
UC Davis
UC Davis Previously Published Works

Title
Using RNA-Seq for Genomic Scaffold Placement, Correcting Assemblies, and Genetic Map 
Creation in a Common Brassica rapa Mapping Population

Permalink
https://escholarship.org/uc/item/4393j6d9

Journal
G3: Genes, Genomes, Genetics, 7(7)

ISSN
2160-1836

Authors
Markelz, RJ Cody
Covington, Michael F
Brock, Marcus T
et al.

Publication Date
2017-07-01

DOI
10.1534/g3.117.043000
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4393j6d9
https://escholarship.org/uc/item/4393j6d9#author
https://escholarship.org
http://www.cdlib.org/


	

	 1	

Title Using RNA-seq for genomic scaffold placement, correcting assemblies, and genetic map 1 

creation in a common Brassica rapa mapping population. 2 

Author Information 3 

RJ Cody Markelz*,2, Michael F Covington*,1,2, Marcus T Brock ‡, Upendra K Devisetty*, Daniel 4 

J Kliebenstein†, Cynthia Weinig‡, Julin N Maloof* 5 

*University of California at Davis, Department of Plant Biology, Davis, CA 95616 6 

†University of California at Davis, Department of Plant Sciences, Davis, CA 95616 7 

‡University of Wyoming, Department of Botany, Laramie, WY, 82072 8 

1Amaryllis Nucleics, Inc. Berkeley, CA, 94710 9 
 10 
2These authors contributed equally to this work. 11 

  12 

 G3: Genes|Genomes|Genetics Early Online, published on May 25, 2017 as doi:10.1534/g3.117.043000

© The Author(s) 2013. Published by the Genetics Society of America. 



	

	 2	

Running Title  1 

Brassica rapa genome improvements using RNA-seq 2 

Key Words 3 
RNA-seq, genetic map, Brassica rapa, genome assembly correction 4 

Corresponding Author 5 

Julin N. Maloof 6 

jnmaloof@ucdavis.edu 7 

Department of Plant Biology, LS 1002 8 

University of California, Davis 9 

1 Shields Ave 10 

Davis, CA 95616 11 

  12 



	

	 3	

Abstract 1 

Brassica rapa is a model species for agronomic, ecological, evolutionary and translational 2 

studies.  Here we describe high-density SNP discovery and genetic map construction for a 3 

Brassica rapa recombinant inbred line (RIL) population derived from field collected RNA-seq 4 

data. This high-density genotype data enables the detection and correction of putative genome 5 

mis-assemblies and accurate assignment of scaffold sequences to their likely genomic locations. 6 

These assembly improvements represent 7.1-8.0% of the annotated Brassica rapa genome. We 7 

demonstrate how using this new resource leads to a significant improvement for QTL analysis 8 

over the current low-density genetic map.  Improvements are achieved by the increased mapping 9 

resolution and by having known genomic coordinates to anchor the markers for candidate gene 10 

discovery. These new molecular resources and improvements in the genome annotation will 11 

benefit the Brassicaceae genomics community and may help guide other communities in fine-12 

tuning genome annotations.  13 

  14 
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INTRODUCTION 1 

The Brassica genus is important for human diets throughout Asia, providing micronutrients and 2 

up to 12% of oil calories and a wide diversity of agricultural products (Dixon, 2007; Wang et al., 3 

2011b). Within this genus genome sequences have recently been published for Brassica napus, 4 

Brassica rapa, and Brassica oleracea (Chalhoub et al., 2014; Liu et al., 2014; Parkin et al., 2014; 5 

Wang et al., 2011b; Yang et al., 2016). Brassica rapa is a physiologically and morphologically 6 

diverse diploid species that has 87% gene exon similarity to the model plant Arabidopsis 7 

thaliana (Cheng et al. 2013). This makes Brassica rapa an excellent species for comparing and 8 

translating knowledge of biological processes from Arabidopsis to a crop species. For example, 9 

homologous Arabidopsis gene information has been used to infer the action of B. rapa genes in 10 

glucosinolate metabolism (Li and Quiros, 2001; Wang et al., 2011a), flowering time, leaf 11 

development (Baker et al., 2015), and seed yield (Brock et al., 2010; Dechaine et al., 2014). All 12 

of these important traits contribute to our understanding of plant growth in agricultural settings 13 

and the underlying genetic understanding of these traits is made possible by a reference genome 14 

sequence (Wang et al., 2011b), gene annotation information (Cheng et al., 2013; Devisetty et al., 15 

2014), and genetic mapping populations (e.g. Iniguez-Luy et al. 2009). 16 

The annotated Brassica rapa genome assembly is 283.8 Mb spread over 10 chromosomes A01-17 

10 (Wang et al. 2011b).  Although the current genome is diploid, there are three ancient 18 

subgenomes derived from genome duplication events. These subgenomes are designated as least 19 

fractionated (LF), most fractionated one (MF1), and most fractionated two (MF2) corresponding 20 

to the fraction of gene loss in each subgenome (Cheng et al., 2012; Wang et al., 2011b). These 21 

three subgenomes share many paralogous genes and contiguous regions complicating genome 22 

assembly. This has prevented about 10.8% of the gene-containing genomic scaffolds in version 23 
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1.5 of the genome (http://brassicadb.org/brad/index.php) from being assigned to chromosomes. 1 

