
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
The importance of considering model choices when interpreting results in 
computational neuroimaging

Permalink
https://escholarship.org/uc/item/43535006

Journal
eNeuro, 6(6)

ISSN
2373-2822

Authors
Sprague, Thomas C
Boynton, Geoffrey M
Serences, John T

Publication Date
2019-11-01

DOI
10.1523/eneuro.0196-19.2019
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/43535006
https://escholarship.org
http://www.cdlib.org/


Novel Tools and Methods

The Importance of Considering Model Choices
When Interpreting Results in Computational
Neuroimaging

Thomas C. Sprague,1 Geoffrey M. Boynton,2 and John T. Serences3,4,5

https://doi.org/10.1523/ENEURO.0196-19.2019

1Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106-
9660, 2Department of Psychology, University of Washington, Seattle, WA 98195-1525, 3Department of Psychology,
University of California San Diego, La Jolla, CA 92093-0109, 4Neurosciences Graduate Program, University of
California San Diego, La Jolla, CA 92093-0109, and 5Kavli Foundation for the Brain and Mind, University of California
San Diego, La Jolla, CA 92093-0126

Abstract
Model-based analyses open exciting opportunities for understanding neural information processing. In a
commentary published in eNeuro, Gardner and Liu (2019) discuss the role of model specification in
interpreting results derived from complex models of neural data. As a case study, they suggest that one such
analysis, the inverted encoding model (IEM), should not be used to assay properties of “stimulus represen-
tations” because the ability to apply linear transformations at various stages of the analysis procedure
renders results “arbitrary.” Here, we argue that the specification of all models is arbitrary to the extent that
an experimenter makes choices based on current knowledge of the model system. However, the results
derived from any given model, such as the reconstructed channel response profiles obtained from an IEM
analysis, are uniquely defined and are arbitrary only in the sense that changes in the model can predictably
change results. IEM-based channel response profiles should therefore not be considered arbitrary when the
model is clearly specified and guided by our best understanding of neural population representations in the
brain regions being analyzed. Intuitions derived from this case study are important to consider when
interpreting results from all model-based analyses, which are similarly contingent upon the specification of
the models used.

Key words: computational neuroimaging; inverted encoding model; multivariate analysis; stimulus recon-
struction

Significance Statement

Gardner and Liu (2019) point out that linear models can provide equally good fits to data across a class of
linear transforms applied during analysis. They suggest this is particularly problematic for one analysis
method, the inverted encoding model (IEM), that uses activation patterns to estimate responses in
modeled information channels, as this renders results arbitrary. Instead, we argue results are not
arbitrary when considered in the context of a well-motivated model. Of course, changing model
properties can change results, but this applies to all model-based analyses, regardless of inversion.
Changing properties of models to recover desired results without disclosure is always ill-advised. When
used properly, especially to compare population-level response profiles across conditions, these
approaches remain useful tools.
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Introduction
Scientists engaging in any research endeavor must

necessarily make choices as they perform their research.
One can select to measure scalp potentials with EEG or
hemodynamic signals with fMRI; one can focus on neural
responses in visual cortex or parietal cortex; and one can
choose a particular set of modeling assumptions when
analyzing data. In some cases, results robustly generalize
across such choices. However, it is often the case that the
choice made by the researcher matters when interpreting
results. For example, scalp potentials index complemen-
tary types of attentional modulations to hemodynamic
signals (Itthipuripat et al., 2019a), which can impact the
conclusions of a study.

When using modern computational models to assay
neural function, the modeling choices made by the re-
searchers critically influence results of the modeling pro-
cedures. Therefore, it is impossible to interpret the results
without knowledge of the details of the model used to
generate those results. Moreover, altering the properties
of the model should naturally change aspects of the
results, sometimes in a predictable and straightforward
way. This is true for all models, including the popular
single-voxel population receptive field (vRF) modeling
approach (Dumoulin and Wandell, 2008; Wandell and
Winawer, 2015; Vo et al., 2017), fitting extremely high-
dimensional voxel-wise encoding models to densely-
sampled datasets (Kay et al., 2008; Naselaris et al., 2009;
Nishimoto et al., 2011; Huth et al., 2012, 2016; Çukur
et al., 2013; Lescroart and Gallant, 2019), the inverted
encoding model (IEM) technique (Brouwer and Heeger,
2009, 2011, 2013; Scolari et al., 2012; Foster et al., 2016),
and even fitting standard general linear models (GLMs) to
task-based fMRI data (Friston et al., 1994).

In a recent commentary, Gardner and Liu (2019) focus
on how choices about model specification are meaningful
in the context of one of these techniques, the IEM. Typi-
cally, this technique involves experimenters estimating
the parameters of a simplified model built of stimulus-
selective feature channels (e.g., for orientation; color; mo-
tion direction; spatial position; polar angle), each tuned to
specific feature values and tiling the full stimulus space
(Freeman and Adelson, 1991). The properties of these

