assessment

of parameter uncertainty in hydrologic models begun
to appear in the literature. These include the use of
a multinormal approximation to parameter uncertainty
[Kuczera and Mroczkowski, 1998], evaluation of likelihood
ratios [Beven and Binley, 1992], parametric bootstrapping
and Markov Chain Monte Carlo (MCMC) methods [e.g.,
Tarantola, 1987; Kuczera and Parent, 1998]. Because
traditional statistical theory based on first-order approxi-
mations and multinormal distributions is typically unable
to cope with the nonlinearity of complex models, MCMC
algorithms have become increasingly popular as a class
of general purpose approximation methods for problems
involving complex inference, search, and optimization
[Gilks et al., 1996]. An MCMC method is a stochastic
simulation that successively visits solutions in the parameter
space with stable frequencies stemming from a fixed
probability distribution. A variety of MCMC samplers can
be constructed for any given problem by varying the
sampling or proposal distribution subject to conditions that
ensure convergence to the posterior target distribution.
These algorithms originally arose from the field of statistical
physics where they were used as models of physical
systems that seek a state of minimal free energy. More
recently, MCMC algorithms have been used in statistical
inference and artificial intelligence [Geman and Geman,
1984; Neal, 1993].
[6] Recently, Kuczera and Parent [1998] used the

Metropolis-Hastings algorithm [Metropolis et al., 1953;
Hastings, 1970], the earliest and most general class of
MCMC samplers, in a Bayesian inference framework to
describe parameter uncertainty in conceptual catchment
models. The Metropolis-Hastings algorithm is the basic
building block of classical MCMC methods and requires
the choice of a proposal distribution to generate transitions in
the Markov Chain. The choice of the proposal distribution
determines the explorative capabilities of the sampler and
therefore the statistical properties of the Markov Chain and
its rate of convergence. If the selected proposal distribution
closely approximates the posterior target distribution, the
Markov Chain that is sampled will rapidly explore the
parameter space, and it will not take long to obtain samples
that can be treated as independent realizations of the
target distribution of interest. However, a poor choice of
the proposal distribution will result in slow convergence of
the Markov Chain and an inability to recognize when
convergence to a limiting distribution has been achieved.
For complex hydrologic models, there is usually very little a
priori knowledge available about the location of the high-
probability density region within the parameter space. The

proposal distribution should therefore express a great deal of
initial uncertainty, thereby resulting in slow convergence to
the final posterior target distribution (for example, Beven
and Binley [1992] suggested imposing a uniform distribution
over a large rectangle of parameter values). An important
challenge therefore is to design MCMC samplers that exhibit
fast convergence to the global optimum in the parameter
space, while maintaining adequate occupation of the lower
posterior probability regions of the parameter space.
[7] To improve the search efficiency of MCMC samplers,

it seems natural to tune the proposal distribution during the
evolution to the posterior target distribution, using informa-
tion inferred from the sampling history induced by the
transitions of the Markov Chain. This paper describes an
adaptive MCMC sampler, entitled the Shuffled Complex
Evolution Metropolis algorithm (SCEM-UA), which is an
effective and efficient evolutionary MCMC sampler. The
algorithm, a modification of the original SCE-UA global
optimization algorithm developed by Duan et al. [1992],
operates bymerging the strengths of theMetropolis algorithm
[Metropolis et al., 1953], controlled random search [Price,
1987], competitive evolution [Holland, 1975], and complex
shuffling [Duan et al., 1992] to continuously update the
proposal distribution and evolve the sampler to the posterior
target distribution. The stochastic nature of the Metropolis-
annealing scheme avoids the tendency of the SCE-UA
algorithm to collapse to a single region of attraction (i.e.,
the global minimum), while information exchange (shuf-
fling) allows biasing the search in favor of better solutions.
[8] This paper is organized as follows. In section 2, we

describe the Metropolis-Hastings algorithm and the new
SCEM-UA algorithm for estimating the posterior probabil-
ity distribution of hydrologic model parameters. In section 3
we illustrate the power of both algorithms by means of three
case studies with increasing complexity; here we are espe-
cially concerned with algorithm efficiency (particularly the
number of simulations needed to converge to the stationary
posterior distribution). Finally, in section 4 we summarize
the methodology and discuss the results.

2. Search Algorithms for Assessment of
Parameter Uncertainty

[9] We are interested in hydrologic models that predict
outputs from inputs. These models are indexed by param-
eters, which may (or may not) be physically interpretable.
We assume that the mathematical structure of the model is
essentially predetermined and fixed. Following Troutmann
[1985], the hydrologic model h can be written as

ŷ ¼ h x qjð Þ þ e ð1Þ

where ŷ is N� 1 vector of model outputs, X = (x1, x2, . . ., x1r)
is an N � r matrix of input values, q = (q1, q2, . . ., qn) is a
vector with n unknown parameters, and e is a vector of
statistically independent errors with zero expectation and
constant variance s2. In the classical approach to model
calibration, the goal is to find the best attainable values of the
parameters q such that the vector of error terms, E(q) = {e(q)1,
e(q)2, . . ., e(q)N}, is in some sense forced to be as close to
‘‘zero’’ as possible [Gupta et al., 1998]. For this, the SCE-
UA global optimization algorithm developed by Duan et al.
[1992] has proven to be consistent, efficient, and effective.
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[10] The goal of searching for a single optimal repre-
sentation of equation (1) is, however, questionable. For
instance, to quote Kuczera and Parent [1998, pp. 70–71],
‘‘. . .as hydrological models can be viewed as the result of a
combination of conceptual and/or physically based transfer
functions, no hydrologist should be naive enough to rely on
a uniquely determined value for each of the model param-
eters q, whatever the skill and imagination of the modeler
may be.’’ Most likely, a search conducted on the feasible
parameter space close to the global optimum will reveal
many behavioral parameter sets with quite similar perfor-
mance in reproducing the observed data. If we want to be
able to regionalize or relate model parameters to easily
measurable land or soil-surface characteristics, a prerequi-
site is that the parameters be unique, preferably having a
small variance. From this perspective, it is necessary to
infer the parameter uncertainty resulting from calibration
studies.
[11] While classical statistics consider the model param-

eters q in equation (1) to be fixed but unknown, the
Bayesian statistics treat them as probabilistic variables
having a joint posterior probability density function (pdf ),
which captures the probabilistic beliefs about the parameters
q in the light of the observed data y. The posterior pdf p(qjy)
is proportional to the product of the likelihood function and
the prior pdf. The prior pdf with probability density (or
mass) function p(q) summarizes information about q before
any data are collected. This prior information usually
consists of realistic lower and upper bounds on each of
the parameters, thereby defining the feasible parameter
space, q 2 � � <n, and imposing a uniform (noninforma-
tive) prior distribution on this rectangle.
[12] Assuming that the residuals are mutually indepen-

dent, Gaussian distributed, with constant variance, the
likelihood of a parameter set q(t) for describing the observed
data y can be computed using [Box and Tiao, 1973]

L q tð Þ
���y� �

¼ exp 
 1

2

XN
i¼1

e q tð Þ
� �

i

s

0
@

1
A

2
2
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75 ð2Þ

Assuming a noninformative prior of the form p(q) / s
1,
Box and Tiao [1973] showed that the influence of s can be
integrated out, leading to the following form of the posterior
density of q(t):

p q tð Þ yj
� �

/ M q tð Þ
� �h i
1

2
N

ð3Þ

where

M q tð Þ
� �

¼
XN
i¼1

e q tð Þ
� �2

i
ð4Þ

For more information about the Bayesian inference scheme,
please refer to Box and Tiao [1973] and, more recently, to
Thiemann et al. [2001].

