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Magnetic field-tuned Aharonov–Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2
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(Dated: January 15, 2013)

We show that the resistance of the ν = 5/2 quantum Hall state, confined to an interferometer, oscillates
with magnetic field consistent with an Ising-type non-Abelian state. In three quantum Hall interferometers of
different sizes, resistance oscillations at ν = 7/3 and integer filling factors have the magnetic field period
expected if the number of quasiparticles contained within the interferometer changes so as to keep the area and
the total charge within the interferometer constant. Under these conditions, an Abelian state such as the (3, 3, 1)
state would show oscillations with the same period as at an integer quantum Hall state. However, in an Ising-
type non-Abelian state there would be a rapid oscillation associated with the “even-odd effect” and a slower one
associated with the accumulated Abelian phase due to both the Aharonov-Bohm effect and the Abelian part of
the quasiparticle braiding statistics. Our measurements at ν = 5/2 are consistent with the latter.

Introduction. The origin of the fractional quantum Hall
effect [1] at filling factor ν = 5/2 [2–4] has been a long-
standing open issue, which is important because it has been
conjectured that this state of matter supports non-Abelian
anyons [5–9]. Two point-contact Fabry–Pérot interferometers
have been proposed to observe the Aharonov–Bohm (AB) ef-
fect and the anyonic braiding statistics of quasiparticles [10].
In a non-Abelian state, not only the phase but the also the am-
plitude of the observed oscillations is indicative of the braid-
ing statistics [11–14]. Specifically, if the ν = 5/2 state is
indeed non-Abelian, the quasiparticle parity within the inter-
ferometer dictates whether the resistance of an interferometer
oscillates with enclosed area (controlled by a side gate) with
a period associated with charge e/4 quasiparticles. Such os-
cillations should only be seen when the parity is even – the
“even-odd effect” [13, 14]. Previous experiments [15, 16] are
broadly consistent with these predictions [17–20], although
some puzzles remain, as we discuss below.

In this paper, we examine the magnetic field dependence of
the resistance of a series of interferometers with a large range
of active areas. Two of them are shown in Fig. 1. We for-
mulate a model based on the assumption that the total charge
in the interferometer and the enclosed area both remain con-
stant as the magnetic field is varied. We test it at ν = 7/3
and integer filling factors and show that it is consistent with
the experimental data – in the ν = 7/3 case, it predicts a re-
sistance oscillation with the somewhat surprising flux period
Φ0/2. We thereby determine the effective area of the inter-
ference loop in each device (and each ‘preparation’ of each
device, which we describe in the next paragraph). The model
also predicts that the resistance in the ν = 5/2 state will os-
cillate as the product of two oscillations, one with flux period
Φ0/5 and the other with flux period Φ0, as we explain and
compare to our experimental data below.

Interferometers. The interferometers used in this paper
are fabricated from high-mobility (28 × 106 cm2/V·s), high-
density (4.2 × 1011 cm−2) GaAs/AlGaAs quantum well het-

erostructures. A 40 nm SiN layer is applied to the heterostruc-
ture. The size and shape of the 2D electron channel, which
is 200 nm below the surface, is controlled by 100 nm thick
Al top gates that are deposited on the SiN layer, as shown
in Fig. 1. Prior to charging the top gates, the samples can
be briefly illuminated to enhance mobility and to provide dif-
ferent sample preparations since the illumination changes the
distribution of localized charges in the device, as do differ-
ent cool-downs [15, 16, 21]. Further description of the device
preparations and measurement details is presented in Supple-
mental Material. Two interfering edge currents result from
quasiparticle tunneling across constrictions defined by gate
sets 1 and 3. The longitudinal resistance RL is measured with
contacts labeled a through d in the electron-micrograph in
Fig. 1(a) by the voltage drop from contact a to d, with current
driven from b to c, using standard lock-in techniques. The
two standard top gate designs shown in electron micrographs
in Fig. 1(a) are labeled with device dimension parameters x
and y adjusted to produce three separate samples with ratios
of areas of roughly 3:2:1. In addition, the functional areas in
these devices are defined by applying the gate voltages, result-
ing in a range of areas from 0.1 to 0.6 µm2. The temperature
of the measurements is 20mK in all data presented here.