channels are often inspired by our understanding of the
visual system. There are populations of cells tuned to
particular orientations; colors; motion directions; posi-
tions, and at least in early sensory areas, much is known
about the characteristic shape of single-unit tuning func-
tions, and how similarly tuned neurons are clustered along
the cortical surface. As an example, one could build a
model with eight channels tuned to different stimulus
orientations, with each channel modeled with an ori-
entation-selective circular Gaussian tuning function
(Brouwer and Heeger, 2011; Ho et al., 2012; Scolari et al.,
2012). Using these modeled channels, any stimulus gen-
erated from the modeled feature space can be described
by the activation of the modeled channels. Then, based
on the predicted responses of these modeled channels,
linear regression is used to estimate how such a model
accounts for changes in activation in each measured
signal dimension, typically fMRI voxel or EEG electrode,
across different stimulus conditions (fitting the “forward”
model). The best-fit model can then be inverted to infer
the activation of each modeled channel, that is, the re-
constructed channel response profile, given the previ-
ously-estimated model and new measured activation
patterns across many signal dimensions. The result, when
channels are modeled as selective for a single stimulus
value, is a channel response profile that typically exhibits
a peaked response at the feature value(s) present in the
stimulus. Importantly, the inversion step effectively sum-
marizes the results by transforming modulations across all
measured signal dimensions (e.g., all voxels or EEG elec-
trodes) back into the model space.

While channel response profiles often look qualitatively
similar to neural tuning functions for single units, a point
brought up by Gardner and Liu (2019), it is critical to
understand that reconstructed channel response profiles
cannot be used to draw conclusive inferences about any
specific attributes of single-unit response properties (e.g.,
single tuning width; for more on this, see Sprague et al.,
2018a). Moreover, recovery of peaked channel response
profiles does not demonstrate the accuracy (or inaccu-
racy) of the channel shapes in the encoding model used
(Sprague et al., 2018a; Gardner and Liu, 2019). We note
that Gardner and Liu (2019) use “channel response func-
tion” in their commentary, and others have used “channel
tuning function,” to refer to results from the IEM tech-
nique; we elect to instead use “channel response pro-
files,” to further distance these results from single-neuron
tuning functions.

In their commentary, Gardner and Liu (2019) argue that
the channel response profiles resulting from the IEM tech-
nique are “arbitrary” because invertible linear transforms
of the basis set will fit the data equally well. Hence,
changing the shape of the modeled channels can predict-
ably change the shape of the reconstructed channel re-
sponse profiles. This ability to apply invertible linear
transforms means that any reported channel response
profile’s shape is one from an infinite family of shapes
(spanned by all invertible linear transforms that could be
applied to the analysis). In their words, “the channel re-
sponse function is only determined up to an invertible
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linear transform. Thus, these channel response functions
are arbitrary, one of an infinite family and therefore not a
unique description of population representation.” (Gard-
ner and Liu, 2019, their abstract). Thus, if a researcher
used an unprincipled set of assumptions about the shape
of the modeled channels (i.e. ignoring known properties of
neural selectivity), then these assumptions can be reca-
pitulated in the reconstructed channel response profiles.
For example, Gardner and Liu (2019) showed that if ori-
entation channels are presumed to be bimodal then the
resulting reconstructed channel response profiles can
also have a bimodal shape.

Below we argue that all models are arbitrary, even those
informed by biology, but the results derived from the
model are not arbitrary once the model has been speci-
fied. This is true for the IEM, but also other neural mod-
eling approaches. Next, we show that even if poorly
motivated models are used (or, equivalently, poorly moti-
vated linear transforms are applied), differences between
conditions assayed with the IEM technique can be pre-
served. Finally, we discuss important considerations
when interpreting IEM-based analyses and what we see
as the place for this modeling approach in the context of
other useful analysis methods.

IEM-Based Channel Response Profiles
Are Uniquely Determined Given a Fixed
Model

It is an unfortunate mischaracterization to imply that
IEM-based results are “arbitrary” without specifying that
they are uniquely determined and interpretable with
knowledge of the encoding model basis used for analysis.
Although one can generate many descriptions of a pop-
ulation representation, the result is not arbitrary if the
channel response profile is interpreted in the context of
the model used by the researchers. As a simple example,
one invertible linear transform that could be applied to an
encoding model basis and the resulting channel response
profiles would shift the columns of the predicted channel
response matrix by one. This would result in each channel
being mislabeled, but all other features of the analysis
would proceed intact. With knowledge of this mislabeling
(that is, knowledge of the original basis and the invertible
linear transform), it is possible to undo the transform and
to achieve the intended understanding. Likewise, if the
experimenter reports their basis (as all IEM reports do, so
far as we know), and the reconstructed channel re-
sponses or derived measures are computed in the con-
text of that basis, then there are no concerns as to the
arbitrariness of the channel response profile’s shape.
Thus, when principled model basis functions are chosen,
it is appropriate to interpret the channel response profile
as one possible, but not an arbitrary, depiction of the
population representation, as uniquely derived given the
principled model choices. That is, IEM results should not
be interpreted as revealing the population representation;
instead, they show one possible depiction of a population
representation based on the particular model used.

Results from All Models Depend on
Properties of the Model

Importantly, the points Gardner and Liu (2019) raise
about applying invertible linear transforms (that is, chang-
ing the coordinate system of a linear model) apply to
nearly all model-based analyses, even those that only
compute a forward encoding model to predict responses
of measured neural signals based on stimulus properties,
without any attempt at “inversion” back into a stimulus-
referred space. We consider two trivial examples: spatial
RFs measured via single-unit electrophysiology, and a
GLM fit to a two-condition fMRI experiment.