2.1. Traditional First-Order Approximation

[13] The classical approximation to obtain the posterior
probability density function from equation (2) is to use a
first-order Taylor series expansion of the nonlinear model
equations evaluated at the globally optimal parameter esti-

mates qopt. The estimated multivariate posterior joint prob-
ability density function of q is then expressed as [Box and
Tiao, 1973]

p q yjð Þ / exp 
 1

2s2
q
qopt
� �T

X TX q
 qopt
� �� �

ð5Þ

where X is the Jacobian or sensitivity matrix evaluated at
qopt. The posterior marginal probability density function
of q(t) is therefore approximated by the normal distribution,
Ni(qi,opt, s

2P
ii), where

P
ii is the ith diagonal element of the

covariance matrix computed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XTXð Þ
1

q
.

[14] If the hydrologic model is linear (or very nearly
linear) in its parameters, the posterior probability density
region estimated by equation (5) can give a good approx-
imation of the actual parameter uncertainty. However, for
nonlinear models (e.g., hydrologic models), this approxi-
mation can be quite poor [Kuczera and Parent, 1998; Vrugt
and Bouten, 2002]. Besides exhibiting strong and nonlinear
parameter interdependence, the surface of p(qjy) can deviate
significantly from the multinormal distribution. It may also
have multiple local optima and discontinuous derivatives
[Duan et al., 1992]. In view of these considerations, it is
evident that an explicit expression of the joint and marginal
probability density functions is often not possible. Fortu-
nately, MCMC samplers are very well suited to dealing with
the peculiarities encountered in the posterior pdf of hydro-
logic model parameters.

2.2. Monte Carlo Sampling of Posterior Distribution:
The SCEM-UA Algorithm

[15] Markov Chain schemes represent a general ap-
proach for sampling from the posterior probability distri-
bution p(qjy). A Markov Chain is generated by sampling
q(t+1) � z(qjq(t)). This z is called the transition kernel or
proposal distribution of the Markov Chain. Consequently,
q(t+1) depends only on q(t) and not on q(0), q(1), . . ., q(t
1).
Ergodicity and convergence properties of MCMC algo-
rithms to the posterior distribution have been intensively
studied in recent literature, and conditions have been
given for geometric convergence [Mengersen and Tweedie,
1996; Roberts and Tweedie, 1996]. In practice, this
means that if one looks at the values generated by the
Markov Chain, which are sufficiently far from the starting
value, the successively generated parameter sets will be
distributed with stable frequencies stemming from the
posterior target distribution. Any statistical quantity of
interest such as the probability density function and the
various posterior moments can be evaluated from the
generated pseudo sample. The most general and earliest
MCMC algorithm, known as the Metropolis-Hastings (MH)
algorithm [Metropolis et al., 1953; Hastings, 1970], is given
as follows:
[16] 1. Randomly start at a location in the feasible param-

eter space, q(t), and compute the posterior density, p(q(t)jy),
relevant to this point according to equation (2) or (3).
[17] 2. Generate a new configuration q(t+1) from z(qjq(t)),

where q(t+1) is called a candidate point and z ( ) is called the
proposal distribution.
[18] 3. Evaluate p(q(t+1)jy) using equation (2) or (3) and

compute � = p(q(t+1)jy)/p(q(t)jy).
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[19] 4. Randomly sample a uniform label Z over the
interval 0 to 1.
[20] 5. If Z 
 �, then accept the new configuration.

However, if Z > �, then reject the candidate point and
remain at the current position, that is, q(t+1) = q(t).
[21] 6. Increment t. If t is less than a prespecified number

of draws, then return to step 2.
[22] Note that the MH algorithm will always accept

candidate points ( jumps) into a region of higher posterior
probability but will also explore regions with lower poste-
rior probability with probability Z. Indeed, this algorithm is
a MCMC sampler generating a sequence of parameter sets,
{q(0), q(1), . . ., q(t)}, that converges to the posterior proba-
bility distribution, p(qjy), for large t [Gelman et al., 1995].
However, the shape and the size of the proposal distribution
z( ) is known to be very crucial for the convergence
properties of the Markov Chain [see, for example, Gilks et
al., 1995, 1998]. When the proposal distribution is too
large, too many candidate points are rejected, and therefore
the chain slowly covers the target distribution. On the other
hand, when the proposal distribution is too small, too many
candidate points are accepted, and the chain traverses
slowly through the parameter space, thereby resulting in
slow convergence.
[23] Various approaches have been suggested to improve

the efficacy and efficiency of MCMC samplers. For in-
stance, the proposal distribution can be updated during the
evolution to the posterior target distribution using informa-
tion from the sampling history induced in the transitions of
the Markov Chain [Gilks et al., 1996; Haario et al., 1999,
2001]. However, care must be taken to ensure that the
adaptation process does not destroy the overall ergodicity of
the Markov Chain or diminish the convergence rate. Some
authors have suggested that performance might be improved
by exchanging information among multiple samplers run-
ning in parallel [e.g., Geyer, 1991; Kass and Raftery, 1995].
One possibility, recently implemented in a hydrologic
application by Kuczera and Parent [1998], is to periodically
update the covariance structure of the proposal-jump distri-
bution by selecting a sample of points generated by each
multiple sequence. However, this approach is subject to the
same difficulty encountered by any adaptive sampler: how
to use information in a way that ensures convergence to the
stationary target distribution and desirable asymptotic prop-
erties of kernel density estimates derived from the sampler.
An important challenge is therefore to design samplers that
rapidly converge to the global minimum in the parameters
space, while maintaining sufficient occupation of the lower
posterior probability regions of the parameter space.
[24] In examining ways to increase information exchange

between the sampled candidate points in the Markov Chain,
it seems natural to consider the SCE-UA global optimiza-
tion strategy developed by Duan et al. [1992]. Recently,
Thyer et al. [1999] examined the use of simulated anneal-
ing, a probabilistic optimization technique, which is inti-
mately related to the MH algorithm, in combination with a
Simplex downhill search method (SA-SX) to calibrate
parameters in a conceptual catchment model. Although
the stochastic nature of their SA-SX algorithm avoided
getting trapped in local minima in the parameter space,
the SCE-UA algorithm, which operates with a population of
points divided into subcomplexes spread out over the

feasible parameter space, was found to be more effective
in searching the parameter space, especially when the
dimension of the problem was increased. The SCE-UA
approach has the desirable characteristic that it explicitly
uses information about the nature of the response surface,
extracted using the deterministic Simplex geometric shape,
to direct the search into regions with higher posterior
probability. Moreover, periodic shuffling of the population
enhances survivability and performance by a sharing of the
information gained independently by each community.

