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Abstract

In an experiment, subjects learned about new categories for
which they had prior beliefs, and made probability
judgments at various points during the course of learning.
The responses were analyzed in terms of bias due to prior
beliefs and in terms of sensitivity to the content of the new
categories. These results were compared to the predictions
of four models of belief revision or categorization: (1) a
Bayesian estimation procedure (Raiffa & Schlaifer, 1961);
(2) the integration model (Heit, 1993, 1994), a
categorization model that is a generalization of the
Bayesian model; (3) a linear operator model that performs
serial averaging (Bush & Mosteller, 1955); and (4) a
simple adaptive network model of categorization (Gluck &
Bower, 1988) that is a generalization of the linear operator
model. Subjects were conservative in terms of sensitivity
to new information, compared to the predictions of the
Bayesian model and the linear operator model. The
network model was able to account for this conservatism,
however this model predicted an extreme degree of
forgetting of prior beliefs compared to that shown by
human subjects. Of the four models, the integration model
provided the closest account of bias due to prior beliefs and
sensitivity to new information over the course of category
learning.

Imagine that you are an American traveling in Europe for
the first time. Until now, your concepts of people,
locations, and things in European cities have been largely
shaped through media images rather than direct experience.
For example, suppose that your concept of people in City P
includes the strong prior belief that these people tend to be
unfriendly to Americans. To be specific, you might expect
that on 90% of your encounters with people in City P, the
person you meet will be rude or unfriendly. Now say that
during the first day of your visit, you meet ten citizens of P.
To your delight and surprise, only three of them act
unfriendly to you. Your expectations about people in City
P may have been derived from an inaccurate stereotype.
Clearly, your concept of these people must be revised in
light of these new observations. But how much revision
should take place? When you travel the next day, will you
expect the majority of people to be unfriendly or friendly?
Say that on the next day, you meet ten more people, and
again, three people are unfriendly. How do you put together
your prior knowledge, the first day’s observations, and the
second day's observations?

Belief revision is an important task that people face often,
even when they are not traveling the world. Whenever

people learn new concepts, they may bring to bear their
previous expectations and theories (Murphy & Medin, 1985;
Murphy, 1993). Typically there will be some discrepancy
between prior knowledge and what is observed about a new
category, otherwise there would be nothing to learn.
Therefore, category learning may be considered as a kind of
belief revision. Furthermore, categories in the world can
change over time, so beliefs about these categories must be
updated periodically. For example, improvements in
technology have led to changes in people’s concepts of
telephones (Elliott & Anderson, in press).

The experiment in this paper addresses the dynamics of
category learning, in which performance depends on prior
knowledge and new observations. Subjects had initial
beliefs about persons in a fictional place referred to as City
W, then gradually revised their concepts as they observed
descriptions of persons in City W. The results are
considered in terms of four computational models of belief
revision.

Method

Overview. First, the subjects’ initial beliefs about
various categories of people in a new city, e.g., shy people,
joggers, were assessed. Then the subjects observed
descriptions of people in City W. Some descriptions were
congruent with prior knowledge, such as a shy person who
avoids parties, and some descriptions were incongruent, such
as a jogger without expensive running shoes. This
observation phase was interrupted periodically as subjects
were asked to make probability judgments about transfer
stimuli. Overall, the procedure was similar to that of Heit
(1994), except that the subjects’ changing beliefs were
assessed a total of five times over the course of learning.

Stimuli. Each subject saw training examples derived from
five couplets of descriptive terms (see Table 1; the complete
pool is in Heit, 1994). Each couplet of four features was
comprised of two pairs of opposites or complements. For
example, not shy is the complement of shy, and does not
attend parties often is the complement of attends parties
often. The first and third item in each couplet were
congruent with each other (e.g., shy and does not attend
parties often), likewise the second and fourth item were
congruent. The first and fourth items, as well as the second
and third items, were incongruent (e.g., shy and attends
parties often). The stimuli were pre-tested on other subjects
to validate this manipulation of prior knowledge (see Heit,
1994).
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Table 1: Feature Couplets (Examples)