The lack of chromosomal assignment is largely because these scaffolds have no molecular 2 

markers that would have enabled their placement on the genetic map.  This suggests that 3 

identifying more markers can help to make the B. rapa genome assembly more comprehensive 4 

(Wang et al., 2011b). 5 

For this study we utilized an existing RIL population of Brassica rapa that has been used 6 

extensively for QTL mapping of physiological, developmental, and evolutionarily important 7 

traits (Bra-IRRI; Baker et al., 2015; Brock et al., 2010; Dechaine et al., 2007, 2014; Edwards et 8 

al., 2011; Iniguez-Luy et al., 2009; Lou et al., 2011, 2012). Recently, we completed deep RNA-9 

sequencing of the parents of the Bra-IRRI population providing a large SNP set and improved 10 

gene annotation information (Devisetty et al., 2014).  Using a new set of RNA-seq data collected 11 

on the entire population, we extend these SNP discovery methods to 124 genotypes in the 12 

population for placing scaffolds, correcting assemblies, and the creation of a saturated  saturated 13 

genetic map.  14 

MATERIALS AND METHODS 15 

Plant Growth and Tissue Collection 16 
The field site for plant growth was located at the University of Wyoming Agricultural 17 

Experimental Station in Laramie, Wyoming, USA. This study focused on 124 RILs and the two 18 

parental genotypes (R500 and IMB211) of the Brassica rapa IRRI population (Iniguez-Luy et 19 

al., 2009). The BraIRRI population is derived from the R500 yellow sarson oilseed variety and 20 

the IMB211 Wisconsin Fast Plant derivative. Individual replicates of each RIL were sown into 21 

peat pots filled with field soil and topped with 1 cm LP5 potting soil (Sun Gro Horticulture, 22 

Agawam, MA, USA). Seeds were planted in the first week of June 2011, and pots were 23 
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transplanted to the field 2.5 weeks later following established protocols (Dechaine et al., 2014). 1 

One biological replicate of each genotype was planted into each of 5 fully randomized blocks. 2 

After plants were established in the field for three weeks, apical meristem tissue was collected 3 

from individual replicate plants into 1.5 mL Eppendorf tubes, immediately flash frozen in liquid 4 

nitrogen, and stored at -80 ºC until RNA-Seq library preparation. Apical meristem tissue was 5 

chosen as part of an overlapping RNA-seq expression QTL project (Markelz et al. in-prep). 6 

RNA-Seq library preparation and sequencing 7 

RNA-Seq libraries were prepared using a high-throughput Illumina RNA-Seq library extraction 8 

protocol (Kumar et al., 2012). The enriched libraries were then quantified on an Analyst Plate 9 

Reader (LJL Biosystems) using SYBR Green I reagent (Invitrogen). Once the concentration of 10 

libraries was determined, a single pool of all the RNA-Seq libraries within each block was made. 11 

The pooled libraries were run on a Bioanalyzer (Agilent, SantaClara) to determine the average 12 

product size for each pool. Each pool was adjusted to a final concentration of 20 nM and 13 

sequenced on 7 lanes on Illumina Hi-Seq 2000 flow cell as 50-bp single end reads. Any failed 14 

samples from the 5 blocks were run on 2 additional lanes. 15 

RNA-Seq Read Processing 16 
Pre-processing and mapping of Illumina RNA-Seq raw reads was done as described in detail in 17 

Devisetty et al. 2014 with one exception. The raw reads were quality filtered with FASTX tool 18 

kit’s (http://hannonlab.cshl.edu/fastx_toolkit/) fastq_quality_filter  with parameters [-q 20, -p 19 

95]. The qualified de-multiplexed reads were then mapped to B. rapa reference genome (Chiifu 20 

version 1.5) using BWA v0.6.1-r104 (Li and Durbin, 2009) with parameters [bwa_n 0.04] and 21 

the unmapped reads were in turn mapped with TopHat with parameters [splice-mismatches 1, 22 

max-multihits 1, segment-length 22, butterfly-search, max-intron-length 5000, library-type fr-23 
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unstranded]. Finally, mapped reads from both BWA and TopHat were combined for genotyping 1 

purposes and quality controlled (Table S1). 2 

Population-based Polymorphism Identification 3 

Variant Call Format (VCF) files were generated for each of five replicate blocks of samples 4 

using samtools and bcftools. These tools were run as 'samtools mpileup -E -u -f 5 

Brapa_sequence_v1.5.fa [all alignment files for the current block] | bcftools view -bvcg - | 6 

vcfutils.pl varFilter'. 7 

The VCF files were summarized using 'summarize-vcf.pl' Perl script 8 

(https://github.com/mfcovington/snps-from-rils). For each block of replicates, this script (run 9 

using the parameters: '--observed_cutoff 0.3 --af1_min 0.3') ignores INDELs and variant 10 

positions with more than two alleles, ignores variants with site allele frequency (AF1) values too 11 

far from 0.5 (>= 0.7 or <= 0.3), and ignores variants with missing information in 30% or more of 12 

the population. For variants that passed these filters, the numbers of reads matching the reference 13 

and the number of alternate allele reads were recorded in a VCF summary file. 14 

These VCF summary files from the different replicate blocks were merged using the 'merge-vcf-15 

summaries.pl' (https://github.com/mfcovington/snps-from-rils) Perl script. Using the default 16 

parameters ('--replicate_count_min 2 --ratio_min 0.9'), this script merges the information in the 17 

