
UC Irvine
ICS Technical Reports

Title
BDEF : the behavioral design data exchange format

Permalink
https://escholarship.org/uc/item/43238366

Authors
Rundensteiner, Elke A.
Gajski, Daniel D.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/43238366
https://escholarship.org
http://www.cdlib.org/

Notice: This fl/1aterial
may be protected
by Copyright Law
(Title 17 U.S.C.)

BDEF~ THE BEHAVIORAL DESIGN
DATA EXCHANGE FORMAT

Elke A. Rundensteine[' and Daniel D. Gajski
,--:; ,..-

Information and Computer Science Department
University of California, Irvine

April/1991

Technical Report 91-34

BDEF: THE BEHAVIORAL DESIGN DATA
EXCHANGE FORMAT

Elke A. Rundensteiner and Daniel D. Gajski

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
April, 1991

ABSTRACT

BDDB is a Behavioral Design Data Base that manages the design data pro­
duced and consumed by different behavioral synthesis tools. These different
design tools retrieve design data from BDDB, manipulate the data, and then
store the results back into the data base. BDDB thus needs to address the
following two issues: (1) a design data exchange approach and (2) customized
design data interfaces. To address the first issue, we have developed a textual
description format for describing design data objects and relationships. This
language, referred to as the Behavioral Design Data Exchange Format (BDEF),
is used as common format for exchanging design data between BDDB and the
design tools in the behavioral synthesis environment. To address the second
issue, we have developed a behavioral object type description language (gen­
erally referred to as schema definition language) for describing the global data
structures required by design tools as well as the desired design subviews of this
global BDDB design information. One design view class, namely, BDEF, is the
topic of this report.

In this report we give a formal definition of the BDEF format. Then we
describe a comprehensive example of applying BDEF to the behavioral synthe­
sis domain. That is, we present the complete BDEF syntax for the Extended
Control/Data Flow Graph Model (ECDFG), which is the design representa­
tion model used by most behavioral synthesis tools in the UCI CADLAB syn­
thesis system. We also present several example descriptions of designs using
this ECDFG model. A parser/ graph compiler from BDEF into the generalized
ECDFG design representation as well as a BDEF generator from the ECDFG
data structures into the BDEF format have been implemented.

Key Words: Shared design data, Common exchange format, Design data
base, Design Data Exchange, Design Data Representation.

CONTENTS

Contents

1 INTRODUCTION

2 BDDB DESIGN VIEWS

3 The BDDB DESIGN OBJECT MODEL

3.1 The BDDB Design Object Model .

3.2 The Behavioral Object Type Definition Language .

4 THE BDEF FORMAT

4.1 Overview over the BDEF Syntax

4.2 Using BDEF to Represent Design Entity Information .

4.3 Using BDEF to Represent Design Data Information .

5 BDEF DESIGN VIEWS

6 EXAMPLES

6.1 A Simple Data Flow Graph Example .

6.2 A Complete Control/Data Flow Graph Example

6.3 An Example using Two Design Entities

2

6

11

11

13

19

19

22

24

29

33

33

33

39

6.4 A Timing Constraint Example At the Control Flow Level 42

6.5 A Timing Constraint Example At the Data Flow Level . . 48

7 CONCLUSION 51

8 REFERENCES 52

CONTENTS

A BDEF SYNTAX FOR THE ECDFG MODEL

A.I BDDB Design Entity Graph Information Syntax

A.2 BNF Syntax Introduction

A.3 BDDB Design Entity Graph Information Syntax

A.4 BDDB State Graph Information Syntax

A.5 BDDB Control Flow Graph Information Syntax .

A.6 BDDB Data Flow Graph Information Syntax

A.7 BDDB Timing Constraint Graph Syntax .

A.8 BDDB Data Type Enumeration Values .

A.9 Object References using Object Identity

A.10 General Constructs

11

53

53

53

53

56

59

64

73

76

82

84

B OBJECT TYPE DEFINITIONS FOR THE ECDFG SCHEMA 85

B.l State Transition Graph 85

B.2 Control Flow Graph 86

B.3 Data Flow Graph . . 87

B.4 Timing Constraint Graph 90

C AN EXTENDED BDEF EXAMPLE DESCRIPTION 92

C.l The VHDL Specification 92

C.2 The Data Flow View . . 94

C.3 The Control Flow View 105

C.4 The Complete Control/Data Flow View 108

CONTENTS lll

D USER'S MANUAL FOR BDEF PARSER/GENERATOR TOOLS109

LIST OF FIGURES IV

List of Figures

1 Design Data Base Overview 3

2 BDDB Design View Scheme 7

3 BDEF Usage . . . 8

4 BIF Design Views 9

5 BDDB Design Object Model 11

6 The Syntax of the Behavioral Object Type Definition Language 14

7 The Syntax of the Behavioral Object Type Definition Language
(cont.) . 15

8 An Example Using the Behavioral Object Type Definition Lan-
guage 18

9 BNF Syntax of BDEF 20

10 Graphical Depiction of BDEF Syntax Tree 21

11 BDEF Design Views 29

12 BDEF Design View Generators 31

13 Graphical Representation of a Data Flow Graph 34

14 BDEF Description of the Data Flow Graph . . . 35

15 BDEF Description of the Simple Data Flow Graph (cont.) 36

16 VHDL Design Specification 37

17 A Graphical ECDFG Depiction of the VHDL Design Specification 38

18 VHDL Description of a Procedure Definition/Call 39

19 Graphical Representation of a Procedure Definition/Call . 40

20 A BDEF Description of a Procedure Definition/Call Graph 41

LIST OF FIGURES 1

21 A Timing Constraint Specification at the CFG Level 43

22 A Detailed Timing Constraint Specification at the CFG Level 45

23 BDEF Description of a Timing Constraint at the CFG Level 46

24 Timing Constraint Specification Using BDEF 47

25 A Timing Constraint Specification at the DFG Level 49

26 BDEF Description of a Timing Constraint at the DFG Level 50

27 A Graphical Depiction of the VHDL Design Specification . . 93

LIST OF FIGURES IV

List of Figures

1 Design Data Base Overview 3

2 BDDB Design View Scheme 7

3 BDEF Usage . . . 8

4 BIF Design Views 9

5 BDDB Design Object Model 11

6 The Syntax of the Behavioral Object Type Definition Language 14

7 The Syntax of the Behavioral Object Type Definition Language
(cont.) . 15

8 An Example Using the Behavioral Object Type Definition Lan-
guage 18

9 BNF Syntax of BDEF 20

10 Graphical Depiction of BDEF Syntax Tree 21

11 BDEF Design Views 29

12 BDEF Design View Generators 31

13 Graphical Representation of a Data Flow Graph 34

14 BDEF Description of the Data Flow Graph . . . 35

15 BDEF Description of the Simple Data Flow Graph (cont.) 36

16 VHDL Design Specification 37

17 A Graphical ECDFG Depiction of the VHDL Design Specification 38

18 VHDL Description of a Procedure Definition/Call 39

19 Graphical Representation of a Procedure Definition/Call . 40

20 A BDEF Description of a Procedure Definition/Call Graph 41

21

22

23

24

25

26

27

A Timing Constraint Specification at the CFG Level

A Detailed Timing Constraint Specification at the CFG Level

BDEF Description of a Timing Constraint at the CFG Level

Timing Constraint Specification Using BDEF

A Timing Constraint Specification at the DFG Level

BDEF Description of a Timing Constraint at the DFG Level

A Graphical Depiction of the VHDL Design Specification . .

1

43

45

46

47

49

50

93

LIST OF FIGURES IV

List of Figures

1 Design Data Base Overview 3

2 BDDB Design View Scheme 7

3 BDEF Usage . . . 8

4 BIF Design Views 9

5 BDDB Design Object Model 11

6 The Syntax of the Behavioral Object Type Definition Language 14

7 The Syntax of the Behavioral Object Type Definition Language
(cont.) . 15

8 An Example Using the Behavioral Object Type Definition Lan-
guage 18

9 BNF Syntax of BDEF 20

10 Graphical Depiction of BDEF Syntax Tree 21

11 BDEF Design Views 29

12 BDEF Design View Generators 31

13 Graphical Representation of a Data Flow Graph 34

14 BDEF Description of the Data Flow Graph . . . 35

15 BDEF Description of the Simple Data Flow Graph (cont.) 36

16 VHDL Design Specification 37

17 A Graphical ECDFG Depiction of the VHDL Design Specification 38

18 VHDL Description of a Procedure Definition/Call 39

19 Graphical Representation of a Procedure Definition/Call . 40

20 A BDEF Description of a Procedure Definition/Call Graph 41

LIST OF FIGURES 1

21 A Timing Constraint Specification at the CFG Level 43

22 A Detailed Timing Constraint Specification at the CFG Level 45

23 BDEF Description of a Timing Constraint at the CFG Level 46

24 Timing Constraint Specification Using BDEF 47

25 A Timing Constraint Specification at the DFG Level 49

26 BDEF Description of a Timing Constraint at the DFG Level 50

27 A Graphical Depiction of the VHDL Design Specification . . 93

LIST OF FIGURES JV

List of Figures

1 Design Data Base Overview 3

2 BDDB Design View Scheme 7

3 BDEF Usage . . . 8

4 BIF Design Views 9

5 BDDB Design Object Model 11

6 The Syntax of the Behavioral Object Type Definition Language 14

7 The Syntax of the Behavioral Object Type Definition Language
(cont.) . 15

8 An Example Using the Behavioral Object Type Definition Lan-
guage 18

9 BNF Syntax of BDEF 20

10 Graphical Depiction of BDEF Syntax Tree 21

11 BDEF Design Views 29

12 BDEF Design View Generators 31

13 Graphical Representation of a Data Flow Graph 34

14 BDEF Description of the Data Flow Graph . . 35

15 BDEF Description of the Simple Data Flow Graph (cont.) 36

16 VHDL Design Specification 37

17 A Graphical ECDFG Depiction of the VHDL Design Specification 38

18 VHDL Description of a Procedure Definition/Call 39

19 Graphical Representation of a Procedure Definition/Call . 40

20 A BDEF Description of a Procedure Definition/Call Graph 41

LIST OF FIGURES 1

21 A Timing Constraint Specification at the CFG Level 43

22 A Detailed Timing Constraint Specification at the CFG Level 45

23 BDEF Description of a Timing Constraint at the CFG Level 46

24 Timing Constraint Specification Using BDEF 47

25 A Timing Constraint Specification at the DFG Level 49

26 BDEF Description of a Timing Constraint at the DFG Level 50

27 A Graphical Depiction of the VHDL Design Specification . . 93

1 INTRODUCTION 2

1 INTRODUCTION

In recent years, a great number of CAD tools of ever increasing sophistication
have become available that automate the more difficult and time consuming
parts of a design process. We are interested in incorporating these tools into an
integrated design environment which would allow us to exploit the full potential
of these tools. This. requires the development of a design data management
system that manages the diverse design tools and the design data used during
the design process.