Shy / not shy
Does not attend parties often / attends parties often

Jogs regularly / does not jog regularly
Owns expensive running shoes / does not own expensive
running shoes

Travels two or more times per year / travels less than two
tmes per year

Has frequent flyer number / does not have frequent flyer
number

Watches more TV than average / watches less TV than
average

Reads books less than average / Reads books more than
average

Generous / not generous
Donates to charity / does not donate to charity

Each training example was a description of a person, in
terms of two features from a couplet. A pairing of two
features was either congruent or incongruent. The five
couplets were assigned randomly for each subject to the
following structure: one couplet had 0% congruent pairings,
one couplet had 25% congruent pairs, one couplet was 50%
congruent, one was 75% congruent, and one was 100%
congruent. For example, when the shyness-parties couplet
was assigned to the 100% congruent condition, all the shy
people did not attend parties often and all the non-shy people
did attend parties often.

Procedure. At the beginning of the experiment, subjects
were told that they would see descriptions of persons living
in City W, a city located in Illinois. The procedure followed
a test-study-test-study-test-study-test-study-test sequence. In
the first test block, subjects’ prior beliefs about people in
City W were assessed, presumably reflecting their general
knowledge about people in Illinois. Within a study block,
the training examples were presented individually, in a
random order, about every 3.5 seconds. In each study block,
subjects were presented with forty training examples, eight
per couplet. In effect, subjects were given four members of
each category during a study block. For example, subjects
would see four descriptions of shy persons in each study
block. Each of the four study blocks was followed by a test
block. Thus, subjects were tested after they had observed 0,
4,8, 12, and 16 members per category.

In each test phase, subjects made 20 conditional
probability estimates. These questions were worded as
follows:

Consider a person from City W with the following
characteristic: x
How likely is it that this person would also have this
characteristic? A,
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where x and A were two features. Subjects responded on a
scale from 0% to 100%. The test stimuli for each block had
a two factor design: (1) whether the two features were
congruent or incongruent with each other; and (2) the
conditional probability of presentation during the study
phase, which was 0%, 25%, 50%, 75%, or 100%. Eight
test questions were derived from each couplet, thus there
were 40 possible test questions. In each test phase, 20 of
these questions were chosen randomly and asked of the
subject.

Subjects. Forty-two Northwestern University
undergraduates participated.

Results

The average responses at different points during the
experiment are shown in the first column of Figure 1. The
top panel shows the initial responses, before any training
had begun. Here, subjects clearly were influenced by their
prior knowledge, as indicated by the higher judgments for
congruent test questions (e.g., how likely a jogger is to own
expensive running shoes) compared to incongruent test
questions (e.g., how likely a shy person is to attend parties
often). There was no influence of observed proportion of
stimuli co-occurring, because at this point the subjects had
not observed any training stimuli. (For the top panel, the
observed proportions were defined for the experiment but not
known to the subjects.) The lower panels in this column,
corresponding to category sizes 4, 8, 12, and 16, show that
subjects did revise their beliefs as they observed people in
City W. Two concepts are critical for understanding these
trends.

First, it is useful to consider subjects’ bias, that is, the
direct influence of prior knowledge about these categories.
Bias may be measured in terms of the difference between
congruent and incongruent judgments, at a given level of
observed proportion. For example, a subject with no bias
would show zero difference between congruent and
incongruent lines. The second consideration is the subjects’
sensitivity to what they observed. That is, how well do the
estimated proportions reflect the observed proportions of
category membership in City W? Sensitivity can be
measured in terms of the slope of the lines in Figure 1. A
zero slope indicates no sensitivity to observed proportion,
and higher slopes approaching one indicate greater
sensitivity.

Now, looking at the panels in the first column of Figure
1 from top to bottom, two trends are apparent. First, with
more experience, subjects became less biased by prior
knowledge; the lines tend to converge. Second, subjects
became more sensitive to the observed data with more
experience; the slopes increase. (Also see Table 2.)

