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Learning protocols for the fast and efficient
control of active matter

Corneel Casert 1,2 & Stephen Whitelam 1

Exact analytic calculation shows that optimal control protocols for passive
molecular systemsoften involve rapid variations anddiscontinuities. However,
similar analytic baselines are not generally available for active-matter systems,
because it ismoredifficult to treat active systems exactly.Hereweusemachine
learning to derive efficient control protocols for active-matter systems, and
find that they are characterized by sharp features similar to those seen in
passive systems. We show that it is possible to learn protocols that effect fast
and efficient state-to-state transformations in simulation models of active
particles by encoding the protocol in the form of a neural network. We use
evolutionary methods to identify protocols that take active particles from one
steady state to another, as quickly as possible or with as little energy expended
as possible. Our results show that protocols identified by a flexible neural-
network ansatz, which allows the optimization of multiple control parameters
and the emergenceof sharp features, aremore efficient thanprotocols derived
recently by constrained analytical methods. Our learning scheme is straight-
forward to use in experiment, suggesting a way of designing protocols for the
efficient manipulation of active matter in the laboratory.

Active particles extract energy from their surroundings to produce
directed motion1–4. Natural active particles include groups of ani-
mals and assemblies of cells and bacteria5–7; synthetic active parti-
cles include active colloids and Janus particles8,9. Active matter,
collections of active particles, displays emergent behavior that
includes motility-induced phase separation10,11, flocking12,13,
swarming14, pattern formation15,16, and the formation of living
crystals17.

Recentwork has focused on controlling such behavior by creating
active engines18–27, controllably clogging and unclogging
microchannels28, doing drug delivery in a targeted way29,30, controlling
active fluids through topological defects31–33, and creating micro-
robotic swarms with controllable collective behavior34–36. For such
applications, efficient time-dependent protocols are important37–40.
Methods for identifying efficient protocols, such as reinforcement
learning, have been used to optimize the navigation of active particles
in complex environments41–43 and induce transport in self-propelled
disks using a controllable spotlight44.

For purely diffusive (passive) molecular systems, analytic meth-
ods allow the identification of optimal time-dependent protocols for a
range of model systems45–48. These results establish that rapidly-
varying and discontinuous features are common components of
optimal protocols, and are useful for benchmarking numerical
approaches49,50. However, active-matter systemsaremorecomplicated
to treat analytically than passive systems, requiring the imposition of
protocol constraints in order to make optimization calculations fea-
sible for even the simplest model systems. Two recent papers derive
control protocols for confined active overdamped particles by
assuming that protocols are slowly varying and smooth51 or have a
specific functional form52. In this paper we show numerically that
relaxing these assumptions leads to more efficient control protocols
for those systems. In particular, we demonstrate the importance of
allowing jump discontinuities and rapid variations in control proto-
cols, similar to those seen for overdamped passive systems.

To learn protocols to control active matter we use the neuroe-
volutionary method described in refs. 49,53–55, which we adapted
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from the computer science literature56–58. Briefly, we encode a system’s
time-dependent protocol in the form gθ(t/tf). Here g is the output
vector of a deep neural network, corresponding to the control para-
meters of the system (which in this paper consist of the activity of the
particles and the spring constant of their confining potential), θ is the
set of neural-networkweights, t is the elapsed timeof theprotocol, and
tf is the total protocol time. It is also straightforwardwithin this scheme
to consider a feedback-control protocol, by considering a neural
network gθ(t/tf, v), where v is a vector of state-dependent
information49. We apply the protocol to the system in question, and
compute an order parameter ϕ that is minimized when it achieves our
desired objective (such as inducing a state-to-state transformation
while emitting as little heat as possible). Neural networks are flexible
function approximators, and they can be used to represent protocols
that are free of the constraints imposed in recent analytical work: they
do not have to follow a specific functional form, and they can be used
to represent protocols that possess discontinuities and rapidly-varying
features. The neural-network weights θ are iteratively adjusted by a
genetic algorithm in order to identify the protocol whose associated
value of ϕ is as small as possible.