For this purpose we have developed BDDB [8], a design data base system for
behavioral synthesis. BDDB not only manages the design data produced and
consumed by different behavioral synthesis tools, but also maintains the meta
design information relating these various chunks of design data according to se­
mantic relationships, such as, equivalent, derivation, and hierarchy. BDDB thus
forms the foundation for integrating different design tools into one cooperative
CAD framework. BDDB provides a behavioral object type description language
(generally referred to as schema definition language) for describing the global
data structures required by design tools as well as the desired design subviews
of this global schema. This behavioral object type description language is used
to specify the BDDB design object model. The BDDB design object model
[6] which represents a unified design representation for behavioral synthesis is
composed of a conceptual graph model which captures the design entity orga­
nization, a behavioral graph model which describes the design behavior, and a
structural graph model which represents the data path structures.

For the first generation of the behavioral design data base system, we envi­
sion a loosely-coupled architecture where the design data is shipped from BDDB
to the design tools and back via design files. This proposed interaction scheme
is shown in Figure 1. In this figure, the different types of design information
are depicted by darker shading. The design information on the left hand side
corresponds to local data structures supported by design tools. The design in­
formation on the right hand side corresponds to global design data structures
that unify information produced and consumed by different design tools into
one unified model, the BDDB design object model. In the middle of the figure
then are the design files that are used to ship design data between the global
BDDB Design Object Model and the different design tools.

This loosely-coupled architecture has been chosen for the following reasons.
First, existing design tools need to interface with the design database without
requiring a major rewrite. Therefore the required design data is passed from
BDDB to the design tool via a design file giving the later complete control over

1 INTRODUCTION 3

the design data. Once a design tool finishs its task, the possibly modified design
data will be checked back into the global data structures maintained by BDDB.
Secondly, a loosely-coupled system is needed due to the experimental nature of
the design tools and the data base. At a university setting, we are faced with
a diverse variety of development speeds of tools. Therefore, we need to isolate
the programs from one another. In a tightly-coupled framework, changes in one
application would invariably require changes to all applications that interface
with the design tool.

designer

design
tools

designer

design
tools

BDEF
Design

File

In-memory
Data

Structures

BIF
Graphical
Interface

BIF Date
Structures

Copy

BDEF Parser/
Translator

BIF Parser/
Translator

BIF Parser/
Translator

BDEF
Design

FUe

BIF
Design

FHe

Design
View

Support

~si

View
Gene-
ration

Routines

Figure 1: Design Data Base Overview

BDDB

We have developed a set of rules for the textual specification of instances
of design object types which have been specified by the behavioral object type
description language. We propose to use this language as common format for
exchanging design data between design tools in a behavioral synthesis environ­
ment. This language is thus referred to as Behavioral Design Data Exchange
Format (BDEF).

1 INTRODUCTION 4

As can be seen in Figure 1, BDEF is used as filter between the global data
structure managed by BDDB and the local data structures maintained by design
tools. Data will be restricted to flow through the predefined canonical data
format. This will stabilize tool communication. Development investments to
design this canonical data format and to restrict the data flow accordingly are
compensated by several gains as detailed below.

First, it will simplify the creation of translators into and out of the standard
text format (and the respective data structures). These translation tools will
be of a similar flavor since if they would share a common file structure format.
Consequently, programming efforts can be minimized by using source code from
a working translator as template and by adapting it as needed by a new local
data structure. Also, coupling among applications is reduced to pair-wise links
from a tool's internal data structure to the canonical one and back, rather than
to the data structures of all other design tools with which it shares data. A
change to one application's local data organization requires changes only to one
translator and not all the other translators and applications that use its design
data. The possibility of data sharing is increased, as a design tool will have
access to the data handled by all other design tools which have a "link" to
the canonical form. Therefore, the effort for adding new tools to the system is
decreased. Lastly, it is an incremental path towards closer integration of tools.
Tool developers may change from their unique forms to the canonical forms at
their convenience. This would allows us to switch to a tighter coupling via a
programming interface in the future so that sharing of design data rather than
just exchange can be accomplished.

The proposed approach towards design data exchange offers numerous ad­
vantages besides an organized way of design data exchange:

1. tool integration via an agreed upon design exchange formalism,

2. separation between the global design object types maintained by BDDB
and the local data structures maintained by design tools,

3. a possibility of incremental and also manual modification of the design
during all stages of the design process by changing the design file,

4. a human-readable form of the design representation (the later generally is
tool-accessible),

5. a measure of consistency since all design data shipped between tools have
to be cast to this common formalism, and lastly

6. a means of permanent repository of designs via the file system, if so desired.

1 INTRODUCTION 5

We have found the possibility of manual modification of the design file to
be very useful for the tool development phase since it allows for the isolation of
the design tools from one another. A tool developer can add design information
that should have been created by another design tool manually if the respective
tool is not correctly working yet. For instance, state information can be added
manually to a design file. Thereafter, an allocation tool can be run on this
design file without having to wait for the completion of the scheduling tool. In
short, a parallel tool development effort is supported.

2 BDDB DESIGN VIEWS 6

2 BDDB DESIGN VIEWS

The design data maintained by BDDB corresponds to a global design object
model, i.e., it corresponds to all types of design data produced and consumed
by different behavioral synthesis tools. Each design tool will therefore be inter­
ested in only a subset of the available information. Furthermore, there generally
are a number of different representation styles for one design. For instance, the
usage of components in the different states of a design may be represented (1)
by a state table that indicates for each state whether a component is used or
(2) by a flow graph structure that has been annotated with component infor­
mation. Both capture the same information content, however, they have a pos­
sibly different goal in mind and therefore are using a different data organization
and representation format. For these reasons BDDB needs to provide diverse
customized interfaces to the BDDB design object model. These customized in­
terfaces, also called design views, generally correspond to a subset of the BDDB
design information and have a possibly reorganized format and representation
style.

In this section, we will outline the approach we have developed for handling
design views in EDDE. We distinguish between particular classes of design
views. Examples of potential design view classes are a textual flow graph view
or a state-centered table view. Each design view class can have one or more
view parameters that determine detailed characteristics of the representation.
Once a set of parameter values has been chosen for all view parameters of a
design view class, then we refer to this pair of view class and view parameter
values as an instantiated design view type. This design view scheme is depicted
in Figure 11. Clearly there is a need for view generation routines for each view
class that map design data between the global information kept in the BDDB
Design Object Model and the view model. These view generators are written
by either a view definer or the environment administrator.

The behavioral design data base, BDDB, supports two different design view
classes, namely, the BDEF design view class and the BIF design view class.

The BDEF design view class is a textual description language that directly
models the graph-oriented nature of the design data stored by BDDB. Note
that the design object model used by BDDB models the design specification by
a set of related design objects. The BDEF format then is a direct translation
from these BDDB design data object types and relationships to a textual format.
Therefore, it is fairly straightforward to translate from the BDDB Design Object
Model into the BDEF format, or, vice versa, to parse a design description in
the BDEF format back into the BDDB data structures. Similarly, design tools

2 EDDE DESIGN VIEWS

General Design View Scheme:

Design View Class

e.g., textual format,
tabular format, etc.

instantiate

Design View Parameters

e.g., attribute-selection,
graphical-presentation,etc.

Design View Types

e.g., DVT1, DVT2, etc.

Figure 2: BDDB Design View Scheme

7

2 BDDB DESIGN VIEWS 8

can easily construct their internal flow graph representation from the format.
Therefore, one major criteria for the BDEF format is its 'closeness' to the design
data structures utilized by these tools rather than its ease of readability by
humans. The BDEF design view is the topic of this report, and therefore a
more detailed discussion on the relationship between the general BDDB design
view scheme introduced in this section (Figure 2 and the BDEF design view
class can be found in Section 5 (in particular, Figure 11).

:··----········----------···--·----------------···--------.------.·-----···------04•••• .. :

! I
VHDL VHDL
Compiler Design

Description

r····--·---1

'

i',:,! ~~=· ! ig~~.
ECDFG Translator/
BDEF Generator

i Tool Group i i BOOB . '' : '-·------------·------------------------·---------------·---·-···-------·-------J 1---------····------------··------·----------······-·····················--··------·····-'

Figure 3: BDEF Usage

In Figure 3 we describe how BDEF is used in the current BDDB prototype.

The second design view class, called the BIF format, gives a state-oriented
view of the BDDB design information. In other words, BIF corresponds to a
tabular state table format that describes certain aspects of a design on a state­
by-state basis. This state table format is what human designers are most familiar
with. Indeed, a major target of BIF is ease of readability. Consequently, the BIF
design view class is specially suitable for human interaction with the automated
design process. It allows the designer to view and possibly manipulate the design
as it evolves during the different stages of synthesis.

2 BDDB DESIGN VIEWS

The State-Table Design View Class:

Design View Class

is called BIF.

Design View Parameter
is table-type =

{op-based, unit-based,
conn-based, control-based}.

instantiate

Design View Types

are OBST, UBST,
CBST, and CFST.

Figure 4: BIF Design Views

g

2 BDDB DESIGN VIEWS 10

The relationship between the general design view scheme supported by BDDB
and the BIF format is shown in Figure [?]. At present, the BIF design view
class has one design view parameter, called table-type. The design view
parameter table-type can take on the values operation-based, unit-based,
connection-based, and control-based. It determines which aspects of the
design are shown. For instance, setting the table-type parameter to the value
unit-based means that the corresponding BIF view will contain information
on the units that have been allocated to the actions in each state in order to
perform the associated operations. For instance, the unit ALU1 may be shown as
having been allocated to perform the operation PLUS in state Sl. Once a value
is selected for the table-type parameter, then a fixed BIF design view type
has been determined. We distinguish between four different design view types
for BIF, which are called operation-based state table, unit-based state
table, connection-based state table, and control-based state table.
For a definition of the BIF format in general and these different BIF view types
in particular see [1].

