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Original Article
Muscle-specific knockout of general control of
amino acid synthesis 5 (GCN5) does not enhance
basal or endurance exercise-induced
mitochondrial adaptation
Jessica R. Dent 1, Vitor F. Martins 2,5, Kristoffer Svensson 2, Samuel A. LaBarge 2, Noah C. Schlenk 2,
Mary C. Esparza 2, Elisa H. Buckner 2, Gretchen A. Meyer 3, D. Lee. Hamilton 4, Simon Schenk 2,5,**,
Andrew Philp 1,*
ABSTRACT

Objective: Lysine acetylation is an important post-translational modification that regulates metabolic function in skeletal muscle. The acetyl-
transferase, general control of amino acid synthesis 5 (GCN5), has been proposed as a regulator of mitochondrial biogenesis via its inhibitory
action on peroxisome proliferator activated receptor-g coactivator-1a (PGC-1a). However, the specific contribution of GCN5 to skeletal muscle
metabolism and mitochondrial adaptations to endurance exercise in vivo remain to be defined. We aimed to determine whether loss of GCN5 in
skeletal muscle enhances mitochondrial density and function, and the adaptive response to endurance exercise training.
Methods: We used Cre-LoxP methodology to generate mice with muscle-specific knockout of GCN5 (mKO) and floxed, wildtype (WT) littermates.
We measured whole-body energy expenditure, as well as markers of mitochondrial density, biogenesis, and function in skeletal muscle from
sedentary mice, and mice that performed 20 days of voluntary endurance exercise training.
Results: Despite successful knockdown of GCN5 activity in skeletal muscle of mKO mice, whole-body energy expenditure as well as skeletal
muscle mitochondrial abundance and maximal respiratory capacity were comparable between mKO and WT mice. Further, there were no
genotype differences in endurance exercise-mediated mitochondrial biogenesis or increases in PGC-1a protein content.
Conclusion: These results demonstrate that loss of GCN5 in vivo does not promote metabolic remodeling in mouse skeletal muscle.

� 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

For over 50 years endurance exercise has been known to induce
mitochondrial adaptations in skeletal muscle [1e4]. While the
mechanisms by which contraction initiates mitochondrial biogenesis
remain to be fully elucidated, it is clear that perturbation in allosteric
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factors such as calcium (Ca2þ)1, adenosine monophosphate (AMP),
nicotinamide-adenine dinucleotide (NADþ), and acetyl-CoA are
important initiators of the adaptive response [5e8]. Accordingly,
considerable research has focused on the transduction pathways that
are modulated by these metabolic intermediates and their contribution
to exercise-induced mitochondrial adaptations in skeletal muscle.
epartment of Orthopaedic Surgery, University of California, La Jolla, San Diego, CA,
is, MO, USA 4School of Sport, Stirling University, Stirling, UK 5Biomedical Sciences

chool of Sport Exercise and Rehabilitation Sciences, University of Birmingham,
A. Philp).

an Diego 9500 Gilman Drive MC0863, La Jolla, CA 92093-0863, USA. Fax: þ1 858

tein; Cre-MCK, creatine kinase promoter; CHO, carbohydrate; DAC, deacetylase; ETC,
emius; GCN5, general control of amino acid synthesis 5; GAPDH, glyceraldehyde 3-
ockout; LCAD, long chain acyl CoA dehydrogenase; MCAD, medium-chain acyl-CoA
yogenin; NADþ, nicotinamide-adenine dinucleotide; PARPs, poly (ADP-ribose) poly-
a, peroxisome proliferator activated receptor-g coactivator-1a; Pln, plantaris; Q,
tibialis anterior; TCA, tricarboxylic acid; Tfam, mitochondrial-specific transcription

