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Theoretical Perspective on Operando Spectroscopy of Fluxional Nano-

Catalysts 

Patricia Poths,1 Anastassia N. Alexandrova1,2,* 

1 Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, 

California, 90095-1569, United States 

2 California NanoSystems Institute, Los Angeles, California 90095, United States 

 

Abstract: 

Improvements in operando spectroscopy have enabled the catalysis community to investigate the 

dynamic nature of catalysts under operating conditions with increasing detail. Still, the highly-

dynamic nature of some catalysts, such as fluxional supported subnano clusters, presents a 

formidable challenge even for the most state-of-the-art techniques. The reason is that such 

fluxional catalytic interfaces contain a variety of thermally-accessible states.  

Operando spectroscopies used in catalysis generally fall into two categories—ensemble-based 

techniques, which provide spectra containing the signals of the entire ensemble of states of the 

catalyst and not necessarily dominated by the most active species, and localized techniques, which 

provide atomistic-level information about the dynamics of active sites in a very small area, which 

might not include the most active species. Combining many different kinds of techniques can 

provide detailed insight, however we propose that effective utilization of specific computational 

techniques and approaches within the fluxionality paradigm can fill the gap and enable atomistic 

characterization of the most relevant catalytic sites.   
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Operando spectroscopy has become a cornerstone in catalysis research in recent years. While ex 

situ measurements, relying on surface science approaches, are increasingly recognized as 

inherently limited1 for missing the dynamic changes induced in the catalyst upon exposure to 

reaction conditions, operando active site identification is valuable for probing these dynamic 

changes.2 For example, operando spectroscopy can identify surface restructuring in thermal and 

electrocatalytic conditions, which, to a varying degree, is characteristic of bulk surfaces, 

amorphous interfaces, and nanoparticles.3–5 On the extreme end of dynamisms are supported (sub-

)nano cluster catalysts, as their fluxionality under the influence of temperature, pressure, 

electrochemical potential and solvent, and binding reagents, causes catalysts to form a dynamic 

statistical ensembles of dozens if not hundreds of distinct geometric and stoichiometric states.6–10 

A vast number of these states are typically thermodynamically and kinetically accessible, e.g. 

through thermal dynamics (Figure 1A),10 or collisions with incoming reagents (Figure 1B).16,17  

 

 
Figure 1. (A) Isomerization network connecting 30 local minima structures of Pt7/Al2O3 via 
minimum energy paths, showing that all minima are kinetically accessible within 1 ns at 700 K. 
From11.  The metastable isomer #2 is more active toward ethylene dehydrogenation than the global 
minimum, #1. (B) Cu cluster oxide on silica undergoing the attack and integration of O2 at 400 K: 
(top) typical dynamic trajectory, showing atomic displacements relative to analogous thermal 
trajectory without the O2 attack, (bottom) schematics of a typical minimal energy path, overlaid 
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with several representative dynamic trajectories, and resultant ensemble diversification. Adapted 
with permission from12. 
 

All accessible catalyst states jointly represent the chemical nature of the catalyst, and 

determine its properties: activity, selectivity, and operando spectral signatures.6,13,14 In fact, due to 

this complexity, nanocatalysts can have unique reactivity that sometimes surpasses that of the 

corresponding bulk catalysts, and have the ability to break past scaling relations.15 The catalysis 

on supported subnano clusters can be driven by higher-energy isomers rather than the most stable 

form of the catalyst – the global minimum (GM).10,16,17 Notably, this effect is characteristic also 

of some dynamic bulk surfaces such as WB restructuring under the hydrogen evolution reaction 

(HER) conditions, 3 and h-BN covered with dynamic and amorphous BxOy(OH)z layer catalyzes 

oxidative dehydrogenation (ODH) of propane.4,5 Hence, our general point of departure for 

interpreting operando spectra is the Boltzmann ensemble-averaged representation of the catalytic 

interface, proven to be reliable through numerous comparisons with experiment for, e.g., catalyst 

activity, and selectivity.5,10,16,18,19 

In this article, we aim to provide a theoretical perspective on selected popular methods of 

operando spectroscopy for active site identification, ranging from ensemble techniques, which can 

be X-ray (XAS: XANES/EXAFS, NAP-XPS, SAXS/XRD, often synchrotron-based) or IR-based, 

to more localized techniques, such as scanning probe methods, each of which has their own unique 

advantages and shortcomings. We capitalize on operando characterization of supported cluster 

catalysts, for their particularly dynamic nature. The reason this paper is written by theoretical 

chemists is because theory can aid in the process of active site identification beyond the current 

limits of experiment, particularly when the catalytic interface is as incredibly complex as for 

fluxional supported subnano clusters. Furthermore, we believe that theory gained a place more 

prominent than ever in this domain of catalysis research, in view of the need to describe catalysts’ 

relentless dynamics, and tame it to extract the useful information – a road that, in our view, 

experiment can hardly walk alone. Thus, this is not a comprehensive review of operando 

spectroscopic methods, but rather a forward-looking account illustrating how theory can help this 

field, in ways previously unrecognized. 