3 THE BDDB DESIGN OBJECT MODEL 11

3 The BDDB DESIGN OBJECT MODEL

3.1 The BDDB Design Object Model

In this section we will give a short overview of the BDDB Design Object Model.
For a more detailed presentation of the BDDB Design Object Model the reader
is referred to [6] and [8].

Design
Entity
Information

Design
Data
Information

Design-Entity-Graph

(DEG)

(Design Entity Objects)

ECDFG ACG

(Design Data Objects)

meta data

semantic relationships

check-out granularity

object selection

basis of DB services

actual design data

design representation

tool-access level

object manipulation

design views

Figure 5: BDDB Design Object Model

3 THE BDDB DESIGN OBJECT MODEL 12

The BDDB Design Object Model is a complete model of all information
that is maintained by BDDB in order to aid the design process at the behavioral
synthesis level in a CAD environment. As can be seen in Figure 5, BDDB divides
the design information into two separate levels, the design entity information
and the design data information.

The design entity information, represented by a Design Entity Graph Model,
captures the overall organization of the design information. It covers concepts,
such as, the design entity hierarchy, the version derivation tree, the levels of de­
sign abstractions, the different information domains, and configurations. Note
that the design entity construct is a concept introduced by BDDB to decom­
pose the potentially large set of design data objects that make up a design
into manageable chunks. A design entity is an abstraction for a collection of
interrelated design data objects, i.e., it groups together a collection of design
data objects that form (a part of) a design. Design entities therefore are the
granularity of design information. Design entities serve as locking granularity
for data base access and as the units of data transfer between BDDB and the
design tools. The Design Entity Graph (DEG) stores organizatorial attributes
of a design entity, such as, its name, its version number, and the type of its
content. Furthermore, the Design Entity Graph (DEG) keeps track of semantic
relationships ~etween different design entities, such as, equivalence, versioning,
etc. The designer is allowed to query these relationships, however, s/he is not
allowed to directly manipulate them. BDDB provides a procedural interface
that supports a limited set of update operations on the design entity graph. An
example operation may be to assert the equivalence between two design entities.
The Design Entity Graph Model, sometimes also called the meta-data model,
serves as foundation for most database support functions, for example, version
management and schema browsing.

The second level of the BDDB Design Object Model maintains the design
data information, i.e, the actual design data of the application domain. It de­
scribes the design at a level at which the design tools are ultimately interested
in working on. BDDB represents this design data information using two graph
models: the behavioral graph model and the structural graph model. The behav­
ioral model describes the behavioral specification of the design. It corresponds
to an Extended Control/Data Flow Graph (ECDFG) representation that is
augmented with advanced features, such as, timing constraints, memory ac­
cess, events, state transition information, and structure bindings. In short, the
ECDFG model comprises the following information: (1) the VHDL input spec­
ification that describes the function of the design, (2) the flow-graph represen­
tation which captures the behavior over time, and (3) the state sequencing that
shows the slicing of the behavior into states. The structural model, represented
by an Annotated Component Graph, captures the hierarchical graph structure

3 THE EDDE DESIGN OBJECT MODEL 13

of interconnected components augmented by timing constraints. It represents
the hierarchical data path structure and its geometric implementation, called
the floor-plan. A detailed discussion on these two design representation models
can be found in [6].

Since these two design representation graphs capture the actual design data
of the application domain, tool access to BDDB will primarily be at the design
data level. In fact, design data stored in these two design representation graphs
is generated as well as modified by design tools as well as by human designers
during the design effort. BDDB itself is not concerned with creating this design
data information.

BDDB provides a set of primitive access routines for these design object
types, such as, the creation of such an object, the modification of an attribute
value, etc. This set of primitive access routines can be used by tightly-coupled
design tools to manipulate the design data objects. Design view creation also
take·s place at the design data level. Therefore, the BDEF format, which is
a design view of the BDDB Design Object Model, is mainly concerned with
capturing the design data found in the design representation graphs and not
with representing the design entity information maintained in the design entity
graph.

3.2 The Behavioral Object Type Definition Language

We need a formalism for defining all object types necessary to capture the BDDB
Design Object Model. This description language needs to handle the direct
representation and efficient manipulation of arbitrarily complex object types
that can be deeply nested, possibly recursive, graph structures. Therefore, we
have developed a Behavioral Type Definition Language1 .

The BNF description of this Behavioral Type Definition Language is given
in Figures 6 and 7. In this language, a design object type is defined with the
DEFINE TYPE statement by associating a name to a possibly nested type
structure.

As can be seen, the object type definitions allow for the description of com­
plex nested data structures typical for CAD applications. This is based on the
constructors, such as, aggregation, which supports the composition of simple

1 A language for the definition of new types is commonly referred to in the data base
literature as Data Definition Language.

3 THE BDDB DESIGN OBJECT MODEL

schema-definition : : = DEFINE SCHEMA < schema-name>
<simple-type>
<abstract-type>
END SCHEMA

<simple-type> : : = DEFINE SIMPLE TYPE < simple-type-name>

<simple-type-definition>
END TYPE

<abstract-type> : : = DEFINE ABSTRACT TYPE < abstract-type-name>

[SUPERTYPES: <type-name-list>]
DEFINED BY <property-list>

END TYPE

<type-name-list> - ' (' < type-name> { < type-name> } ; ')'

<property-li'st> : : =
TUPLE-OF (<property-specification>

{,<property-specification>})
I <generic> < abstract-type-name> <characteristics>

<property-specification>::=
< property-name>: <domain-specification>

<domain-specification> : :=

< simple-type-name> <characteristics-simple>

14

<generic> ' ('< simple-type-name> <characteristics-simple>') '
< abstract-type-name> <characteristics>
<generic> '('[REFERENCE]<

abstract-type-name><characteristics>')'

<characteristics-simple> [UNIQUE] [REQUIRED]

<characteristics> : :=
[INVERSE-OF < property-name>] [UNIQUE] [REQUIRED]

<generic> : := SET-OF I LIST-OF

Figure 6: The Syntax of the Behavioral Object Type Definition Language

3 THE BDDB DESIGN OBJECT MODEL

<simple-type-definition> : := <integer-specification>
I <real-specification>
I <enumeration-specification>
I STRING
I BOOLEAN

<integer-specification> : := INTEGER [<integer-range>]
<real-specification> : := REAL [<real-range>]
<enumeration-specification> : := <enumeration>
<integer-range> : := (<integer> .. <integer>)
<real-range> : := (<real> .. <real>)

15

Figure 7: The Syntax of the Behavioral Object Type Definition Language (cont.)

object types to define more complex object types. They allow for shared subob­
jects as well as for the description of many-to-many relationships that possibly
can be symmetric. In fact, the model allows for recursively defined object types
provided it leads to the definition of domains whose elements are finite. For
instance, a data flow node can be described in terms of the control flow node
to which it belongs while a control flow node can be described by listing its
sub constructs, such as, its data flow nodes.

An object type is defined in terms of a set of attributes. An attribute
specification defines the type of an attribute value. We support primitive types,
user-defined abstract data types, and type constructors. The following collection
of atomic types: Integer, String, Boolean, and Real, is assumed. User-defined
abstract data types are constructed via type constructors as discussed below.

The Behavioral Type Definition Language supports three generic abstract
data types: finite sets, lists and tuples. Generic (or parameterized) types are
parameterized by one or more objects that can be of any type. They are a
powerful tool for constructing new types; since they offer a homogeneous imple­
mentation for constructors. Below, we will describe these parameterized type
constructors in more detail.

3 THE BDDB DESIGN OBJECT MODEL 16

If T, Tl to Tn are abstract data types (ADTs), and Al and A2 are names,
then the generic type constructors can be used to defined complex abstract data
types as follows:

• SET-OF(T) is an ADT,

• LIST-OF(T) is an ADT, and

• TUPLE-OF(A1 :T1,A2:T2, ... , An:Tn) is an ADT.

The parameterized type SET is commonly called a collection or an association
abstraction in the data base field. It describes an unordered collection of objects
of the same type T. A set can have an arbitrary number of members, i.e., it can
be empty.

The parameterized type LIST is similar to the parameterized type SET. That
is, like a set, it can have an arbitrary number of members. A list, however,
implies an ordering on its members. Note that the list concept can be used fo
model a bag or multi-set; since it allows to store more than one occurrence of
an element and one can simply ignore the ordering of the list.

The parameterized type TUPLE associates named objects of different types
into one new type. It is commonly called an aggregation abstraction (or record)
by the data base community. In the relational model, the term record implies
that the field within the record are of primitive data types, while in a TUPLE
type each of the fields can again be a complex attribute.

New types can then be constructed based on the predefined types and the
parameter types by supplying specific parameter type to a generic type con­
structor. The SET constructor constructs the new object type SET-OF-TYPE1
when instantiated with the object type TYPEl. The LIST constructor con­
structs the new object type LIST-OF-TYPE1 when instantiated with the ob­
ject type TYPEl. The TUPLE constructor constructs the new object type
TUPLE(TYPE1, TYPE2,. . . TYPEn) when instantiated with the object types
TYPEl to TYPEn. These parameterized types have fixed sets of properties
and operations. Object instances that created from such a parameterized type
share the same protocol, i.e., the same set of messages, with different types of
parameters.

Many different user-defined object types can be created from one parameter­
ized type by instantiating the type parameter to a specific type. For instance, the
parameterized type SET-OF(<TYPE>) may be instantiated to the specific object

3 THE EDDE DESIGN OBJECT MODEL 17

types SET-OF (EMP) and SET-OF (DEF) . These instantiations of the parameter­
ized type SET then share common operations. For instance, SET-OF (EMF) sup­
ports the operation INSERT(se: SET-OF EMF, e: EMP); and SET-OF (DEP)

supports the operation INSERT(sd: SET-OF DEP, d: DEP). The parame­
terized types thus allow the creation of new, strongly typed objects.