When estimating the spatial RF of a neural measure-
ment (either neuron or voxel), it is necessary to relate the
observed neural response to changes in the stimulus.
Under certain noise assumptions, one could even weight
the stimulus aperture (in screen coordinates) by the ob-
served neural signal. But even this procedure involves an
implicit set of model assumptions, namely, that the basis
for the stimulus model is in visual field coordinates (one
number for each location in the visual field). Thus, the
same logic of coordinate transforms applies here: one
could apply any number of invertible linear transforms to
the image basis and to the estimated RF profile, and the
resulting model would account for the same amount of
variance because it is a linear transform of the original
model. For instance, a 2D Fourier transform could be used
to losslessly transform between a spatial basis and a
Fourier basis. Does this mean we should consider RF (or
feature tuning) models as arbitrary? Of course not. The
existence of a potential coordinate transform does not
render the original model invalid, it just means that one
must know the model to interpret the results.

A similar logic applies to a simple two-condition fMRI
experiment using univariate statistical approaches (i.e.,
voxel-wise analysis with a GLM; Friston et al., 1994).
Consider the case where a participant is sometimes
pressing a button with their left hand and sometimes a
button with their right hand (or looking at pictures of faces
or houses, or any other experimental manipulation). The
experimenter can build a GLM with predictors for BOLD
activation associated with pressing a button with the left
and right hand, appropriately convolved with a model
hemodynamic response function. In turn, the experi-
menter could apply the invertible linear transform
P � [0 1; 1 0] to the model basis (and thus, the resulting
GLM regressors), which would result in flipped estimated
� weights: the � weight originally corresponding to right
now corresponds to left, and vice versa. However, be-
cause you know the original layout of the regressors, you
could update your labels of the weights accordingly.
While the ability to perform this coordinate transform in
principle means the resulting � weights are arbitrarily
defined, they remain uniquely and informatively defined
given an understanding of the original model. This fact
should not be used to label model-based estimates as
arbitrary, but instead emphasizes the importance of un-
derstanding the model used to derive conclusions about a
dataset.
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Moreover, it is often the case that as understanding
progresses, decisions about how to specify models
change. This is evident among researchers developing
and fitting voxel RF models: the original, classical dem-
onstration that RF profiles can be fit for individual fMRI
voxels implemented a straightforward circular Gaussian
encoding model with an assumption of linear scaling (Du-
moulin and Wandell, 2008). In subsequent studies, these
models were extended to incorporate inhibitory surrounds
(Zuiderbaan et al., 2012), compressive spatial nonlineari-
ties (Kay et al., 2013; Mackey et al., 2017), and noncircular
RF profiles (Silson et al., 2018), among many others. Does
the introduction of a new model invalidate results using
simpler models? Typically, it does not. While it is certainly
the case that a more accurate model is always preferable,
sometimes a simple model can still be useful (e.g., for
defining boundaries of retinotopic ROIs). As always, the
parameters reported are interpretable given understand-
ing of the model used to derive those parameters.

Differences between Conditions Are
Preserved across Linear Transforms of
the Basis

At a high level, the IEM technique is a form of model-
based dimensionality reduction. This approach estimates
a transform from idiosyncratic measurement space (e.g.,
activation in voxels in V1; � power at EEG scalp elec-
trodes) into a principled, manipulable, model-based “in-
formation” space (activation across modeled information
channels). Perhaps most importantly, many studies using
IEMs seek to compare channel response profiles, or
basis-weighted image reconstructions, across task con-
ditions or timepoints in a trial. As described by Sprague
et al. (2018a), these studies employ a fixed encoding
model, such that activation patterns from different condi-
tions are transformed into the same modeled information
space, using a single common estimated encoding model
(and often that encoding model is estimated using data
from a completely different training task; Sprague et al.,
2014, 2016, 2018b; Itthipuripat et al., 2019a,b). In this
case, the criticisms raised by Liu et al. (2018) and Gardner
and Liu (2019) do not apply: any arbitrary linear transforms
would be applied equivalently to the results from each
condition; and differences between conditions would be
transformed from participant- and stimulus-specific mea-
surement space into the same model-based information
space. Invertible transforms would serve only to adjust
the axes of the modeled information space, providing a
different “view” of the same data. (Note that there may be
cases where a transform renders differences between
conditions invisible, but this would be exceedingly rare in
cases where stimulus features span a feature space.)

To make more concrete the point that differences be-
tween conditions can be preserved across linear trans-
forms of the basis, we simulated an fMRI dataset for an
experiment that contained two conditions, with one con-
dition evoking a multiplicatively-larger response at the
underlying neural level than the other (e.g., an increase in
contrast, as in Liu et al., 2018; code available at https://
github.com/tommysprague/iem_sim). Briefly, the response

of each of 100 simulated voxels was computed as the
sum of the responses of simulated neurons within each
voxel, with each simulated neuron having a circular
Gaussian tuning function across the feature space (with
pseudo-randomly determined tuning bandwidth and am-
plitude; Fig. 1A). The activity of the neurons within each
voxel was computed in response to a set of 8 stimulus
orientations across two experimental conditions, with
multiplicative gain applied to the simulated neural re-
sponses in condition 2 compared to condition 1. One-half
of the data, balanced across stimulus type and experi-
mental condition, were designated as a training set and
the other half of the data were designated as a testing set.
Using data in the training set, we next fit the voxel-wise
forward encoding model comprised of eight basis func-
tions that span the feature space using either a standard
set of raised cosine basis functions, tuned to specific
feature values spanning the orientation space, or a set of
raised cosine basis functions that were linearly trans-
formed via an appropriately designed matrix into bimodal
basis functions [termed the “xform” matrix (Fig. 1B); mir-
roring Gardner and Liu (2019)’s Fig. 2; the P matrix in their
notation]. We then inverted both forward models, and
used those IEMs to reconstruct channel response profiles
from the same held-out test data.