For spectroscopy, computation provides a bottom-up approach to understanding catalytic 

clusters atomistically, whereas the more top-down approaches are typically possible 

experimentally. The first responsibility of theory is to discover the maximally complete ensemble 
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of catalyst geometries, stoichiometries, and binding sites on the support. Fortunately, the small 

size, and also size-selection (if clusters are prepared in a size-selective way) make their theoretical 

studies feasible, with Density Functional Theory (DFT) and (grand canonical) global optimization 

techniques.13 Next, the spectral signatures of all ensemble members can be calculated, weighted 

by the member population in the ensemble, and an ensemble-averaged signal comparable to 

experiment can be predicted. Of course, experiment keeps theory accountable, and allows for 

method calibration. Finally, since the active site can be a minority in the ensemble, its signal can 

be buried by the majority species in the operando spectrum. In such cases in particular, it falls on 

theory to identify those key minority sites, through complementary reactivity studies. 

 

Ensemble operando techniques 

X-ray absorption techniques, specifically X-ray Absorption Near Edge Structure (XANES) and 

Extended X-ray Absorption Fine Structure (EXAFS) are considered fairly mature techniques that 

are highly useful for operando or in situ spectroscopy.20 They have been widely used in both 

thermal and electrocatalysis for the identification of active sites on nanoparticles,2,21 in order to 

track changes in oxidation state and local environment of the catalytic sites throughout the reaction 

process (primarily XANES), as well changes in coordination number and average atom-atom 

distance (primarily EXAFS). This type of information is particularly useful for tracking dynamic 

changes in NP or cluster catalysts—XANES spectra evidence these changes in shifts in rising edge 

energy, white line intensity, and peak shape.20 Operando XAS can additionally provide some 

information about morphological changes of the catalyst, which can be complemented by more 

detailed analysis based on X-ray scattering techniques such as SAXS. 2,22  The combination of 

XAS and SAXS can inform the choice of appropriate models and approaches for computational 

studies, setting up a productive feedback loop with the experiment. For instance, SAXS can show 

if the catalyst surface restructures to become more amorphous during catalysis, informing theorists 

if they should account for surface restructuring via e.g. grand canonical sampling for the formation 

of off-stoichiometric surface layers in simulations.  

XAS techniques are furthermore particularly useful because X-rays have less scatter and 

greater penetration in gas and liquid phases, making them ideal for probing catalysts under reaction 

conditions. However, the spectrum contains detail about atoms in the bulk, convoluting the signal 

of the active sites. This problem can be mitigated with grazing-incidence spectroscopy,2 but not 
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totally eliminated. Furthermore, the area of incidence of the X-rays typically covers length scales 

much larger than that of the active species, rendering XAS inherently an ensemble technique, 

yielding information about all of the present sites, on all present catalyst isomers. In other words, 

both active sites (possibly a minority) and spectator species (possibly a majority) are represented 

in the data. Thus, the techniques do not directly address the question of the active site(s) for 

systems with sufficient surface heterogeneity. Experimentally distinguishing between active sites 

and spectator species is non-trivial,23 requiring additionally measuring the rates of formation and 

consumption of key intermediates during the reaction process with techniques such as operando 

FTIR. This kind of analysis would determine if the bound intermediate is actually produced and 

consumed, or is simply so stable that it remains permanently bound to the catalyst and thus 

generates a strong signal under operando conditions.  

An additional approach for distinguishing between active and spectator species involves 

the use of modulation excitation spectroscopy (MES).24 MES involves the periodic modulation of 

a sample via some relevant perturbation – such as temperature, pH, or redox conditions via 

supplied reactant gas composition. The response to this modulation can be picked out via 

transformation of the resulting signal from the time domain into phase space, where the signal will 

only contain information about the dynamics and kinetics of the species perturbed by the 

modulation. Broadly we can assume that this means the signal will only contain information about 

active species, and with careful choice of modulation to target chemically relevant species of the 

catalyst. However, there are still limitations: (1) spectator species may also contribute to the signal 

if they experience dynamics unrelated to catalysis on the same timescales that the modulation 

probes, (2) the signal can be a combination of multiple signals from several co-existing active sites, 

(3) the timescale of the perturbation cannot be much slower than the TOF of the catalyzed reaction. 

There are many techniques that can be used for MES, ranging from IR-based techniques, to X-ray 

absorption, excitation, and diffraction—see24 for review. Choice of technique must be carefully 

done, to match the time resolution of the technique to the periodicity of the modulation. IR-based 

techniques therefore have been widely used for MES, although XAS is growing in popularity. 

XAS does have time signal resolution issues, however this can be improved via careful event-

averaging over multiple pulses.25 This can also be done for AP-XPS, which was applied to 

investigate the dynamics of CO oxidation on the Pd (100) surface under a variety of reactant 

stoichiometries, at two different pressures.26 This approach not only revealed exquisite detail about 
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the electronic structure of the Pd surface in metallic, partially oxidized, and oxidized states, but 

also could track corresponding changes in the local gas composition above the surface. Similar to 

this, multimodal tracking via operando XAS and STEM-EELS of bimetallic NPs during redox 

cycling provided detailed insight into dynamic changes resulting from reduction and oxidation of 

the NPs. In both cases, the reducing conditions initially induced improved mixing of Co and Pt, 27 

or Ni and Cu,28 but upon reoxidation, the NPs underwent increased irreversible segregation, and 

specific components became more oxidized than the as-prepared NPs. In the case of NiCu NPs, 

these changes could be tracked separately via XAS of the Ni and Cu L edges, showing that Cu 

underwent the significant changes, while Ni did not.28 All of these cases are examples of how 

dynamic changes of specific active sites may be tracked via periodically perturbing the system and 

investigating the resulting changes in the system via combination of techniques.  