In the behavioral synthesis domain, we deal with several graph types. Ex­
amples are the state. transition graph, the control flow graph, the data flow
graph, and the structure graph. Since these graphs have different characteris­
tics we provide only the basic type constructors discussed above out of which
these graph objects can be constructed. Other features of our type definition
language that are useful for constructing graph objects are reference of objects
rather than containment of subobjects, bi-directionality of edges, and the sym­
metry of relationships.

In Figure 8, we show the example object type definitions needed to describe
the schema for an example behavioral synthesis domain, namely, parts of the
control/ data flow graph. A more detailed description of the ECDFG object
types can be found in Appendix B.

The definition has several interesting characteristics that should be noted.
First, this schema consists of recursively defined object types. For instance, the
object type definition for the CF-NODE is recursive, since one of its attributes
Previous-Cf is defined to be of type CF-NODE. This is an example of how a
graph structure can be modeled.

Secondly, the Port-Conf attribute corresponds to a port configuration, i.e.,
it models the input and output connections of a CF-NODE instance with other
CF-NODE instances. Note that the Port-Conf attribute is a complex subobject,
i.e., the port configuration is described by a separate type definition called
PORT-CONF. Such a given PORT-CONF belongs to exactly one CF-NODE
instance rather than being shared by more than one CF-NODE instance.

3 THE BDDB DESIGN OBJECT MODEL

DEFINE SCHEMA CFSCHEMA
DEFINE SIMPLE TYPE portnames

STRING(4)
END TYPE;

DEFINE ABSTRACT TYPE CF-GRAPH
DEFINED BY

SET-OF CF-NODE
END TYPE

DEFINE ABSTRACT TYPE CF-NODE
SUPERTYPES: CF-CONSTRUCT
DEFINED BY

Name: String(20) REQUIRED,
Previous-Cf: SET-OF CF-NODE,
Next-Cf: LIST-OF CF-NODE,
Port-Conf: PORT-CONF UNIQUE

END TYPE

DEFINE ABSTRACT TYPE PORT-CONF
SUPERTYPES:
DEFINED BY

InPortNum: integer,
InPorts: SET-OF PORT

END TYPE

DEFINE ABSTRACT TYPE PORT
SUPERTYPES:
DEFINED BY

portnum: integer,
portname: portnames,
portref: CF-NODE

END TYPE
END SCHEMA

18

Figure 8: An Example Using the Behavioral Object Type Definition Language

4 THE BDEF FORMAT 19

4 THE BDEF FORMAT

4.1 Overview over the BDEF Syntax

This section describes the textual flow graph view class, called BDEF (Be­
havioral Design Exchange Format). BDEF effectively corresponds to a set of
rules for describing instances of design data objects defined by the Behavioral
Type Description Language. Hence is also called Behavioral Instance Descrip­
tion Language. For the complete BNF grammar of the the Behavioral Instance
Description Language applied to the ECDFG design representation model [6]
the reader is referred to Appendix A. In this section, we will introduce the
BDEF constructs by means of examples. In Figure 9, we show the general BNF
syntax of BDEF. This syntax corresponds to general rules of textual instance
description, for instance, it specifies how a list attribute is represented. It does
however not give the actual attribute names and attribute values of the applica­
tion domain. Consequently, this BDEF format could be applied to other design
representation models.

In the rest of this section, though, we will describe how the BDEF syntax
has been applied to our example application, i.e., to the BDDB Design Object
Model. In Figure 9, we give a description the general BDEF format rules using
BNF formalism. In Figure 10, these BDEF format rules are shown in a graphical
manner. This graphical representation uses the following constructs:

• An arrow indicates that the object at the source of the arrow (higher in
the tree) is represented in terms of the objects at the destination of the
arrow (lower in the tree).

• A dot at the source of an arrow indicates that the object at the source of
the arrow corresponds to a set of the objects below.

• A half cicle around all arrows leaving an object indicates that the object
is composed of one and only one of the objects below. If there is no half
circle then the object above must be composed of all objects below.

• Objects in bold print correspond to internal nodes. Objects in light print
correspond to leaf nodes of the syntax tree. Leaf nodes are not further
defined in the syntax tree, i.e., they correspond to values from a simple
domain type, like, Integer or String. Non-leaf objects are further defined
in the syntax tree, namely, based on the decomposition described by a set
of one or more arrows leaving the node.

4 THE BDEF FORMAT

design-file : :=design-entities
design-entities : := design-entity { design-entity }
design-entity::= '('design-entity-header design-entity-body')'
design-entity-header::= '[' header-attributes ']'
design-entity-body : := design-object { design-object }
design-object : := '('design-object-header design-object-body')'
design-object-header : := design-object-type#object-id
design-object-body : := design-object-attributes
design-object-attributes : := design-object-attribute

{',' design-object-attribute}
attributes : := attribute { attribute }
attribute : : =

attribute-name ': ' attribute-value
attribute-name '·' '<'list-of-attribute-values '>'

I attribute-name ':' '{'set-of-attribute-values '}'

20

list-of-attribute-values : := attribute-value{, attribute-value}
set-of-attribute-values attribute-value{, attribute-value }

attribute-value : :=

simple-value
I list-of-attribute-values
I set-of-attribute-values
I independent-design-object
I dependent-design-object
I design-object-reference

design-object-reference : := '#'design-entity-reference
'#'design-object-type'#'object-id'#'

independent-design-object : := design-object
dependent-design-object : := '['design-object-body']'

Figure 9: BNF Syntax of BDEF

4 THE BDEF FORMAT

design-file

T
design-entitles

T
design-entity (DE)

"(" DE-header

''r DE-header- attributes"]

DE-body ")"

~objects
T

design-object (DO)

" (" DO-header DO-attributes ')"

T
DO-type "#" DO-ident DO-attribute

attr-name • :" attr-value

21

simple-value listof-attr-values setof-attr-values DO-reference independent- DO dependent-DO

"<" attr-values ">" "{" attr-values "}"
"r' DO-attributes "]"

"#'' DE-ident"#'' DO-type"#"DO-ident'!#"

Figure 10: Graphical Depiction of BDEF Syntax Tree

4 THE BDEF FORMAT 22

• A bold underlined object indicates that the object is further defined at
another location in the syntax tree.

4.2 Using BDEF to Represent Design Entity Information

As explained in Section 3.1, design entities are the units of data transfer between
BDDB, i.e., ~econdary storage, and the design tools, i.e., main memory [6).
Hence, BDEF is not used to represent the complete Design-Entity Graph Model.
Instead, BDEF is used to represent information associated with one design
entity only. This includes the design entity attributes (stored in the DEG) and
the design data objects contained in the design entity (stored in one of the
Design Representation Graphs). The BDEF representation of the design entity
attributes is discussed in this section and the BDEF representation of the design
data objects in the next section.

A design file which corresponds to an ASCII file that is exchanged between
BDDB and design tools holds one or more design entities. As indicated in the
syntax in Figure 9 the order of design entities in a design file is insignificant. In
a design file, each design entity is encapsulated by a pair of parentheses.

The BDEF representation of a design entity consists of a design entity header
and a design entity body. The design entity header gives the general characteris­
tics of the design entity, while the design entity body describes the composition
of the design in terms of actual design data objects.

In a BDEF description, the design entity header is listed before the de­
sign entity body. The design entity header, encapsulated by a pair of square
parentheses, lists a set of header-attributes. Example header-attributes are the
following:

• the design entity name,

• the design entity version number,

• the design entity domain type,

• the design entity flavor, and

• the design entity chunk type.

4 THE BDEF FORMAT 23

The first two attributes are used to uniquely identify the design entity.
The last three attributes in the design entity header characterize the design
data objects out of which the design entity is composed of. For instance, the
domain-type attribute indicates whether the design data objects belong to the
behavioral or to the structural domain. If the domain-type attribute is behav­
ioral, then the behavioral-flavor attribute gives more details on the informa­
tion content of the design. For instance, it would indicate whether it is a purely
behavioral design or whether state information has already been synthesized.

The domains of these attributes are:

• domain type: { behavior, structure } .

• behavioral flavor: { behav-pure, behav-states, behav-allocation,

behav-binding, behav-control }.

• behavioral design chunk: {data-flow, control-flow, control-data-flow,
state-graph, state-control-flow, state-control-data-flow}.

• structural flavor: { comps, comps-connections, comps-geometry-estimates,
comps-geometry}.

These header-attributes are represented in BDEF like all other attributes.
Therefore see the discussion on the attribute representation below for further
details. A BDEF description of one example design entity is given next:

This design entity has three attributes that make up its header information.
The actual representation of the design entity body is discussed next.

4 THE BDEF FORMAT 24

/* one design entity */
(

[

J

/* design entity attributes */
DD..NAME: CONTROL_COUNTER,
DD_VERSION: 20,

DD..DOMAIN: BEHAVIOR,
DD-13EHAV ...FLAVOR: BEHAVIOR....STATES,
DD_CHUNK_TYPE: STATE_CONTROL..DATA..FLOW

/* design entity body goes here. */
/* It is a collection of design objects. */

This design entity has five attributes that make up its header information.
BDEF representation of the design entity body is discussed in the next section.

4.3 Using BDEF to Represent Design Data Information

The design entity construct is a concept introduced by BDDB to decompose the
potentially large set of design data objects into manageable chunks. In other
words, a design entity is an abstraction of a collection of actual design data
objects which are represented in its design entity body. These design objects
can be as high-level as a complex process description or as low-level as a simple
logic gate. In this section, we are concerned with the BDEF representation of
these design data objects.

These design data objects are instances of object types that capture our
design representation model [6). Recall that our design representation model
distinguishes between the behavioral graph model and the structural graph model
which correspond to the Extended Control/Data Flow Graph (ECDFG) Model
and Annotated Component Graph Model, respectively. In this paper, we will
use the former, the Extended Control/Data Flow Graph (ECDFG) model as
example application since it is the more interesting and diverse model. The
ECDFG model is described by a collection of design object types defined by
the Behavioral Object Type Definition Language (see Appendix B). A complete
implementation of these design data types in the C programming language has

4 THE BDEF FORMAT 25

also been developed [4]. Note however the former abstracts concepts of the
application domain, like for instance, ordered lists of ports, sets of operations,
whereas the later stays at a lower level of implementation details. In Appendix
A, we give the complete BDEF syntax for capturing all design object types
of these Design Data Representation Graphs. Whereas below we will describe
some general rules on how to represent these design data objects using the
BDEF view format.