Previous Results. Oscillations inRL have previously been
observed as a function of side gate voltage, Vs, which changes
the area of the interferometer [15, 16]. Interpreted as due to
the Aharonov-Bohm effect, the expected period of oscillation
is ∆Vs ∝ ∆A = (e/e∗)Φ0/B (Φ0 = hc/e is the fundamental
flux quantum and e∗ is the charge of the interfering quasipar-
ticles), from which the quasiparticle charge e∗ could be ob-
tained if the proportionality constant between ∆Vs and ∆A
were known. Assuming its independence of magnetic field,
this constant could be determined from the period ofRL oscil-
lations at integer filling factors, where e∗ = e, or at ν = 7/3,
where e∗ = e/3 is expected. Both filling fractions give similar
proportionality constants between ∆Vs and ∆A, which sup-
ports the idea that this constant is approximately independent
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Figure 1: (top) Electron micrographs of two of the three interferom-
eters used in the measurements reported in this paper. The contacts
are indicated schematically in the interferometer on the left by a-d.
Current injected at contact b can be backscattered at the two quan-
tum point contacts shown, thereby defining an interference loop of
area A. (bottom) The longitudinal resistance RL for the two sam-
ples shows minima corresponding to fractional quantum Hall states
at ν = 7/3, 5/2, and 8/3.

of magnetic field. At ν = 5/2, RL oscillations in some inter-
vals of Vs appear consistent with AB oscillations correspond-
ing to e/4 charges while in other intervals they seem consis-
tent with e/2 charges [15, 16]. These results have been in-
terpreted as a manifestation of the “even-odd effect” [13, 14]:
charge e/4 oscillations should be observed only when there
is an even number of charge e/4 quasiparticles in the inter-
ferometer; charge e/2 oscillations should always be observed.
When there is an odd number of charge e/4 quasiparticles in
the interferometer, this should be the only type of oscillation
visible [18]. In Refs. 15, 16 only e/2 oscillations are visible
in certain side-gate voltage intervals (when, according to this
interpretation, an odd number of e/4 quasiparticles is in the
interferometer), but it is not clear whether both e/4 and e/2
oscillations – or only e/4 – are present in the other intervals.

By contrast, in this letter we focus on RL measurements
during magnetic field sweeps. At integer filling, a B-field
sweep produces AB oscillations of RL with period ∆B ·A =
Φ0 ≈ 41 G µm2, where A is the current-encircled area of the
interferometer; we thereby determine the active area for each
of the different devices and sample preparations.

Model. The key assumption in our interpretation of the
experimental data is that the charge contained within the in-
terference loop and the area of the loop remain constant as
the magnetic field is varied. It is natural to assume that the
charge contained within the loop remains constant if it is pri-
marily determined by the local electrostatic potential or, in

other words, if the Coulomb energy dominates. In such a
case, as the magnetic field is varied, one of two possibilities
will occur. Quasiparticles will be created in the bulk or else
the quantum Hall droplet will shrink or expand; in the former
case, the area of the interference loop will remain constant.
We expect this scenario to hold if there are localized states in
the bulk that have very low energy as a result of disorder so
that it is energetically favorable to create quasiparticles there,
rather than to change the charge density at the edge. When this
scenario holds, increasing the flux through the interferometer
by Φ causes the number of charge e∗ quasiparticles to change
by Ne∗ = (νΦ/Φ0)/(e∗/e).

Meanwhile, changing the flux by Φ and the number of
charge e∗ quasiparticles by Ne∗ causes a change ∆γ in the
phase acquired by a quasiparticle taking one path around the
interferometer relative to the phase acquired by a quasiparticle
going around the other:

∆γ = 2π(Φ/Φ0)(e∗/e)− 2θe∗Ne∗

= (Φ/Φ0)[2π(e∗/e)− 2θe∗(νe/e∗)] (1)

The first term on the right-hand-side is the (ordinary electro-
magnetic) AB phase seen by a charge e∗ quasiparticle encir-
cling flux Φ. The second term is the statistical phase seen by
a charge e∗ quasiparticle when it encirclesNe∗ such quasipar-
ticles; the phase acquired when a single charge e∗ quasipar-
ticle encircles another is 2θe∗ , assuming that the particles are
Abelian. For non-Abelian particles, more care is required, as
we will see below. The relative minus sign can be understood
using the argument in [10], where it is explained why the AB
and statistical phases should cancel under certain conditions.