Statistical analyses supported these observations. There
was a main effect of congruent versus incongruent test
question, indicating that subjects gave higher judgments for
congruent questions, F(1,41)=83.0, p<.001. The congruent
versus incongruent factor exhibited an interaction with test
block, such that the difference between congruent and
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Figure 1: Results and model predictions.

incongruent questions diminished with more items studied,
F(4, 164)=37.0, p<.001. There was also a main effect of
objective probability, F(4, 164)=70.2, p<.001, indicating
that subjects’ judgments were sensitive overall to what they
observed. This effect of objective probability interacted with
testing block, F(16, 656)=23.0, p<.001, such that subjects
were more sensitive 1o objective probability as more items
were studied.

Model Evaluations

Four models were considered as accounts for these results.
The first two, the Bayesian revision model and the linear
operator model, were included because they are classic
models of learning and judgment. The integration model is
an exemplar model of categorization that generalizes the
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Bayesian model. Also, a simple connectionist network
model, a generalization of the linear operator model, was
considered.

Bayesian and Linear Operator Models

The Bayesian revision model provides a means for
combining a prior belief about a statistical parameter with
new observations (Raiffa & Schlaifer, 1961). This model is
especially important because within the framework of
Bayesian statistical theory it is taken to be a normative
procedure. Therefore, comparing the results of this
experiment to the predictions of the Bayesian model gives
some perspective on whether subjects were behaving
optimally. The Bayesian formula for revising an estimate of
a proportion is shown in Equation 1.



=Np+Gq
N+G

In this equation, Py is the estimated proportion of items
with description x that belong to category A, after N
observations have been made. The variable g represents the
prior estimate of this proportion (before any observation),
and G indicates the strength of this prior belief. The
variable p is the proportion of the new observations that
belong to category A. As N increases, the estimate depends
more on the observed proportion, p, and less on the prior
belief, g.

The linear operator model is derived from classic
mathematical learning theory (Bush & Mosteller, 1955), and
this model has been applied to numerous results in learning
and probability judgment (see Bower & Heit, 1992).
Furthermore, this formula is useful for calculating a running
estimate of a proportion using an anchor-and-adjust
procedure (Busemeyer, 1991). This model is shown in
Equation 2.

Py =Pn_1+B(dy —Pn_1) @

Note that P( is set to g, the prior belief about this
proportion. The indicator variable dp refers to what is
observed on trial N; it is assigned a value of 1 when the
observed item is in category A and a value of 0 when the
observed item is not in category A. Note that the expected
value of dy in Equation 2 is equivalent to the proportion p
in Equation 1. Finally, B refers to the learning rate, between
0 and 1. The estimated proportion after observation N is the
previous estimate, from trial N - I, plus a correction,
determined by difference between what is observed, djy, and
the previous estimate, Py-j. In the asymptote, Py will
approach p, the proportion of observed items in category A.
Note that each of these models has two free parameters.!
The value of g, the prior estimate of the proportion, was
estimated for each model from the responses on the first
block of test trials, before any observations had taken place.
The best-fitting value of, g, derived algebraically, was .72.
To estimate the other parameters, the two models were
fitted to the average responses on the 50 test questions. The
values of G and B in the two models were estimated by
simulating each model with various parameter values, and
searching through the parameter space with the criterion of
minimizing the root mean square error of prediction over the
50 judgments. For the Bayesian model, when G had the
value of 10.08, the root mean square error (RMSe) of the
model was .0504. For the linear operator model, when
had the value of .064, the RMSe of the model was .0563.
(Because trial order has a slight effect on the predictions of

M

IThe average of all the responses in this experiment was 53%;
however, each of the four models to be considered predicts an
average response of 50%. The discrepancy seems to be due to a
slight lack of calibration by the subjects (see Heit, 1994;
Wallsten & Gonzalez-Vallejo, 1994). To compensate for this
difference, a correction of .03 was added to every prediction of
each model.

the linear operator model, this model was simulated with
100 different random orders of trials, and the predictions were
averaged.) In terms of the RMSe performance measure, the
two models are close, but the Bayesian model is slightly
better.