VCF summaries and records a putative SNP as an actual SNP if the variant is identified as a SNP 18 

in at least 2 replicate blocks and if the proportion of reads matching the major allele is at least 19 

0.9. This was done on a RIL by RIL basis.  20 

Genotyping, Plotting, and Identification of Genotype Bins 21 
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The Perl script 'extract+genotype_pileups.pl' (https://github.com/mfcovington/detect-boundaries) 1 

was used with the '--no_nr' parameter to extract genotype information from the RNA-seq 2 

alignments at each SNP location for each member of the RIL population. The resulting genotype 3 

files were used to detect and remove SNPs with excessive noise. 4 

Due to the crossing scheme used to create the RIL population, each individual is expected to be 5 

nearly homozygous for one parent or the other. The 'filter-noisy-SNPs.pl' 6 

(https://github.com/mfcovington/noise-reduction-for-snps-from-pop) Perl script performs noise-7 

reduction for SNPs derived from such a population. It does this by identifying and ignoring 8 

positions that have an over-representation of heterozygosity in individual lines across the entire 9 

population. Using the default parameters ('--cov_min 3 --homo_ratio_min 0.9 --10 

sample_ratio_min 0.9'), SNPs were discarded as noisy if more than 10% of the lines in the 11 

population showed evidence of heterozygosity as defined by a line having at least 3 reads per 12 

SNP position with a major allele with a ratio less than 0.9. 13 

After noise-reduction, the 'extract+genotype_pileups.pl' 14 

(https://github.com/mfcovington/SNPTools) Perl script was re-run without the '--no_nr' 15 

parameter for each RIL. The resulting genotype files were used to create genotype plots using the 16 

'genoplot_by_id.pl' Perl script (https://github.com/mfcovington/SNPTools) and to define 17 

genotype bins for the individual RILs. 18 

The 'filter-snps.pl' Perl script (https://github.com/mfcovington/detect-boundaries) was used to 19 

identify regions of adjacent SNPs with alleles from the same genotype. Using the default 20 

parameters ('--min_cov 10 --min_momentum 10 --min_ratio 0.9 --offset_het 0.2'), it detects 21 

boundaries between genotype bins when a sliding window of at least 10 SNPs. Within each 22 
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sliding window a depth of at least 10 reads each exhibit major allelic ratios of at least 0.9. The  1 

major allele represents the opposite genotype from the previous bin (or exhibit major allelic 2 

ratios less than 0.7 for transitions from regions of homozygosity to those of heterozygosity). For 3 

each member of the RIL population, this script generates one file with boundary between 4 

genotype bins.  5 

The 'fine-tune-boundaries.pl' Perl script (https://github.com/mfcovington/detect-boundaries) is an 6 

automated tool for rapid, fine-scale human curation of boundaries between genotype bins that we 7 

used for the RIL population. As described in Devisetty et al. 2014, "This command-line tool 8 

displays color-coded genotype data together with the currently-defined bin boundaries. Using 9 

shortcut keys, the operator can quickly and easily approve or fine-tune a boundary (at which 10 

point, the next boundary is instantly displayed for approval)." 11 

The 'merge-boundaries.pl' Perl script (https://github.com/mfcovington/detect-boundaries) was 12 

used to merge all of the boundaries in the collection of the boundaries files that were generated 13 

by 'filter-snps.pl' and 'fine-tune-boundaries.pl'. A comprehensive list of bins and their locations 14 

resulting from the merge are written to a file: bins.tsv. The script also prints the boundary and 15 

bin stats (count, min size, max size, and mean size) to the screen to allow visual analysis of the 16 

resulting file. This information was used for human curation of the boundaries.  17 

The 'get-genotypes-for-bins.pl' Perl script (https://github.com/mfcovington/detect-boundaries) 18 

was used to convert the comprehensive bins file and all the individual boundaries files into a 19 

summary of bins and their locations across the genome and their genotypes across the entire RIL 20 

population (Table S2). 21 
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Composite genotype plots (Figure 3) were created using the 'plot-composite-map.R' R script 1 

(https://github.com/mfcovington/detect-boundaries). 2 

Validating and Reassigning Genomic Scaffolds 3 

Using the genotypic value for each genotype bin across the RILs, we calculated the asymmetric 4 

binary distance between all central SNP pairs using the dist(method = “binary”) function in R. 5 

The pairwise correlation matrix was then ordered by maximal correlations to place the map in a 6 

linear order and compared to the predicted bin order based on version 1.5 of the Brassica rapa 7 

genome. Comparisons between v1.5 of the genome and binary distance plots were manually 8 

inspected to ensure proper placement or reassignment. 9 

Genetic Map Construction  10 
Because each genotype bin across the RILs represents each observed recombination breakpoint 11 

in the population, we used one SNP per genotype bin to create a saturated genetic map. Aside 12 

from the possibility of rare, unobserved double cross over events, the mapping resolution in this 13 

population is no longer limited by the number of SNPs but instead by recombination events. The 14 

genetic map was constructed using the chromosomal position of each of the SNPs as a starting 15 

point for marker ordering along the chromosomes. Each chromosome was treated as a large 16 

linkage group and each SNP was tested for linkage disequilibrium with all other SNPs using the 17 

R/QTL package (Broman et al., 2003) in the R statistical environment (R Core Team, 2015). 18 

Larger gaps in RNA-seq information corresponding to low gene density centromeric regions 19 

were problematic when ordering markers using the ripple() R/QTL function (Broman et al., 20 