In an integer quantum Hall state, e∗ = e and θe = π, so
∆γ = 2π(Φ/Φ0) and RL will oscillate with magnetic field
period ∆B0 ·A = Φ0 ≈ 41 G µm2. Now consider the ν = 7/3
state. If it is in the same universality class as the ν = 1/3
Laughlin state, then e∗ = e/3 and 2θe/3 = 2π/3. Then ∆γ =
−4π(Φ/Φ0). Consequently, RL will show oscillations with
period ∆B1 · A = Φ0/2 ≈ 20 G µm2 – i.e half that in an
integer quantum Hall state.

Now consider the case of ν = 5/2. If the system is in an
Ising-type topological phase such as the Moore–Read state [5]
or the anti-Pfaffian state [22, 23], then when there is an even
number of charge e/4 quasiparticles in the interference loop,
the Ising topological charge will be 1 or ψ, but when there
is an odd number in the interference loop, the Ising topologi-
cal charge will be σ. As a result, if one particular topological
charge is energetically favorable for even quasiparticle num-
ber – let us suppose, for the sake of concreteness, that it is 1 –
then the non-Abelian Ising topological charge has a periodic-
ity of two quasiparticles or, taking Ne/4 = (νeΦ/Φ0)/(e/4),
a flux period Φ = 2Φ0(e/4e)/ν = Φ0/5. Hence, RL oscil-
lates with magnetic field period ∆B2·A ≈ 8 G µm2. However,
there is also an Abelian phase (1) which can have a different
periodicity. The Abelian phase acquired when a charge e/4
quasiparticle encircles an 2N quasiparticles with Ising charge
1 (or, equivalently, N charge e/2 quasiparticles) is θ = π/4
and N = (νeΦ/Φ0)/(e/2). Hence, Eq. (1) now reads: ∆γ =
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Figure 2: Oscillations with magnetic field at the integer state ν = 4
and also at ν = 7/3 (insets), with FFTs of these oscillations shown in
the left hand panels. The ratio between these two oscillation periods
is the same in eight device preparations of varying size.

−2π(Φ/Φ0). Therefore, there is also a slower oscillation in
RL with magnetic field period ∆B0 ·A = Φ0 ≈ 41 G µm2.

If, however, the Ising charge is not fixed to 1 for any even
number of quasiparticles, but may be randomly either 1 or ψ,
then the slower, period Φ0, oscillation will be afflicted by ran-
dom π phase shifts that could wash it out. If the system were
in an Abelian (3, 3, 1) state, then similar considerations lead
to a period Φ0 oscillation but no rapid period Φ0/5 oscillation.

Comparison with experiment. The overall B-sweep trace
between filling factors 2 to 3 of RL across two of the in-
terferometers is shown in the bottom two panels of Fig. 1;
they clearly demonstrate fractional quantum Hall states at
ν = 7/3, 8/3, and 5/2. This overall trace is averaged locally to
define a background which we subtract from the raw RL mea-
surement to make the oscillations clearer. Measurement of
these oscillation sets was repeated for multiple interferomet-
ric areas. The ∆B0 period should change with area according
to our model. From the three devices used and the multiple
preparations and gate values employed, the measured ∆B0

periods show active areas ranging from 0.1 µm2 to∼ 0.6 µm2.
To put our picture to test, we first consider ν = 4 and 7/3.

Oscillations ofRL withB are shown in the upper left of Fig. 2.
The period ∆B0 of oscillations is found to be similar near in-
teger filling 2, 3 and 4 for each device, consistent with this be-
ing an AB oscillation and not Coulomb effects [24]. From the
periodicity ∆B0, we determine the active area of this prepa-
ration. (For instance, for the preparation displayed in Fig. 4,
∆B0 ≈ 110 G, from which we deduce A ≈ 0.36 µm2.)

We now turn to ν = 7/3. The results for B-sweeps are
shown in Fig. 2. Oscillations at 7/3 and integer filling factors
are shown in Fig. 2 insets with their corresponding Fourier
transforms, which show peaks. The 7/3 peak frequency is
twice the ν = 4 peak frequency (or half the period), consistent
with the analysis above. The same RL measurements compar-

Figure 3: Oscillations in RL as a function of magnetic field and the
associated Fourier transforms at (a) ν = 4, (b) ν = 7/3, and (c) ν =
5/2. The vertical blue lines mark 5x, 2x, and the integer frequency.
The oscillations at ν = 7/3 are observed to have twice the frequency
of those at ν = 4, which is consistent with the theoretical model
explained in the text. The oscillations at ν = 5/2 show beating
between a fast oscillation with a period that is 1/5 that at ν = 4 and
a slow one with the same period as at ν = 4

.

ing ν = 7/3 and integer filling factors were carried out on the
three different devices and different preparations of this study,
as summarized in the right panel of Fig. 2. TheRL oscillations
at ν = 7/3 consistently occur at twice the frequency of their
respective integer filling factor oscillations over the full range
of device areas studied. We conclude that the assumptions and
analysis outlined above are valid.