ctober 10, 2017 � Available online 16 October 2017

This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:a.philp@bham.ac.uk
mailto:sschenk@ucsd.edu
https://doi.org/10.1016/j.molmet.2017.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molmet.2017.10.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Reversible lysine acetylation has emerged as an important post-
translational modification that links cellular flux to the adaptive re-
sponses [9,10]. An underlying reason for this is that NADþ is the
primary substrate for the sirtuin class of deacetylases (DACs), which
remove acetyl groups from lysine residues [11], whilst acetyl-CoA is
the substrate for acetyltransferases (KATs), which add acetyl groups to
lysine residues [12]. However, despite the high prevalence of lysine
acetylation in skeletal muscle [13,14] much remains unknown
regarding its contribution to the remodeling of skeletal muscle, both at
rest and also in response to endurance exercise [15].
Peroxisome proliferator activated receptor-g coactivator-1a (PGC-1a)
is an important contributor to mitochondrial biogenesis and function in
skeletal muscle [2,5,6], with its transcriptional activity being regulated,
at least in part, by reversible acetylation [16e18]. Deacetylation by
sirtuin 1 (SIRT1) is a potent activator of PGC-1a [16,17,19,20], while
general control of amino acid synthesis 5 (GCN5) acetylates and in-
hibits its transcriptional activity [8,17,18,21]. GCN5 and PGC-1a form
a complex in PGC-1a immunoprecipitates from Fao hepatocytes, while
GCN5 overexpression in HEK293 cells represses PGC-1a intrinsic
transcriptional activity [18]. In relation to skeletal muscle, over-
expression of GCN5 in C2C12 myotubes represses PGC-1a-mediated
induction of mitochondrial and fatty acid metabolism genes [17].
Moreover, we previously reported that deacetylation of PGC-1a
following acute endurance exercise occurs in conjunction with a
reduction in both the nuclear presence of GCN5 and its association
with PGC-1a [8]. This relationship was maintained in both the pres-
ence and absence of SIRT1 deacetylase activity, suggesting that
exercise-induced deacetylation of PGC-1a occurs as a result of
reduced GCN5-PGC-1a interaction, rather than solely through SIRT1-
dependent deacetylation of PGC-1a [8].
Taken together, these data implicate GCN5 as an important negative
regulator of PGC-1a transcriptional activity in skeletal muscle and, by
extension, mitochondrial biogenesis [8,17,18,21]. However, no studies
to date have directly investigated the contribution of GCN5 to skeletal
muscle metabolism and mitochondrial function in vivo. Accordingly, we
used CreLoxP methodology to generate mice with muscle-specific
knockout of GCN5 (mKO). We hypothesized that mKO mice would
display increased mitochondrial biogenesis in skeletal muscle as
compared to their floxed/wildtype (WT) littermates and that mito-
chondrial adaptations to endurance exercise training (ExT) would be
enhanced in mKO mice.

2. MATERIALS AND METHODS

2.1. Generation of mKO mouse
To generate mKO mice, mice harboring LoxP sites flanking exons 3e19
of the GCN5 gene (Figure 1A) [22] (referred to as GCN5flox/flox, and kindly
provided by Dr. Sharon Dent, The University of Texas MD Anderson
Cancer Center, Smithville TX, USA) were crossed with mice expressing
Cre recombinase under the control of the muscle creatine kinase pro-
moter (Cre-MCK); after Cre-mediated recombination, exons 3e19 are
removed [22]. Our breeding strategy was to breed GCN5flox/flox mice with
GCN5flox/þ (‘þ’ refers to a WT allele) mice, with one breeder being Cre-
MCK positive, and the other Cre-MCK negative. This provided littermates
that were Cre-MCK positive or negative and GCN5flox/flox or GCN5flox/þ;
mice that were GCN5flox/þ and Cre-MCK positive are heterozygous for
loss of GCN5, and are referred to asmHZ.Mice negative for Cre-MCK are
referred to as wildtype (WT) and were used as controls for all experi-
ments. Mice were housed on a 12:12 h lightedark cycle, and all ex-
periments were conducted in 13-wk-old littermates. All experiments
MOLECULAR METABOLISM 6 (2017) 1574e1584 � 2017TheAuthors. Published by ElsevierGmbH. This is an o
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were approved by and conducted in accordance with the Animal Care
Program at the University of California, San Diego.

2.2. Tissue collection
Tissues were excised from fasted (4 h) and anesthetized mice. Skeletal
muscles (gastrocnemius [GA], quadriceps [Q], triceps [TRI], tibialis
anterior [TA], plantaris [Pln]), heart, liver, and epididymal adipose
tissue (AT) were rinsed in sterile saline, blotted dry, weighed, and
frozen in liquid nitrogen. The TA that was used for sectioning was
pinned on cork and frozen in liquid nitrogen-cooled isopentane. All
tissues were stored at �80 �C for subsequent analysis.

2.3. RNA extraction and cDNA synthesis for the quantitation of
GCN5 gene expression
RNA was extracted from the Q muscle of WT, mHZ and mKO mice using
the standard TRIzol method, and cDNA synthesized, as previously
described [8]. The expression of GCN5 in each sample was normalized
to values of the reference control glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) using the comparative (2�DDCT) method and
expressed relative to WT values. Primer sequences were: GCN5 for-
ward, 50-CAG GTC AAG GGC TAT GGC AC-30 and reverse, 50-GAT AGC
GGC TCT TGG GCA C-30, GAPDH forward 50-TGGAAAGCTGTGGCGTGAT-
30 and reverse, 50-TGCTTCACCACCTTCTTGAT-3’.