Within each condition, channel response profiles recov-
ered a scaled version of the basis function used to esti-
mate the corresponding model (Fig. 1C; mirroring Gardner
and Liu (2019)’s Fig. 3]. However, although the shape of
the channel response profiles is constrained predictably
by the choice of the basis functions, differences between
conditions are preserved: condition 2 shows larger-
amplitude channel response profiles regardless of the
basis used. Importantly, because the transformation is
linear and invertible, the bimodal channel response pro-
files from each condition can be losslessly converted
back into unimodal channel response profiles via multipli-
cation with the inverse of the original transformation ma-
trix (Fig. 1C; and note that this holds across a variety of
gain modulations and with noise added at the level of
simulated neurons, Fig. 1D). Thus, one can apply arbitrary
linear transforms to the basis set, and rather than render-
ing the data arbitrary, they remain interpretable given
knowledge of the encoding model.

As shown in Figure 1, although the shape of the channel
response profiles is different due to the application of an
invertible linear transform, the difference between condi-
tions is preserved. This follows from the fact that, because
the end result of the IEM procedure is a linear mapping
from signal space into channel space, some differences in
measured signals can be detected even across arbitrary
basis transforms.

Thus, if the goal is to determine whether the amplitude
of the channel response profiles increased, then the ap-
plication of an invertible linear transform should not im-
pact the general conclusions. Of course, this is true so
long as one can accurately quantify or parameterize the
resulting shape of the channel response profiles, which
may be difficult if a random or oddly-shaped basis is
used. Similarly, the process of aligning or re-centering

Commentary 4 of 11

November/December 2019, 6(6) ENEURO.0196-19.2019 eNeuro.org

https://github.com/tommysprague/iem_sim
https://github.com/tommysprague/iem_sim


channel response profiles on the correct feature can be-
come vaguely defined if poorly motivated basis functions
are used: typically, a unimodal channel is centered at the
feature value to which it is tuned; but a bimodal or other
oddly-shaped channel cannot be easily related to a par-
ticular feature value, further rendering data presentation
and interpretation tricky in such cases. But again, we
emphasize that, when channel response profiles are in-
terpreted within the context of the model used to compute
them, there is no sense in which the reported result is
arbitrary.

Appropriately Selecting Neutral Training
Sets

It is not always trivial to decide what type of data to use
for estimating a fixed encoding model. Data SNR will likely
vary across conditions, and fundamental properties of the
encoding model itself may also vary (e.g., spatial RF
properties; Vo et al., 2017). Because the IEM can be
considered a form of model-based dimensionality reduc-

tion, it is quite important to estimate the most robust
model possible. In general, using a neutral “mapping”
dataset in which data SNR is optimized is, we believe, the
most ideal approach, and can provide a stable “baseline”
space in which to transform measured data from an ex-
perimental task. For example, when examining how work-
ing memory representations change across various task
manipulations, we have used a variety of attended visual
stimuli for model estimation (Sprague et al., 2016; Rade-
maker et al., 2019). This is analogous to common proce-
dures used when identifying retinotopic maps on the
cortical surface, where researchers typically employ high-
contrast flickering checkerboard bars or wedges, and
often ask participants to attend the visual stimulus in
service of improving SNR (Bressler and Silver, 2010).

It is not always possible to acquire such mapping task
datasets, either for experimental or scan time consider-
ations. In this case, there are several possibilities. If mul-
tiple conditions are tested (e.g., conditions 1 and 2), one
could (1) estimate an encoding model using data from
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Figure 1. Differences between conditions can be preserved across invertible linear transforms. A, We simulated voxel-level fMRI data
where each voxel’s response was generated based on the sum of simulated responses across a population of simulated neurons with
randomly centered tuning preferences and variable bandwidth (here, n � number of neurons, set to 100, although only 10 neural
tuning functions are shown for clarity; see code on GitHub for full set of model parameters; https://github.com/tommysprague/
iem_sim). Noise was added to the neural responses and then the gain factor (g) was applied to the data from each condition (condition
1: g � 1, condition 2: g � 1.8). For display purposes the noise (N) was set to 0 for panels A–C (following Gardner and Liu, 2019, their
Fig. 3) and was set to 10 for panel D. B, We analyzed data using two different formats of channel basis functions, mirroring those used
by Gardner and Liu (2019). Importantly, the two bases are related by an invertible linear transform (xform). C, Reconstructed channel
response profiles differ in similar ways: condition 2 has a higher amplitude than condition 1, regardless of the basis set used, and the
bimodal channel response profiles are related by the inverse of the linear transform that was used to create the bimodal basis in the
first place (xform�1). D, Modeled gain compared to measured gain between conditions 2 and 1, computed using both the raised
cosine basis set and the transformed bimodal version of the cosine basis set. Because there is not a straightforward way to quantify
amplitude for the channel response profiles computed from the bimodal basis, we instead implemented a model-free quantification
scheme in which we computed the ratio of the area under each channel response profile (i.e., ratio of area under the curve in condition
2 compared to condition 1).
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both conditions 1 and 2 (equal numbers of trials), then use
that encoding model to reconstruct held-out data from
each condition (Sprague and Serences, 2013), or (2) es-
timate the encoding model with data from each condition
in turn, then reconstruct data from both conditions 1 and
2 using each estimated encoding model. The key feature
of such an analysis is that channel response profiles are
compared based on a fixed encoding model. If different
encoding models are used to reconstruct channel re-
sponse profiles from different conditions, they may not be
on equal footing (Liu et al., 2018), and it can be challeng-
ing to determine whether the best-fit encoding model
changed, the structure of the neural representation
changed, or both changed (Sprague et al., 2018a). In
general, using a balanced dataset or the highest-SNR
condition for model estimation should likely yield the most
robust results, as these datasets will allow for accurate
model estimation.