The multi-stage experimental approaches can be greatly assisted and possibly simplified 

by use of computation. In order to computationally identify the active sites from ensemble 

techniques, the approach must be informed by computed ensembles, accessed through global 

optimization and selection of all thermally-accessible isomers. The isomers can differ in geometry, 

stoichiometry (changing through adsorption/desorption of reagents, and/or sintering), electronic 

structure, and (specifically for deposited clusters) site on the support.4 For accessing stoichiometric 

diversity of the catalyst states, the global optimization can be done in a grand canonical manner, 

at the relevant partial pressures and temperatures, and/or electrochemical potential. In such 

techniques, the number and nature of the bound adsorbates is optimized simultaneously with the 

system structure, with the change of chemical potential upon adsorption/desorption included in the 

system free energy. Once the ensemble is converged, the resulting spectral signature can be 

simulated as a weighted ensemble-average. We note important limitations here: (1) Sampling can 

be incomplete. (2) Assessing the full kinetic accessibility of all isomers in the ensemble is 

impracticable, and therefore, one has to make a decision to either assume a full thermodynamic 

equilibration described by Boltzmann statistics, or restrict the ensembles to sub-ensembles based 

on some knowledge about the system. One example of the latter is the energetically-prohibitive 

change of site on an ionic support for a cluster with a partially ionic bonding, such as PtSn on 

SiO2.29 Sub-ensembles can also be due to the separation of time- and energy-scales of the 

reorganization of the cluster core versus of the positions and numbers of adsorbates, especially at 

milder temperatures, e.g. in electrocatalysis. (3) Because the probability to be populated is an 
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exponential function of the energy difference between a given isomer and the GM, it amplifies the 

error in the electronic structure calculation, and therefore becomes only a qualitative metric. For 

example, for systems with strong static electron correlation, such as transition metal cluster alloys, 

DFT (and even DFT+U) cannot be trusted even to a qualitative degree, and the DFT-based 

probabilities will only exaggerate the problem. The quality of the agreement of the ensemble-

average spectrum with the experimental operando spectrum can serve as a calibration for the 

sufficiency of sampling and/or accuracy of the computational methodology. 

Next, computation can help distinguish between active sites and spectator species. As a 

“short-cut”, the binding strength, binding mode, or degree of bond activation of the rate-limiting 

intermediate can be computed for every accessible catalyst isomer and every configuration of the 

bound adsorbate, in lieu of an activity descriptor. A more accurate and also substantially more 

expensive approach would involve computing the actual reaction pathway. It is clear that the 

approach must include numerous reaction pathways, e.g. tens or hundreds, and certainly not just 

one as is commonly practiced. The majority species in the ensemble will dominate the operando 

spectrum, but the activity in some cases can be dominated by a handful of metastable minority 

species, which would contribute “a needle into a haystack” in the measured spectrum. 

Unfortunately, one cannot tell a priori whether the active sites are the minority, and therefore 

studying the catalyst with one of the mentioned operando techniques may or may not enable active 

site characterization. 

 An example where operando XAS in tandem with computation was used to great effect for 

active site identification was by Yang at al.22 The dynamic change of a Cu atom supported on a 

nitrogen-carbon support, under electrocatalytic conditions of oxygen reduction reaction (ORR), 

was probed with operando XAS, EELS, and XANES simulations. After confirming that the N was 

anchoring the Cu to the support via EELS mapping of Cu vs N signals, operando XANES and 

EXAFS were measured at different potentials (Figure 2a), and compared to computed XANES of 

a model system with different N-Cu-N binding configurations (Figure 2(b)-(d)). It was determined 

that the Cu-N4 pre-catalyst structure underwent reduction and formed a Cu-N3 active site, with 

the N released from binding Cu and instead binding a proton. The calculated free energy diagram 

for the ORR showed that the activated Cu-N3 structure is much more active than the pre-catalyst.  

 Another joint operando experimental and computational study enabled the identification 

of the dynamic surface reconstruction of a Cu/Au bimetallic alloy with embedded single-atom Cu 
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sites (known as a single atom alloy, SAA). 30 Using a combination of XAS (XANES/EXAFS) and 

DFT calculations, Liu et al. were able to detect the migration of the Cu atoms within the bulk Au 

and determine their preferential location.  In this case, the authors were not attempting to identify 

the site completely anew, because of the relative simplicity of the SAA structure. Nonetheless, the 

study showcases a powerful theory-assisted approach towards active site identification. 