2.4. Skeletal muscle nuclear isolation
Isolated nuclear fractions were prepared from GA muscle using a
commercially available kit (78835: NE-PER; Thermo Fisher Scientific,
Waltham, MA, USA) with the addition of 4.8% cOmplete Mini protease
inhibitor mixture (SigmaeAldrich, St. Louis, MO, USA), 1 mM trichos-
tatin A, 10 mM nicotinamide, 1 mM 1,4-Dithiothreitol, 1% Phosphatase
Inhibitor Cocktail 2 (SigmaeAldrich), 1% Phosphatase Inhibitor
Cocktail 3 (SigmaeAldrich).

2.5. GCN5 acetylatransferase activity
GCN5 specific acetyltransferase activity was determined in nuclear
fractions from the GA using an immunoprecipitation HAT assay kit
(17e284, Merck Millipore, Billerica, MA, USA). For this, the primary
antibody in the kit was replaced with a GCN5 primary antibody
(607201; Biolegend, San Diego, CA, USA) and the peptide substrate
was replaced with Histone HS Peptide (12e403; Merck Millipore).

2.6. Targeted array
Total RNA was isolated from the TRI muscle using a combination of
TRIzol (Thermo Fisher Scientific) and Promega ReliaPrep RNA Tissue
Miniprep System (Promega, Madison, WI, USA) according to manufac-
turer instructions. Isolated RNA was reverse transcribed using the RT2
First Strand Kit (SABiosciences-Qiagen, Frederick, MD, USA). A 384-well
custom-designed PCR array containing pre-optimized and pre-validated
primers was developed in collaboration with SABiosciences. Genes
representing the functional groups: electron transport chain (ETC),
metabolism, mitochondrial remodeling, mitochondrial protein transport,
transcription, mitochondrial transcription, DACs, KATs, angiogenesis,
poly ADP ribose polymerases (PARPs), and myogenesis. The arrays also
contained a replicate positive PCR control, reaction lacking reverse
transcriptase, amouse DNA positive control and a panel of housekeeping
genes including GAPDH, Actb, Hsp90ab1, B2m, Tbp. PCR was per-
formed on the Bio Rad CFX384 thermo cycler following the manufac-
turer’s protocol. Expression of each gene was normalized to the
respective average value of the panel of housekeeping genes using the
comparative (2�DDCT) method and expressed relative to WT.
pen access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1575
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Figure 1: Efficient gene deletion in skeletal muscle of GCN5 (mKO). A) Schematic of LoxP sites flanking exons 3e19 of the GCN5 gene. B) GCN5 gene expression is
diminished in mHZ and mKO compared to WT mice. C) Quantitation of GCN5 protein abundance in skeletal muscle of WT, mHZ, and mKO mice. D) Representative image of GCN5
protein abundance from whole-cell muscle lysates in WT, mHZ and mKO mice. D) GCN5 acetyltransferase activity is reduced in mKO compared to WT mice. E) Quantitation and F)
representative images of protein abundance of PCAF, CBP, SIRT1, and SIRT3 in skeletal muscle from WT, mHZ and mKO mice. G) Quantitation and H) representative images of
whole-cell lysine acetylation in skeletal muscle of WT, mHZ, and mKO mice. All values were normalized to the actin band on the ponceau except for total lysine-acetylation, which
was normalized to whole ponceau, and all values are presented relative to WT. Data represent n¼ 3e6/genotype. Data presented as mean� SEM. *Significantly different to WT;
p< 0.05, #Significantly different to mHZ; p< 0.05.

Original Article
2.7. Energy expenditure and body composition
Body composition was measured by magnetic resonance imaging
(MRI, EchoMRI, Houston, TX, USA), and energy expenditure and
voluntary cage activity were assessed using the Comprehensive Lab
Animals Monitoring System (CLAMS, Columbus Instruments, Colum-
bus, OH, USA), as previously described [23]. For CLAMS, measure-
ments were made for 3 consecutive days, and the values presented
are the average diurnal values from the 12 h light and dark phases
recorded on day 2 and 3.

2.8. Myosin heavy chain composition
Myosin heavy chain (MHC) composition was measured in GA, Pln, and
Q muscle as previously described [24,25].

2.9. High-resolution respirometry
High-resolution respirometry was performed using an Oroboros O2K
(Oroboros Instruments, Innsbruck, Austria) as previously described
[23], with minor adjustments. Specifically, the following substrate-
uncoupler-inhibitor titration (SUIT) protocol was used: 0.4 mM
1576 MOLECULAR METABOLISM 6 (2017) 1574e1584 � 2017 The Authors. Published by Elsevier GmbH.
malate, 0.2 mM octanoylcarnitine, 5 mM ADP, 10 mM cytochrome c,
5 mM pyruvate, 10 mM glutamate, 10 mM succinate, followed by
0.5 mM titrations carbonyl cyanide m-chloro phenyl hydrazone, 0.5 mM
rotenone, and 2.5 mM antimycin A. Any samples showing a greater
than 10% increase in respiratory flux after addition of cytochrome c
were excluded from the study. Respiratory flux was normalized to
muscle fiber weight. All reagents were obtained from SigmaeAldrich.