2.3. The Shuffled Complex Evolution
Metropolis Algorithm

[25] The goal of the SCE-UA algorithm developed by
Duan et al. [1992] is to find a single best parameter set in
the feasible space. Therefore it continuously evolves the
population toward better solutions in the search space,
relinquishing occupation of the regions of the parameter
space with lower posterior density. This genetic drift, where
the majority of the population converges toward a single
mode, is typical of many evolutionary search algorithms. To
prevent the collapse of the algorithm into the relatively
small region of a single best parameter set, we have modified
the SCE-UA algorithm. The new algorithm, entitled the
Shuffled Complex Evolution Metropolis (SCEM-UA;
developed in collaboration between the University of
Amsterdam and the University of Arizona) algorithm is
given below and is illustrated in Figures 1 and 2.

Figure 1. Flowchart of the Shuffled Complex Evolution
Metropolis (SCEM-UA) algorithm.
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[26] 1. Generate sample. Sample s points {q1, q2, . . ., qs}
randomly from the prior distribution and compute the
posterior density {p(q(1)jy), p(q(2)jy), . . ., p(q(s)jy)} of each
point using equation (2) or (3).
[27] 2. Rank points. Sort the s points in order of decreasing

posterior density and store them in array D[1:s, 1:n + 1],
where n is the number of parameters, so that the first row of D
represents the point with the highest posterior density.
[28] 3. Initialize parallel sequences. Initialize the starting

points of the parallel sequences, S1, S2, . . ., Sq, such that
Sk is D[k, 1:n + 1], where k = 1, 2, . . ., q.
[29] 4. Partition into complexes. Partition the s points of

D into q complexes Cl, C2, . . ., Cq, each containing m points,
such that the first complex contains every q( j
 1) + 1 ranked
point, the second complex contains every q( j
 1) + 2 ranked
point of D, and so on, where j = 1, 2, . . ., m.
[30] 5. Evolve each sequence. Evolve each of the parallel

sequences according to the Sequence Evolution Metropolis
algorithm outlined below.
[31] 6. Shuffle complexes. Unpack all complexes C back

into D, rank the points in order of decreasing posterior
density, and reshuffle the s points into q complexes accord-
ing to the procedure specified in step 4.
[32] 7. Check convergence. Check the Gelman and

Rubin (GR) convergence statistic. If convergence criteria
are satisfied, stop; otherwise return to step 5. The defini-

tion of the GR convergence statistic appears in section
2.6.
[33] The use of a large initial random sample provides

an extensive exploration of the parameter space, thereby
increasing the chance of finding the global optimum of the
prescribed density function. The use of a number of
parallel sequences with different starting points enables
an independent exploration of the search space, thereby
allowing that the optimization problem has more than one
region of attraction, and enables the use of heuristic tests
to judge whether convergence of the sequences to a
limiting distribution has been achieved. The use of com-
plexes enables the collection of information gained about
the search space by each individual sequence during the
evolution process. The shuffling of these complexes
enhances the survivability of the sequences by a global
sharing of the information gained independently by each
parallel sequence. This series of operations results in a
robust MCMC sampler that conducts a robust and efficient
search of the parameter space.
[34] One of the key components of the SCEM-UA

algorithm is the Sequence Evolution Metropolis (SEM)
algorithm, as mentioned in step 5. This algorithm produces
new candidate points in each of the parallel sequences Sk by
generating draws from an adaptive proposal distribution by
using the information induced in the m samples of Ck. An

Figure 2. Flowchart of the (SEM) strategy employed in the SCEM-UA algorithm.
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outline of the SEM algorithm is given below (see also
Figure 2).
[35] I. Compute the mean mk, and covariance structureP
k of the parameters of Ck. Sort the m point in complex Ck

in order of decreasing posterior density and compute k, the
ratio of the posterior density of the first (‘‘best’’) to the
posterior density of the last (‘‘worst’’) member of Ck.
[36] II. Compute ak, the ratio of the mean posterior

density of the m points in Ck to the mean posterior density
of the last m generated points in Sk.
[37] III. If ak is smaller than a predefined likelihood

ratio, T, generate a candidate point, q(t+1), by using a
multinormal distribution centered on the last draw, q(t), of
the sequence Sk, and covariance structure cn

2Pk, where cn
is a predefined jumprate. Go to step V, otherwise continue
with step IV.
[38] IV. Generate offspring, q(t+1), by using a multinormal

distribution with mean mk and covariance structure cn
2Pk,

and go to step V.
[39] V. Compute the posterior density, p(q(t+1)jy), of q(t+1)

using equation (2) or (3). If the generated candidate point
is outside the feasible parameter space, set p(q(t+1)jy) to
zero.
[40] VI. Compute the ratio � = p(q(t+1)jy)/p(q(t)jy) and

randomly sample a uniform label Z over the interval 0
to 1.
[41] VII. If Z is smaller than or identical to �, then accept

the new candidate point. However, if Z is larger than �,
reject the candidate point and remain at the current position
in the sequence, that is, q(t+1) = q(t).
[42] VIII. Add the point q(t+1) to the sequence Sk.
[43] IX. If the candidate point is accepted, replace the best

member of Ck with q(t+1), and go to step X; otherwise
replace the worst member (m) of Ck with q(t+1), provided
that �k is larger than the predefined likelihood ratio, T, and
p(q(t+1)jy) is higher than the posterior density of the worst
member of Ck.
[44] X. Repeat the steps I–VIII L times, where L is the

number of evolution steps taken by each sequence before
complexes are shuffled.
[45] In the SEM algorithm, candidate points are gener-

ated using an adaptive multinormal proposal distribution
with mean identical to the current draw in the sequence and
covariance matrix corresponding to the structure induced in
the m points of complex k. However, in situations where
the mean posterior density of the last m generated points in
sequence k is significantly smaller than the mean posterior
density of the m points in the corresponding complex k, the
center of the proposal distribution is temporarily switched
to the mean of the points in the complex. This particular
feature in the SEM algorithm (step IV) significantly
reduces the chance that individual sequences get stuck in
a local non-productive region of attraction, thereby further
improving the mixing of the sequences. After generating a
new candidate point, the posterior density relevant to this
point is computed and the Metropolis-annealing [Metropo-
lis et al., 1953] criterion is used to judge whether the
candidate point should be added to the current sequence or
not. Finally, the last step (step IX) in the SEM algorithm
considers which member of the current complex k should
be replaced with the point q(t+1). When the candidate point
is accepted, q(t+1) automatically replaces the best member

of the complex. However, when the candidate point is
rejected, q(t+1) replaces the worst point in complex k
provided that �k is larger than the predefined likelihood
ratio, T, and the posterior density relevant to q(t+1) is higher
than the posterior density corresponding to the worst point
of complex k. Hence, when �k is larger than some prior
defined large number (i.e., T > 105), there is sufficient
reason to believe that the covariance of the proposal
distribution is specified too big as members with a too
low probability are still present in Ck. Replacement of
the worst member of Ck in this particular situation will
facilitate convergence to a limiting distribution.
[46] In contrast with traditional MCMC samplers, the