Fig. 3 presents the comparison between interference oscil-
lations of ∆RL at ν = 5/2, 7/3, and ν = 4 observed in the
same sample/prepapration. (The overall B-sweep trace of RL
for this interferometer is shown in the bottom right panel of
Fig. 1.) Sets of oscillations are shown with their respective
Fourier transforms. Once again, the ν = 7/3 oscillations are
observed at half the magnetic field period of those at ν = 3.
Interestingly, the oscillations at 5/2 contain a higher frequency
component, and the FFT spectrum demonstrates the predom-
inant frequency is 5 times that of the integer oscillation fre-
quency. This value is consistent with the expected oscillation
frequency for expression/suppression of non-Abelian e/4 in-
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Figure 4: Oscillations at ν = 2 (right inset), ν = 3 (left inset)and at
ν = 5/2 (top panel). From the Fourier transforms of RL vs. B (left
panel), we see that the oscillation period at ν = 5/2 is 1/5 as large
as at ν = integer. Sometimes it shows beating with a more rapid
oscillation with the same period as at ν = 2.

terference due to the changing number of quasiparticles with
varying magnetic field. Moreover, the peak centered around
five times the integer frequency is split, with the splitting be-
ing roughly twice the frequency observed at integer plateau.
This corresponds to beats which are further consistent with
the above prediction for the interplay between the AB and sta-
tistical contributions for a non-Abelian ν = 5/2 state. Other
such data sets are presented in supplemental materials.

Figure 5: The oscillation period in units of flux is independent of
the device area and is approximately 8 G µm2 = Φ0/5. Equivalently
(inset) the oscillation period in units of magnetic field is inversely
proportional to the area.

The observation of a small oscillation period at ν = 5/2

in a series of samples with different interferometer sizes
and different sample preparations is further demonstrated in
Figs. 4, 5. Fig. 4, top panel, shows the B-sweep results for
one of the sample preparations in device area 2, focusing on
the small period resistive oscillations corresponding to multi-
ple parity changes in the enclosed e/4 quasiparticle number
near 5/2. The set of oscillations is measured with no adjust-
ments to the voltages of the quantum point contacts or central
top gates. If our model is correct, the five periods of oscil-
lation shown here represent ten parity changes. The B-field
range near 5/2 where this data is taken is marked in the over-
all RL trace. The distinct resistive oscillations (black trace;
the blue trace is a coarse smoothing of the data) near 5/2 in
this preparation have a period ∆B2 ≈ 22 G, compared to a
period at integer fillings of ∆B0 ≈ 110 G. This is precisely
the same fivefold ratio shown in Fig. 3, once again in agree-
ment with our model. Note here that splitting in the 5/2 peak is
not resolved, which may be an indication that the fermion par-
ity in the interferometer is not constant, a possibility discussed
above. Or, alternatively, sweeps through a widerB-field inter-
val may be necessary to observe this slow oscillation in some
samples/preparations. Wider sweeps may also reveal oscil-
lations due to transport by charge-e/2 quasiparticles, which
should have a period ∆B ·A = Φ0/2 (by essentially the same
argument as for 7/3). They are not apparent in the magnetic
field sweeps in Figs. 3 , 4, even though they are seen in side-
gate voltage sweeps [15, 16].

Fig. 5 summarizes the principal result of this study. The
oscillation period in units of flux (i.e., ∆B2 · A) at ν = 5/2
measured for different samples/preparations is approximately
independent of the device area derived from ∆B0. The ob-
served values of ∆B2 · A is shown to be in reasonable agree-
ment with the expected value of 8 G µm2 which corresponds
to the change in the parity of enclosed quasiparticles.

To conclude, this experiment provides the necessary com-
plement to prior measurements [15, 16] where AB oscillations
were examined as a function of the active interferometer area
A controlled by the gate voltage. By sweeping the B -field
in these multiple area devices instead, the previous experi-
mental limitation coming from slow gate charging has been
avoided. The resistance oscillations observed near filling fac-
tor ν = 5/2 in multiple devises show a period consistent with
the additional magnetic field needed to add one quasihole to
their respective (different) active areas (thereby changing the
quasiparticle parity). We stress that the presence of such a pe-
riod is indicative of a non-Abelian nature of the ν = 5/2 state.
While this interpretation is based on several assumptions dis-
cussed earlier, using the ν = 7/3 FQH state for control mea-
surements significantly strengthens our case.