2.10. Succinate dehydrogenase activity
Succinate dehydrogenase (SDH) activity was measured by incubation
of muscle sections in medium consisting of: 1.5 mM nitro blue tetra-
zolium, 5 mM ethylenediaminetetraacetic acid, 48 mM succinic acid,
0.75 mM sodium azide, 30 mM methyl-phenylmethlyl sulfate, phos-
phate buffered to pH 7.6, for 10 min. SDH intensity was quantified in
whole muscle sections of the TA with an average of 604 fibers per
cross-section. Images were acquired on a Brightfield microscope
(Leica DM6000, Leica Microsystems, Buffalo Grove, IL, USA) at a
magnification of 10� using a (Leica DFC295 camera, Leica Micro-
systems) camera. Muscle sections were analyzed using image J
This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com
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Figure 2: Targeted array reveals minimal differences in skeletal muscle gene expression between WT and GCN5 mKO. AeK) Basal gene expression in WT and mKO TRI
muscle. Heat maps represent individual fold-change in gene expression from average WT in WT and mKO mice. Data are organized into functional groups: A) electron transport
chain, B) metabolism, C) mitochondrial remodeling, D) mitochondrial protein transport, E) transcription, F) mitochondrial transcription, G) acetyltransferases, H) deacetylases, I) poly
ADP ribose polymerases, J) angiogenesis, K) myogenesis. Data represent individual fold change from average WT, n¼ 4/genotype.

MOLECULAR METABOLISM 6 (2017) 1574e1584 � 2017TheAuthors. Published by ElsevierGmbH. This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Original Article
software (ImageJ, National Institutes of Health, Bethesda, MD, USA)
and mean grey values were subtracted from 255.

2.11. Endurance exercise training (ExT)
10-week old mice had free access to a running wheel for 20 days, as
previously described [8,23]. After 20 d, the running wheel was
removed, and, 24 h following its removal, tissues were excised from
fasted mice (4 h), as described above. Time spent running, distance
run, and average speed were noted daily throughout ExT at 1300 h.

2.12. Immunoblotting
Equivalent amounts of protein (30 ug) were separated on 7.5e12.5%gels
by SDS-page as previously described [26], proteins transferred to Bio-
Trace NT nitro-cellulose membranes (Pall Life Sciences, Pensacola, FL,
USA), blocked in 3% milk/TBST and incubated overnight in primary an-
tibodies and subsequently incubated for 1 h at room temperature in
relevant secondary antibodies. Chemiluminescence horseradish peroxi-
dase reagent kit (Merck-Millipore) was used to quantify protein content
following IgG binding. Images were captured with a G: Box Chemi-XR5
(Syngene (A Division of Synoptics Ltd.), Cambridge, UK) imaging sys-
tem while blot bands were quantified using GeneTools software
(Syngene).

2.13. Antibodies
All primary antibodies were used at a concentration of 1:1000
dilution unless otherwise stated. Antibodies for SIRT1 (3931), CREB-
binding protein (CBP, 7389; 1:500), GAPDH (2118) hexokinase 2
(HKII, 2867), pyruvate dehydrogenase (PDH, 2784), SIRT3 (5490)
p300/CBP-associated factor (PCAF, 3378), and GCN5 (3305; 1:500)
were from Cell Signaling Technologies; mitochondrial-specific tran-
scription factor A (Tfam, SAB1401383), complex IeV (OXPHOS, Ab
MS664/62830) and acetyl-lysine (ab193) were from Abcam (Cam-
bridge, UK); cytochrome-c (cyt-c, BD556433) was from BD Bio-
sciences (Oxford, UK), long chain acyl CoA dehydrogenase (LCAD,
1:5000), and medium-chain acyl-CoA dehydrogenase (MCAD,
1:5000) were kind gifts from Prof Jerry Vockley, University of Pitts-
burgh, USA. PGC-1a (AB3242) was from Merck-Millipore; myogenic
factor 6 (Myf6, sc-301, 1:750) and myocyte enhance factor 2 (pan-
Mef2, sc-313, 1:10000) were from Santa Cruz Biotechnology, Dallas,
TX, USA. Myogenic factor 4 (myogenin) F5D was deposited to the
Developmental Studies Hybridoma Bank by Woodring E. Wright,
University of Southwestern Medical Center, Dallas, TX, USA. Sec-
ondary antibodies were used at a concentration of 1:10000 in TBST.
Anti-rabbit (7074) and anti-mouse (7076) antibodies were from Cell
Signaling Technologies.