 

Figure 2. (a) The operando XANES spectra collected on the cathode (top) and anode (bottom) at 
different applied potentials, showing the changes in XANES due to the applied potential. (b)-(d) 
The computed XANES (red) for the model active site structure shown in the inset, versus their 
corresponding operando spectra at the indicated voltages. (e) The change in Cu2+ : Cu+ ratio as the 
potential is changed, showing total reduction of the active site during operation due to the breaking 
of one of the Cu-N bonds. (f) The difference in the free energy profile for the binding of relevant 
ORR intermediates on the pre-catalyst and active site structures, in black and red, respectively, 
showing that the activated structure has a much more favorable free energy profile. Figure adapted 
with permission from 22. 

 

Note these examples have been focused on either single-atom catalysts (SACs), or single 
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into a scaffold, such as zeolites or MOFs, as evidenced by the linear scaling between 

volume/number of sites and catalytic frameworks for zeolites.23 However, for single metal atoms 

deposited on surfaces, sintering is highly likely due to their undercoordinated nature. Therefore, 

any analysis of single-atom active sites must ensure the stability of the system on the timescales 

of the operando measurements, and of the reaction being catalyzed. A truly thorough 

computational investigation of SACs would additionally investigate the activity of dimers, trimers, 

and/or larger-mers, and compare their spectral signatures to operando spectra, to either exclude 

them from consideration, or include in the mechanism. 

The complexity of the problem grows tremendously with the cluster size, as the ensemble 

of metastable states accessible to the catalytic system can become significantly larger, although 

the ensemble size is not easily predicted without global optimization. Thus, the operando spectrum 

can contain a large number of individual signals of varying dominance. A high dispersity of NP 

sizes under analysis adds more complications. In our works, we typically study mass-selected 

surface-landed clusters, which have a fixed number of metals atoms (typically under 10). These 

are moderately tractable, and also fundamentally informative systems, as they report, for example, 

on size-dependent trends of activity.16,31 For such systems, the grand canonical sampling requires 

on the order of 103 structures, from which the lowest free-energy minima are selected with an 

energy cutoff appropriate for the experimental temperature, e.g. 0.4 eV for thermal catalysis at 

under 700 K. The resultant ensembles can contain hundreds of structures, though occasionally 

contain very few or even just one structure. This ensemble is used as the starting point for 

computational effort towards identifying active sites, if the goal is to determine the actual species 

present at the catalytic interface.  

In an example of this approach, we studied partially oxidized supported Cu and CuPd 

clusters that are active toward selective oxidative dehydrogenation of propane and cyclohexane. 

We used the globally optimized Cu4Ox32,33 and Cu3PdOx34 (x=2-5) supported on amorphous 

alumina, for which the range of oxygen content was determined via grand canonical sampling.33 

Using FDMNES 35-computed XANES of the low-energy isomers, we fit the operando XANES 

obtained during TPRx of oxidative dehydrogenation of propane on partially oxidized Cu4 and 

Cu3Pd clusters. Bulk standards are often used to estimate the composition of XANES via linear 

combination fitting, though this works best for systems that are much more bulk-like, which 

subnano clusters are not. Our fits using only computed cluster standards,32 and computed cluster 
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and bulk standards34 are more chemically realistic, and can capture not only dynamic changes in 

oxygen content with temperature (reduction upon heating, oxidation upon cooling, Figure 3A, top 

two panels), but also irreversible sintering during heating, as evidenced by the increase in bulk 

fraction of the fit (Figure 3A, top). We were furthermore able to determine the degree of thermal 

equilibration of the system upon heating. In experiment, the clusters were landed on the support 

and not annealed at first, thus likely retaining some gas phase-like structures, and not equilibrating 

to a proper ensemble at 25˚C, at which point data collection began. We drew this conclusion from 

the poor initial fit with thermal equilibrium-based standards, which improved rapidly upon heating 

(Figure 3A, bottom). This improvement of the fit was retained upon cooling. As a result, we 

attributed the clear hysteresis of the collected operando XANES with temperature to a combination 

of thermal equilibration, irreversible oxidation state change, and sintering. While in this case we 

used only the GM structures of each cluster composition, this was due to the dominance of the GM 

in the Boltzmann populations of the Cu4Ox and Cu3PdOx clusters. For systems where higher-

energy isomers contribute a greater fraction to the ensemble, accounting for them in the spectra is 

essential. We also showed that the rising-edge shift that in bulk is associated with increased 

oxidation is not replicated for clusters of 4 atoms,32  indicating that when interpreting the spectra 

for cluster catalysts, using trends that arise in bulk systems should be applied with utmost caution, 

if at all.  

 
Figure 3. (A) change in composition for bulk (top) and cluster (middle) standard fractions with 
temperature during TPRx for Cu3PdOx/alumina catalyzing oxidative dehydrogenation of propane. 
Results of the simulations producing the best fits of the operando XANES spectra. Note the growth 

(A) (B)
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in bulk fraction during heating, after which the change in bulk/cluster fraction remains fairly stable, 
while the actual redox composition changes throughout- reduction upon heating, and oxidation 
upon cooling. The R-factor for the fit at each temperature is in the bottom panel. Adapted with 
permission from 34.  (B) (top) time-averaged image for Pt10/Al2O3 MD trajectory at two different 
temperatures- brown represents oxidized Pt atoms, while blue represents the metallic atoms. 
(bottom) shows the experimental vs. theoretically computed XANES at two different temperatures, 
where the computed XANES are averaged over the MD trajectory. Note that the change in 
spectrum with temperature in experiment is reproduced with MD, emphasizing the importance of 
dynamical nature of the Pt10 cluster as captured with MD. Adapted with permission from.36 
  

We note, however, that fitting operando XANES to realistic cluster standards can be 

regarded as mathematically ill-defined: We need to include all of the chemically meaningful 

cluster standards for the simulation, but many of them have significant similarities in their spectra. 