In BDEF, each design object is encapsulated by a set of parenthesis. The
BDEF description of a design object consists of three parts: its object type,
its identifier, and its attributes. The type of the design object is given at the
beginning of its BDEF description. In addition, the object identifier of the
design object which uniquely identifies the object within a given design entity is
appended with a '#' symbol. For instance, a data flow node with the identifier
10 would be represented in BDEF as follows:

(DF..NDDE #10

/* data fiow node attributes here *I

A design object is described by listing one or more of its attributes. At­
tributes are identified by giving attribute names rather than using their posi­
tion. This introduces redundant data as attribute names are repeated within
the definition of each object. It is needed, however) since the number and type
of attributes of a design object may vary with the requirements of design tools,
i.e., the design view type. All attribute specifications correspond to an attribute
name and value pair. The attribute name and value pair is separated by the
":" symbol. The attributes of a design object are listed by separating them by
commas, with the ordering of the attributes being arbitrary due to the use of
attribute names. Therefore, the data flow node example can now be extended
as follows:

(DF..NDDE #10

attribute-name1: attribute-value1,
attribute-name2: attribute-value2,

As shown in Figure 10, an attribute value can be one of the following:

4 THE BDEF FORMAT 26

l. a simple value,

2. a list of attribute values,

3. a set of attribute values,

4. an independent subobject,

5. a dependent subobject, or

6. an object reference.

The format of simple values is determined by the domain of the attribute.
The domain of a simple value is a primitive data type, such as, integer, float,
boolean, or string. Simple attribute values often are also restricted to a pre­
defined domain (an enumeration type) that corresponds to a subset of one of
these primitive data types.

Furthermore, If the object type of an attribute value corresponds to a list
or to a set of attribute values, then the attribute values themselves can be al'ly
of the above listed options. If the object type of an attribute is of type SET,
then the instance of that type has an attribute value of the form '{' el, e2,
.. ., en '}'. In other words, set-valued attributes are distinguished from single
values by enclosing the attribute value list into a pair of set brackets '{' and
'}'. Furtheremore, two adajent data values in a set attribute are separated by
a comma. If the object type of an attribute is of type LIST, then the instance
of that type has an attribute value of the form'<' el, e2, ... ,en '>'. We have
extended the previous example to show a simple attribute, a list attribute and
a set attribute:

(DF....NODE #10

/* simple attribute *I
node-typ~: STRING,

I* list attribute *I
input-ports: < !1, !2, !3 >,

/* set attribute */
operations: {ADD, SUBTRACT},

4 THE BDEF FORMA.T 27

The list attribute input-ports consists of the three values Il, 12, and 13.
Being a list attribute, the order of these values is significant since it is a For
instance, Il might correspond to the left data input, 12 to the right data input,
and 13 to the carry input to the data fl.ow node. The order of the attribute
values for the set attribute, on the other hand, is not significant. The attribute
operations simply indicates that the data fl.ow node may either execute an
addition operation or an subtraction operation. It says nothing however about
the fact when or in which order either of these two is used.

Recall that an attribute value can correspond to a dependent or an inde­
pendent subobject. This attribute type is introduced to support the modeling
of a hierarchy of design objects, i.e., the fact that a design object is composed
of other lower-level design objects. If a design object is composed of lower-level
design objects, then these lower-level design objects (subobjects) become at­
tribute of the super-object. Subobject attributes are treated as follows. The
format of independent design objects has been described earlier in this report,
namely, they are encapsulated by a pair of round brackets '(' and')'. Recall that
independent design objects correspond to full-fl.edged design objects with their
own unique identifier. Dependent design objects on the other hand correspond
to design objects that exist only in the context of their 'super-' design object.
Therefore, dependent design objects - similar to simple values - do not carry
any identifiers. In BDEF, dependent design objects are encapsulated by a pair
of angular brackets '[' and ']', while independent design objects, nested or not
nested, are encapsulated by a pair of round brackets '(' and ')'. In other words,
if an object type has an attribute of type TUPLE, then the instance of that
type has an attribute value of the form [al:ol, a2:o2, ... , an:on]. If, on the other
hand, an object type Tl has an attribute of type T2, then the instance of that
type has an attribute value of the form (t2) with t2 an instance of the object
type T2. In short, if a design object is composed of lower-level design objects,
then a nesting of parenthesis is created in BDEF to model this design object
containment relationship. Again we have extended our data fl.ow node example
to show an example of both a dependent and an independent subobject:

(DF_NODE #10

I* list of independent subobjects attribute */
ports:< (DF_PORT #1 ...), (DFYORT #2 ...) >,

/* dependent subobject attribute */
condition: [cond: STRING, value: STRING, op: OPERATION]

4 THE BDEF FORMAT 26

l. a simple value,

2. a list of attribute values,

3. a set of attribute values,

4. an independent subobject,

5. a dependent subobject, or

6. an object reference.

The format of simple values is determined by the domain of the attribute.
The domain of a simple value is a primitive data type, such as, integer, float,
boolean, or string. Simple attribute values often are also restricted to a pre­
defined domain (an enumeration type) that corresponds to a subset of one of
these primitive data types.

Furthermore, If the object type of an attribute value corresponds to a list
or to a set of attribute values, then the attribute values themselves can be al'ly
of the above listed options. If the object type of an attribute is of type SET,
then the instance of that type has an attribute value of the form '{' el, e2,
... , en '}'. In other words, set-valued attributes are distinguished from single
values by enclosing the attribute value list into a pair of set brackets '{' and
'}'. Furtheremore, two adajent data values in a set attribute are separated by
a comma. If the object type of an attribute is of type LIST, then the instance
of that type has an attribute value of the form '<' el, e2, ... , en '>'. We have
extended the previous example to show a simple attribute, a list attribute and
a set attribute:

(DF ...NODE #10

/* simple attribute */
node-typ~: STRING,

/* list attribute *I
input-ports: < Ii, I2, I3 >,

/* set attribute */
operations: { ADD, SUBTRACT},

4 THE BDEF FORMA.T 27

The list attribute input-ports consists of the three values 11, 12, and 13.
Being a list attribute, the order of these values is significant since it is a For
instance, 11 might correspond to the left data input, 12 to the right data input,
and I3 to the carry input to the data flow node. The order of the attribute
values for the set attribute, on the other hand, is not significant. The attribute
operations simply indicates that the data flow node may either execute an
addition operation or an subtraction operation. It says nothing however about
the fact when or in which order either of these two is used.

Recall that an attribute value can correspond to a dependent or an inde­
pendent subobject. This attribute type is introduced to support the modeling
of a hierarchy of design objects, i.e., the fact that a design object is composed
of other lower-level design objects. If a design object is composed of lower-level
design objects, then these lower-level design objects (subobjects) become at­
tribute of the super-object. Subobject attributes are treated as follows. The
format of independent design objects has been described earlier in this report,
namely, they are encapsulated by a pair of round brackets'(' and')'. Recall that
independent design objects correspond to full-fledged design objects with their
own unique identifier. Dependent design objects on the other hand correspond
to design objects that exist only in the context of their 'super-' design object.
Therefore, dependent design objects - similar to simple values - do not carry
any identifiers. In BDEF, dependent design objects are encapsulated by a pair
of angular brackets '[' and ']', while independent design objects, nested or not
nested, are encapsulated by a pair of round brackets '(' and ')'. In other words,
if an object type has an attribute of type TUPLE, then the instance of that
type has an attribute value of the form [al:ol, a2:o2, ... , an:on]. If, on the other
hand, an object type Tl has an attribute of type T2, then the instance of that
type has an attribute value of the form (t2) with t2 an instance of the object
type T2. In short, if a design object is composed of lower-level design objects,
then a nesting of parenthesis is created in BDEF to model this design object
containment relationship. Again we have extended our data flow node example
to show an example of both a dependent and an independent subobject:

(DF...NODE #10

/* list of independent subobjects attribute */
ports: < (DF _FORT #1 . . .) , (DF _FORT #2 . . .) >,

I* dependent subobject attribute */
condition: [cond: STRING, value: STRING, op: OPERATION]

4 THE BDEF FORMAT 28

The ports attribute corresponds to a list of independent design subobjects.
Each port object has its own unique identifier and could have been represented
as separate object in the BDEF description. For this example, however, we
have chosen to represent data flow port objects as nested subobjects of the
data flow node objects, since ports are conceptually closely related to one and
only one data flow node. The condition attribute corresponds to a dependent
design subobject. This attribute does not have its own unique identifier, i.e.,
the condition information would be meaningless without the corresponding data
flow node object. The condition attribute indicates the condition under which
each of the operations associated with the data flow node is executed.

We introduce the concept of BDEF references in order to model relation­
ships between design objects. In BDEF, references themselves don't carry any
attributes. The format of a reference consists of three parts, each separated by
a '#'symbol. The first part names the design entity in which the referenced
design object is being defined. The second part gives the object type of the
design object that is being referenced. Finally, the third part gives the identi­
fier of the design object that is being referenced. The referenced design object
can either be in the same design entity as the referencing design object or in a
different design entity. The default of the same design entity is assumed. If the
first part of the reference is null, i.e., no design entity name is specified, then the
reference is assumed to be referring a design object within the current design
entity. We have extended the data flow node example to reflect the fact that the
data flow node is referencing the control flow node to which it belongs. Since
the data flow node and the control flow node are both in the same design entity,
the reference attribute only gives the type of the referenced object, CF _NODE,
and its identifier, in this case, 5.

(DF...NODE #10

/* reference attribute *I

associated-cf-node: ##CF...NODE#S#,

A design object can only be defined once within a design entity description,
but it can be referenced multiple times. This means that an object identifier
can be listed only once in an object header, but can be specified numerous times
in form of an object reference.

5 BDEF DESIGN VIEWS 29

5 BDEF DESIGN VIEWS

In section 2, we have introduced our general approach for handling design views
in BDDB. In this section, we will concentrate on one example of such a design
view class, namely, the textual flow graph format BDEF.

BDEF Design Design View Class For The ECDFG Model:

Design View Class

is BDEF

instantiate

Design View Parameters

are domain_type,
behavioral_flavor, etc.