This approach is a form of deep learning – in the limit of small
mutations and a genetic population of size 2 it is equivalent to noisy
gradient descent on the objectiveϕ59 – and so comes with the benefits
and drawbacks of deep learning generally. Neural networks are very
expressive, and if trained well can identify “good” solutions to a pro-
blem, but these solutions are not guaranteed to be optimal60,61. We
must therefore be pragmatic, and (as with other forms of sampling)
verify that protocols obtained from different starting conditions and
from independent runs of the learning algorithm are consistent.
Consequently, we call the protocols identified by the algorithm
“learned” rather than “optimal”. In general, we have found themethod
to be easy to apply and to solve the problems we have set it: we have
benchmarked the method – see refs. 49,55 and Fig. S1 in the Supple-
mentary Information (SI)– against exact solutions45 and other numer-
ical methods48,50,62,63. In this paper we use it to produce protocols that
are closer tooptimal than theprotocolsobtainedbyothermethods51,52.

Importantly, the neuroevolutionary learning algorithm uses
information that is accessible in a typical experiment. While in this
paper we have learned protocols for the control of simulation models
(these protocols could then be applied to experiment if the simulation
model is a good enough representation of the experiment64), the same
learning algorithm can also be applied directly to experiment. The
success of thismethod as discussed in the following sections therefore

demonstrates the potential of neural-network protocols for the con-
trol of active matter in the laboratory.

Results
Active particle in a trap of variable stiffness
In this sectionweconsider theproblemof Section IIIA of ref. 51, a single
active Ornstein-Uhlenbeck particle65–67 in a one-dimensional harmonic
trap of stiffness α(t). A schematic of this model is shown in Fig. 1a. The
particle has position r and self-propulsion velocity v. It experiences
overdamped Brownian motion with diffusion constant D and mobility
μ, such that

_rðtÞ= vðtÞ � μα rðtÞ+
ffiffiffiffiffiffi
2D

p
ηðtÞ: ð1Þ

Hereη is aGaussianwhite noise termwith zeromean andunit variance.
The self-propulsion velocity v follows an Ornstein-Uhlenbeck process
with persistence time τ and amplitude D1, such that vh i=0 and
vðtÞvðt0Þ� �

=D1τ
�1e�jt�t0 j=τ . The parameterD1 is zero in the passive limit.

The trajectory-averaged heat associated with varying α(t) from αi
to αf in time tf is

19,51,66

Qh i= 1
2

αixi � αfxf
� �

+
1
2

Z tf

0
dt _αðtÞxðtÞ

+
D1tf
τμ

�
Z tf

0
dt αðtÞyðtÞ:

ð2Þ

Here �h i denotes an average over dynamical trajectories, and we have
defined x � r2

� �
and y � rvh i. For time-dependent quantities q(t) we

use the notation qi ≡ q(0) and qf ≡ q(tf) to denote initial and final values.
The first line of Eq. (2) is the passive heat (minus the change in energy
plus thework done by changing the trap stiffness), and the second line
is the active contribution to the heat. The first term on the second line
is constant for fixed tf (describing the heat dissipated to sustain the
self-propelled motion), and plays no role in selecting the protocol.

For a given protocol α(t), the time evolution of x and y is given by
the equations51

1
2

_xðtÞ+μαðtÞxðtÞ= yðtÞ+D, and
τ _yðtÞ+ γðtÞyðtÞ=D1,

ð3Þ

Fig. 1 | Protocols α(t) controlling the stiffness of a trap confining an active
Ornstein-Uhlenbeck particle. Model parameters: D = 1, μ = 1, τ = 1, D1 = 2. a Sche-
matic of the model. b Neural-network protocols α(t) that minimize 〈Q〉, Eq. (2), for
different protocol lengths tf. c Heat associated with the protocols. The dotted and

dashed lines correspond to the valuesQ1, Eq. (6), andQ2, Eq. (7), respectively. Inset:
now for D1 = 0.01. The orange line (''DPF'') is the result extracted from ref. 51. d As
(b), but requiring minimum heat while enacting a state-to-state transformation
(SST); see Eq. (11).
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where γ(t) ≡ 1 + μτα(t). The system starts in the steady state associated
with the trap stiffness αi, and so its initial coordinates are

xi =
1

αiμ
D1

γi
+D

� �
and yi =

D1

γi
: ð4Þ

Ref. 51 sought protocols that carry out the change of trap
stiffness αi = 1 → αf = 5 with minimum mean heat, Eq. (2). The the-
oretical framework used in that work assumes that protocols α(t)
are smooth and are not rapidly varying (see Section S2 for a dis-
cussion of this point). Here we revisit this problem using neuroe-
volution. We find that heat-minimizing protocols are not in general
slowly varying or smooth, but can vary rapidly and can display jump
discontinuities. The protocols we identify produce considerably
less heat than do the protocols identified in ref. 51 (see Fig. 1
and Fig. S2).