Thus, the fits might be not unique. However, simplification of the fits to a minimal basis, while 

mathematically more rigorous, limits meaningful chemical interpretation. 

Other computational efforts towards interpreting operando XAS signals approach the 

problem differently, with more mathematical rigor but to some expense of the chemical meaning. 

Machine learning (ML) has been used in order to extract quantitative information, such as 

coordination number, nearest-neighbor distances, and oxidation states from operando XANES 37,38 

and EXAFS 39 spectra, after training on computational spectra. The approach towards generating 

the computational spectra differs from our approach based on global optimization. Instead, a range 

of metal (e.g. Pt40 and Cu38) and stoichiometric metal oxide (e.g. Cu oxide37) NPs cut from bulk 

are taken, and the XANES for key non-equivalent absorbing atoms of the NPs, located on edges, 

surfaces, or sub-surface, are simulated using both FDMNES35 and FEFF 41 to limit systematic 

errors.  Some influence of different shape is included by including icosahedral NPs, as well as hcp-

based structures, in addition to the classic fcc-based NPs. The effect of bond distance is also 

included by isotropically compressing or expanding the NPs, to generate a range of possible bond 

lengths. All these non-spatially averaged spectra are used to train a neural net (NN), which is then 

validated on particle-averaged computed XANES spectra, showing quite a good agreement for the 

actual and predicted coordination numbers, though for the smallest clusters- Cu3 and Cu4, there is 

more of a deviation.30 Once validated, the NNs are used to extract coordination numbers and 

nearest-neighbor distances of the clusters of varying size from operando XANES.  
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The results from the NN applied to experimental results can highlight e.g. support-

dependent sintering of entirely reduced clusters, showing for instance that the XANES-extracted 

coordination numbers of ZnO-supported Cu nanoclusters are much higher than the ZrO2-supported 

ones, indicating that sintering has taken place.38 This is in contrast to the SAXS data, which 

indicates that all clusters agglomerate upon heating. This discrepancy is attributed to the formation 

of fractal-like agglomerates at the highest temperatures, where the local structure is similar to the 

isolated clusters, but the longer-range order indicates larger particle size. For another case of the 

application of the NN to experimental spectra, structural parameters of 4-, 12-, and 20-atom Cu 

oxide clusters on zirconia37, were extracted, based on a NN trained on bulk-like oxide clusters of 

varying sizes, with composition Cu2O and CuO. Different Cu2O- and CuO-type motifs in the 

operando spectra were also extracted. The limitation, however, was that since the NN was trained 

only on stoichiometric oxides, it could not identify any off-stoichiometry of the clusters. As a 

result, the NN was only applied to clusters where multivariate curve resolution alternating least 

squares (MCR-ALS) indicated that the fraction of bulk-oxide-like nature in the spectra was the 

majority (70+%). While a correlation between Cu-Cu coordination number could be extracted, the 

error bars were significant due to the off-stoichiometric nature of subnano copper oxide clusters. 

Given the data on which the NN was trained, the results are impressive.  

The main limitation with all of these NN studies, however, is that the training data is all 

based on highly symmetric structures cut from bulk. While the inclusion of non-equivalent sites 

and variable Cu-Cu distances likely added a certain degree of required disorder to the system, it 

was not enough to capture the true complexity of the system, especially at the smaller sizes of the 

clusters. At the smallest limits, clusters do not adhere to bulk structuring, and oxide clusters can 

deviate from stoichiometry and well-defined oxidation state of the metal atoms due to their small 

amorphous nature and interaction with support. Therefore, while NNs would likely produce quite 

good fits for larger NPs, the smallest clusters are unlikely to be accurately represented. This 

limitation could be overcome by including more realistically amorphous structures for the smallest 

clusters, as well as allowing for off-stoichiometry of the oxide clusters, which has been reported 

to occur.32,33  

There are various software packages that exist to simulate the XAS from structure files, 

ranging from the previously-mentioned FDMNES35 to FEFF,41 to the newer package OCEAN.42 

FDMNES and FEFF are widely used and often considered equivalent, both with limitations in 
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accurately reproducing exact relative peak intensity, or peak sharpness, leading many researchers 

to use a combination of software packages to cancel out any systematic errors, especially when 

using the theoretical spectra as a basis for ML.37,38,40 OCEAN, however, promises better results, 

thanks to the strong DFT foundation, coupled with the Bethe-Saltpeter equation approach to 

include exitonic effects and better capture L3/L2 ratios of light transition metals.  