The best-fitting predictions of the Bayesian models are
shown as the lines in the second column of Figure 1,
overlaid on the data points. (The predictions of the linear
operator model are not shown, but they are similar to the
Bayesian model.) The models capture the qualitative pattern
of belief revision: With more observations of category
members, the models predict that bias decreases and
sensitivity increases. However, the subjects’ responses were
much less sensitive than what is predicted by the models.
This finding is evident in the second column from
comparing the slopes of the lines to the slopes of the data
points--the lines have steeper slopes, indicating greater
sensitivity for the models. Another way of stating this
result is that, compared to the normative Bayesian model as
well as the linear operator model, subjects were conservative
in terms of sensitivity.

The subjects’ conservatism might derive from additional
details of processing, such as memory confusions or a lack
of sensitivity in the response scale, not captured by these
models. The next two models to be described are similar to
the Bayesian and linear operator models, except for additional
processing assumptions.

Integration and Network Models

The integration model (Heit, 1993, 1994) is an exemplar
model of categorization that has already been applied to
several categorization experiments where subjects were
influenced by pre-experimental knowledge. The critical
claim of the integration model is that when people learn
about a new category, they are influenced by prior examples
from other, related categories. Information from prior
examples and from new observations is simply summed
together. For example, in learning about shy people in City
W, subjects would be influenced by memories of shy people
from other places as well by actual observations of people in
City W. Such transfer of memories from one source or
context to another has been described and documented by
Johnson, Hashtroudi, and Lindsay (1993).

For the present experiment, in which subjects predicted a
category given a single feature, the integration model is a
generalization of the Bayesian revision model. The
integration model is described by Equation 3 (see Heit,
1994).

_Np+Gg+sN(1-p)+sG(1-q) @
B N +G+sN +sG

The new variable in this equation is s, which measures the
degree of confusions in memory (see Medin & Schaffer,
1978). The value of s may range from 0 to 1, with greater
values indicating poorer feature memory. Note that when §
= 0, Equation 3 is equivalent to Equation 1 for the Bayesian
model. In the integration model, G is interpreted as a
number of prior examples retrieved for a given category A,
and q is the proportion of prior examples with description x.

Py
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The final model to be considered is a simple connectionist
network model proposed by Gluck and Bower (1988). This
model learns direct associations between input units and
output units using the least-mean-square (LMS) learning
rule. This model is particularly appropriate because subjects
predicted single variables from a single cue. The network
model is quite similar to the linear operator model in
Equation 2, with a few exceptions. First, the training
signals (dp) as well as the prior belief (g) range from -1 to 1
instead of 0 to 1. Second, the output of the linear operator
model is passed through a logistic activation function, Py =
1 /(1 +exp (-6 Oy )). Here, ON refers to the value
obtained from Equation 2, and 0 is a scaling parameter.
Increasing values of 0 indicate greater overall sensitivity in
judgments.

Each model has three free parameters. To make the fits of
the integration and network models comparable to other
models, these models were constrained to fit the initial set of
judgments as closely as possible. After some algebraic
manipulation, the models were constrained as follows. For
the integration model, g must be equal to .5 + ((.22) (1 + 5))
/ (1 - 5) to fit the initial judgments. For the network model,
g=294/6.

With those constraints set, the free parameters were
estimated. For the integration model, when the g parameter
was .85, G was 4.73, and s was .23, the RMSe of the model
was .0261, about half the error of the Bayesian model. For
the network model, when the value of g was .73, B was .12,
and 6 was 129, the RMSe of the model was .0364,
intermediate between the integration model and the other two
models. The predictions of these two models are shown as
the lines in third and fourth columns of Figure 1.

With the additional free parameters allowing some degree
of memory confusions or lack of responsiveness, the models
now give good accounts of subjects’ sensitivity over the
course of learning. Note that in the third and fourth
columns, unlike the second column, the slopes of the lines
(the model predictions) are quite close to the slopes of the
data points. The integration model also gives an excellent
account of how subjects’ biases due to prior knowledge, in
terms of the difference between congruent and incongruent
lines, change over the course of learning. In contrast, the
network gives a poor account of bias due to prior
knowledge. The network model predicts that the initial
biases will be nearly forgotten near the end of learning, i.e.,
the lines nearly converge in the bottom two panels of the
fourth column. In contrast to this prediction, subjects still

showed substantial bias towards the end of learning. This
model’s rapid forgetting of earlier beliefs is similar to the
phenomenon of catastrophic interference in more complex
networks (Ratcliff, 1990).