Interpreting Channel Response Profiles
The points raised by Gardner and Liu (2019) offer an

opportunity to clarify what can and what cannot be in-
ferred based on results from IEM analyses. In general, the
structure of the analysis constrains what can be con-
cluded. We discuss two scenarios: reconstructing chan-
nel response profiles within-dataset and using a fixed
encoding model.

Computing channel response profiles within-dataset
Often, encoding models are estimated using a subset of

runs or trials from an experiment, then the best-fit encod-
ing model is used to reconstruct channel response pro-
files using the held-out runs or trials. In all other respects,
the runs/trials used for model estimation and channel
response profile reconstruction are identical. This is often
called “leave-one-run-out” or “leave-one-trial-out,” or
more generally, k-fold cross-validation. In such an analy-
sis structure, the only interpretable result is the positive
one: a reconstructed channel response profile peaked
over the actual feature value (assuming a sensible model
is used). If such a peak is observed after implementing
appropriate statistical tests in which null models are used
to compute channel response profiles, this offers evi-
dence that the modeled feature value is represented
within the measured neural signal space (i.e., ROI; EEG
frequency band). That is, if one observes a smooth chan-
nel response profile in a leave-one-run-out analysis esti-
mated using a smooth encoding model, this cannot and
should not be taken as evidence for a smooth, graded
representation of the modeled feature value within the
analyzed data (Gardner and Liu, 2019).

However, there is one case where the shape of the
channel response profile can be meaningful: if an orthog-
onal delta or “stick” basis is used, in which no smooth-
ness is imposed on the encoding model, a graded
channel response profile is consistent with a smooth rep-
resentational structure, such that nearby stimulus feature
values are represented more similarly in neural signals
(Garcia et al., 2013; Saproo and Serences, 2014; Ester
et al., 2015, 2016, Foster et al., 2016, 2017; Sutterer et al.,
2019). This approximates a form of representational sim-

ilarity analysis (RSA; Kriegeskorte et al., 2008; Krieges-
korte and Kievit, 2013). Note that this does not provide
evidence for any particular single-unit tuning properties,
but does support a smooth population-level representa-
tion as assayed with aggregate neural signals. Finally, in
some circumstances, the delta basis can be considered a
linear transform of any graded and overlapping basis set
typically used, and so the model equivalence issues
raised by Gardner and Liu (2019) indeed apply. But, this
ability to transform between coordinate systems does not
negate an observation of smooth channel response pro-
files estimated in the context of an orthogonal basis.

Computing channel response profiles with a fixed
encoding model

When it is feasible to acquire a unique model-
estimation dataset that is only used for the purposes of
fitting the encoding model, it is possible to make further
conclusions based on the shape of reconstructed channel
response profiles. In this analysis structure, the model
estimation dataset is never used for reconstructing chan-
nel response profiles. Rather, separate “task” data in
which one or more experimental conditions are manipu-
lated is used for reconstruction. There is not necessarily
any imposed structure on the resulting channel response
profiles, and so their properties can be quantified and
compared on a fair footing: the IEM fit using separate data
offers a static perspective with which to view the mea-
sured activation patterns in the task data.

In the context of a fixed encoding model, the observa-
tion of peaked channel response profiles in the task da-
taset suggests that the information is represented in an
analogous structure to its representation in the mapping
dataset. For example, Rademaker et al. (2019) recently
demonstrated that an encoding model estimated with an
attentional mapping task (participants monitored an ori-
ented grating for occasional contrast changes) could ac-
curately recover the contents of visual working memory
(participants remembered a briefly-presented oriented
grating over an extended delay interval) based on activa-
tion patterns in occipital cortex.

Changes in channel response profiles between
conditions

Under a fixed encoding model, observing different
channel response profiles between task conditions offers
meaningful insight into the information content of popu-
lation-level neural representations. Returning to the point
that IEMs act as a form of model-based dimensionality
reduction, the observation that channel response profiles
change across task conditions suggests that the activa-
tion pattern is impacted by the experimental manipulation
within the particular modeled information space. For ex-
ample, manipulations of spatial attention are often found
to impact the gain of channel response profiles (Garcia
et al., 2013; Sprague and Serences, 2013; Itthipuripat
et al., 2019a). Due to the linearity of the analysis, this is
consistent with a neural mechanism whereby neural pop-
ulations increase their gain with attention (Kim et al., 2007;
Lee and Maunsell, 2010; Fig. 1). However, other mecha-
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nisms remain possible. As just one example, attention can
impact the spatial RFs of neurons or voxels tuned to
nearby locations (Womelsdorf et al., 2006), which can also
contribute to an observed change in channel response
profile amplitude (Sprague and Serences, 2013; Vo et al.,
2017).