SCEM-UA algorithm is an adaptive sampler, where the
covariance of the proposal or sampling distribution is
periodically updated in each complex during the evolution
to the posterior target distribution using information from
the sampling history induced in the transitions of the
generated sequences. Of course, it is not clear from the
algorithm presented above whether the proposed procedure
for updating the proposal distribution in view of the past
history of the chains will result in an ergodic chain with
desirable asymptotic properties of the kernel density esti-
mates derived from the sampler [Haario et al., 1999, 2001].
However, an empirical (experimental) investigation of the
ergodicity of the SCEM-UA strategy has revealed that the
algorithm performs very well, as demonstrated by different
case studies presented in this paper.
[47] The SCEM-UA algorithm is different from the

original SCE-UA algorithm presented by Duan et al.
[1992] in two important ways. Both modifications are
necessary to prevent the search from becoming mired in a
small basin of attraction and thus to arrive at the correct
posterior target distribution. First, the downhill Simplex
method in the competitive complex evolution algorithm
outlined by Duan et al. [1992] is replaced by a Metropolis-
annealing covariance based offspring approach, thereby
avoiding a deterministic drift toward a single mode. Second,
the SCEM-UA algorithm does not further subdivide the
complex into subcomplexes during the generation of the
offspring (candidate points) and uses a different replacement
procedure, to counter any tendency of the search to terminate
occupations in the lower posterior density region of the
parameter space.

2.4. Selection of Algorithmic Parameters
in the SCEM-UA Algorithm

[48] The SCEM-UA algorithm contains two algorithmic
parameters that need to be specified by the user. These are
(1) the number of complexes/sequences, q, and (2) the
population size, s, which in turn also determine the number
of points within each complex (m = s/q). For simple prob-
lems with an uncorrelated or correlated Gaussian target
distribution, relatively small population sizes (s 
 100)
and a small number of generated sequences/complexes
(q 
 5) will usually suffice. However, in the case of
complex-shaped posterior probability density distributions,
like highly nonlinear banana-shaped distributions, we
recommend the use of larger population sizes (s � 250)
and a larger number of parallel sequences (q � 10)
to be able to precisely capture the complex shape of
the covariance structure. Specific information about the
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number of sequences/complexes and the population size
can be found in the case study section of this paper.
Additionally, the SEM algorithm contains three algorithmic
parameters the values of which values must be chosen
carefully. The SCEM-UA algorithm employed for the
different case studies reported in this paper used the values
L = (m/10) and T = 106. As a basic choice, the value of the
jump rate, cn, was set to 2:4=

ffiffiffi
n

p
[Gelman et al., 1995].

Preliminary sensitivity analyses of the SCEM-UA algo-
rithm indicated that these values for the algorithmic
parameters work well for a broad range of applications.

2.5. Comparison of SCEM-UA Algorithm
Against Traditional MH Samplers

[49] To enable a direct comparison in performance
between the Metropolis-Hastings and SCEM-UA algo-
rithms, the q parallel sequences in the MH sampler were
initialized using the q points that exhibited the highest
posterior density in the original s points of the population.
Moreover, the proposal distribution for the traditional MH
sampler was set identical to the covariance structure of the
random initialized population of points in the feasible
parameter space. We argue that this is fair, considering
the fact that a uniform prior over the predefined feasible
parameter space is usually the only information we have
about the location of the high-posterior probability density
region. To benchmark against more modern MCMC tech-
niques, case study 2 also contains the results for other
stable state-of-the-art MH samplers, which are known to
maintain ergodicity.

2.6. Convergence of MCMC Samplers

[50] An important issue in MCMC sampling is conver-
gence of the sampler to the stationary posterior distribution
(step 7 of the SCEM-UA algorithm outlined in Figure 1).
Theoretically, a homogeneous sampler converges in the
limit as t ! 1, but in any applied problem one must
determine how many draws to make with the sampler.
Gelman and Rubin [1992] developed a quantitative conver-
gence diagnostic,

ffiffiffiffiffiffi
SR

p
, which they call the scale reduction

score, based on the within and between chain (sequence)
variances:

ffiffiffiffiffiffi
SR

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 
 1

g
þ qþ 1

q � g
B

W

s
ð6Þ

where g is the number of iterations within each sequence, B
is the variance between the q sequence means, and W is the
average of the q within-sequence variances for the param-
eter under consideration respectively. Note that the product
of q and g is identical to the total number of draws, t, with
the MH- or SCEM-UA sampler. A score close to 1 for

ffiffiffiffiffiffi
SR

p

for each of the parameters indicates convergence. However,
because a score of unity is difficult to achieve, Gelman and
Rubin [1992] recommend using values less than 1.2 to
declare convergence to a stationary distribution.

3. Case Studies

[51] We compare the power and applicability of the
Metropolis-Hastings and Shuffled Complex Evolution
Metropolis algorithms for three case studies with increasing
complexity. The first is a synthetic study using a simple
one-parameter bimodal posterior probability distribution.

This illustrates the ability of both search algorithms to infer
the known posterior target distribution. The second case
study explores the effectiveness and efficiency of the MH
and SCEM-UA samplers for approximating a strongly
nonlinear banana-shaped posterior probability distribution
and investigates the ergodicity of the SCEM-UA sampler.
Finally, the third case study involves assessment of param-
eter uncertainty using a five-parameter conceptual rainfall-
runoff model. In case studies 2 and 3, we are especially
concerned with algorithm efficiency, particularly the num-
ber of simulations needed to converge to the stationary
posterior distribution.