To learn a protocol α(t) that minimizes heat, we encode a general
time-dependent protocol using a deep neural network. We choose the
parameterization

αθðtÞ=αi + ðαf � αiÞðt=tf Þ+ gθðt=tf Þ, ð5Þ

where g is the output of a neural network whose input is t/tf
(restricting the scale of inputs to a range [0, 1] typically allows
training to proceed faster than when inputs can be numerically
large). We constrain the neural network so that αi ≤ αθ(t) ≤ αf,
meaning that it cannot access values of α outside the range stu-
died in ref. 51. When we relax this constraint we find protocols
that produce less heat, in general, than the protocols that observe
the constraint. We impose the constraint to allow us to make
contact with ref. 51, and because experimental systems have
constraints on the maximum values of their control parameters.
Initially the weights and output of the neural network are zero,
and so we start by assuming a protocol that interpolates linearly
with time between the initial and final values of α. We train the
neural network by genetic algorithm to minimize the order
parameter ϕ= Qh i, given by Eq. (2), which we calculate for a given
protocol by propagating (3) for time tf, using a forward Euler
discretization with step Δt = 10−3. An example of the learning
process is shown in Fig. S2a.

In Fig. 1b we show, for the choice D1 = 2, that heat-minimizing
protocols learned by the neural network vary between a step-like
jump at the final time, for small values of tf, and a step-like jump at
the initial time, for large values of tf (all protocols shown in this work
are provided in the Supplementary Data 1 file). For intermediate
values of tf we observe a range of protocol types. These protocols
include non-monotonic and rapidly-varying forms, and show jump
discontinuities at initial and final times. In Sec. S3A, we discuss the
effect of the model parameters on the range of tf for which these
non-trivial protocols result in a lower value of 〈Q〉 than the step
protocols.

The heat associated with the final-time step protocol is just that
associated with the initial steady state, and is

Q1 =
D1tf

μτ ð1 +αiμτÞ
: ð6Þ

The heat associated with the initial-time jump protocol can be
calculated from Eqs. (2) and (3), and is

Q2 =
αf

2
xi � x2ðtf Þ
� �

+
D1tf

μτð1 +αfμτÞ

� D1ταf

γf

1
γi

� 1
γf

� �
1� e�γf tf=τ

	 

,

ð7Þ

where

x2ðtÞ � ðxi � xf Þe�2μαf t + xss

+ 2D1
1
γi

� 1
γf

� �
2μαf �

γf
τ

	 
�1

× e�γf t=μ � e�2μαf t
	 


:

ð8Þ

Note that xss is given in Eq. (10). For large tf we have

Q2 � D1tf
μτð1 +αfμτÞ

, ð9Þ

which is the heat associated with the final steady state.
In Fig. 1c we show that the heat values associated with the trained

neural-network protocols interpolate, as a function of tf, between the
values Q1 and Q2. Our conclusion is that this optimization problem is
solved by protocols that are rapidly varying, have a variety of func-
tional forms, and display jumpdiscontinuities. As shown in the inset of
Fig. 1c and in Fig. S2, these protocols produce values of heat con-
siderably smaller than those associated with the protocols derived
in ref. 51. (In the latter figure we also show that it is possible to con-
struct smooth but rapidly-varying protocols that canproduce values of
heat arbitrarily close to the discontinuous protocols identified by the
learning procedure).

The protocols just described are valid solutions to the heat-
minimization problem defined in ref. 51. However, some of them are
notmeaningful in experimental terms. For instance, for small values of
tf, the heat-minimizing protocol is a step function at the final time. This
protocol is a solution to the stated problem, but effects no change of
the system’s microscopic coordinates. All the heat associated with the
subsequent transformation of the system is ignored, simply because
we have stopped the clock.

We therefore argue that it is more meaningful to search for pro-
tocols thatminimize heat subject to the requirement of a state-to-state
transformation. That is, we require that a specified change in the sys-
tem’s state has occurred. We modify the problem studied in ref. 51 to
search for protocols that minimize the mean heat (2) caused by a
change of trap stiffness αi = 1 → αf = 5, subject to the completion of a
state-to-state transformation (SST) between the initial steady state (4)
and that associated with the final-time value of αf,

xss =
1

αfμ
D1

γf
+D

� �
and yss =

D1

γf
: ð10Þ

As before, we impose the experimentally-motivated constraint αi ≤
αθ(t) ≤ αf.