However, all approaches discussed up to this point miss another aspect: the intrinsic 

thermal dynamics of clusters at higher temperatures. Even without complete isomerization, every 

isomer of the supported cluster undergoes dynamic motion at catalytic temperatures, with a 

substantial amount of anharmonicity43 (ultimately resulting in fluxionality). Adding thermal 

dynamics to the full ensemble picture of the catalyst would be ideal but computationally very 

expensive. However, it was shown that the dynamics can substantially affect the XANES 

signature. A Pt10/Al2O3 cluster was simulated with ab initio molecular dynamic (AIMD) at two 

different temperatures. The trajectory-averaged XANES spectra were simulated and compared to 

the changes in operando XANES.36 A clear difference in the XANES at different temperatures 

was observed for both experimental and theoretical spectra, showing that the dynamic changes 

captured by AIMD with increasing temperature were reflected in the resulting computed spectra. 

Further investigations into similar sized PtnSnm/Al2O3 clusters with varying composition showed 

how the combination of AIMD with theoretical XAS provided key structural parameters to 

compare with experiment, such as fine-grained analysis of bond lengths.44  

Given that AIMD visited the states of the cluster only in the vicinity of the given starting 

minimum, and certainly did not sample all the structural forms accessible to the cluster through 

the full-extent fluxionality (i.e. barrier-crossing isomerization), the excellent fit of the 

experimental XANES is remarkable if not surprising. We suggest that the individual atoms in the 

cluster dynamically visit enough configurations to produce a representative set of atom states in 

AIMD, even though the chemistry of the system is not fully sampled. In other words, local 

environments of individual atoms visited in AIMD are likely characteristic of many different 

cluster isomers that the system would visit at catalytic temperatures. Thus, the chemistry of the 

system is not truly extractable from these XANES fits alone. However, cluster dynamics is 

certainly an important contributor to operando XANES. 

(Near) ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is an ensemble 

operando technique, which has great surface-sensitivity due to the small inelastic mean path length 
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of outgoing photoelectrons. Steady improvements to the technique brought the pressures 

experienced by the catalyst first to near ambient (i.e. much higher that the near-vacuum conditions 

of typical XPS, but still orders of magnitude below industrially relevant pressures), and then up to 

1 bar. In other words, the so-called “pressure gap” between surface science experiments and real 

catalytic conditions45 is gradually closing through technological advances. XPS is essential for 

tracking changes in electronic structure of activated catalysts (e.g. oxidation state) throughout the 

catalytic process, and for identifying active (including transient) phases that are only present under 

reaction conditions, with extreme surface sensitivity. (N)AP-XPS has been widely used to 

investigate e.g. CO oxidation with changes in pressure,26,45,46 among other reactions.  

In our view, it is indispensable to complement these measurements with calculations. DFT 

can be used to assess the shifts in the core level binding energy of electrons as a result of adsorbate 

binding, and/or catalyst isomerization, (shifts being most informative, since the absolute electron 

binding energies are subject to errors of DFT).47 DFT XPS spectra computed on the ensembles of 

states can help deconvolute the experimental (N)AP-XPS, and/or follow the spectral changes with 

the changes of reaction conditions or with the catalyst reaching the steady state. For example, shift 

appearing due to adsorbate binding, and possible catalyst isomerization due to the adsorption, 

might report on the development of the active state of the catalyst. Should the ensemble change 

dramatically upon adsorbate binding or converting to a reaction intermediate, for instance, this 

would be reflected in the XPS. The caveat remains that the active site might provide only a 

minority signal. However, XPS can be an extremely valuable way to assess the majority 

components of different adsorbates in experiment, which can then be compared to theory for both 

method validation, and determination of the spectator sites, even if not always the active sites.  

Combinations of first-principles and experimental XPS analyses have been used to great 

effect for a CuO/air interface48 and GaN/water interface49 in order to assign adsorbate type and 

configuration to specific experimental XPS peaks. In one study of a model catalyst, gas phase 

PdCuH4- converting CO2 to formate and formic acid, valence photoelectron spectroscopy 

combined with calculations (at the CCSD(T) level) allowed us pinpointing the active isomer of the 

catalyst, which was not the GM (Figure 4).50 Specifically, an intermediate forming on the reaction 

profile of CO2 hydrogenation, originating from the second lowest-energy isomer (LM1), produced 

a photoelectron signal that was well-isolated in the spectrum, and not attributable to anything of 

the starting clusters, CO2 adducts, or species originating from the GM during the reaction. Such a 
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clean validation of the role of metastable states in catalysis is rarely possible with current 

experimental methods for more complicated and realistic catalysts, and the simple model catalyst 

is very helpful in this regard. However, the study illustrates the power of theory in finding the 

active species, when combined with spectroscopy. 

Figure 4. (A) CO2 hydrogenation pathways for the two PdCuH4- isomers, showing that the LM1 
isomer is drives catalysis, while the GM isomer binds formate too strongly to complete the 
reaction. (B) the experimental PES of PdCuH4CO2- with lines indicating the computed VDEs for 
isomers along the GM and LM1 reaction pathways. From 50. 

