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EFFECT OF VACANCY SINKS AND SOURCES ON 
SERRATED YIELDING DUE TO 

SOLUTE LOCKING 

K. Linga Murty*, F. A. Mohamed** and J. E. Dornt 
Inorganic Naterials Research Division 

Lawrence Berkeley Laboratory 
University of California, Berkeley, California 

LBL-194 

It is generally accepted that a realistic model for the Portevin-

Le Chatelier effect due to excess vacancy stimulated solute diffusion 

and dislocation locking must consider vacancy annihilation as well as 

vacancy creation during straining (1). Modified versions (2,3) of 

Cottrell model (4) of repeated yielding take into account the thermal 

vacancy contribution as well as the strain-produced vacancies but fail 

to consider annealing of vacancies to appropriate sinks. Recent ex-

perimental data on Al-Mg alloy by MacEwen and Rainaswami (3) reveal 

important deviations from Cottrell model which they qualitatively accounted 

for by vacancy annihilation. The preserit note is an attempt to quantita-

tively explain these deviations by taking into account the disappearance 

of vacancies a~ sinks. 

The Cottrellmodel has been most used and abused in attempts to 

explain the experimental findings of the delay of plastic strain (e: ) 
0 

and critical strain-rate (e ) for the appearance of serrations and their 
c 

temperature dependencies. According to Cottrell (4) the critical strain-
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rate at which serrations start appearing is given to be 

[ 1] 

where K is a constant, p the mobile dislocation density, C the vacancy 
m v 

concentration and E the activation energy for vacancy migration. Except 
m 

for two cases (2,3) Cv in the above equation was taken to be the total 

concentration of vacancies produced,during straining whereas in strict 

sense C is the net total vacancy concentration and 
v 

[2] 

Where CT is the thermal equilibrium vacancy concentration at the test 
v 

e: temperature T, C the total excess vacancy concentration produced by 
v 

straining at strain e: and C- the concentration of annihilated vacancies 
v 

- e: at temperature T, ·and C < C • 
v- v 

Point defects are generated by the non-conservative motion of jogs 

on screw dislocations (5) and the defects thus produced are vacancies or 

interstitials depending upon the nature of the jogs. Assuming that 

vacancies are created at vacancy producing jogs on gliding screws then 

the rate of prod~ction of these excess vacancies is given by 

•e: 
c = v 

where p is the density of mobile screw dislocations, v the velocity of 
s s 

these screw dislocations, p the height of jogs in Burgers vectors, 1. the 
' J 

jog separation, b the Burgers vector and N the number of lattice sites 

per unit volume. Using y = 
4
3 E = p bv we find (6) 

s s 

[3] 
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where E: is the imposed tensile strain-rate. Thus if there is no recovery, 

i.e. once formed a vacancy does not anneal out to a sink, we find from 

Eq. 3 that 

[4] 

In reality however such excess vacancies disappear at sinks at a rate 

proportional to the number producedso,that 

[5] 

where D is the vacancy diffusivity .and L the vacancy source-sink 
v s 

distance. In a very fine grained material this L may be taken as the 
s 

grain size, but in general dislocations are the primary vacancy sinks in 

which case 

12 1 
~ 

s p 
[6] 

so that 

·-c = 4Dv p Kl £ v 
[7] 

With K - l_ p 
1 - 4N 2 ' 

1. b . 
J 

It has been well established (7) that the density 

of dislocations, p, varies with the square of the flow stress and 

o = a Gb~ with a~ 1. On the other hand o = o {£} dependent on con-

ditions and in general o = A IE so that p =p £ while in single crystals 
0 

2 
for Stage II deformation o = B. (£ - £

0
) so that p ~ £ • Substituting the 

explicit strain-dependence of the dislocation density and integrating 

we obtain 

·-c = v 
2 

p £ [8] 



(/ 

-4-

A similar but more complicated expression may be obtained for single 

crystais. Thus the net total vacancy concentration present at strain e: 

and temperature T is 

c 
v 

[9] 

where Ef and Sf are the activation energy and entropy respectively of 

vacancy formation. 

As an illustration of the applicability of the above analysis recent 

data of MacEwen and Ramaswami (3) on serrated yielding in Al-Mg alloy will 

be considered. Fig. 1 is a reproduction of their data on the temperature. 

dependence of e: • The datum point in this figure at e: = 1.23 x 10-3 falls 
0 0 . 

above the straight line obtained from other points based on Cottrell equa-

tion. 0 If the vacancy annihilation at the corresponding temperature (370 K) 

negligible the datum point would have been at e: = 5.0 x 10-4 . new 
were· 

Because some vacancies annealed out it needed more than this e: • Hence 

Ce: {e: } - C {e: } = CE {e: l. Or, from Eqs. [4] and [9] 
v o v o v new 

e: .C {e: } = K1 v· new-- e: new 

new 

[10] 

0 Inserting the experimental values of €:, e: , D at 370 K and the extrapo­
o v 

lated value of e: , a value of 2 x 109 cm- 2 is obtained for the dislo-new 

cation density. The value for p is of the same order (indeed 3 times) 

as-expected from Ham-Jaffrey (8) equation, 

p = 4.73 X lOll e: = 6 X 108 for e: = 1.23 X 10-3 

Thus the present analysis yields excellent agreement with the experimental 

findgs. With the above modifications then the Cottrell equation for the 

critical (imposed) strain-rate may be rewritten to be 

-E /RT ~e-Ef/RT 3 p e: 

~ 
4 D p 

~o) I . K ... ·o v 
e: = e: e m + 2 - 3£ c 0 

4Nljb c 
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in lieu of the simplified equation used thus far. 
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FIG, 1 

Plot of ln E vs 1/T. Data of MacEwen and Ramaswami. (3) 
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