3.1. Case Study I: A Simple Bimodal Probability
Distribution

[52] We investigate the applicability of the Metropolis-
Hastings algorithm and the Shuffled Complex Evolution
Metropolis algorithm for assessment of parameter uncer-
tainty in the presence of bimodality. Consider the following
bimodal probability density function,

p qð Þ ¼ 1ffiffiffiffiffiffi
2p

p exp 
 1

2
q2

� �
2ffiffiffiffiffiffi
2p

p exp 
 1

2
2q
 8ð Þ2

� �
ð7Þ

which is the sum of two Gaussian probability distributions,
each having a different well-defined optimum as demon-
strated in Figure 3.
[53] The plot shows the bimodal character of the posterior

distribution, with a high probability region in the area
corresponding to the most probable parameter value (q = 4)
and another high-density region at (q = 0) well separated
from the first cluster.
[54] Figure 3 presents a histogram of 4000 samples

generated using the Metropolis-Hastings and Shuffled
Complex Evolution Metropolis algorithm outlined in sec-
tion 2. Both algorithms generated five parallel sequences
(q = 5), each with 1000 samples using a population size of
50 points. The first 200 samples of each sequence were
discarded, because it is unlikely that the initial draws
come from the stationary distribution needed to construct
the posterior estimates. An acceptable scale reduction
score of less than 1.2 indicated approximate convergence.
For both algorithms, it is evident that they are able to
successfully infer the posterior target distribution defined
in equation (7).

3.2. Case Study II: A Two-Dimensional
Banana-Shaped Posterior Target Distribution

[55] This case study explores the effectiveness and
efficiency of the MH and SCEM-UA algorithms for
inferring a two-dimensional highly nonlinear banana-
shaped posterior target distribution. In this study, we are
especially concerned with the ergodic properties of the
SCEM-UA sampler. If the proposed SCEM-UA algorithm
is able to generate a useful approximation of the highly
complex nonlinear banana-shaped test distribution in this
study, it seems reasonable to conjecture that the sampler is
suited to construct accurate posterior estimates for the
parameters in hydrologic models.
[56] The nonlinear banana-shaped distribution is con-

structed from the standard multivariate Gaussian distribu-
tion as follows. Let f be the density of the multivariate
normal distribution, N(0,

P
) with the covariance matrix
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given by
P

= diag(100, 1, . . ., 1). The twisted Gaussian
density function with nonlinearity parameter b > 0 is given
by

fb ¼ f � fb ð8Þ

where the function fb is

fb qð Þ ¼ q1; q2 þ bq21 
 100b; q3; . . . ; qn
� �

ð9Þ

The nonlinearity of function fb increases with b. In our test,
we applied the value b = 0.1 to yield a strongly twisted
banana-shaped target distribution. Owing to the complexity
of the posterior density surface of this test distribution, the
population size in the SCEM-UA algorithm was set to 1000
points, and the number of parallel sequences was set to 10.
The feasible parameter space was taken to be a uniform
distribution between 
100 and 100 for each parameter. The
test cases reported in this paper have been performed in the
dimensions 2 and 8.
[57] In the two-dimensional case, the evolution of the

Gelman-Rubin convergence diagnostic for the parameters q1
and q2 using the MH and SCEM-UA algorithms is illus-
trated in Figures 4a and 4b, respectively.
[58] Owing to random initializations of the starting

points of the parallel sequences in the feasible parameters
space, the scale reduction factor for the first 10,000
simulations is quite large using the MH sampler (Figure 4a).
Thereafter, the convergence diagnostic for both parameters
narrows down quickly and continues to widen and narrow

Figure 3. Bimodal probability distribution and histogram of 4000 samples generated using (a) the
Metropolis and (b) the Shuffled Complex Evolution Metropolis algorithms. See color version of this
figure at back of this issue.

Figure 4. Evolution of the Gelman and Rubin scale-
reduction factor for the nonlinear banana-shaped posterior
test distribution, using (a) the MH sampler and (b) the
SCEM-UA algorithm.
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intermittently. Finally, after approximately 45,000 simula-
tions, the plot suggests that the parallel sequences have
converged to a stationary posterior distribution for both
parameters (

ffiffiffiffiffiffi
SR

p
< 1.2). In the case of the SCEM-UA

algorithm, the periodic updating of the covariance structure
of the sampling-proposal distribution significantly
improves the explorative capabilities of the sampler and
the mixing of the sequences. Consequently, far fewer
iterations are needed with the SCEM-UA algorithm than
with the traditional MH sampler to achieve convergence
to a stationary posterior distribution. Indeed, the evolution
of the convergence diagnostic depicted in Figure 4b
demonstrates convergence to a posterior distribution after
approximately 10,000 simulations.

[59] Although the results in Figure 4 demonstrate a faster
convergence rate of the SCEM-UA sampler over the tradi-
tional MH sampler, it is important to check whether the
former sampler has converged to the true prior defined two-
dimensional banana-shaped posterior test distribution and
hence has the right ergodic properties. Table 1 summarizes
the evolution of the average Euclidean distance of the
‘‘true’’ means and standard deviations of the prior defined
probability distribution from those respective values esti-
mated with the SCEM-UA algorithm as a function of the
number of function evaluations. Each number in the table
denotes an average over 100 independent runs. The results
in Table 1 demonstrate that the average Euclidean distance
of the SCEM-UA estimated mean values and standard
deviations from the true values at origo slowly approaches
to zero, suggesting that the sampler provides a correct
estimation of the posterior target distribution and hence
does not collapse to a small region of highest posterior
density. More significantly, the posterior moments derived
with the adaptive SCEM-UA sampler compare favorably
well with identical counterparts derived using the MH
sampler. This serves as numerical evidence that the
SCEM-UA algorithm has the right ergodic properties and
hence provides correct simulation of the target distribution.
[60] Note, however, that both samplers generate slightly

biased estimates of the posterior moments as compared to
their ‘‘true’’ values of the predefined banana-shaped test
distribution. This is also demonstrated in Figures 5a and 5b,
which present scatterplots of the (q1, q2) sampled MH and
SCEM-UA points, respectively, that were generated after
convergence of the sequences to a stationary posterior
distribution has been achieved.
[61] The dark contour line refers to the theoretical 68.3

and 95% confidence regions of the predefined banana-

Table 1. Statistical Properties of the Two-Dimensional Banana-

Shaped Posterior Distribution as a Function of the Number of

Function Evaluations With the MH and SCEM-UA Samplersa

Number of
Evaluations

MH SCEM-UA

Mean(kEk) SD(kEk) Mean(kEk) SD(kEk)

10,000 7.85 9.26 1.59 3.47
20,000 2.54 4.32 1.00 1.61
30,000 2.94 3.99 1.05 1.10
40,000 2.51 2.72 0.84 0.84
50,000 2.28 2.92 0.96 0.84
60,000 1.84 2.68 0.95 0.72
70,000 1.58 2.36 0.87 0.63
80,000 1.68 2.20 0.81 0.61

aMean(kEk) denotes the average Euclidean distance of the SCEM-UA
derived mean values from their true values at origo; thus mean (kEk) =
(�i=1

n (Et)
2)1/2. In a similar way, SD(kEk) denotes the average Euclidean

distance of the SCEM-UA derived standard deviations from their true
values at origo. To reduce the influence of sampling variability, the
presented statistics denote averages over 100 independent runs.