Localized operando techniques 

Scanning probe and transmission microscopies are a natural counterpoint to operando 

ensemble-averaged techniques. These can provide spatially resolved information about catalysts, 

and access ensemble information through time-averaging (as opposed to the spatial-averaging of 

ensemble operando techniques). While their access to ensemble is more limited, they can provide 

great insight into what conditions trigger changes in ensembles. Recent advances have been made 

to extend scanning probe microscopies to environmental conditions, permitting time-resolved 

imaging of nanoparticles and nanoclusters during catalysis. In situ STM in some cases can provide 

atomic-level detail of surfaces as well as adsorbate configuration,51 making it ideal for the imaging 

of small NPs. Time-resolved in situ STM can even image real-time growth of graphene on Ni 

surface, as catalyzed by adatoms.52 However, as the intensity of the image is proportional to the 

electric current between the tip of the probe and the part of the catalyst under investigation, the 

isomer or site that produces the most current with the tip will be the most evident, assuming that 

different isomers have different enough local density of states (LDOS) to impact the tunneling 

current. As clusters undergoes thermal dynamics, the STM signal is an average over the local 

LM1

GM

(C)

(E)

(F)

(A) (B)
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ensemble, and there is no guarantee that the dominant species seen in the STM are either the most 

prevalent, or the most active. Both computed LDOS and simulated STM are therefore of great 

utility for interpreting operando STM results, and attributing the information to catalytic relevant 

or irrelevant species at the interface. 

Environmental TEM can also be used to directly image the dynamics of (sub)nano 

catalysts. There are many excellent recent examples of this is, such as imaging of the dynamic 

behavior of Pt 53,54  and other noble metal55 NP catalysts under operando conditions, showing 

changes in morphology resulting from variable adsorbate binding during the catalytic process. 

Most notably, dynamic fluxionality of Pt catalysts as well as the in-contact oxide support layer 

under operating conditions for both CO oxidation53 and the water gas shift reaction54 has been 

shown for CeO2-supported NPs around 1 nm (Figure 5), experimentally proving how essential it 

is to account for cluster (and NP) fluxionality over the course of a catalytic reaction. Dynamic 

restructuring of the NPs was on the same timescales as the TOF for CO oxidation, indicating that 

the fluxional behavior of catalysts may couple quite closely with the reaction they are catalyzing.53 

This suggests that computational approaches where the dynamic fluxionality of the cluster is 

coupled to reactant activation12,56 or the chemical step in catalysis57 may be key to understanding 

the full scope of the catalyst behavior, despite the computational cost. 

 
Figure 5. (a1-a6) The time evolution of a Pt NP on CeO2 under a CO atmosphere, and (b1-b6) the 
time evolution the same Pt NP under WGS conditions, where the structure becomes much more 
rigid and faceted than in the presence of CO. The fluxionality is seen by an increased blurring of 
the Pt cluster, and the loss of clearly defined single atoms sites, as well as a blurring of the CeO2 
surface at the interface of the cluster.  (a1/b1) A single 150 ms/frame of the NP, while d/e2-d/e5 
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shows the time averaged image in 1.5 second intervals, and a/b6 shows the NP structure time-
averaged over 6s. From 54. 
 
The extent of diversity in the catalyst ensembles and factors that influence it  

One may ask just how much the ensemble-based computation is really needed, for modeling 

catalysts in general, and for operando spectroscopy interpretation. Can we get away with just the 

GM-based view, as has been the common practice? This section is meant to illustrate the extent of 

the effect. 

As shown above, for NPs, rapid restructuring in under 1 ns between different metastable 

crystalline structures on the timescale of CO oxidation reaction is seen in the TEM.53 In a joint 

experimental and computational work, Yang et al.58 showed how adsorbates can affect the shape 

of Pd/Pt NP beyond a single Wulff construct. The active sites for propene combustion in the 

presence of water had initially incorrectly been predicted to be terrace sites, however, the computed 

NP shape did not agree with post-catalysis TEM imaging. Taking adsorbates into account in the 

assessment of the NP shape, however, the active sites were correctly identified as under-

coordinated sites stabilized by adsorbed *OH (Figure 6  a-c).  

As clusters reduce in size, to just a few atoms, much more rapid and dramatic restructuring 

is to be expected. Reagent binding can cause cluster catalyst restructuring beyond recognition. The 

changes in structure as well as the number of thermally-accessible isomers depend on the 

intracluster bonding, and the strength of the interaction with the adsorbates, and the support, in a 

non-trivial and cluster size-63 and composition-dependent way. For example, CO is known to 

nearly disintegrate supported Au59 and Rh60 clusters. On the other hand, high coverage of H causes 

supported Pt clusters become more globular, but in a support- and coverage-dependent manner. 