To solve this dual-objective problem we choose the evolutionary
order parameter

ϕ=Δ+ c if Δ≥Δ0 and ϕ= Qh iotherwise: ð11Þ

HereΔ2 � ðxf � xssÞ2 + ðyf � yssÞ2 measures the difference between the
final-time system coordinates and their values (10) in the final steady
state; Δ0 = 10−3 is the tolerance with which we wish to achieve this
steady state; and c = 100 is an arbitrary constant whose only role is to
make the first clause of (11) always larger than the second (protocols
and heat values dependweakly on the value of the thresholdΔ, but not
in a way that affects our general conclusions). Minimizing (11) will
minimize heat emission for a protocol α(t) that in time tf effects a state-
to-state transformation within the precision Δ0.

In Fig. 1d we show protocols that minimize heat while achieving
SST (see also Sec. S4). These protocols have a variety of forms, which
involve rapidly-varying portions and jump discontinuities, and that
tend, for large tf, to the initial-time jump form. For times tf ≲ 1.3 the
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learning algorithm could not identify a protocol that could achieve
SST. We discuss how this minimal time is affected by the model
parameters in Sec. S3B.

The heat emission associated with these protocols is shown in
panel (c). The time tf forwhich least heat is emitted is about tf = 1.74, for
this choice of D1. (For heat optimization alone, the minimum heat is
Qh i=0, and is shown by Eq. (6) to occur at time tf = 0, a conclusion
different to that drawn in Fig. 3 of ref. 51. This strange result follows
from the fact that the instruction to minimize heat comes with no
requirement that the system change state.)

For comparison, we show the heat emission associated with the
linear protocol αlin(t) = αi + (αf − αi)(t/tf) (square symbols). The linear
protocol emits considerably more heat than learned protocols (note
the log scale of the figure), and fails to achieve SST for times tf ≲ 60.

We conclude that the model of the confined active particle stu-
died in ref. 51 is best controlled by protocols α(t) that are in general
rapidly varying and exhibit jump discontinuities – similar to protocols
for overdamped passive systems – whether the goal is to minimize
heat or to do so while also inducing SST. We note that while the evo-
lutionary training of the neural network is a numerical procedure, the
protocols it identified allowed us to derive analytic results for the
minimum heat produced for sufficiently small and large trajectory
lengths, Eq. (6) and Eq. (7) respectively.

Active particle of variable activity in a trap of variable stiffness
State-to-state transformation in least time. In this section we con-
sider the problem of ref. 52, an active Brownian particle confined by a
two-dimensional harmonic potential UðρÞ= 1

2 kρ
2 with stiffness k. The

particle is described by the position vector ρ= ðρ cosϕ,ρ sinϕÞ
and orientation θ, and moves in the direction êðθÞ= ðcosθ, sinθÞ with
constant speed u0. Its dynamics is described by the Langevin equation

dρ
dτ

=u0êðθÞ � μkρ+
ffiffiffiffiffiffiffiffi
2Dt

p
ξ r ðτÞ

dθ
dτ

=
ffiffiffiffiffiffiffiffiffi
2Dθ

p
ξθðτÞ,

ð12Þ

where τ is the time; μ is the mobility; Dt and Dθ are translational and
rotational diffusion coefficients, respectively; and ξr(τ) and ξθ(τ) are
Gaussian white noise terms with zero mean and unit variance. Upon
introducing the dimensionless variables r � ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dθ=Dt

p
and t ≡ τDθ, Eq.

(12) reads

dr
dt

= λêðθÞ � κr +
ffiffiffi
2

p
ξ rðtÞ

dθ
dt

=
ffiffiffi
2

p
ξθðtÞ,

ð13Þ

where κ ≡ μk/Dθ and λ � u0=
ffiffiffiffiffiffiffiffiffiffiffi
DθDt

p
are dimensionless versions of the

spring constant and the self-propulsion speed (λ is the Péclet number).
These dimensionless variables are the control parameters of the
problem.

The steady-state probability distribution function Pssðr,χÞ of the
systemdepends only on r ≡ ∣r∣ and χ ≡ θ −ϕ, and is knownexactly68. The
steady state associated with the control-parameter choices κ and λ can
be classified as passive or active (Fig. 2a): in the passive phase, the
radial probability distribution P(r) is peaked at the trap center, while in
the active phase it is peaked at r > 0.