Design View Types

are BDEF-CFG,
BDEF-STG, etc.

Figure 11: BDEF Design Views

The relationship between the general BDDB design view scheme and the
BD EF design description is shown in Figure 11. Using the terminology intro­
duced in Section 2, the textual flow graph language BDEF is called a design

5 BDEF DESIGN VIEWS 30

view class. Furthermore, the design entity characteristics presented in Section
4.2 correspond to the view parameters of the BDEF design view class. Recall
that the selection of values for all view parameters of a design view class will
determine a particular design view type (Figure 11). Consequently, a particu­
lar combination of design entity characteristics determines the desired BDEF
design view type.

A discussion of the BDEF design view parameters follows. The BDEF de­
scription of a design entity can either be composed of design objects from the be­
havioral domain or from the structural domain, i.e., the Extended Control/Data
Flow Graph (ECDFG) or the Annotated Component Graph (ACG). This is de­
termined by the domain-type view parameter. Another distinction between
different view types of a design entity is based on the amount of information
associated with the design objects that compose the design entity. For instance,
if the behavioral-flavor parameter is set to behav-states then the design
objects that compose the corresponding design entity will describe the design be­
havior augmented by state assignment information. If the behavioral-flavor
parameter is equal to pure-behav then the design objects will only capture the
specified behavior of the design.

The view generation process is driven by integrity rules that distinguish
between the following three attribute modes:

• required,

• optional,

• and not-allowed.

These integrity rules are important since they ensure the correctness of in­
formation in a BDEF design view description. A novel feature of our integrity
rules is that these attribute modes are determined dynamically rather than
statically. Meaning the mode of an attribute is not fixed during object type
definition but varies with the given design view type. An example of an at­
tribute that is required for all design view types is the object identifier. An
example of an attribute that is only sometimes required is the state infor­
mation. If the behavioral-flavor view parameter is equal to behav-states,
then the associated state attributes become required for both the control­
fiow and the data-fl.ow nodes. Otherwise they are optional. If, however, the
behavioral-flavor parameter is equal to pure-behav, then the associated
state attributes are not-allowed. This is one important means for BDDB to

5 BDEF DESIGN VIEWS

ECDFG
Model

BDEF View Generators
(pbc/tcp tool pair)

Figure 12: BDEF Design View Generators

31

5 BDEF DESIGN VIEWS 32

verify the correctness of the information in a BDEF view and to guide the view
generation process.

We have developed BDEF Design View Generator software. These tools
extract BDEF design views from the BDDB Design Object Model using the
view parameters described earlier. Vice versa, these tools also extract BDEF
design views from a given BDEF design description and map this subview of
the design information into the corresponding BDDB Design Object Model, i.e.,
the ECDFG graph structures.

The BDEF View Generator package has three view parameters, namely,
design entity domain type, design entity flavor, and design entity chunk type.
These parameters are set by the user of these generators, and allow him/her
to request a certain type of design data and organization of this data. The
view generators then check whether the requested information is available in
the current design description. If it is then the desired view is generated. If the
requested information is not available then the user of the BDEF view generator
will be notified.

This BDEF view generator is a valuable tool for design data exchange in a
behavioral synthesis environment. First, it allows to capture design data ma­
nipulated on by design tools in one common format. And secondly, it supports
the mapping of this design information from the BDEF format to the shared
design representation data structures and back. A manual that describes how
to use this software is appended to this report (Appendix D).

6 EXAMPLES 33

6 EXAMPLES

In this section, we show several examples of how the designs in the BDDB Design
Object Model (in particular, the ECDFG graph structures) are described by the
BDEF exchange format.

6.1 A Simple Data Flow Graph Example

In this section we present the BDEF description of a simple data flow graph
example. The behavioral spec~fication of this design corresponds to the VHDL
description "C = A + B". The graphical representation of this specification
is given in Figure 13. On the left-hand side of the figure we show a high­
level graphical depiction of the design representation, while on the right-hand
side we show a more detailed view of the data flow graph. The more detailed
presentation shows the net objects, which represent the data values that flow
between data flow node objects, and the port objects. Ports are (independent)
subobjects of data flow nodes and nets that model the interconnection points
of these nodes. In addition, all data flow nodes, data flow nets, and data flow
ports have their own object identifiers which is depicted by integer numbers to
the left of each object.

The BDEF description of this design example is shown in Figures 14 and
15. As can be seen in the BDEF description, all data flow nodes, data flow
nets, and data flow ports are described as independent design objects with
their own object identifiers. Note that all design objects are part of the same
design entity. Therefore, all references used in this BDEF description are of the
form ##object-type#id#, and the default, namely, the current design entity,
is assumed.

6.2 A Complete Control/Data Flow Graph Example

In this section, we present a complete example of how to use BDEF to model
both control flow as well as data flow. Figure 16 shows a design specification
written in VHDL. This design specification is compiled into a ECDFG design
representation with a VHDL Graph Compiler [3]. The resulting graphical rep­
resentation which corresponds to a control/data flow graph, is given in Figure
17. This depiction of the design representation is, of course, a high-level view

6 EXAMPLES 34

READ{A) READ(B)

WRITE(C) WRITE{C)

Behavioral Design Specification: "C <=A+ B;"

Figure 13: Graphical Representation of a Data Flow Graph

6 EXA.\f PLES

DLNA\fE EXA\f PLLDFG
DD_ VERSIO:\ DEFACLT
DD_DO\fAI:_TYPE: BEHAVIOR,
DD-.FLAVOR BEHAVIOR_PCRE.
DD_CHU\K_TYPE DAT:LFLO\\'

(DF _'WDE#l
\IODE_CLASS: DLOP,
NU\LL'iPUTS: 0,
NU\LOCTPCTS 1,
OUTPUTl: <

(DF_PORT#l
IO_CLASS: Ot:TPUT,
PORT_TYPE: DATAYORT,
NU\LCONN: 1,
CONNl: < ##DLPORT#2# >
)>,

DLNODE-1NFO: [
SIG--''\IAME: "A",
SIG_TYPE: PORT,
NOOE_TYPE: OATA...ACCESS,
OF_OPJNFO <

[OP_CLASS: \11sc_op.
OP_TYPE: READ,
OP_NA\IE: "A"
]>

(DF_\ET#3
'.\OOLCLASS: DF ~.\RC,
..\C\LI\PCTS: 1,
I\PUTl: <

(DF _PORT#2
IO_CLASS I\Pl'T.
PORT_TYPE DATAYORT,
Nl\LC0\\1: 1,
CONNl: < ##OF YORT#l# >
)>.

\fU\LOUTPlTS: 1,
OUTPUTl: <

(OLPORT#6
IO_CLASS: OUTPUT,
PORT_TYPE DATAYORT,
NUM_CONN: 1,
CONNI: < ##DF YORT#5# >
)>

35

DL'<ELINFO: [
\ET_TYPE OAT:L'iET.
\l'\LREPRES BI\! ARY
l

(DF~'WDE#2
.'iODLCLASS: OF OP
NUM-1NPUTS: 0, - ,
NC\LOUTPUTS: 1,
OCTPUTl: <

(OLPORT#3
IO_CLASS: OUTPUT
PORT_TYPE: OATAJ>ORT
NUM_CONN 1, '
CONNI:< ##DF ..PORT#4# >
)>,

DF _\ODE-1NFO: [
SIG_NA.\fE: "B"
SIG_TYPE: PORT
.\'ODLTYPE: DATA...ACCESS
DLOP JNFO: < '

[OP _CLASS: MISC_OP.
OP_TYPE: READ
OP_\\~tE: "B" 1

]>

(OF _\£T#4
\OOLCLASS: OF ~.\RC,
'.\'C\UNPUTS: 1.
I.'{PUTl: <

(Df YORT#4
IO_CLASS: I\Pl'T,
PORLTYPE: DATA..PORT
\G.\LCON\ 1, ,
CO.\'\ 1 < ##OF ..PORT#3# >
)>,

\UiLOCTPVTS· 1
Ol'TPliTI: < . '

(0f_PORT#8
IO_CLASS: OUTPUT,
PORLTYPE: DATA..PORT
\CvLCONN 1. '
CO'.'\Nl < ##DF ..PORT#7# >
)>.

· · i> D1ta flow Graph

6 £XA .\1P L.1:·s

DL.\'ET J\FO.:
\ET_TYPE. D.HL\ET.
\l.\LREPRES Bl\ARY
l

(OF _.\ODE#.'i
\'ODE_CLASS OF _op
:\"C.\LINPlTS 2.
l.\PliTl <

(OF _FORT#.S
ro_cu.ss I\PrT.
PORT_TYPE D.HAYORT.
\C.\LCO\\ !.
CO.\.\l: < ##OF _FORT#6# >
) '
(OF _PORT#?
!O_CLASS !\PCT,
PORT _TYPE: DATAYORT.
\C.\LCO\\ 1.
CONNl: < ##DFYORT#8# >
)>,

'.'.'l.\ILOCTPCTS: 1.
OUTPUTl: <

(OLPORT#9
IO_CLASS: Ol"TPL'T.
PORT _TYPE DATAYORT.
\ l'.:\L C 0 .\ .\ 1.
CO."J"Nl: < ##DFYORT#lO# >
)>'

OL'.'IODEJ.\FO: [
SIG_\fA.\1E: "+".
:'iODLTYPE OPERA.TIO\.
OLOP J.\FO: <

[OP _CU.SS ADO!.\G.
OP_TYPE ADD.
OP_:\~:\\IE .. ~ ..
]>

(DL\ET#6
:\OOLCLASS OF _.\.RC.
'.'.IC.\UNPUTS: 1.
INPCTl <

(OLPORT#lO
IO_CLASS: INPUT,

Figure l.'i BDEF Qpc:.:::r·.

PORLTYPE DA T..\._FORT.
\ l\LCO\\ 1.

36

CO\\ 1 < ##OF _FORT#9# >
)>.

\C.\LOlTPCTS 1,
OCTPCTl <

(OF _PORT# 12
ro_CLASS OCTPCT.
PORT_TYPE DATA_FORT,
.\C.\LCO'.'<N 1.
C0\:'-11 < ##DLPORT# 11# >
)>.