2.14. Statistical analysis
Statistical analyses were performed using Prism 6 (GraphPad Soft-
ware Incorporated, La Jolla, CA, USA). Unpaired t-test, one-way
analysis of variance (ANOVA) or two-way ANOVA, where appro-
priate, with Holm-Bonferroni correction for multiple comparisons was
used to determine differences between WT, heterozygous (mHZ) and
mKO mice. Values are presented as mean� SEM and are expressed
relative to the WT group unless otherwise stated. Statistical signifi-
cance was set at p< 0.05.

3. RESULTS

3.1. Generation and validation of the GCN5 mKO mouse model
Skeletal muscle gene expression of GCN5 wasw40 andw85% lower
in mHZ and mKO mice, respectively, as compared to WT mice
1578 MOLECULAR METABOLISM 6 (2017) 1574e1584 � 2017 The Authors. Published by Elsevier GmbH.
(Figure 1B). Following this, GCN5 protein abundance was w30% and
75% lower in mHZ and mKO, respectively, vs. WT mice (Figure 1C). In
line with the gene and protein expression data, GCN5 acetyltransferase
activity was absent in mKO vs. WT mice (Figure 1E). Notably, there was
no compensatory increase in PCAF (also known as KAT2B), which is
highly homologous to GCN5 [27e30], at the protein (Figure 1F, G) or
gene level (Figure 2G). Further, there was no up regulation of other KAT
family members CBP or E1a-binding protein (p300), down-regulation
of sirtuin 1 gene expression (Figure 2H), or alterations in CBP, SIRT1
or SIRT3 (Figure 1F, G) protein abundance, or alterations in whole cell
lysine acetylation in mHZ or mKO compared with WT controls
(Figure 1H, I).

3.2. Skeletal muscle gene expression of metabolic, angiogenic,
and mitochondrial genes is not affected by loss of GCN5
Targeted gene arrays for a wide variety of targets from the functional
groups: ETC, metabolism, mitochondrial remodeling, mitochondrial
protein transport, transcription, mitochondrial transcription, DACs,
KATs, angiogenesis, PARPs, and myogenesis revealed no differences
between mKO and WT mice (p> 0.05; Figure 2AeK).

3.3. Body mass, composition, tissue weights, and energy
expenditure are comparable between WT, mHZ, and mKO mice
There were no differences in body mass or body fat between WT, mHZ,
and mKO mice (Figure 3A). Lean mass was higher in mHZ compared to
WT and mKO mice (p< 0.05). Heart, liver, and epididymal fat pad
weights did not differ between genotypes in the basal state (Table 1),
nor did whole-body diurnal rhythms in VO2, respiratory quotient (RQ),
or total activity (i.e., all x axis beam breaks) differ between WT and
mKO (Figure 3BeD).

3.4. Loss of GCN5 does not affect myosin heavy chain (MHC)
composition
Type I, IIa, IIx, and IIb MHC composition in the GA, Pln, and Q was
comparable between WT and mKO (Figure 4A, B).

3.5. Markers of skeletal muscle development are unaffected by
loss of GCN5
Myf6, Mef2, and myogenin protein abundance did not differ between
mKO, mHZ, and WT mice (Figure 4C, D). Further, MyoD gene
expression was not different between mKO and WT mice (Figure 2K).

3.6. Skeletal muscle maximal respiratory capacity and succinate
dehydrogenase (SDH) enzyme activity are not affected by loss of
GCN5
As determined in permeabilized TA fiber bundles using high-resolution
respirometry, there were no differences in maximal respiratory ca-
pacity, ETC capacity, leak respiration (in the absence of adenylates),
residual oxygen consumption, and oxidative phosphorylation-coupling
efficiency between WT and mKO mice (Figure 5A). Further, there
were no differences in SDH activity in the TA of WT vs. mKO mice
(Figure 5B, C).

3.7. Loss of GCN5 does not affect mitochondrial content or
adaptations to ExT
Average 24 h running distance and running speed were compa-
rable between genotypes (Figure 6A, B); as expected, daily dis-
tance and average speed increased over the first 10 d of training
(p< 0.05). Although skeletal muscle weights were similar between
sedentary (SED) and ExT groups, epididymal fat weight was lower
and liver weight higher (p< 0.05) following ExT, with no genotype
This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 3: Loss of GCN5 does not alter body composition, in vivo metabolism or energy expenditure. A) Body mass (BM), lean mass (LM), and fat mass (FM) determined by
MRI for WT, mHZ, and mKO mice. B-D) In vivo measurements were made using the Comprehensive Lab Animals Monitoring System over 3 consecutive days. Data represent
averages for the light and dark phases of day 2 and 3 for WT and mKO mice. B) VO2 and C) respiratory quotient (RQ) were measured by indirect calorimetry, while D) total activity
was measured as all x-axis beam breaks. Data represent n¼ 5e12/genotype. Data presented as mean� SEM. *Significantly different to light phase; p< 0.05, #Significantly
different to WT and mKO; p< 0.05.