This model system is motivated by experiments involving sphe-
rical Janus particles, whose self-propulsion speed can be tuned
through light intensity9, confined in a trap constructed by acoustic
waves69. For a typical experimental setup the control parameters are
bounded as 0 ≤ λ ≤ 11 and 1 ≤ κ ≤ 79,52,69.

The problem described in ref. 52 is to find a time-dependent
protocol (λ(t), κ(t)) that obeys the bounds of the previous paragraph

and that minimizes the time tf required to transform the distribution
Pðr,χÞ from a passive steady state at (λi, κi) = (2.5, 4) to an active one at
(λf, κf) = (5, 4). Using an ansatz constrained so that the distribution
PðrðtÞ,χðtÞÞ has at all times the form of the steady-state distribution
Pssðr,χÞwith effective values for the control parameters, the authors of
that paper found a protocol that completed the state-to-state trans-
formation in time tf ≈ 0.44. This was achieved by inserting this ansatz
into the Fokker-Planck equation for the time evolution of the prob-
ability distribution. In order for analytical calculations to be feasible,
one also has to assume that the effective value of the stiffness is con-
stant throughout time. Under these assumptions, the protocol for the
activity λ is determined solelyby the protocol for the stiffness κ, see Eq.
(6) in ref. 52. The resulting protocol is shown in Fig. 2a, b.

A neural-network ansatz for the protocol is free of the restric-
tions required for the analytical calculations: it does not assume a
functional form for the probability distribution at intermediate
times, and the protocols for λ(t) and κ(t) are independent. With a
trainedneural-network ansatz for the protocol (λ(t), κ(t)), wefind that
the state-to-state transformation can be achieved about three times
as rapidly as it is under the analytic protocol of ref. 52. For a simu-
lation of fixed time tf we use a genetic algorithm to train the neural
network to minimize the order parameter ϕ = Δ, the mean-squared
error between the target distribution P?

ssðr,χÞ associated with the
control-parameter values (λf, κf) and the distribution Pðrðtf Þ,χðtf ÞÞ
obtained at the end of the simulation. The latter was calculated from
105 independent trajectories of (13) under a given neural-network
protocol.

The protocol learned by the neural network for time tf = 0.16
is shown in Fig. 2a, b, together with the protocol of ref. 52. Both
show sharp jumps in trap stiffness, decreasing it abruptly to its
smallest possible value (we discuss the effect of the control
parameter ranges on the learned protocols in Sec. S3C). The
neural-network protocol achieves the transformation more
quickly because it also enacts a sharp jump in activity, setting it to
the maximum possible value (the constraints imposed in ref. 52
mean that if one control parameter achieves its maximum value in
an abrupt way, the other is not free to do so). Near the end of the
learned protocol both parameters are abruptly changed to their
final values.

In Fig. 2c, we show the temporal evolution of P(r) for the learned
protocol. Starting from an initial distribution peaked at the origin, the
peakofP(r) overshoots the peak of the target distribution (they arenot
at that time of the same shape). The peak of P(r) is later brought back
toward the target when stiffness and activity are set to their maximal
and minimal values, respectively. Subsequently, both are set to their
final values.

In Fig. 2d, we show the final-time distribution of χ for the learned
protocol, which matches the target distribution.

In Fig. 2e we show the value of Δ obtained by protocols trained at
various fixed simulation times tf. For times tf ≳0.15, the learned pro-
tocol produces a small constant value of Δ consistent with the value
produced by the protocol of ref. 52 (horizontal line). For times tf≲0.15
the value of Δ increases sharply with decreasing tf, indicating that the
state-to-state transformation cannot be achieved with the same
precision.

State-to-state transformation with work extraction. It is possible to
extract work during the state-to-state transformation. Setting tf = 0.44,
the transformation time of the protocol of ref. 52, we used a genetic
algorithm to train a neural network to minimize the objective

ϕ=Δ+ c if Δ≥Δ0 and ϕ= Wh iotherwise: ð14Þ

Here Δ0 is the mean-squared error associated with the protocol of
ref. 52 (calculated using 105 trajectories), and c = 100 is an arbitrary
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constantwhose only role is tomake the first clauseof (14) always larger
than the second. The quantity Wh i is the mean work, in units of μ/Dt,
given by

hW i=
Z tf

0
dt _κ

∂U
∂κ

� �
=
1
2

Z tf

0
dt _κ r2

� �
: ð15Þ

Minimizing (14) will minimize the mean work associated with a pro-
tocol (λ(t), κ(t)) that in time tf effects the state-to-state transformation
to a precision Δ0.