Changes in the baseline, width, or even center of chan-
nel response profiles can also be meaningfully compared
across conditions under a fixed encoding model. For
example, Ester et al. (2019) observed biased centers of
channel response profiles following category learning,
suggesting that human visual cortex represents similar
feature values more distinctly when they belong to differ-
ent learned abstract categories. Changes in the width of
channel response profiles are more challenging to inter-
pret, and less commonly observed, but these could be
consistent with a uniform change in the tuning width of
constituent neural signals (e.g., simulations in Liu et al.,
2018). However, these changes are also consistent with
other mechanisms, including asymmetric gain across fea-
ture channels (Scolari et al., 2012).

While it remains impossible to conclusively determine
which mechanism(s) at the single neuron level support an
observed change in channel response profiles, they can be
compared when examined on equal footing using a fixed
encoding model. Importantly, similar interpretational issues
arise when considering changes in voxel RF parameters
across task conditions (Klein et al., 2014; Kay et al., 2015; Vo
et al., 2017), and changes in decoded neural uncertainty (Liu
et al., 2018). Many types of changes at the unit level are
consistent with observations at the level of single voxels and
across large populations of voxels.

What feature is represented?
Additionally, it is important to remember that identification

of peaked channel response profiles (or, for that matter,
successful decoding of stimulus value) does not unambigu-
ously demonstrate that the modeled feature is represented
by the brain signals measured. If a feature value could
equivalently be written as a function of another feature, it
remains possible that the analysis is sensitive to such con-
founding signals. For example, there have been several
demonstrations that visual orientation (Freeman et al., 2011)
and motion direction (Wang et al., 2014) are represented at
a coarse scale in human visual cortex, such that the retino-
topic position preference of a voxel determines its feature
preference. In this case, it is possible that successful recon-
struction or decoding of orientation or motion direction is a
consequence of these confounded coarse retinotopic sig-
nals, rather than fine-grained feature-selective biases within
individual voxels. In many cases this isomorphic feature
mapping may not matter as experimenters simply want to
characterize the representation of information encoded
about a stimulus (in whatever format is accessible). How-
ever, it is always necessary to consider the relationship
between different possible feature spaces when interpreting
results from any model-based analysis of feature-selective
neural response properties.

Comparison of IEM and Bayesian
Approaches to Stimulus Decoding

Gardner and Liu (2019) also make several other points.
First, they highlight many positive aspects of the Bayesian
decoding approach introduced by van Bergen et al.
(2015). We agree that van Bergen and colleagues’ (van
Bergen et al., 2015; van Bergen and Jehee, 2018) use of
a forward model combined with a Bayesian readout rule is
an innovative and promising technique, and thoughtfully
analyzing data in different ways, especially when employ-
ing complex models, is always a good idea. In particular,
the Bayesian decoding approach can provide comple-
mentary information about the uncertainty with which the
activation pattern represents a feature value using an
independently-estimated noise model, which is especially
useful when trying to link trial-by-trial readouts of neural
uncertainty with behavioral measures (van Bergen et al.,
2015; van Bergen and Jehee, 2019). That said, we note
that the Bayesian approach, like all modeling endeavors,
is sensitive to choices made by researchers. For example,
analogous to how choices made about channel shapes
can impact results from linear IEMs, choices made about
the reduced noise model implemented in the Bayesian
approach can substantially impact the results (van Bergen
and Jehee, 2018). Moreover, invertible linear transforms
of the basis set, if not accounted for during the estimation
of noise covariance, can lead to large changes in decod-
ing accuracy. As always, motivating analysis choices
based on our understanding of neural systems, such as
observations that noise covariance scales with tuning
similarity (van Bergen and Jehee, 2018), will enable the
most robust possible conclusions.

While the Bayesian approach offers many advantages,
there are scenarios where directly comparing responses
of modeled information channels is more informative. For
example, Brouwer and Heeger (2011) compared re-
sponses at specific channels across contrast and stimu-
lus conditions to evaluate the impact of cross-orientation
suppression, and Ho et al. (2012) and Scolari et al. (2012)
compared responses in channels tuned nearby the stim-
ulus orientation across task (emphasize speed vs accu-
racy) and attention (target left vs target right) conditions.
These types of analyses require examining the full re-
sponse profile across all modeled channels, especially
those that are not tuned to the presented stimulus value.
This is not easily accomplished with typical decoding
analyses, Bayesian or otherwise – that generate a point
estimate of the most likely stimulus feature (with or with-
out a corresponding estimate of uncertainty). Moreover,
when trying to disentangle responses associated with
simultaneously presented stimuli, specifying an appropri-
ate model in the Bayesian framework is not always
straightforward. It is necessary to explicitly define a con-
crete forward model for how multiple stimulus features
interact, including, potentially, how they jointly impact the
structure of correlated noise. This is certainly not a weak-
ness of the Bayesian approach. It is always ideal to ex-
plicitly define model assumptions. However, sometimes it
can be useful to visualize how activation patterns are
altered within a simple and fixed linear model space, in
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which case the traditional IEM approach can be more
appropriate.