Table 1 e Body and tissue weights in sedentary and ExT mice.

SED ExT

WT mHZ mKO WT mHZ mKO

BW (g) 25.1� 1.0 25.3� 1.0 23.3� 0.5 21.3� 1.7a 24.0� 0.6a 22.4� 0.6a

TA (mg) 42.4� 1.9 40.6� 1.5 39.1� 1.0 39.1� 1.0 39.6� 1.6 40.8� 1.0
% BW 1.69� 0.04 1.60� 0.05 1.68� 0.04 2.77� 1.05 1.68� 0.08 1.82� 0.03
GA (mg) 110.6� 5.8 108.4� 5.1 94.8� 3.1 99.0� 2.7 106.1� 4.3 95.7� 3.7
% BW 4.39� 0.13 4.27� 0.11 4.07� 0.13 6.98� 2.65 4.45� 0.22 4.26� .10
Q (mg) 168.2� 9.5 164.8� 8.4 156.0� 3.6 148.6� 2.7 157.1� 8.8 159.4� 4.7
% BW 6.67� 0.23 6.48� 0.17 6.70� 0.16 11.30� 4.90 6.55� 0.34 7.1� 0.19
Heart (mg) 117.7� 5.8 112.1� 5.6 100.6� 3.1 125.3� 2.6 123.8� 3.2 118.5� 4.1
% BW 4.70� 0.19 4.39� 0.14 4.32� 0.13 9.23� 3.78 5.17� 0.14 5.29� 0.14
Liver (mg) 1166.6� 39.4 1112.4� 46.5 1036.6� 29.2 1212.4� 37.7 1320.8� 57.6 1228.3� 62.9
% BW 46.55� 0.70 43.84� 0.88 44.26� 1.09 48.54� 4.63a 55.02� 1.81a 52.98� 1.50a

Epi fat (mg) 293.3� 22.1 348.9� 35.7 334.1� 35.8 158.2� 10.6 184.8� 17.7 164.8� 24.2
% BW 11.59� 0.63 13.54� 1.09 14.25� 1.34 6.82� 0.40a 7.68� 0.64a 7.03� 0.87a

a Main effect for effect for exercise training (ExT); p< 0.05. SED, sedentary; ExT, endurance exercise training; BW, body weight; TA, tibialis anterior; GA, gastrocnemius; Q,
quadriceps, Epi fat; epididymal fat.
differences observed (Table 1). At the molecular level, ExT
increased the skeletal muscle abundance of mitochondrial markers
(w1.3e2.5 fold), including complexes I-V, cyt-c, MCAD, LCAD,
HKII, PDH, PGC-1a and SIRT3, as compared to SED (p< 0.05;
Figure 6CeF); there were no genotype differences within SED or
ExT groups (p> 0.05).
MOLECULAR METABOLISM 6 (2017) 1574e1584 � 2017TheAuthors. Published by ElsevierGmbH. This is an o
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4. DISCUSSION