Why does the integration model gives a better account of
the prior knowledge bias than the network model? The
integration model assumes that prior examples and previous
observations have a persistent influence, even as new
examples are observed. As a learner accumulates more
information, the marginal influence of each additional
observation decreases. This can be seen by rewriting
Equation 1 as a difference equation analogous to Equation 2.
(Equation 3 can also be rewritten as a difference equation to
make a similar point, but the resulting equation is more
unwieldy.)

1
Py =Pyn_1+
N=ENat =T

N (dnv —Pn-1) @

What is critical in Equation 4 is that the learning rate, 1 /(G
+ N), decreases as more items are observed, i.e., as N
increases. In contrast, in the learning rule for the network
model in Equation 2, the estimate is revised at a fixed rate,
B, regardless of the number of previous observations.
Towards the end of the experiment, the network model was
revising too quickly compared to the subjects. It should be
possible to improve the performance of the network model
by additionally assuming that the learning rate decreases over
the course of the experiment.

Conclusion

These results are consistent with previous results on
probability revision, such as the classic urns-and-balls
problems reviewed by Edwards (1968). In those studies,
subjects were also conservative compared to a Bayesian
model, in terms of sensitivity to observed proportions. The
present experiment differs from those older studies in that
subjects’ prior beliefs were derived from real-world social
knowledge (e.g., about shy people). In related research,
Elliott and Anderson (in press) examined the learning of
categories that change over the course of an experiment.
Elliott and Anderson also found that an exemplar model
gives a better account of belief revision than a network
model. In addition, they found evidence for forgetting of
earlier observations, so that an exemplar model with
assumptions of memory decay performed even better. (In

Table 2: Summary of sensitivity and bias for experimental results and model predictions.

Sensitivity (Slope)

Bias

Bayesian Lin. Op. Integ.  Network
Results  Model Model Model Model

Category Bayesian Lin. Op. Integ.  Network
Size Results  Model Model Model Model
0 .01 .00 .00 .00 .00
4 .32 29 23 29 23
8 43 44 41 40 .38
12 45 .54 .55 45 46
16 51 61 65 49 .50

43 .43 43 43 43
22 32 34 23 1)
17 25 .26 .16 .16
.14 .20 .20 12 .10
.10 A7 15 .09 .06
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contrast, the integration model does not implement memory
decay.) Elliott and Anderson’s work is well suited to
investigate forgetting because their categories changed over
the course of learning, unlike the present experiment in
which the categories did not change. Yet their procedure
may have encouraged subjects to strategically ignore early
observations, because using the older observations would
lead to incorrect predictions. So what appears to be
forgetting may also reflect some discounting of old
information.

In summary, the present results show how people’s
concepts initially are influenced by prior beliefs and are
revised gradually as new category members are observed.
This process of belief revision can be described in terms of
the integration model (Heit, 1993, 1994). According to this
model, when people learn about a new category, they
retrieve prior examples from related categories as well as
accumulate examples that they actually observe for the
category. At a general level, the predictions of the
integration model are similar to those of other models, but
at a more detailed level the integration model gives a more
successful account of the course of learning and the relation
between sensitivity and bias due to prior knowledge. (See
Table 2 for a summary of the results and the models’
predictions in terms of sensitivity and bias.) The detailed
model comparisons suggest two additional principles that are
central to the integration model’s ability to fit these results:
(1) allowing some degree of memory confusions and (2)
persistent influence of previous beliefs such that the learning
rate decreases as more knowledge accrues.

The simple nature of this experiment, in which subjects
predicted category labels from information about single
features, was useful in distinguishing among these models.
In future research, it would be interesting to compare the
integration model to more complex connectionist networks
(e.g., Choi, McDaniel, & Busemeyer, 1993) for
categorization experiments in which subjects are influenced
by prior knowledge but learn about more complex
multidimensional stimuli.
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