2003). In chromosomes A08 and A09, after local marker order was established we used the 21 

physical position of the SNPs to connect the two arms in the correct orientation.  22 
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QTL Comparisons 1 

To test how increased marker coverage affected QTL mapping and identification for 2 

physiological traits, we remapped two traits from (Brock et al., 2010) that had been mapped 3 

using the previous genetic map (Iniguez-Luy et al., 2009). We used R/QTL (v1.39-5) to compare 4 

mapping results derived from the previous and updated genetic maps using the Brock et al. 5 

(2010) flowering time phenotype data. Specifically we used the cim() function with three marker 6 

covariates and determined LOD significance cutoffs after 1,000 permutations. 7 

Data Availability 8 

All the raw data has been deposited in the NCBI Sequence Read Archive (Project: SRP022220). 9 

Figure S1 shows SNPs, centromeric regions, gene density across the 10 chromosomes of 10 

Brassica rapa. Figure S2 contains the genetic map before misplaced markers were reassigned. 11 

Table S1 contains the read mapping statistics for each RIL. Table S2 contains the SNP 12 

genotyping and genomic position for the entire RIL population. Table S3 contains the genome 13 

wide allele segregation statistics. Table S4 contains RIL population genetic bins and scaffold 14 

original and final positions. Table S5 is the SNP base pair calls on unplaced scaffolds. Table S6 15 

contains the final genetic map of RIL population. Supporting code for genetic map construction 16 

can be found at: https://github.com/rjcmarkelz/brassica_genetic_map_paper 17 

RESULTS AND DISCUSSION 18 

R500 vs. IMB211 polymorphism identification 19 

We performed deep RNA sequencing of 124 individuals of a RIL population derived from a 20 

cross between the Brassica rapa accessions R500 and IMB211 (Iniguez-Luy et al., 2009). We 21 

sequenced five replicates of each RIL and mapped 5.26 million reads mapped per RIL. We had 22 

previously identified SNPs and INDELs between R500 and IMB211, the parents of the 23 
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population (Devisetty et al. 2014) using v1.2 of the Brassica rapa genome. This set of R500 vs. 1 

IMB211 polymorphisms was used to genotype each member of the RIL population individually. 2 

The crossing scheme used to create the RIL population should create homozygous regions of 3 

contiguous R500 alleles alternating with homozygous regions of contiguous IMB211 alleles in 4 

the different RILs. However, when using the R500 vs. IMB211 polymorphism set to genotype 5 

the RILs there were multiple regions where R500 and IMB211 alleles were randomly 6 

interspersed. This suggested that the RIL population might be derived from a different parent or 7 

parents than those that we had sequenced. 8 

To test this hypothesis, we merged the sequence data from all RILs and then genotyped the 9 

merged dataset using SNPs identified by the IMB211 vs R500 comparison (Figure 1A). The 10 

merged dataset provided a much better view of segregation of putative parental SNPs in this 11 

population.  Given the size of the population and the expected recombination frequency and 12 

distribution, polymorphisms identified in the true RIL parents should be segregating with 13 

approximately equal allelic frequency in this merged data set (black dots in Figure 1A). Most 14 

genomic regions did display this expected distribution; however, there were several large regions 15 

that were not segregating, but instead were monomorphic for one of the putative parents of the 16 

population (indicated as orange or blue dots in Figure 1A). In other words, SNPs identified as 17 

polymorphic between the R500 and IMB211 strains are not segregating in the RILs.  Nearly all 18 

of these monomorphic regions matched R500 alleles, consistent with the idea that the IMB211 19 

seed strain is not the true parent of the RIL population.  20 

The primary exception to the expected Mendelian parental allele frequency in the RILs is on the 21 

bottom of chromosome A03, where there is a gradual transition from equal R500:IMB211 allelic 22 
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frequency to nearly all IMB211. The A03 pattern is consistent with segregation distortion within 1 

the population possibly caused by the centromere being located at that end of chromosome A03 2 

(Cheng et al. 2013). With the lower recombination frequencies commonly observed near 3 

centromeres in plants (Harushima et al., 1998; Haupt et al., 2001; Sherman and Stack, 1995), 4 

there could be a meiotic drive allele or a local inversion in this region causing the segregation 5 

distortion and this effect could be enhanced by the proximity to the centromere. There is 6 

evidence for each of these mechanisms occurring across a wide range of plant species (Buckler 7 

et al., 1999; Fang et al., 2012; Lowry and Willis, 2010). 8 

Population-based SNP discovery 9 

Due to the uncertainty surrounding the identity of the IMB211 parent of the RIL population, we 10 

switched to a population-based approach for SNP discovery. This new strategy involved 11 

identifying variants within the RIL population and using the R500 data to assign parental origin 12 

for each SNP. Using this approach, we identified 146,027 SNPs across B. rapa's ten 13 

chromosomes (Table 1, Table S2). These population-based SNPs segregate at the expected allele 14 

frequencies of approximately 50/50 throughout the entire genome except at the previously noted 15 

end of A03 (Figure 1B, Table S3). Over 80% of the genome is within 100 kb of a SNP; however, 16 

there are several regions with few or no SNPs. There are two primary reasons for these SNP-free 17 

regions. Most are likely gene-poor regions or regions of genes with insufficient expression under 18 

our experimental conditions (e.g., growth conditions, age, tissue, genotypes; Figure S1). We also 19 

found a few regions where there are significant numbers of expressed genes, but no SNPs 20 

between members of the RIL population. These regions primarily correspond to the non-variant 21 

regions of Figure 1A and, therefore, likely represent regions that are very similar between the 22 

seed stocks used to generate this RIL population. 23 
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Genotyping the RIL population 1 