The role of reversible lysine acetylation in skeletal muscle metabolism
has received considerable interest in recent years [7,8,13,17,31,32].
To date, the contribution of DACs, particularly SIRT1 and SIRT3, to the
positive metabolic adaptations in skeletal muscle to exercise training
pen access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1579
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Figure 4: Loss of GCN5 does not affect skeletal muscle MHC isoform composition. A, B) Skeletal muscle Type IIb, IIx, IIa, and I MHC isoform composition were not different
between mKO versus WT mice. A) Quantitation of MHC isoform in the gastrocnemius (GA), quadriceps (Q), and plantaris (Pln) of WT and mKO mice. B) Representative silver stain
image for MHC expression in skeletal muscle of WT and mKO mice. C) Quantitation of muscle regulatory factors, Myf6, Mef2, and myogenin, protein abundance in GA whole-cell
muscle lysates. D) Representative images of protein abundance of muscle regulatory factors. Values are normalized to the actin band on the ponceau and presented relative to WT.
Data represent n¼ 5e8/genotype. Data presented as mean� SEM.
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have been heavily studied [6e8,31]. In contrast, very little is known
about the contribution of KATs to skeletal muscle metabolism and
remodeling in vivo. To address this, we developed a conditional mouse
model in which GCN5 activity is deleted in muscle. The primary reason
for focusing on GCN5 is that previous in vitro studies have demon-
strated its key role in acetylating and inhibiting PGC-1a, thereby
opposing the actions of SIRT1 [17,18,21]. Our results reveal that
whole-body energy expenditure, skeletal muscle morphology, mito-
chondrial protein abundance, and maximal respiratory capacity are
comparable between sedentary mKO, mHZ, and WT mice, as is the
induction of skeletal muscle mitochondrial biogenesis in response to
endurance exercise training.
Reversible acetylation is a major mechanism by which the tran-
scriptional activity of PGC-1a is regulated [16,20,21,33,34]. In
elegant cell-based studies, a role for SIRT1 in modulating the
transcriptional capacity of PGC-1a via its deacetylation has been
well documented [6,17,20,34], while its role in vivo remains
controversial [6,8,16,31,35,36]. In fact, studies in bona fide
1580 MOLECULAR METABOLISM 6 (2017) 1574e1584 � 2017 The Authors. Published by Elsevier GmbH.
skeletal muscle provide little support for a direct role of SIRT1 in
modulating skeletal muscle mitochondrial biogenesis [8,31]. In
contrast, GCN5 acetylates PGC-1a in vitro and inhibits its tran-
scriptional activity [8,17,18,21], with overexpression of GCN5 in
C2C12 myotubes leading to repression of PGC-1a-mediated in-
duction of mitochondrial and fatty acid metabolism genes [17].
Moreover, in Fao hepatocytes [17] and skeletal muscle [8] GCN5
and PGC-1a coimmunoprecipitate, while GCN5 overexpression in
HEK293 cells represses PGC-1a intrinsic transcriptional activity
[18]. The repressive effects of GCN5-mediated acetylation on PGC-
1a appear to be due to altered cellular distribution of PGC-1a, with
hyperacetylation segregating PGC-1a from target promoters and
towards nuclear foci [18]. With these findings in mind, we expected
that mitochondrial function and abundance, whole body energy
expenditure, and exercise training-induced mitochondrial adapta-
tions would be enhanced in our mKO mouse. To our surprise,
however, neither partial (i.e. mHZ) nor complete (i.e. mKO) loss of
GCN5 altered any of these parameters.
This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 5: High-resolution respirometry and SDH activity in WT and mKO TA muscle. A) Respiratory flux normalized to muscle fiber weight in the presence of MOct (leak
respiration in the absence of adenylates), ADP (D), cytochrome c (C; mitochondrial integrity), pyruvate (P), glutamate (G; complex I (CI) capacity), succinate (S; complex Iþ complex
II (CII) capacity), carbonyl cyanide m-chloro phenyl hydrazone (U; maximal respiration), rotenone (Rot; complex II capacity), and Ama (residual oxygen consumption (Rox)). B)
Quantitation (data presented relative to WT) and C) representative images of SDH activity in WT and mKO TA muscle. Data represent n¼ 5e7/genotype. Data presented as
mean� SEM.