RLW, CN and KS acknowledge the hospitality of KITP sup-
ported in part by the NSF under grant PHY11-25915. CN and
KS are supported in part by the DARPA-QuEST program. KS
is supported in part by the NSF under grant DMR-0748925.
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SUPPLEMENTAL MATERIALS

Theoretical results for B-sweep and (3, 3, 1) state

In this section we compare the expected oscillation periods
of magnetic field sweeps for Abelian and non-Abelian candi-
date states at ν = 5/2. As explained in the main text, the
net phase accumulation in a quantum Hall interferometer con-
sists of two contributions: the AB phase due to the magnetic
flux change by Φ and the statistical phase due to introducing
Ne∗ additional quasiparticles of charge e∗ to the interferome-
ter area:

∆γ = 2π(Φ/Φ0)(e∗/e)− 2θe∗Ne∗ (S1)

If we assume that the active area of the interferometer remains
constant throughout a magnetic field sweep, these two con-
tributions are not independent; Ne∗ = (νΦ/Φ0)/(e∗/e) and
hence

∆γ = (Φ/Φ0) [2π (e∗/e)− 2θe∗ (νe/e∗)] . (S2)

At ν = 5/2, the smallest charge excitation is an e/4 quasi-
hole/quasipartice irrespective of the exact nature of the state.
Since the smallest charge carriers are expected to dominate
tunneling at the low temperature, weak tunneling limit [S1,
S2] (or, in the case of the anti-Pfaffian state, to vary with tem-
perature in the same way as transport due to e/2 quasiparti-
cles), we will first focus on these e/4 excitations. As shown
in the main text, if the ν = 5/2 state is non-Abelian (whether
it is Moore–Read or anti-Pfaffian), this should manifest itself
via a Φ0/5 oscillation period corresponding to the even-odd
effect. An additional Φ0 period of purely Abelian nature is
also expected, although it may be washed out by fermion par-
ity fluctuations.

If, on the other hand, the ν = 5/2 state is an Abelian
(3, 3, 1) state [S3], the Φ0/5 oscillation period should not be
observed – there is no even-odd effect in this case. An Abelian
phase can be calculated using Eq. (2) with a slight caveat. The
statistical angle θ can be either 3π/8 or −π/8, depending on
whether the spin of a quasiparticle going around the inter-
ferometer and that of a quasiparticle inside the loop are the
same or opposite. Since the (3, 3, 1) state is spin-unpolarized,
excitations of both spins may carry charge around the inter-
ference loop. Hence we can use the average value of the
statistical angle, i.e. π/8, per quasiparticle (or, more pre-
cisely, π/4 per pair with opposite spins). This yields ∆γ =
2π (Φ/Φ0) [(1/4)− (1/8)× 10] = −2π (Φ/Φ0). The result-
ing oscillation period is Φ0.

So far in our discussion we have neglected other types of
charged excitations, particularly the charge e/2 excitations
that are also expected at ν = 5/2. These excitations are
always Abelian and their statistical angle is θ = π/2, ir-
respective of the nature of the state. Eq. (2) then yields
∆γ = −4π (Φ/Φ0) implying a Φ0/2 periodicity. While
backscattering of these quasiparticles at quantum point con-
tacts should be suppressed by comparison to e/4 quasiparti-
cles (except in the anti-Pfaffian state), it is likely that their

coherence length is much longer, which in turn enhances their
contribution to the coherent interference signal [S2, S4]. It
therefore remains a puzzle that period Φ0/2 oscillations are
not convincingly seen in our data, particularly in view of the
fact that e/2 oscillations were a prominent feature seen in the
side-gate voltage sweeps [S5, S6]. One possible explanation
is the relatively narrow magnetic field window available for
B-sweeps at ν = 5/2, which in turn makes it difficult to see
longer-period oscillations. This window is limited by the nar-
row width of the ν = 5/2 plateau immediately flanked by
the reentrant compressible integer states [S7, S8] – see more
on this in the next section. It is also worth mentioning that
the data presented here was measured at T ≈ 20 mK, while
previously reported side-gate voltage sweeps were performed
at T ≈ 25 mK and higher; lowering the temperature should
lead to the suppression of the e/2 contribution to oscillations.
Testing this argument by measuring B-sweeps at higher tem-
peratures and for different device sizes is an important future
direction.