The protocol learned in this way is shown in Fig. 3a, b, together
with the protocol of ref. 52. Panels (c) show the effect of the learned
protocol on the radial probability distribution. The neural-network
protocol increases κ to its maximum value at the beginning of the
protocol. Doing so costs work, but only small amounts because the
system is initially in a passive phase and so 〈r2〉 is small. The protocol
also increases λ to a large (but sub-maximal) value, which begins to
drive the distribution into the active phase, so increasing 〈r2〉. Subse-
quently, κ is decreased to its target value, causing a decrease of energy
and allowing net extraction of work.

Figure 3d shows the work distributions P(W) associated with the
learned protocol and that of ref. 52. The latter results in a broad dis-
tribution of work values, and on average requires a large input of work

to enact the transformation. By contrast, the work distribution
obtained using the learned protocol is sharply peaked at a negative
value, and the mean work is negative.

In Fig. 3e we show mean work as a function of time for the two
protocols. The learned protocol requires an input of work at early
times in order to extract net work at later times. This solution was
identified by a genetic algorithm using an order parameter (14) that
depends only on quantities evaluated at the final time point. As a
result, the protocol is not biased toward any particular functional
form. By contrast, greedy reinforcement-learning algorithms, which at
all times attempt to reduce the objective function, would (without
special shaping of the reward function) be unlikely to find the solution
shown here.

Work extraction from confined, interacting active particles
We now consider the case of N interacting active Brownian particles
placed within the two-dimensional harmonic trap of the previous
section. Particle i evolves according to the Langevin equation

dr i
dt

= λêiðθÞ � κr i � ∂ri

X
j≠i

V ðrijÞ+
ffiffiffi
2

p
ξ rðtÞ

dθi

dt
=

ffiffiffi
2

p
ξθðtÞ,

ð16Þ

Fig. 2 | State-to-state transformation for a confined active Brownian particle
with control protocol (λ(t), κ(t)). a Parametric protocols from ref. 52 (orange,
“BGT'') and this work (blue). The latter achieves the transformation about three
times more rapidly than the former. The black dots denote initial and final points;
the dotted line denotes thebounds for the control parameter values. The schematic
in the top-right corner is a one-dimensional schematic of this two-dimensional
system.bThe protocols of panel (a) as a function of time t. cTemporal evolution of

the radial distribution function P(r) together with the target distribution (dotted
line) and the potential U(r), for the learned protocols shown in (a, b). d Final-time
distribution for χ. The dotted line is the target distribution. eMean-squared error Δ
between thefinaldistributionand the exact solution, averagedover 105 trajectories.
The dashed vertical line is the transformation time for the protocol of ref. 52, and
the horizontal line is the value of Δ associated with that protocol.

Article https://doi.org/10.1038/s41467-024-52878-2

Nature Communications |         (2024) 15:9128 5

www.nature.com/naturecommunications


whose terms are similar to those of (12) with the addition of theWeeks-
Chandler-Andersen interaction

V ðxÞ= 4ϵ σ=x
� �12 � σ=x

� �6h i
+ ϵ ðx <21=6σÞ

0 ðotherwiseÞ,

(
ð17Þ

which takes as its argument the inter-particle separation rij ≡ ∣rj − ri∣. We
set σ and ϵ to 1.

We wish to learn protocols that minimize the mean work done
upon reducing the trap stiffness from κi = 5 to κf = 2, in time tf,
observing the bounds on the control parameter values as in the pre-
vious section. Here work is

hW i= N
2

Z tf

0
dt _κR2, ð18Þ

where R2 � N�1 PN
i = 1 r2i

� �
. The angle brackets indicate an average over

dynamical trajectories. We start from a steady state at λi = 0, but place
no constraints (beyond those of the control-parameter bounds) on the
valueof λf. Such a transformationcouldbeused as part of a cycle for an
active engine18–20.

No analytical solutions are known for this many-body system, but
a protocol can be learned in exactly the same way as for the single-
particle problems considered previously, using a genetic algorithm to
train a neural network to minimize ϕ= Wh i. The latter was calculated
from 103 independent trajectories.