Using the per line transcriptomic data, each RIL was genotyped as having either the R500 or 2 

IMB211 allele at each of the 149,097 SNPs identified from the population-based SNP-discovery 3 

pipeline. A representative RIL genotype plot is shown in Figure 2.  4 

Collapsing Adjacent SNPs into Population-Wide Genotype Bins 5 
The next step towards creating a new genetic map was to define the largest set of non-redundant 6 

SNPs. This is necessary because the 149,097 SNPs in the full dataset vastly exceed the expected 7 

number of recombination breakpoints in a population of 124 individuals. We developed a 8 

method to identify and summarize the “genotype bins” in the population. First, we found all 9 

detectable recombination breakpoints for each RIL. Next, we consolidated these breakpoints for 10 

the entire population. SNPs that were not adjacent to a recombination breakpoint in any of the 11 

RILs were considered redundant and removed.  This yielded bins of adjacent SNPs with 12 

genotype patterns that differed from neighboring bins for at least one RIL because of a 13 

recombination event in that specific RIL. The genotype bins for the RIL population are 14 

summarized in a composite population genotype map (Figure 3). 15 

Finding and Reassigning Misassembled Genomic Regions 16 

A first version of the population genetic map revealed several markers that seemed to be 17 

misplaced based on physical position, resulting in large genetic distances between them (Figure 18 

S1). Given that we have corrected the parental genotyping issues, the mostly likely explanation 19 

for this finding is that these regions represent genome assembly errors. To test this hypothesis, 20 

the genotypes of representative SNPs from each bin were used to calculate the asymmetric 21 

binary distances between each bin across the population. If the predicted genome position of 22 

each bin is correct, the expectation is that each SNP should have the lowest distance to adjacent 23 
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SNPs in genome coordinates.  However, consistent with genome assembly problems, there were 1 

a subset of SNPs whose genotypes were more highly correlated with SNPs located elsewhere in 2 

the genome rather than with SNPs near their current assigned genomic position (a representative 3 

example is shown in Figure 5). To correct these assembly problems, 13 regions consisting of 19 4 

genotypic bins were moved to different genomic locations, and 4 regions consisting of 66 bins 5 

were inverted in place at their original position based on asymmetric binary distance (Table S4). 6 

He et al. (2015) also reordered B. rapa scaffolds, although they took a different approach 7 

whereby gene coding sequence (CDS) similarity searches were used to identify, split, and 8 

reorder chimeric scaffolds to increase collinearity with pseudomolecules originally ordered using 9 

a B. napus linkage map. One differnce with the He et al. (2015) method compared to ours is that 10 

using a B. napus genetic map to order B. rapa chromosomes could introduce errors if there are 11 

chromosomal rearrangements between these two species.  Regardless, because He et al. (2015) 12 

used version 2.0 of the B. rapa genome, which was not released at the time this manuscript was 13 

submitted, it is not possible to directly compare the efficiency of these two approaches. 14 

Incorporating scaffold sequences into the genome 15 

In version 1.5 of the B. rapa genome annotation there are 40,357 scaffolds that have not been 16 

incorporated into any of the ten chromosomes. These scaffolds range in size from 100 bp to 938 17 

Kbp and represent 1,411 genes spanning 27.5 Mbp. For comparison, there are 39,609 genes 18 

within the 283.8 Mbp of annotated chromosomal sequence. Given that the scaffolds contain 19 

about as many genes as would be expected on one third of an average chromosome, we decided 20 

to extend our strategy for fixing genome misassemblies to estimate the approximate 21 

chromosomal locations of the scaffolds. 22 
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We identified 3,070 SNPs across 339 of the 40,357 scaffolds (the remaining scaffolds had no 1 

SNPs, Table S5). To be confident in our placement we limited ourselves to the 47 scaffolds with 2 

10 or more SNPs. For each of these 47 scaffolds, we were able to identify at least one 3 

genomically defined chromosomal bin that had identical or near identical genotypes. This 4 

indicates very close genetic linkage between the unplaced scaffold and the placed genomic bin, 5 

allowing us to assign a genomic position but not an orientation to the unplaced scaffold. The 6 

incorporated scaffolds range in size from 429 to 884,746 bp and are enriched for larger scaffolds 7 

(Figure 4).  The addition of these 47 scaffolds allowed us to incorporate 25%  (~ 7Mbp) of the 8 

unplaced genomic sequence into the genome, representing 49% (691) of the unplaced scaffold 9 

genes (Table 2; Table S4).  In comparison, He et al. (2015) did not place any orphaned scaffolds 10 

into pseudomolecules, although the need for scaffold placement is likely reduced in the genome 11 

version (2.0) that was available to them. 12 

While most of the incorporated scaffolds represent a single genotype bin, seven scaffolds are 13 

comprised of multiple bins. Scaffold000164, for example, includes 65 annotated genes across six 14 

distinct genotype bins within its 313.7 Kbp sequence.  For six of the scaffolds with multiple bins 15 

the bins were closely linked and allowed us to place the scaffold in a single location in the 16 

genome.  However, one scaffold, Scaffold000191, contained two bins that mapped to two 17 