Instantaneous Decoding vs Extended
Model Estimation

Here, we have primarily discussed the IEM technique
and a Bayesian decoder based on a formally specified
encoding model. There are several other techniques that
have been applied to understand neural representations,
including RSA (Kriegeskorte et al., 2008; Kriegeskorte and
Kievit, 2013), voxel-wise encoding modeling (Kay et al.,
2008; Naselaris et al., 2009, 2011; Nishimoto et al., 2011;
Huth et al., 2012, 2016; Çukur et al., 2013; Lescroart and
Gallant, 2019), and voxel RF modeling (Dumoulin and
Wandell, 2008; Kay et al., 2013; Wandell and Winawer,
2015; Vo et al., 2017). These approaches can be broken
down based on their goals: do we wish to build a com-
prehensive model of a stimulus’ representational space
within a brain region, including the sensitivity profiles of
constituent voxels? Or, do we instead prefer using a
simplified model to make inferences about “instanta-
neous” brain states that can be compared across exper-
imental conditions?

RSA, simplified vRF modeling, and voxel-wise modeling
all require participants view stimuli spanning an entire
stimulus space to estimate a single result (for RSA: a
representational dissimilarity matrix; for voxel-wise mod-
eling, the parameters to each voxel’s encoding model).
For example, you cannot estimate a voxel’s RF profile
with stimuli presented in a small number of positions (e.g.,
just one position on the left and one on the right side of
the screen). Instead, you must present stimuli that span
the entire stimulus space (e.g., the full extent of the
screen, from top to bottom and side to side). Thus, to
compare results from any of these methods between task
conditions, one must exhaustively sample the stimulus
space within each task condition independently. Several
studies have taken this approach. Çukur et al. (2013) fit
voxel-wise encoding models of semantic space to data
acquired while participants viewed natural movies and
reported the presence of faces or vehicles (in different
scan runs). Accordingly, between scan runs, they could
compare properties of the best-fit encoding models
across voxels, and concluded that the structure of se-
mantic space is warped between conditions. Several
studies have manipulated the locus of spatial attention
while participants view visual stimuli used to map vRFs.
Klein et al. (2014) and Vo et al. (2017) required participants
attend to fixed locations while presenting mapping stim-
uli, and Sprague and Serences (2013), Kay et al. (2015),
Sheremata and Silver (2015), and van Es et al. (2018) all
estimated voxel RF profiles during scanning runs when
participants either attended to or ignored the mapping
stimuli.

RSA and voxel-wise encoding models stand in contrast
to the IEM, the Bayesian decoding method, and other
decoding approaches. Using these methods, once an
encoding model or decoder is estimated (on a held-out
set of data), it can be applied to any new activation
pattern, even on a time point-by-time point basis. One

case in which this can be used is to compare channel
response profiles across a large number of conditions,
such as the location of spatial attention and stimulus
contrast (Itthipuripat et al., 2019a). In this study, it was not
necessary to evaluate channel response profiles at many
different stimulus positions, so instantaneous estimates
for a small number of stimulus positions offered an effi-
cient means to determine the joint impacts of attention
and contrast on population-level stimulus representa-
tions. Put another way: there is no way to estimate a
voxel-wise encoding model, vRF profile, or representa-
tional dissimilarity matrix on a single trial. If single-trial
analyses are critical for a given research question, apply-
ing an independently-estimated encoding model or de-
coder is necessary. If, instead, a careful assay of the
representational geometry and/or encoding properties of
a neural signal are important, analysis of best-fit encoding
models to extended datasets should be used.

Finally, the two approaches might be integrated: if try-
ing to understand how a poorly-understood feature space
is represented on individual trials, it may be best to start
by inferring representational geometry with modern ver-
sions of techniques like RSA (Kriegeskorte et al., 2008;
Kriegeskorte and Kievit, 2013; Walther et al., 2016; Cai
et al., 2019), then using features of the inferred geometry
in combination with model-based analysis methods like
IEM or a Bayesian decoder applied to a separate dataset
to recover trial-by-trial representations of feature informa-
tion.

Units of Channel Response Profiles
Gardner and Liu (2019) also point out that the units of

model-based reconstructions are arbitrary. This is a point
that was noted in one of the original papers to use an IEM
(Brouwer and Heeger, 2011). We agree that reconstructed
channel response levels are in arbitrary units, and we
recommend researchers report them as such going for-
ward. This, combined with the use of unit-normalized
modeled channels (i.e., those used to predict channel
responses when fitting the forward model), will render
channel response estimates more comparable across
studies. That said, it is essential to note that these units
have no impact on the inferences that can be drawn when
comparing channel response functions between condi-
tions under a fixed encoding model. Thus, Gardner and
Liu (2019)’s concerns about the arbitrary nature of this
scale are not particularly germane to the interpretation of
such results: one could scale all units by 42 without
impacting the difference between conditions. Thus, so
long as all model-based reconstructions that are com-
pared head-to-head are on the same initial footing, then
the comparisons are valid regardless of the conventions
used to label the units of this analysis. However, when
different models are trained for different conditions, it is
less certain how to interpret differences in reconstructed
channel response profiles across conditions: did the best-
fit model, fit individually to each condition, change? Did
the data used to reconstruct channel response profiles
change? Did both change? By holding at least one aspect
constant (the model, estimated with a neutral task or in a
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balanced fashion across conditions), it is possible to bet-
ter ascertain how certain properties of neural response
patterns change based on stimulus or task conditions as
the units can be compared on equal footing (Sprague
et al., 2018a).