Figure 5. A scatterplot of the (q1,q2) samples generated after convergence to a stationary posterior
distribution has been achieved using (a) the Metropolis, and (b) the Shuffled Complex Evolution
Metropolis algorithms. The lines indicate the one-dimensional 68.3 and 95% confidence regions of the
parameters. See color version of this figure at back of this issue.
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shaped posterior target distribution. Both the MH and
SCEM-UA sampled points and posterior moments are
consistent with the test target distribution. The scatterplots
presented in Figures 5a and 5b demonstrate that with an
identical number of iterations, the population sampled using
the SCEM-UA algorithm is much more diverse than the
population sampled using the traditional MH sampler.
However, especially in the case of the MH sampler, the
sampling density at the extreme tails of the banana-shaped
distribution is rather sparse, suggesting that the algorithms
experience problems in exploring the lower posterior den-
sity region of the parameter space. This explains the slightly
biased posterior moments presented in Table 1. Clearly,
periodically updating of the covariance structure of the
proposal distribution in view of the history induced in
the transitions of the Markov Chains not only improves
the convergence rate of the sampler but also significantly
increases the diversity of the final sampled population.
Hence a more diverse population yields better estimates of
the final statistical moments of the posterior distribution and
as such is an additional advantage of the SCEM-UA
algorithm over traditional MH-samplers.
[62] The transitions of parameter q1 in three of the five

parallel sequences (Markov Chains) during the evolution of
the MH and SCEM-UA samplers to the stationary posterior
distribution is illustrated in Figures 6a and 6b, respectively.
[63] For clarity, the three different parallel sequences are

coded with different symbols. The 1-D scatterplots of the

sampled parameter space demonstrate that at early stages
during the evolution, the individual sequences tend to
occupy different regions of the posterior surface. This low
mixing of the paths, especially in the case of the MH
sampler (Figure 6a), is associated with a relatively high
value for the scale reduction factor (see Figure 4), indicating
poor convergence. At a later stage during the evolution, all
of the individual sequences have been able to fully explore
the banana-shaped posterior target distribution, thereby
resulting in a scale reduction factor smaller than 1.2,
indicating convergence to a stationary distribution. Note,
however, that the mixing of the MH-generated Markov
Chains is quite poor, suggesting that the proposal distribu-
tion used to sample with the MH sampler was too large.
Hence the transitions in the Markov Chain reveal a low
diversity; too many candidate points are rejected and
therefore the chain slowly covers the posterior target distri-
bution. Graphical examination of the transitions and mixing
of the different symbolic coded paths yields a similar picture
about the convergence status of the sampler as the value of
the convergence diagnostic presented in Figure 4. Practical
experience with other case studies also suggests that the GR
convergence diagnostic is useful for testing whether con-
vergence to a limiting posterior distribution has been
achieved even when the parallel chains/sequences are not
fully independent, as in the case of the SCEM-UA sampler.
Although the SCEM-UA algorithm is an adaptive sampler,
which continuously updates the proposal distribution based

Figure 6. Transitions of the parameter q1 in three of the five parallel generated Markov Chains during
the evolution to the banana-shaped posterior target distribution using the (a) the MH algorithm and (b) the
SCEM-UA algorithm. For more explanation, please refer to the text.
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on the information induced in the history of the sampled
points, the sampler does not collapse to a single region of
highest attraction. Graphical examination of the sampled
parameter space demonstrates that the SCEM-UA sampler
maintains occupation at the extreme tails of the hyperbolic
banana-shaped distribution during the evolution. This
ensures an asymptotic convergence to the desirable kernel
density estimates and again serves as empirical evidence
that the generated Markov Chain-sequences are ergodic.
[64] To test whether the SCEM-UA algorithm also pro-

vides a correction simulation of the target distribution in
higher dimensions, the algorithm was run in various dimen-
sions up to n = 500. The results of extensive tests in
dimension n = 8 are summarized in Table 2. To benchmark
against other modern adaptive MH samplers, the results of
the adaptive proposal (AP) and adaptive Metropolis (AM)
algorithms, as developed by Haario et al. [1999, 2001], are
also included. These algorithms are known to maintain
ergodicity. The results in Table 2 demonstrate that the
SCEM-UA algorithm also generates a correct simulation
of the banana shaped posterior target distribution in the
eight-dimensional test case. The SCEM-UA algorithm has a
consistent better performance than the AP algorithm and a
quite similar performance as the AM algorithm. However,
the exploration of the parameter space with a number of
parallel sequences, rather than a single sequence search
strategy as employed in the AP and AM algorithms, enables
the SCEM-UA algorithm to deal with optimization prob-
lems that contain more than one region of attraction.
Additionally, the shuffling procedure implemented in the
SCEM-UA algorithm enhances the survivability F of the
sequences by a global sharing of the information gained
independently by each parallel sequence. Consequently, as
opposed to the AP and AM algorithms developed by

Haario et al. [1999, 2001] the SCEM-UA algorithm does
not require an optimization technique to first locate the high
probability density region in the parameter space. Although
not explicitly demonstrated, we have successfully applied
the SCEM-UA algorithm up to n = 500 dimensions.
[65] The empirical results presented here illustrate three

important findings. First, in the case of a strong banana-
shaped curvature of the posterior distribution of the param-
eters, the SCEM-UA algorithm is successfully able to infer
the posterior target distribution. Second, graphical exami-
nation of the sampled parameter space and numerical
analyses of the statistical properties of the Markov Chain
demonstrate that the generated sequences are ergodic,
thereby ensuring asymptotic convergence to the desirable
kernel density estimates of the posterior target distribution.
These results give confidence that the SCEM-UA algorithm
will likely yield accurate estimates of the posterior moments
for complex problems such as are usually found in hydro-
logic modeling. Third, periodic tuning of the sampling-
proposal distribution by use of a local search direction
(sequences), constructed using global information exchange
(shuffling), can help make improvements in mixing and
therefore in the efficiency (speed of convergence) of
MCMC samplers.

3.3. Case Study III: The HYMOD Model

[66] This case study illustrates the usefulness of the
Metropolis-Hastings and shuffled complex evolution Me-
tropolis algorithms to hydrologists who are especially
concerned with a realistic assessment of prediction uncer-
tainty on hydrological responses. For this purpose, we used
HYMOD, a five-parameter conceptual rainfall-runoff model
(see Figure 7), introduced by Boyle [2000] and recently
used by Wagener et al. [2001].
[67] The HYMOD model consists of a relatively simple

rainfall excess model, described in detail by Moore [1985],
connected with two series of linear reservoirs (three iden-
tical quick and a single reservoir for the slow response) and
requires the optimization of five parameters to observed
streamflow data: the maximum storage capacity in the
catchment, Cmax (L), the degree of spatial variability of
the soil moisture capacity within the catchment, bexp ( ), the
factor distributing the flow between the two series of
reservoirs, Alpha ( ), and the residence time of the linear
quick and slow reservoirs, Rq (T) and Rs (T), respectively.
[68] In keeping with previous studies [e.g., Thiemann

et al., 2001], approximately 11 years (28 July 1952 to

Table 2. Statistical Properties of the Eight-Dimensional Banana-

Shaped Posterior Distribution as Estimated With the SCEM-UA

Algorithma

Method AP AM SCEM-UA

Mean(kEk) 4.85 2.41 1.78
SD(kEk) 4.20 1.15 1.42

aMean(kEk) and SD(kEk) denote the average distance of the SCEM-UA
derived mean and standard deviations from their true values at origo
calculated over 100 repetitions. For more explanation, please refer to the
text.