different chromosomes, indicating that it was misassembled. Therefore, we split its two bins and 18 

assigned them to the appropriate chromosome locations (5 genes/28.2 Kbp to A01 and 24 19 

genes/104.1 Kbp to A05). 20 

Possible reasons for the enrichment of larger scaffolds within the set of incorporated scaffolds 21 

include: (1) larger scaffolds are more likely to include expressed genes and, therefore, detectable 22 
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SNPs and (2) larger scaffolds may be more likely to be accurate representations of a contiguous 1 

region within the genome. This second point is based on the assumption that large scaffolds 2 

could be assembled perhaps due to more abundant, more consistent, and/or more convincing 3 

experimental support than small scaffolds. Before (Figure 6A) and after (Figure 6B) plots of 4 

genome-wide asymmetric binary distances for each marker pair show that rearranging putative 5 

genomic misassemblies and incorporating scaffolds eliminates inconsistencies between genome 6 

position and genotypes of adjacent markers. 7 

High-density genetic map 8 

From the available SNP data we were able to create a genetic map with ten linkage groups 9 

corresponding to the 10 chromosomes of Brassica rapa. The map contains 1482 genotyped 10 

markers for 124 RILs and is effectively saturated based on recombination events existing in the 11 

population (Table S6).  The new map has an average marker spacing of 0.7 cM and a total map 12 

distance of 1,045.6 cM. For comparison, the original map contained 225 markers with an average 13 

spacing of 3.3 cM (Iniguez-Luy et al., 2009). This is also compared to a recent map created on a 14 

subset of the population, 67 RILs, that had a total of 125 markers derived from microarray 15 

probes (Hammond et al., 2011). Having the genetic distance of markers with known genomic 16 

coordinates allowed us to fix two additional genome misassemblies resulting in large inversions 17 

on chromosomes A09 and A10 (Figure 7, Figure S2). All of these improvements combined allow 18 

us to more accurately map QTL for known phenotypes such as flowering time (Figure 8). Lastly, 19 

we fit spline based regressions for each chromosome to more accurately convert between genetic 20 

distance and physical distance (A01 example; Figure 7B, C). These conversion equations are 21 

helpful for finding candidate genes in significant QTL regions (Fulop et al., 2016).  22 

CONCLUSIONS 23 
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In this study we demonstrated the flexibility and power of thoughtfully designed RNA-seq 1 

experiments from tissue collected from a field experiment. RNA is a rich source of biological 2 

information that can be utilized beyond expression analysis and transcriptome annotation. It is 3 

our hope that these new community resources using RNA-seq are used to further genome 4 

annotation, assembly, and functional analysis of the emerging model crop Brassica rapa. Our 5 

scaffold rearrangement and placement of orphaned scaffolds significantly improves the Brassica 6 

rapa genome (v1.5), but perhaps more importantly we provide a new saturated genetic map for 7 

the widely used BraIRRI population with over 1400 molecular markers. These improvements 8 

combined with our population based SNP calling method is a unique contribution to the Brassica 9 

community. 10 
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TABLES 17 

Table 1. SNP counts at different steps of the SNP discovery pipeline. The percentage of SNPs 18 

located on chromosomes or scaffolds remaining after each step are shown in parentheses. The 19 

first percentage is relative to the initial set of SNPs and the second percentage is relative to the 20 

set of SNPs from the previous step. 21 

	

Chromosomes	 Scaffolds	

	



	

	 19	

	

203,235												 5,618												Identified	within	RIL	population	

	

176,627	(87%)						 4,640	(83%)						Passed	conflict	removal	and	repeat	count	filtering	

	

158,369	(78%,	90%)	 3,737	(67%,	81%)	 Have	sequence	information	available	for	the	R500	parent	

Final	

Number	

of	SNPs:	 146,027	(72%,	92%)	 3,070	(55%,	82%)	 Passed	noise-reduction	filter	

 1 

  2 



	

	 20	

Table 2. Incorporated scaffolds represent a disproportionately high amount of scaffold sequence. 1 

Percentages of scaffold subset counts and total lengths relative to the set of all scaffolds are 2 

shown in parentheses. 3 

	

Count	 Total	Length	(bp)	

Mean	

Length	(bp)	 Median	Length	(bp)	

Incorporated	

Scaffolds	 47		(0.1%)	 6,927,293	(25.1%)	 	147,389		 	58,889		

Unincorporated	

Scaffolds	 40,310	(99.9%)	 20,655,028	(74.9%)	 	512		 	140		

All	Scaffolds	 40,357									 27,582,321										683		 	140		

 4 

  5 



	

	 21	

FIGURES 1 

	2 

Figure	1. Plot of merged data from all RILs genotyped using the parent-based SNP set (A) and 3 

the population based SNP set (B). Each of the B. rapa ten chromosomes are displayed (A01-4 

A10) with counts coverage of each SNP at each physical position on the chromosome in 5 

megabases (Mb). The color indicates the relative ratio of coverage between R500 and IMB211 6 

for every SNP. Black is equal coverage, orange is more IMB211 and blue is more R500.	7 



	

	 22	

	1 

Figure	2. An individual plot of a RIL genotyped with the population based SNP set. Each of the 2 

B. rapa ten chromosomes are displayed (A01-A10) with counts coverage of each SNP at each 3 

physical position on the chromosome in megabases (Mb). The color indicates the relative ratio of 4 

coverage between R500 and IMB211 for every SNP.	5 



	