Pt8Hx on γ-alumina under different partial pressures of H2 exhibit significant differences in the 

shape9 (Fig. 6 d,e). Diamond-supported partially oxidized Cu and Pd clusters under C6 molecules 

in conditions of oxidative dehydrogenation (ODH) of cyclohexane, show a dramatic contrast.10 

Pd4O2 (the prevalent oxidation state present under reaction conditions) retains its tetrahedral form 

regardless of whether it is bare, or binds cyclohexane or cyclohexene. However, Cu5 exhibits great 

fluxionality that is additionally dependent on the degree of oxidation: Cu5O5 is exceptionally 

acrobatic and populates a large number of isomers, whereas Cu5O3 is less so, though more than 

Pd4O2 (Figure 6f). The selectivity of cyclohexane ODH is affected: theory predicts that only Cu5O3 

produces particularly valuable product, cyclohexene. Operando XANES in this case showed the 
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presence of both valences of Cu in reaction conditions, and theory was needed to decide on the 

more plausible active site. In electrochemical conditions, fluxionality and ensemble size are 

additionally affected by the electrode charging and solvation of the interface.61  

 
Figure 6. (A-C) The change in predicted morphology of a Pd/Pt Wulff-constructed NP under 
conditions of vacuum vs adsorbed *OH, compared to experimental imaging,58 (Copyright (2020) 
National Academy of Sciences) showing that the model requires *OH adsorption to accurately 
represent the experimental NP structure. (D,E) The global minima of Pt8/γ-Al2O3 from grand 
canonical simulations under two different temperatures and partial pressures of H2, characteristic 
of dehydrogenation and hydrogenation, respectively; the shape of the cluster is remarkably 
sensitive to the conditions.9 (F) Diamond-supported Pd4O2 and Cu5O3 clusters in oxidative 
dehydrogenation of cyclohexane exhibit element-dependent fluxionality: Cu clusters strongly 
changes shape and ensemble size (judged by the population of the global minima at 535K, P535K), 
depending on the adsorbate, while Pd clusters do not.10  
 

Larger ensembles would lead to more convoluted ensemble-averaged operando spectra, 

and likely greater dynamics observed with localized in situ techniques. In these cases, a 



 19 

combination of ensemble and localized operando techniques would be valuable, as time-resolved 

localized techniques can provide insight into the extent of the dynamic behavior, as well as how it 

changes under varying conditions. Related to this, an important research direction of the future 

would be to find out when ensembles are large and when they are small, and how to quickly predict, 

and control their size, specifically with reference to what kinds of experimental conditions trigger 

such changes. 

We believe that a more accurate computational approach towards active site identification 

is based on grand canonical sampling, working closely with experiment to determine which 

adsorbates are present and in what coverage, or at what partial pressures. It remains to be probed, 

but our current hypothesis is that for larger NPs, global optimization addressing NP morphology 

under relevant coverages of key adsorbates36 should probe a few top-most layers. For sub-nano 

clusters and dynamic amorphous overlayers, global optimization should involve full restructuring 

and stoichiometric changes under the realistic reaction conditions. Cluster and NP morphology can 

be connected to changes in the support. For example, TiO2-supported Pt NPs62 in a reducing 

atmosphere of H2 get covered by a TiOx and a Pt-Ti alloy overlayer. Under oxidizing conditions, 

however, the partially reduced overlayer reverts to crystalline TiO2, and dealloys Pt and Ti. A 

computational approach to such a problem requires grand canonical optimization of both the 

cluster and the support in its vicinity, which constitutes an important advance to be made on the 

theory side in the near future. Hence, ensembles are not only vast, but also dramatically shifting 

with experimental condition. Clearly, extensive sampling is essential. Given the associated 

computational expense, it is also essential to find more efficient sampling strategies, and accurate 

simplified potentials. However, it is well-worth the time-investment, since theory, in our view, 

appears to be a key aid to operando spectroscopic studies in catalysis, as has been emphasized 

throughout this article.  

 

While operando spectroscopy techniques for active site identification are powerful, and 

will cause a significant shift in our understanding of the dynamic behavior of active catalyst sites, 

alone they often lack precision for active site identification. The application of theoretical 

techniques is crucial in order to accelerate our understanding of active sites on an atomic level that 

we cannot (yet) access experimentally. However, the theoretical approaches must take into account 

the ensembles of accessible states of the catalyst under reaction conditions, which will contribute 
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to the operando spectral signatures. For instance, when working with ensemble operando 

techniques such as XAS, where the ensemble is accessed via both spatial and time averaging, 

computational approaches should account for all accessible isomers and possible surface states. 

Ensemble-based theoretical approaches can then allow deconvolution of the experimental signal 

into different chemically-informed components, the change of which throughout the reaction can 

be tracked to identify compositional dynamics of the system. This can also be combined with 

analysis of reactant binding energies and reaction pathways of the entire computed ensemble of 

cluster isomers or surface states in order to assess what the likely active vs. spectator species are. 

More localized operando techniques, on the other hand, such as scanning probe or transmission 

microscopies, can give insight into the dynamism of the ensemble. For instance, we can directly 

see how external factors such as presence and type of adsorbates can trigger changes in the 

ensemble. These factors can then be included in the computational ensemble, either via grand 

canonical sampling with adsorbates to account for variable coverage, or accounting for the 

restructuring triggered by the presence of certain adsorbates by looking at the ensemble of each 

intermediate separately. The accuracy of the computational approach can in turn be verified by 

comparison of simulated spectra to experiment. Ultimately, the combination of operando 

spectroscopy with ensemble-based computational results can yield a more detailed and realistic 

understanding of the underlying chemistry of the system, which then in turn can be used for the 

rational design of better future catalysts.  
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