Figure 7. Schematic representation of the HYMOD model.
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30 September 1962) of hydrologic data from the Leaf River
watershed were used for model calibration. This humid
1944 km2 watershed, located north of Collins, Mississippi,
has been investigated intensively [e.g., Brazil, 1988;
Sorooshian et al., 1993; Boyle et al., 2000; Thiemann et
al., 2001]. The data, obtained from the National Weather
Service Hydrology Laboratory (HL), consist of mean areal
precipitation (mm/d), potential evapotranspiration (mm/d),
and streamflow (m3/s). This data set was used to test the
efficiency and effectiveness of the MH and SCEM-UA
algorithms for estimating the posterior distribution of the
model parameters and to assess prediction uncertainty on the
hydrologic responses. The prior uncertainty ranges of the
parameters are defined in Table 3. To reduce sensitivity to
state value initialization, a 65-day warm-up period was used,

during which no updating of the posterior density defined in
equation (3) was performed. Moreover, we used a popula-
tion size of 250 points and assumed that the output errors
have a heteroscedastic (nonconstant) variance that is related
to flow level and which can be stabilized using the trans-
formation, z = [(y + 1)l 
 1]/l with l = 0.3 [Misirli et al.,
2003].
[69] The evolution of the Gelman and Rubin scale-reduc-

tion convergence diagnostic for each of the model param-
eters using the MH and SCEM-UA algorithms is illustrated
in Figures 8a and 8b.
[70] Both sampling algorithms generated five parallel

sequences (q = 5), each with 6000 samples. Note the
different scales on the y-axes of the two plots. Clearly,
the SCEM-UA algorithm is more efficient in traversing the
parameter space, with convergence to a stationary posterior
distribution (

ffiffiffiffiffiffi
SR

p
< 1:2) for each of the HYMOD model

parameters achieved after approximately 4000 simulations.
In contrast, the MH sampler is far from convergence to a
stationary distribution, with the scale-reduction factor for
each of the parameters larger than 2, even after performing
30,000 simulations. To understand why, consider Figures 9a
and 9b, which present the evolution of samples generated in
three parallel launched sequences, using either the MH or
the SCEM-UA algorithm.
[71] Because no information about the location of the

highest probability density region in the parameter space is
exchanged between parallel sequences launched using the
MH sampler, it remains difficult for the sequences (chains)

Table 3. Prior Uncertainty Ranges of the HYMOD Model

Parameters

Minimum Maximum Unit

Cmax 1.000 500.000 mm
bexp 0.100 2.000 [ ]
Alpha 0.100 0.990 [ ]
Rs 0.000 0.100 [d]
Rq 0.100 0.990 [d]

Figure 8. Evolution of the Gelman and Rubin scale-
reduction factor for the parameters in the HYMOD model
using 11 years of runoff data (1952–1962) for the Leaf
River watershed for (a) the Metropolis-Hastings algorithm
and (b) the Shuffled Complex Evolution Metropolis
algorithm.

Figure 9. Markov Chain Monte Carlo Cmax samples
generated in three parallel sequences using either (a) the
Metropolis-Hastings algorithm or (b) the Shuffled Complex
Evolution Metropolis algorithm.
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to mix and terminate their occupation in regions of the
parameter space with a low posterior density. Owing to this
slow mixing rate, the posterior moments derived from the
samples generated in each of the parallel chains differ
appreciably between the different chains, and the scale-
reduction factor remains far above the threshold value of
1.2, indicating lack of convergence. Given the ability of the
SCEM-UA algorithm to exchange information about the
search space gained by the different parallel launched
sequences, this increases the explorative capabilities of the
sampler and therefore the traversing speed of the chains
through the feasible parameter space. This behavior is
evident in Figure 9b. Consequently, the population sampled
using the SCEM-UA algorithm is more diverse. Periodic
shuffling of the complexes in the SCEM-UA algorithm
ensures sharing of information gained independently by
each community about the nature of the posterior distribu-
tion and therefore increases the traversal through the pa-
rameter space. This allows us to make more sound
inferences about the nature of the posterior probability
density function.
[72] Although not presented in this paper, we also per-

formed a variety of experiments with the MH sampler to
speed up convergence to the posterior distribution. One of

those experiments was to periodically update the covariance
structure of the jump-proposal distribution using a sample
within each sequence, and to use this covariance structure to
generate new candidate points in each parallel sequence. In
this way, the information gained by each individual local
sampler is more thoroughly exploited. However, using this
approach, a significantly larger number of simulations were
needed, as compared to the SCEM-UA algorithm, to
achieve convergence (typically 10,000 simulations).
[73] Figure 10 presents the posterior marginal probability

density distributions for each of the HYMOD model param-
eters inferred for the Leaf River watershed using the
samples generated with the SCEM-UA algorithm.
[74] While the histograms of Alpha and the slow- and

quick-tank recession parameters, Rs and Rq, exhibit an
approximately Gaussian distribution, the posterior probabil-
ity distributions for the other model parameters reveal the
existence of several modes. This multimodality suggests the
presence of multiple regions of attraction in the posterior
surface and illustrates the severity of the optimization
problem, even in the case of this simple and parsimonious
five-parameter conceptual rainfall-runoff model using more
than 10 years of daily streamflow data. Note, however, that
the parameter sets sampled using the SCEM-UA algorithm

Figure 10. Marginal posterior probability distributions of the HYMOD model parameters (Cmax, bexp,
Alpha, Rs, Rq) constructed using 10,000 samples generated after convergence to a posterior distribution
has been achieved with the Shuffled Complex Evolution Metropolis algorithm.
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occupy a relatively small range, interior to their uniform
prior distributions (e.g., Table 3), which indicates that the
HYMOD model parameters are reasonable well identifiable
from measured time series of runoff.
[75] In Table 4, we present the final posterior moments

derived using those samples that were generated with the
SCEM-UA algorithm after convergence to the stationary
target distribution has been achieved. For this, the first 600
simulations of each parallel sequence were discarded (i.e.,ffiffiffiffiffiffi
SR

p
> 1:2). Also included are the most likely parameter

values, describing the approximately 11 years of runoff
data of the Leaf River watershed, identified using the
SCE-UA global optimization algorithm [Duan et al.,
1992]. As stated earlier, the posterior standard deviations
and correlation coefficients between the sampled parame-
ters depict that the parameters of the HYMOD model are
well identifiable using measured runoff data. A direct
comparison between the optimal parameter values derived

using the original SCE-UA global optimization algorithm
and the SCEM-UA algorithm demonstrates that the latter
algorithm is not only able to conveniently derive the
posterior distribution of the model parameters, but also
successfully identifies the most likely parameter values
within this high-density region. Clearly, this feature is an
additional benefit of the SCEM-UA algorithm because it
makes superfluous the two-step procedure in which the
global optimum in the parameter space is first identified,
followed by launching parallel MH samplers from this
starting point to identify parameter uncertainty.
[76] Finally, Figure 11 illustrates how the results of the