Additional integer, 7/3, and 5/2 data sets; 5/2 splitting

Additional sets of data showing Fourier transforms of os-
cillations at integer, 7/3, and 5/2 filling factors from different
sample preparations are shown in Fig. S1. Note that the 5/2
peak is split and is centered at 5Φ0 for all the data sets in this
figure.

In roughly half the data sets examined, we were able to re-
solve the predicted splitting of the 5/2 FFT peak at five times
the fundamental integer oscillation frequency (1/Φ0). This
splitting at 5/Φ0 to 5/Φ0 ± 1/Φ0, due to modulation of the
non-Abelian oscillation by the low frequency AB/anyonic os-
cillations at ν = 5/2, can be seen only when we take the
Fourier transform the resistance over a substantial range inB-
field: such data is displayed in Fig. 3 of the main text, and in
Fig. S1.

Some B-field sweeps in this study ran over only a small
range of B near 5/2 filling to focus on measuring the small
period (Φ0/5) oscillations attributed to non-Abelian e/4 ex-
pression/suppression: these results are shown in Fig. 4 of the
main text, and here in Fig. S2. The other measurements, cov-
ering a larger range in B, noted above, facilitate resolution of
the splitting at 5/2. However, the range of B-field of either
of these oscillations is limited around 5/2 by the presence of
reentrant integer states [S7, S8] adjacent to 5/2 filling on both
the high- and low-field sides. This is a more prominent effect
in the larger area devices.

Gate sweep examples for multiple device sizes

When side gate sweeps are applied rather than B-field
sweeps, the multiple devices of different areas examined here
display the same AB properties at 5/2 as observed in previous
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studies [S5, S6], namely alternation of e/4 and e/2 period os-
cillations. See Fig. S3. This alternation is attributed to the
side gate excursion changing not only the enclosed magnetic
flux number but also the localized non-Abelian e/4 quasiparti-
cle number. There are oscillations corresponding to AB inter-
ference of e/4 particles when an even number of e/4 quasi-
particles are enclosed, and the e/2 oscillations are apparent
when that number is odd. According to theoretical predic-
tions [S2], the e/2 oscillations are pervasive but are more eas-
ily observed when the larger amplitude e/4 oscillations are
suppressed. The data of the Figure show this alternation for
all three rudimentary device sizes. Further demonstration and
details of these measurements can be found in reference [S9].
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Figure S1: Four separate sample preparations showing transport through the device (top panels), and RL oscillations (left panels) at integral,
7/3, and 5/2 filling factors. The right hand panels show respective FFTs for those filling factors. The three vertical blue lines mark the integer
frequency 1/Φ0, 2/Φ0, and 5/Φ0. The 7/3 oscillation frequency is consistently at twice that of the integer filling, and the 5/2 peak complex is
centered near 5 times the integer frequency. Data are taken at T ≈ 20 mK.
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Figure S2: AB oscillations at integer filling used to determine the area (left column) and the corresponding transport near ν = 5/2 (center)
showing small period oscillations consistent with expression/suppression of non-Abelian e/4 interference, along with FFTs of both spectra
(right) for a series of interferometer devices of different areas. In our model, the magnetic field ∆B2 necessary to add two e/4 quasiparticles
is determined from ∆B2/∆B0 = 0.2, or ∆B2A ≈ 8Gµm2. The black line is an average of several (typically, eight) B-field sweeps, and the
blue line shows the same data smoothed by local averaging. In the FFT panel the two vertical blue lines differ by a factor of 5 in frequency.
Data are taken at T ≈ 20 mK.
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Figure S3: Magneto-transport and gate-voltage sweep oscillations at ν = 5/2. All devices used here are fabricated from the same heterostruc-
ture wafer, with representative bulk transport shown in the left panel. The central column shows representative transport through each device;
note prominence of the ν = 5/2 minimum and the presence of FQHE state at ν = 7/3 in these longitudinal resistance traces. The right hand
column shows longitudinal resistance change with side gate (2) sweep at ν = 5/2; each device demonstrates oscillations consistent with the
AB effect at periods corresponding to charge e/4. The marked vertical lines of these periods are derived from similar measurements at integers
and 7/3 fillings, defining the period corresponding to e/4 charge. In each device the previously observed [S5, S6] alternation of e/4 and e/2
periods is affirmed in large side gate voltage excursions. Temperature in all data is T ≈ 20 mK.
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