Figure 6: Loss of GCN5 in skeletal muscle does not inhibit the ability for exercise training or exercise-induced mitochondrial adaptation A) Average 24 h running
distance and B) average 24 h running speed during 20 days ExT in WT, mHZ, and mKO. C, D) (C) Quantitation (D) and representative images of protein abundance of electron
transport chain complexes (complex I (CI), complex II (CII), complex III (CIII), complex IV (CIV), and complex V (CV)) and cytochrome-c (cyt-c) in TRI muscle from SED and ExT WT,
mHZ, and mKO mice. E, F) (E) Quantitation (F) and representative images of protein abundance of MCAD, LCAD, HKII, PDH, PGC-1a, and TFAM in TRI muscle from SED and ExT WT
and mKO mice. All values were normalized to the actin band on the ponceau and all values are presented relative to WT-SED. (Data represent n¼ 5e9/genotype). Data presented
as mean� SEM. *Significant effect for exercise; p< 0.05.
A potential explanation for the lack of effect of the loss of GCN5 on
skeletal muscle metabolic or mitochondrial remodeling may be due to
compensation from other KATs. PCAF shares w73% homology with
the GCN5 gene [27e30], whilst GCN5 and p300 have numerous
substrates in common [37]. Indeed, GCN5/PCAF whole-body double
KO mice (GCN5�/� PCAF�/�) die earlier than GCN5 whole-body KO
mice, inferring shared functions between these two proteins [38].
Furthermore, an often overlooked observation in the study of Lerin
et al. [18], which identified GCN5 as the specific acetyltransferase of
MOLECULAR METABOLISM 6 (2017) 1574e1584 � 2017TheAuthors. Published by ElsevierGmbH. This is an o
www.molecularmetabolism.com
PGC-1a, is the fact that PCAF induced acetylation of PGC-1a, albeit
to a lesser extent than GCN5. Further, in vitro, PCAF-mediated
acetylation of two lysine residues (K328 and K450) on PGC-1a ac-
celerates its proteasomal degradation and suppresses the tran-
scriptional activity of PGC-1a [39]. In liver of fasted and diabetic
mice, PCAF acetylated PGC-1a, while liver-specific knockdown of
PCAF increased PGC-1a abundance and activity and led to an in-
crease in hepatic glucose output [39]. Notably, however, whether
GCN5 and PCAF acetylate and/or recognize the same lysine residues
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or whether PCAF interacts with PGC-1a in skeletal muscle is un-
known. Embryonic redundancy between GCN5 and p300 also exists,
with mice heterozygous for null alleles of both GCN5 and p300
demonstrating reduced viability compared to mice heterozygous for
either single mutation [40]. Additionally, while p300 has been shown
to induce acetylation of PGC-1a [34], it can also prompt a confor-
mational change that increases (not decreases) PGC-1a transcrip-
tional activity, in vitro [41]. Importantly, however, we recently
demonstrated that loss of p300 in skeletal muscle does not impact
mitochondrial function or metabolic adaptations to endurance exer-
cise [23]. In the present study, although there was no up-regulation
of PCAF protein content or gene expression, or p300 gene expression
in mHZ and mKO mice, redundancy or overlapping functions of GCN5
with PCAF and/or p300 could explain the lack of differences we see
between mKO/mHZ and WT mice. To this end, clearly more work is
required to understand the redundancy between these KAT family
members in skeletal muscle in vivo.
GCN5 is fundamental to development, as evidenced by the embryonic
lethality seen in whole body KO and whole body GCN5hat/hat (embryos
with mutant GCN5 KAT activity) mice [38,42]. In these mice, severe
retardation is evident by 8.5 days post coitum (dpc) and death at 10.5
and 16.5 dpc in the KO and KOhat/hat, respectively [38,42]. This
retardation is characterized, in part, by the failure to form the paraxial
mesoderm and somites [38,42], which go on to form skeletal muscle
[43]. As GCN5 whole body KO embryos are not viable beyond w10
dpc, a point in development in which early myogenic regulatory genes
are beginning to be expressed [44e46], the contribution of GCN5 to
skeletal muscle development is currently unknown. Nonetheless, as
embryonic lethality coincides with failure to form somites, there is
reason to consider that GCN5 may be important for development of
myogenic precursor cells. Also, acetylation of MyoD, one of the earliest
markers of myogenic commitment, by PCAF and/or p300 is considered
critical for execution of the skeletal muscle program [46e48], and
suggests that lysine acetylation has a role in skeletal muscle devel-
opment. In our mKO model, cre-mediated KO of GCN5 would occur
after induction of MCK at w13 dpc [44]. Considering mKO and mHZ
mice demonstrate no overt differences in muscle weights, fiber type, or
myogenic genes as compared to WT littermates, our data suggest that,
in and of itself, GCN5 is not required for muscle development in vivo.
Finally, GCN5 was originally identified as a transcriptional regulator due
to its ability to acetylate histones and modify chromatin structure [49]
Indeed, it is now considered to be the catalytically active KAT of
multiple histone acetyltansferase complexes [10]. With this in mind,
we expected to see differences in skeletal muscle gene expression
between our WT and mKO mice. Somewhat surprisingly, however, we
found no influence of the loss of GCN5 on the expression of w50
different genes indicative of a wide variety of functions in skeletal
muscle. These findings could simply be due to the fact that GCN5 is not
important for skeletal muscle development or transcriptional control, or
as discussed above, could be due to redundancy and compensation
from other KATs.

5. CONCLUSION

While in vitro data provide a mechanistic link between GCN5 acetyl-
transferase activity and metabolism, our results suggest that loss of
GCN5 in muscle does not enhance in vivo basal or ExT-induced
metabolic adaptation. Further, we show that GCN5 is not required
for adult skeletal muscle development nor does it alter myosin heavy
chain composition, whole cell lysine acetylation or gene expression in
skeletal muscle. Given the homology between PCAF and GCN5 [27e
1582 MOLECULAR METABOLISM 6 (2017) 1574e1584 � 2017 The Authors. Published by Elsevier GmbH.
30] and their demonstrated overlapping functions during embryo-
genesis [38], as well as commonality in substrates between p300 and
GCN5 [37], it will be of high interest in future studies to probe the
separate and combined effects of GCN5, p300 and/or PCAF on skeletal
muscle biology.
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