In Fig. 4a we show the result of this learning procedure for tra-
jectory time tf = 1 and anumber of particles betweenN= 1 andN=40. In

Figs. S7 and S8 we provide additional details of learned protocols for
the casesN = 12 and N = 40. In all cases work can be extracted, Wh i<0.
However, the extracted work per particle is a non-monotonic function
ofN, attaining aminimum value forN = 12. For this particular problem,
the many-body system becomes more efficient than the one-body
system forN > 25. This finding suggests that particular cycles ofmany-
body active enginesmay functionmore efficiently with certain particle
numbers.

The learned protocols that produce the work values in Fig. 4a
initially increase λ to its maximum value. For small N they initially
increase κ to itsmaximumvalue,while for largeN they initially increase
κ to close to itmaximumvalue (see Figs. S7 and S8). This initial increase
of κ costs work (as with the protocols in the previous section), but the
significant increase in R2 as the activity is increased allows for net work
extraction upon the subsequent reduction of κ.

AsN is increased from 1, the amount of work that can be extracted
per particle initially goes down. This decrease results from the fact that
particles repel each other, and so R2 in the passive initial state is sig-
nificantly larger forN > 1 than forN = 1; see Fig. 4b. Increasing κ (at early
times) therefore costs more work per particle than for the case N = 1.
Work can still be extracted from this system, but less efficiently than
for the single-body system.

For N sufficiently large, however, the situation changes: R2 for
large λ and κ becomes much larger than it is for a single particle
(Fig. 4b, c) (for small N, the value of R2 for large λ and κ is not much
larger than it is for N = 1, because particles spread out to form a ring
and can adopt a mean radial position similar to that preferred by a
single particle). This change allows for greater work extraction per
particle when κ is decreased later on in the protocol. For N > 25, this

Fig. 3 | State-to-state transformationwith extracted work for a confined active
Brownian particle with control protocol (λ(t), κ(t)). Similar to Fig. 2, but now the
learning algorithm is told to enact the state-to-state transformationof Fig. 2, in time

tf = 0.44, while minimizing work done; see Eq. (14). Panels (a–c) are analogous to
those of Fig. 2. d Distribution of work for the two protocols. e Mean work as a
function of time for the two protocols.
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effect exceeds thatdescribed in theprevious paragraph, and themany-
body system providesmore work per particle than a one-body system.

To illustrate the origin of the non-monotonicity seen in Fig. 4, we
consider a simplified protocol that instantaneously sets κ and λ to their
maximum values, waits until the system reaches a steady state, and
then sets κ = κf. The work per particle associated with this protocol is
given by

hW iest
N

=
1
2
ðκmax � κiÞR2

λi ,κi
� 1

2
ðκf � κmaxÞR2

λmax,κmax
, ð19Þ

where R2
λ,κ denotes the steady-state value of R2 measured at (λ, κ). In

Fig. 4cweshow that Eq. (19) is a non-monotonic functionofN. It is not a
quantitatively accurate model of the learned protocols, but captures
one important feature of their behavior.

Extending the simulation time to tf = 10 allows for even greater
work extraction. This improvement is achieved by a learned protocol
that substantially changes the system’s activity twice, from passive to
active to passive again (see Fig. S6).

Discussion
We have shown that the efficient control of active-matter systems
generally requires protocols containing discontinuities and rapidly-
varying features. We discuss how these can be obtained efficiently
using neural networks trained with evolutionary methods. We found
protocols that achieve particular tasks – enacting state-to-state trans-
formations or changing control parameters withminimal energy input
– that were more efficient than those derived recently by constrained
analyticalmethods. Beyond these prototypical one-body problems,we
showed that neural-network methods can aid in the design of proto-
cols that achieve extraction of work from many-body active systems.
The approachwe use is general and can be applied with relatively little
modification to a wide variety of active-matter systems. For instance,
the optimization of active engines is a quickly growing field of
research, garnering interest from both a numerical and experimental
perspective18–27, and our results demonstrate that neural networks can
lead to optimal protocols for their control, for both interacting and
non-interacting active particles. The learning schemeused here can be
applied to experiment theway it is applied to simulations, suggesting a
way of designing protocols for the efficient manipulation of active
matter in the laboratory.

Data availability
The protocols shown in this work are provided in the Supplementary
Data 1 file.

Code availability
An example of code for optimizing neural-network protocols for
control problems in statistical physics can be found in ref. 70.
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