SCEM-UA algorithm can be translated into estimates of
hydrograph prediction uncertainty, using data from Water
Year 1953.
[77] Figure 11a shows the observed streamflows (dots),

the 95% hydrograph prediction uncertainty associated only
with the posterior distribution of the parameter estimates

Figure 11. (a) Hydrograph prediction uncertainty associated with the most probable set derived using
the SCEM-UA algorithm. The lighter shaded region denotes model uncertainty, whereas parameter
uncertainty is indicated with the darker shaded region. The dots correspond to the observed streamflow
data. (b) Hydrograph prediction uncertainty associated with the uncertainty in the model (lighter shading)
and parameter estimates (darker shading) for the Water Year 1953. The dots correspond to the observed
streamflow data. See color version of this figure at back of this issue.

Table 4. Shuffled Complex Evolution Metropolis Posterior Mean (Mean), Standard Deviation (SD), Coefficient of Variation (CV), and

Correlation Coefficients Between the Generated Samples for the HYMOD Model Parameters Using 11 Years of Runoff Data (1952–

1962) for the Leaf River Watersheda

Parameter Mean SD CV Cmax bexp Alpha Rs Rq SCEM-UA SCE-UA

Cmax 256.67 11.36 4.72 1.00 0.95 0.85 
0.44 
0.40 253.41 253.63
bexp 0.38 0.026 7.24 . . . 1.00 0.85 
0.37 
0.38 0.38 0.38
Alpha 0.84 0.0091 1.18 . . . . . . 1.00 
0.38 
0.45 0.84 0.84
Rs 0.0027 0.00051 19.44 . . . . . . . . . 1.00 0.27 0.0029 0.0030
Rq 0.46 0.0028 0.61 . . . . . . . . . . . . 1.00 0.46 0.46

aIncluded is the parameter set found with highest posterior probability using the SCEM-UA algorithm and the original SCE-UA global optimization
algorithm.
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(darker shaded region), and the 95% hydrograph prediction
uncertainty associated with the total error (lighter shaded
region) in terms of the model residuals (computed by
subtracting the hydrograph prediction having the highest
posterior probability). Figure 11b shows the same informa-
tion in the streamflow space. Note that the 95% total
prediction uncertainty ranges bracket the observed flows
during the period, but are quite large, indicating consider-
able uncertainty in the predictions given the current model
structure and the data used to condition the model. Further,
the hydrograph prediction uncertainty associated only with
the posterior distribution of the parameter estimates (darker
shading) does not include the observations and displays bias
on the long recessions, suggesting that the model structure
may be in need of further improvement.

4. Summary

[78] This paper has presented a Markov Chain Monte
Carlo sampler, which is well suited for the practical
assessment of parameter uncertainty in hydrological mod-
els. The sampler, entitled the Shuffled Complex Evolution
Metropolis algorithm,merges the strengths of theMetropolis-
Hastings algorithm, controlled random search, competitive
evolution, and complex shuffling to evolve a population of
sampled points to an approximation of the stationary posterior
distribution of the parameters. There are two differences
between the SCEM-UA algorithm and the original SCE-UA
algorithm presented by Duan et al. [1992]. These modifi-
cations prevent the search from becoming mired in a small
basin of attraction and facilitate convergence to a stationary
posterior target distribution. The first modification involves
replacement of the downhill SimplexmethodbyaMetropolis-
annealing covariance-based offspring approach, thereby
avoiding a deterministic drift toward a single mode. Second,
the SCEM-UA algorithm does not further divide the complex
into subcomplexes during the generation of the offspring
and uses a different replacement procedure, to counter any
tendency of the search to terminate occupations in the lower
posterior density region of the parameter space.
[79] The efficiency and effectiveness of the newly devel-

oped SCEM-UA algorithm for estimating the posterior
distribution of the parameters was compared with the
traditional Metropolis-Hastings sampler for three case
studies of increasing complexity. The first case study, a
simple bimodal probability distribution, showed that the
SCEM-UA algorithm does indeed successfully infer a
known posterior target distribution. The second and third
case study explored the effectiveness and efficiency of the
algorithm for assessing parameter uncertainty in a highly
nonlinear banana-shaped posterior test distribution and a
conceptual watershed model. Both studies clearly demon-
strated that the SCEM-UA is efficient, needing smaller
numbers of simulations than the MH algorithm for realistic
assessment of parameter uncertainty. The ability of the
SCEM-UA algorithm to exchange information between
parallel launched sequences increases the traversing speed
of the chains through the feasible parameter space. Besides
inferring the posterior distribution of the model parameters,
an additional advantage of the SCEM-UA algorithm is that
it simultaneously identifies the most likely parameter values
within this high-density region. This makes superfluous the
two-step procedure in which the global optimum in the

parameter space is first identified, followed by launching
parallel MH samplers from this starting point to estimate
parameter uncertainty.
[80] Research aimed at further improvements of the

Shuffled Complex Evolution Metropolis approach, includ-
ing extensions to multicriteria problems, is ongoing. The
results of this work will be reported in due course. As
always, we invite dialog with others interested in these
topics. The code for the SCEM-UA algorithm is available
from the first author.
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Figure 3. Bimodal probability distribution and histogram of 4000 samples generated using (a) the
Metropolis and (b) the Shuffled Complex Evolution Metropolis algorithms.

Figure 5. A scatterplot of the (q1,q2) samples generated after convergence to a stationary posterior
distribution has been achieved using (a) the Metropolis, and (b) the Shuffled Complex Evolution
Metropolis algorithms. The lines indicate the one-dimensional 68.3 and 95% confidence regions of the
parameters.
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Figure 11. (a) Hydrograph prediction uncertainty associated with the most probable set derived using
the SCEM-UA algorithm. The lighter shaded region denotes model uncertainty, whereas parameter
uncertainty is indicated with the darker shaded region. The dots correspond to the observed streamflow
data. (b) Hydrograph prediction uncertainty associated with the uncertainty in the model (lighter shading)
and parameter estimates (darker shading) for the Water Year 1953. The dots correspond to the observed
streamflow data.
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