	 23	

	1 



	

	 24	

Figure 3. Composite population genotype map with the physical position for each of the ten 1 

chromosomes. Each RIL is represented as a single row displaying the genomic region inherited 2 

from IMB211 (Orange) or R500 (Blue). Small heterozygous regions are represented in black.  3 

 4 

Figure 4. A representative asymmetric binary distance plot for a single molecular marker, A05-5 

8245839, indicated by the purple arrow. Markers with 90% correlation to A05-8245839 are 6 

indicated in red and occur on chromosomes A05 and A08. The group of markers on A05 were 7 

moved to A08.  8 

	9 

10 
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	1 

Figure 5. (A) Number of SNPs per scaffold. (B) Density distributions of scaffold sizes. Newly 2 

incorporated scaffolds are shown in green and unincorporated scaffolds are shown in gray.  3 

 4 

 5 

 6 
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Figure 6. Genome-wide asymmetric binary distance plots for each marker compared against 1 

every other marker (A01-A10). 6A contains the unplaced genomic scaffold sequences (See A00). 2 

Dark blue indicates high correlation (low asymmetric binary distance), while white indicates no 3 

correlation. 6B the final position of each marker and scaffold after applying our pipeline. 4 

 	5 
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 1 

 2 

Figure 7. Physical position versus genetic position of each marker for chromosome A09 (A,B) 3 

and A10 (C,D) using genome version 1.5 (A,C) and fixed inversions using recombination 4 

information (B,D). Loess smoothing for converting between genetic and physical distance is 5 

displayed by the blue line in panels B and D. 6 

	7 
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 1 

Figure 8. Old and new genetic map comparisons. Genetic markers for each chromosome are 2 

displayed in centimorgan distance (cM) for the old (A) and new (B) genetic maps. Comparison 3 

of likelihood odds scores for flowering time QTL on chromosome A07 using the old (C) and 4 

new (D) genetic maps. 5 

 	6 



	

	 31	

REFERENCES 1 

Baker, R.L., Leong, W.F., Brock, M.T., Markelz, R.J.C., Covington, M.F., Devisetty, U.K., 2 
Edwards, C.E., Maloof, J., Welch, S., and Weinig, C. (2015). Modeling development and 3 
quantitative trait mapping reveal independent genetic modules for leaf size and shape. New 4 
Phytol. 208, 257–268. 5 

Brock, M.T., Dechaine, J.M., Iniguez-Luy, F.L., Maloof, J.N., Stinchcombe, J.R., and Weinig, C. 6 
(2010). Floral Genetic Architecture: An Examination of QTL Architecture Underlying Floral 7 
(Co)Variation Across Environments. Genetics 186, 1451–1465. 8 

Broman, K.W., Wu, H., Sen, Ś., and Churchill, G.A. (2003). R/qtl: QTL mapping in 9 
experimental crosses. Bioinformatics 19, 889–890. 10 

Buckler, E.S., Phelps-Durr, T.L., Buckler, C.S.K., Dawe, R.K., Doebley, J.F., and Holtsford, 11 
T.P. (1999). Meiotic Drive of Chromosomal Knobs Reshaped the Maize Genome. Genetics 153, 12 
415–426. 13 

Chalhoub, B., Denoeud, F., Liu, S., Parkin, I.A.P., Tang, H., Wang, X., Chiquet, J., Belcram, H., 14 
Tong, C., Samans, B., et al. (2014). Early allopolyploid evolution in the post-Neolithic Brassica 15 
napus oilseed genome. Science 345, 950–953. 16 

Cheng, F., Wu, J., Fang, L., and Wang, X. (2012). Syntenic gene analysis between Brassica rapa 17 
and other Brassicaceae species. Front. Plant Sci. 3. 18 

Cheng, F., Mandáková, T., Wu, J., Xie, Q., Lysak, M.A., and Wang, X. (2013). Deciphering the 19 
Diploid Ancestral Genome of the Mesohexaploid Brassica rapa. Plant Cell 25, 1541–1554. 20 

Dechaine, J.M., Johnston, J.A., Brock, M.T., and Weinig, C. (2007). Constraints on the evolution 21 
of adaptive plasticity: costs of plasticity to density are expressed in segregating progenies. New 22 
Phytol. 176, 874–882. 23 

Dechaine, J.M., Brock, M.T., and Weinig, C. (2014). QTL architecture of reproductive fitness 24 
characters in Brassica rapa. BMC Plant Biol. 14, 1. 25 

Devisetty, U.K., Covington, M.F., Tat, A.V., Lekkala, S., and Maloof, J.N. (2014). 26 
Polymorphism Identification and Improved Genome Annotation of Brassica rapa Through Deep 27 
RNA Sequencing. G3 Genes Genomes Genet. 4, 2065–2078. 28 

Dixon, G. (2007). Vegetable brassicas and related crucifers (CABI). 29 



	

	 32	

Edwards, C.E., Ewers, B.E., Williams, D.G., Xie, Q., Lou, P., Xu, X., McClung, C.R., and 1 
Weinig, C. (2011). The Genetic Architecture of Ecophysiological and Circadian Traits in 2 
Brassica rapa. Genetics 189, 375–390. 3 

Fang, Z., Pyhäjärvi, T., Weber, A.L., Dawe, R.K., Glaubitz, J.C., González, J. de J.S., Ross-4 
Ibarra, C., Doebley, J., Morrell, P.L., and Ross-Ibarra, J. (2012). Megabase-Scale Inversion 5 
Polymorphism in the Wild Ancestor of Maize. Genetics 191, 883–894. 6 