IEMs, and Other Analyses Applied to
Voxel-Based Measurements, Cannot Be
Used to Infer Properties of Single-Unit
Tuning

Finally, Gardner and Liu (2019) and Liu et al. (2018)
imply that one of the goals of the IEM is to make infer-
ences about single neuron response properties. Making
inferences about the response properties of single-
neurons is not possible using the IEM or any related
model that operates at the scale of aggregate neural
signals such as voxels, as different types of single-unit
modulations can give rise to identical modulations at the
level of a voxel (Sprague et al., 2018a). As described
above (see Interpreting Channel Response Profiles), di-
vergent types of changes in single-neuron response prop-
erties can lead to identical signals at the aggregate scale.
Thus, making such inferences is not the goal of the IEM or
related measures, including the Bayesian decoding ap-
proach of van Bergen et al. (2015). Instead, a fundamen-
tally different approach that likely requires adopting a
different measurement/analysis paradigm, such as paral-
lel characterization of response properties measured
across different scales (e.g., fMRI BOLD signal and single-
unit electrophysiology; Keliris et al., 2019) would be
needed to overcome the ill-posed many-single-neurons-
to-voxel mapping problem.

Defining Terms
In the spirit of Gardner and Liu (2019)’s and Liu et al.

(2018)’s efforts to delineate the appropriate uses of IEMs,
we want to more precisely define several terms related to
the IEM technique to help clarify future reports. The IEM
technique involves estimating an encoding model that
best accounts for observed voxel activation responses
given stimuli that are transformed into a modeled “chan-
nel space” (and under the assumption of linearity such
that the response of a given voxel is a linear combination
of each of several modeled channels). Once an encoding
model is estimated separately for each voxel, that encod-
ing model can be inverted and used to reconstruct chan-
nel response profiles given new measured activation
patterns across those same voxels. Those activation pat-
terns are often measured in response to some kind of
stimulus (either visual, or something attended, or held in
working memory), and the resulting reconstructed chan-
nel response profiles typically contain representations of
the stimulus/stimuli. To be clear, the result is not strictly a
“stimulus reconstruction,” but a model-based recon-
structed channel response profile. As an example, recon-
structed channel response profiles for stimulus orientation
are not literally an oriented grating. Instead, they describe
the activation of modeled channels in response to a given
stimulus, and this description is in a stimulus-referred
space. Reconstructed channel response profiles can be

used for several purposes, including decoding (recovering
the most likely feature value(s) represented, and/or, with
the use of an appropriate noise model, their uncertainty)
and quantification (characterizing the shape of the chan-
nel response profile, including “width,” “amplitude,” etc.,
which should never be confused with the width or ampli-
tude of single-neuron responses). Of course, all quantifi-
cation of channel response profiles must be considered in
concert with the encoding model used, but if a fixed
encoding model is used for reconstructing channel re-
sponse profiles across several experimental conditions,
their properties can be compared in the context of the
model.

Conclusions
In this reply to Gardner and Liu (2019), we hope to have

clarified some mischaracterizations of how the IEM ap-
proach is conducted (see also: Sprague et al., 2018a). To
be clear, we are not arguing that the IEM or related
approaches are not without serious limitations, the model
specification is key, as is understanding what inferences
can and cannot be supported by the results (Sprague
et al., 2015, 2018a). As Gardner and Liu (2019) point out,
these limitations are especially important to recognize
when modeling signals in feature spaces that are not well
understood, such as those for complex shapes or for
higher-order cognitive or social functions. In these situa-
tions, an IEM may still be able to quantify differences
between conditions and could thus be used to make
inferences about changes in the information content of
population-level response patterns. However, in this con-
text, drawing unambiguous links between the shape of
IEM-derived channel response profiles and the properties
of population-level neural representations is not appropri-
ate because changes in the model can result in changes
in channel response profiles. Instead, we agree with the
suggestions of Gardner and Liu (2019) that careful com-
parison of forward models that are not related by an
invertible linear transform is better suited for this purpose
(Brouwer and Heeger, 2009; Nishimoto et al., 2011; Le-
scroart and Gallant, 2019). That said, IEM-based channel
response profiles are not arbitrary when the model choice
is based on principled assumptions about neural popula-
tion representations and, more importantly, channel re-
sponse profiles are uniquely determined given knowledge
of the modeled basis, whatever that basis may be. Finally,
similar interpretational issues arise across many types of
model-based analyses of neural signals, including voxel
RF modeling, voxel-wise encoding models, and RSA. For
all these approaches, modeling choices have substantial
impacts on results, and so all results must always be
interpreted in the context of the model(s) used for analy-
sis.

We believe the IEM method is most useful when com-
paring reconstructed channel response profiles across
manipulations of stimulus properties (e.g., contrast) or
task conditions (e.g., attention), or combinations thereof
(Sprague et al., 2018b) using a fixed encoding model
across relevant comparisons (Sprague et al., 2018a).
When used this way, the criticisms raised by Gardner and
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Liu (2019) have no substantial bearing on the efficacy of
the IEM technique for comparing the impact of experi-
mental manipulations on information represented within
aggregate measurements of neural activity patterns. In
other words, in the same way the answer (42) is only
meaningful in the context of the question (Adams, 1979,
1981), results derived from a model are only meaningful in
the context of the model used.
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