Df_\ETT\FO[
.\ET_TYPE DATA_\ET.
\C.\LREPRES: B!.\ARY

l

(OF _'liOOE#7
\ODLCLASS: OF _OP.
\U.\1JNPCTS 1,
!NPUTl: <

(DLPORT# 11
IO_CLASS: !.\PUT.
PORT_TYPE DATA_FORT,
NC.\LCOT'<\: 1.
CONN!< ##DF_FORT#12# >
)>,

NU.\LOUTPliTS: 0,
OF _\ODLINFO: [

SIG_.'.\'AME: ''C",
SIG_TYPE: PORT,
NODLTYPE: DATA_<\CCESS.
OF_OPJNFO <

[OP _CLASS: .\1ISC _OP.
OP _TYPE \\:RITE.
0 P _.\ ..\. .\1 E: "C"
]>

6 EXAMPLES 37

that does not detail many of the interrelationships and attributes of these design
objects.

flag

entity AM2910 is
port (

FULt_sig: out BIT

) ;

end AM2910;

architecture BEHAVIOR of AM2910 is
begin
process

variable SP
begin

BIT_VECTOR(2 do~nto O);

if (SP= B''100'') then
FULL_sig <= 0;

else
FULL_sig <= 1;
SP : = SP + 1;

end if;

end process;
end BEHAVIOR;

Figure 16: VHDL Design Specification

-- stack full

-- stack pointer

The BDEF Generator and the ECDFG Generator tools (see Appendix D)
now allow us to extract different BDEF design views from this design data. Due
to space limitations we list some of these, i.e., the data flow view, the control
flow view, and the control/data flow view in Appendix C, rather than presented
them here.

6 EXAMPLES

T :: (SP= 8"100");

true

FULL_sig <=O;

false

FULL_sig <=1;
SP:= SP+ 1;

Figure 17: A Graphical ECDFG Depiction of the VHDL Design Specification

38

6 EXAMPLES 39

6.3 An Example using Two Design Entities

In this section, we will discuss an example design that is decomposed into two
design entities.

architecture DE1 of Design1 is
II body of DE1

proc (A1, A2);

end DE1;

architecture DE2 of Design2 is
procedure proc (P1, P2) is

begin
II procedure body

end proc;
end DE2;

Figure 18: VHDL Description of a Procedure Definition/Call

This example contains a procedure definition as well as a procedure call.
In Figure 18, we show the VHDL description of the procedure definition of
procedure proc in design entity D2 and the usage of this procedure in form
of a procedure call in design entity Dl. The procedure proc has two formal
parameters Pl and P2. The procedure call uses the two actual parameters Al
and A2 which are bound to the formals Pl and P2, respectively. This VHDL
description is compiled into two design entities in BDDB as can be seen in Figure
19. Design entity Dl contains the design objects for the control/data flow graph
representing the procedure call, while design entity D2 holds the design data
objects for the procedure definition [6].

The BDEF description of this design is shown in Figure 20. There are two
different design entity objects in this design file, namely, design entity with
DD_Name=Dl and design entity with DD_Name=D2. Design entity Dl con­
tains several design objects of type CF_NODE. The first object CF _NODE#201
corresponds to the procedure call node. The second design object CF _NODE#202

r-3 £.\A..\IPLES

v
.\ijl]

::oo 'tmt-block

.:o 1

~IJ 1

2U2 stmt-block

v

DEl: DE2:

fi£1ire UJ: Graphical Repr~:oc:nt::ltion .;f ::l Procedurf' 0Pfinit1on C':ill

6 EXAMPLES

[DD....NAME: DE1,

DD_CHUNK_TYPE: CONTROL...FLOW

J
(CF....NODE#201

CF....NODE_TYPE: PROC_CALL,

PARAS: <A1, A2>,

PROCEDURE: #DE2#PROCEDURE#400#,

NUM...OUTPUTS : 1 ,

OUTPUT1: <

(CF_CONNS#1

IO_CLASS: OUTPUT,

CF_CONNS...REF: ##CF_CONNS#2#

)>,
...)
(CF ..NODE#202

CF ..NODE_TYPE: STMT ..ELK,

NUM...INPUTS : 1 ,

INPUT1: <

(CF _CONNS#2

IO_CLASS: INPUT,

CF_CONNS...REF: ##CF_CONNS#1#

)>,

...)
)

[DD..NAME: DE2,

DD_CHUNK_TYPE: CONTROL...FLOW

J
(CF ..NODE#400

CF ..NODE_TYPE: PROC...DECL,

PARAS: <P1, P2>,

...)
)

Figure 20: A BDEF Description of a Procedure Definition/Call Graph

41

6 EXAMPLES 42

models the statement block node that is executed after returning from the exe­
cution of the procedure call. In other words, it is connected via sequencing arcs
to the procedure call node in the control/ data flow graph in DE 1. This con­
nection between the objects CF_NODE#201 and CF_NODE#202 is described
in terms of CF _CONNS objects in the BDEF description. The design object
CF_CONNS#l, which is a nested subobject of CF_NODE#201, has an object
reference CF _CONNS_REF to the object CF _CONNS#2. CF _CONNS#2 on
the other hand is a nested subobject of CF _NODE#202 and it has a reference
back to the object CF_CONNS#l. Hence, it is a symmetric relationship.

In this example there are relationships between design data objects that re­
side in different design entities. Namely, the procedure call and its corresponding
procedure declaration are in the design entities DEl and DE2, respectively. In
Figure 19, this reference across design entity boundaries is represented by bold
dashed arrows. In a BDEF description, such an inter-design-entity reference is
specified by an extended object reference which indicates the design entity in
which the referenced object resides. Therefore, in this example BDEF descrip­
tion there is an object reference of the form "#DE2#PROCEDURE#400#"
that relates the procedure call node in design entity D 1 with the procedure
declaration node in design entity D2. The reference specifies the design entity
identifier "DE2" whereas all references that refer to objects within the same
design entity can simply omit this identifier.

6.4 A Timing Constraint Example At the Control Flow
Level

This section describes the representation of timing constraints in the ECDFG
model and the specification of these constraints in the BDEF format.

The discussion of timing constraints at the control flow level is based on the
ECDFG example depicted in Figure 17. This design has been augmented by
a timing constraint as shown in Figure 21. This timing constraint Tl specifies
a minimum delay of lOns and a maximum delay of 250ns for the execution of
the false branch of the if-statement. A timing constraint at the control flow
level originates and ends at a control fl.ow graph connection, a sequencing arc.
In Figure 21, this is displayed by the bold timing arcs labeled timing..start
and timingJinish that connect control fl.ow sequencing arcs with the timing
specification node. The timing specification then is a constraint on the execution
of all behavior specified between these two points in the control flow graph. If
the timing constraint is supposed to constrain some but not all of the threads
of computation between these two points, then a path expression needs to be

6 EXAMPLES

4

T :=(SP= 8"100");

6 8

FULL_slg <=O;

tlmln start

FULL_slg <=i;
SP:= SP+ 1;

tlmln finish

43

TIMING_ CONSTRAINT:

max_ delay = 250.0
mln_delay = 10.0
path = <5,8,7>

Figure 21: A Timing Constraint Specification at the CFG Level

6 EXAMPLES 44

specified to indicate this subset of possible paths. In this example, the timing
constraint specifies delay values for the execution of the false branch only (that
is, the right-hand side branch through the graph) rather than for the execution
of the complete if-statement. Therefore, the list"< 5, 8, 7 >"which corresponds
to the nodes on the constrained path is given. If no path has been specified,
then the default of all possible paths that lie between the TIMING_START and
the TIMING_FINISH is assumed. In this example, this would mean that the
timing specification would impose a constraint on both the true and the false
branch of the if-statement.

Figure 22 gives a more detailed view of the timing constraint shown in Figure
21. In particular, Figure 22 describes the details of the timing attributes as
well as the implementation of the path expression. Since the timing constraint
specifies delay values for the execution of the false branch only, a path expression
indicating this path is needed. This path expression is implemented by an
ordered list of object references to the control flow nodes that make up the path,
namely, control flow nodes CF_NODE#6, CF ..NODE#S, and CF_NODE#7.
Another timing attribute is the timing type, which in this case corresponds to
the value TT_CF_TO_CF. It indicates the object type of the source and the
destination of the timing constraint. This is important since the same timing
constraint construct is used to model timing constraints at both the control flow
and the data flow level.

The BDEF description for this example design is shown in Figure 23. The
timing constraints are inserted as independent design objects into the BDEF de­
scription. The specification of timing attributes for the nodes in the control/ data
flow graph, namely, the attributes TIMING_START and TIMING..FINISH is
optional. Therefore, a designer can add timing constraints to an existing design
representation graph by simply appending one or more of these timing con­
straint design objects to a BDEF description. This allows for a more precise
and fine-grained timing specification than the specification of these constraints
via high-level hardware description languages. In VHDL, for instance, the spec­
ification of timing constraints is extremely limited [6], since VHDL's timing
constructs address simulation time only. Therefore, researchers have resolved
to adding special-purpose constructs to the VDHL language to provide for a
more suitable method of timing specification for synthesis. Our BDEF ap­
proach offers a simple solution to this problem, since the specification of timing
could take place directly on the design representation level.

A BDEF SYNTAX FOR THE ECDFG MODEL 53

A BDEF SYNTAX FOR THE ECDFG MODEL

In this section, BDEF is used to specify Control/Data Flow Graph format that
describe Control/Data Flow Graph design objects. This format is used to fa­
cilitate the exchange of design data between the Behavioral Design Data Base
(BDDB) and design tools. A BNF syntax for this format is given next.

A.1 BDDB Design Entity Graph Information Syntax

A.2 BNF Syntax Introduction

The table below lists the meaning of the meta-symbols used in any BNF notation
found in this paper.

ema cons rue s e
<>

{} construct t an can appear

D
'' Encloses a symbol that is to be taken as literal.