Fulop, D., Ranjan, A., Ofner, I., Covington, M.F., Chitwood, D.H., West, D., Ichihashi, Y., 7 
Headland, L., Zamir, D., Maloof, J.N., et al. (2016). A new advanced backcross tomato 8 
population enables high resolution leaf QTL mapping and gene identification. 9 

Hammond, J.P., Mayes, S., Bowen, H.C., Graham, N.S., Hayden, R.M., Love, C.G., Spracklen, 10 
W.P., Wang, J., Welham, S.J., White, P.J., et al. (2011). Regulatory Hotspots Are Associated 11 
with Plant Gene Expression under Varying Soil Phosphorus Supply in Brassica rapa. PLANT 12 
Physiol. 156, 1230–1241. 13 

Harushima, Y., Yano, M., Shomura, A., Sato, M., Shimano, T., Kuboki, Y., Yamamoto, T., Lin, 14 
S.Y., Antonio, B.A., Parco, A., et al. (1998). A High-Density Rice Genetic Linkage Map with 15 
2275 Markers Using a Single F2 Population. Genetics 148, 479–494. 16 

Haupt, W., Fischer, T.C., Winderl, S., Fransz, P., and Torres-Ruiz, R.A. (2001). The 17 
CENTROMERE1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of 18 
chromatin. Plant J. 27, 285–296. 19 

He, Z., Cheng, F., Li, Y., Wang, X., Parkin, I.A.P., Chalhoub, B., Liu, S., and Bancroft, I. 20 
(2015). Construction of Brassica A and C genome-based ordered pan-transcriptomes for use in 21 
rapeseed genomic research. Data Brief 4, 357–362. 22 

Iniguez-Luy, F.L., Lukens, L., Farnham, M.W., Amasino, R.M., and Osborn, T.C. (2009). 23 
Development of public immortal mapping populations, molecular markers and linkage maps for 24 
rapid cycling Brassica rapa and B. oleracea. Theor. Appl. Genet. 120, 31–43. 25 

Kumar, S., Banks, T.W., Cloutier, S., Kumar, S., Banks, T.W., and Cloutier, S. (2012). SNP 26 
Discovery through Next-Generation Sequencing and Its Applications, SNP Discovery through 27 
Next-Generation Sequencing and Its Applications. Int. J. Plant Genomics Int. J. Plant Genomics 28 
2012, 2012, e831460. 29 

Li, G., and Quiros, C.F. (2001). Sequence-related amplified polymorphism (SRAP), a new 30 
marker system based on a simple PCR reaction: its application to mapping and gene tagging in 31 
Brassica. Theor. Appl. Genet. 103, 455–461. 32 



	

	 33	

Liu, S., Liu, Y., Yang, X., Tong, C., Edwards, D., Parkin, I.A.P., Zhao, M., Ma, J., Yu, J., 1 
Huang, S., et al. (2014). The Brassica oleracea genome reveals the asymmetrical evolution of 2 
polyploid genomes. Nat. Commun. 5, 3930. 3 

Lou, P., Xie, Q., Xu, X., Edwards, C.E., Brock, M.T., Weinig, C., and McClung, C.R. (2011). 4 
Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor. Appl. 5 
Genet. 123, 397–409. 6 

Lou, P., Wu, J., Cheng, F., Cressman, L.G., Wang, X., and McClung, C.R. (2012). Preferential 7 
Retention of Circadian Clock Genes during Diploidization following Whole Genome 8 
Triplication in Brassica rapa. Plant Cell 24, 2415–2426. 9 

Lowry, D.B., and Willis, J.H. (2010). A Widespread Chromosomal Inversion Polymorphism 10 
Contributes to a Major Life-History Transition, Local Adaptation, and Reproductive Isolation. 11 
PLOS Biol 8, e1000500. 12 

Parkin, I.A., Koh, C., Tang, H., Robinson, S.J., Kagale, S., Clarke, W.E., Town, C.D., Nixon, J., 13 
Krishnakumar, V., Bidwell, S.L., et al. (2014). Transcriptome and methylome profiling reveals 14 
relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 15, R77. 15 

R Core Team (2015). R: A language and environment for statistical computing. 16 

Sherman, J.D., and Stack, S.M. (1995). Two-dimensional spreads of synaptonemal complexes 17 
from solanaceous plants. VI. High-resolution recombination nodule map for tomato 18 
(Lycopersicon esculentum). Genetics 141, 683–708. 19 

Wang, H., Wu, J., Sun, S., Liu, B., Cheng, F., Sun, R., and Wang, X. (2011a). Glucosinolate 20 
biosynthetic genes in Brassica rapa. Gene 487, 135–142. 21 

Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J.-H., Bancroft, I., Cheng, 22 
F., et al. (2011b). The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 23 
1035–1039. 24 

Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J.-H., Bancroft, I., Cheng, 25 
F., et al. (2011c). The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 26 
1035–1039. 27 

Yang, J., Liu, D., Wang, X., Ji, C., Cheng, F., Liu, B., Hu, Z., Chen, S., Pental, D., Ju, Y., et al. 28 
(2016). The genome sequence of allopolyploid Brassica juncea and analysis of differential 29 
homoeolog gene expression influencing selection. Nat. Genet. 48, 1225–1232. 30 

 31 