A BDEF SYNTAX FOR THE ECDFG MODEL

A.3 BDDB Design Entity Graph Information Syntax

Design Entity File

top

Design Entity Header

BDDB_entity..header

'(' BDDB_entity..header

BDDB_design_data_objects
')'

'[' BDDB_object_entity_defs ']'

List of Characteristics of the Design Entity Object

BDDB_object_entity_defs BDDB_object_entity _def

54

BDDB_object_entity_defs "," BDDB_object_entity_def

Characteristics of the Design Entity Object

BDDB_object_entity_def DE_NAME ":" identifier

DE_ VERSION _NUM ":" unsigned_integer
DDJ)OMAIN_TYPE
":" DD_domain_type_spec
DD.J3EHAVIORAL_FLAVOR
":" DD_behavioraLfl.avor...spec
DD_CHUNK_TYPE
":" DD_chunk_type...spec

A BDEF SYNTAX FOR THE ECDFG MODEL

CfJfode Reference

cLnodeJist cLnode_ref

59

A BDEF SYNTAX FOR THE ECDFG MODEL 60

A.5 BDDB Control Flow Graph Information Syntax

Control Flow Node

cLnode_object '(' cLnode_header cLnode_attributes ')'

Control Flow Node Header

cLnodeJi.eader CLNODE '#' unsigned_integer

Control Flow Node Attributes

cfJlode_attributes cfJlode_attribute
cLnode_attributes ',' cfJlode_attribute

Control Flow Node Attribute

cfJlode_attribute STATE__REF ':' state_ref
CF_NODE_TYPE ':' cfJiode_type_spec
NUM_CF _COND__ITEMS ':' unsigned_integer
NUM.JNPUTS ':' unsigned_integer
NUM_OUTPUTS ':' unsigned_integer
DF_STYLE ':' dLstyle__spec
GRAPHICS.JNFO ':' graphics_info__spec
TOOL.JNFO ':' '[' tool_info_attributes ']'
INPUTl ':' '<' listoLcLconns '>'
OUTPUTl ':"<' listoLcLconns '>'
CF_COND.JTEM ':' '<'listoLcLcond_item '>'
DF _NODE_GROUP ':"<'listoLdfJlode_group '>'

A BDEF SYNTAX FOR THE ECDFG MODEL

List of Data Flow Node Groups

listoLdfJlode_group

Data Flow Node Group

dfJlode_group

dfJlode_grou p

listoLdfJlode_grou p ','
dfJlode_grou p

'[' dfJiode_group_attributes ']'

Data Flow Node Group Attributes

dfJiode_group_attributes dfJlode_grou p_attri bute

dfJiode_group_attributes ','
dfJiode_group_attribute

Data Flow Node Group Attribute

dfJiode_group_attribute DF_STMNTS ':'

'<' listoLdfJiodeJiet_refs '>'
CLNODE_.REF ':' cfJiode_ref
CONDITION':' identifier

List of Data Flow Node Reference Objects

listoLdfJiode_net..refs dfJiodeJiet_ref

61

listoLdfJiodeJieLrefs ',' dfJiode_net..ref

A BDEF SYNTAX FOR THE ECDFG MODEL

Data Flow Node Reference Object

dfJlode_net_ref '[' dfJlodeJleLref...header
dfJlodeJlet_reLattributes ')'

Data Flow·Node Reference Header

dfJlode_net_reLheader /*empty*/

List of Data Flow Node Reference Attributes

listoLdfJlode_net_reLattributes
dfJlodeJleLreLattribute
listoLdfJlodeJleLreLattributes ','
dfJlodeJlet_reLattribute

List of Data Flow Node Reference Attribute

listoLdfJlode_net_reLattribute
SYMBOL ':' stringJiteral
TDF _NODE_REF ':'dfJiode_ref

List of Control Flow Node Connections

listoLcLconns cLconns_object
listoLcLconns ',' cf_conns_object

Control Flow Connection Node

62

cLconns_object '(' cLconns_header cf_conns_attributes ')'

A BDEF SYNTAX FOR THE ECDFG MODEL

Lzst of Data Flow Node Groups

listoLdfJl o d e_gro up

Data Flow Node Group

dfJlode_group

dfJlode_group

listoLdfJiode_group ','
dfJlode_group

'[' dfJlode_group_attributes ']'

Data Flow Node Group Attributes

dfJlode_group_attributes dfJiode_group_attribute

dfJlo de_grou p_attri bu tes ','
dfJlode_group_attribute

Data Flow Node Group Attribute

dfJlode_group_attribute DF_STMNTS ':'

'<' listoLdLnodeJiet_refs '>'
CF_NODE__REF ':' cLnode_ref
CONDITION':' identifier

List of Data Flow Node Reference Objects

listoLdfJiode_net_refs dfJlode_net_ref

61

listoLdf_node_net_refs ',' df_node_net_ref

A BDEF SYNTAX FOR THE ECDFG MODEL

Data Flow Node Reference Object

dLnode_neLref '[' dLnode..lleLreLheader
df..llode_net__reLattributes ']'

Data Flow Node Reference Header

df..llode_net....reLheader /*empty*/

List of Data Flow Node Reference Attributes

listoLdf_node_neLreLattributes
df..llode..Jlet_reLa ttri bu te
listoLdf..llode..Jlet_reLattributes ','
df..llode..Jlet_reLattri bu te

List of Data Flow Node Reference Attribute

listoLdf..llode_neLreLattribute
SYMBOL ':' stringJiteral
TDLNODKREF ':'df..llode....ref

List of Control Flow Node Connections

listoLcLconns cLconns_object
listoLcLconns ',' cLconns_object

Control Flow Connection Node

62

cLconns_object '(' cLconns_header cLconns_attributes ')'

A BDEF SYNTAX FOR THE ECDFG MODEL 63

Control Flow Connection Node Header

cLconns_header CF _CONNS '#' unsigned_integer

Control Flow Connection Node Attributes

cLconns_attributes cLconns_attribute ',' cLconns_attributes

Control Flow Connection Node Attribute

cLconns_attribu te IO_CLASS ':' io_class_spec
PROCESSED ':' unsigned_integer ','
GUARD_VAL ':' identifier ','
TIMING_START ':' '<' listoLtiminginfo..refs '>'
TIMING_FINISH ':' <' listoLtiminginfo_refs '>'
CF _CONNS..REF ':' cLconns_ref

List of Control Flow Node Conditions

listoLcLconditem cLcon d_i tern
listoLcLconditem ',' cLcondJ.tem

Control Flow Node Condition

cLcondJ.tem '[' CLCONDJTEM_EXPR ':' identifier ','
CF_CONDJTEM_VALUE ':'identifier']'

A BDEF SYNTAX FOR THE ECDFG MODEL

Data Flow Node Reference Object

dfJiode_neLref '[' dfJlodeJleLreLheader
dfJiodeJieLreLattributes ']'

Data Flow Node Reference Header

dfJlode_neLreLheader /*empty*/

List of Data Flow Node Reference Attributes

listoLdfJlode_neLreLattributes
dfJlodeJleLreLattribute
listoLdfJiodeJlet_reLattributes ','
dfJiodeJleLreLattribute

List of Data Flow Node Reference Attribute

listoLdfJlode_neLreLattribute
SYMBOL ':' stringJiteral
TDF _NODE_REF ':'dLnode_ref

List of Control Flow Node Connections

listoLcLconns cLconns_object
listoLcLconns ',' cf_conns_object

Control Flow Connection Node

62

cLconns_object '(' cLconns_header cLconns_attributes ')'

A BDEF SYNTAX FOR THE ECDFG MODEL 63

Control Flow Connection Node Header

cLconns_lieader CF _CONNS '#' unsigned_integer

Control Flow Connection Node Attributes

cLco nns_a t tributes cLconns_attribute ',' cLconns_attributes

Control Flow Connection Node Attribute

cLconns_attribute IO_CLASS ':' io_class_spec
PROCESSED ':' unsigned_integer ','
GUARD_VAL ':'identifier','
TIMING_START ':' '<' listoLtiming_info..refs '>'
TIMING _FINISH ':' <' listoLtiming_info..refs '>'
CF _CONNS_REF ':' cLconns_ref

List of Control Flow Node Conditions

listoLcLcond_i tern cLcond_item
listoLcLcond_item ',' cLcond_item

Control Flow Node Condition

cLcond_item '[' CF _CO ND.JTEM_EXPR ':' identifier ','
CLCOND.JTEIYLVALUE ':' identifier ']'

A BDEF SYNTAX FOR THE ECDFG MODEL

Data Flow Node Reference Object

dfJiode_neLref '[' dLnodeJleLreLheader
dfJlodeJleLreLattributes ']'

Data Flow Node Reference Header

dfJlode_net_reLheader /*empty*/

List of Data Flow Node Reference Attributes

listoLdfJiode_net_reLattributes
dfJiodeJiet_reLattribute
listoLdfJiodeJlet_reLattributes ','
dLnodeJiet_reLattribute

List of Data Flow Node Reference Attribute

listoLdfJiode_net_reLattribute
SYMBOL ':' stringJiteral
TDF_NODE_REF ':'df_node_ref

List of Control Flow Node Connections

listof_cf_conns cf_conns_o b j ect
listoLcLconns ',' cf_conns_object

Control Flow Connection Node

62

cf_conns_o b j ect '(' cLconns_header cf_conns_attributes ')'

A BDEF SYNTAX FOR THE ECDFG MODEL 63

Control Flow Connection Node Header

cLconnsJieader CF _CONNS '#' unsignedjnteger

Control Flow Connection Node Attributes

cLconns_attributes cLconns_attribute ',' cLconns_attributes

Control Flow Connection Node Attribute

cLconns_attribute IO_CLASS ':' io_class_spec
PROCESSED ':' unsignedjnteger ','
GUARD_VAL ':'identifier','
TIMING_START ':' '<' listoLtimingjnfo..refs '>'
TIMING_FINISH ':' <' listoLtimingjnfo..refs '>'
CF_CONNS_REF ':' cLconns..ref

List of Control Flow Node Conditions

listoLcLcondj tern cLcond_item
listoLcLcondjtem ',' cLcondjtem

Control Flow Node Condition

cLcond_item '[' CLCONDJTEM_EXPR ':' identifier ','
CLCONDJTEM_VALUE ':' identifier']'

A BDEF SYNTAX FOR THE ECDFG MODEL

Data Flow Node Reference Object

dLnode_net_ref '[' dfJlodeJleLreLheader
dLnode_net_reLattributes ')'

Data Flow Node Reference Header

dfJ10de_net_reLheader /*empty*/

List of Data Flow Node Reference Attributes

listof_df_node_net_ref_at tributes
dfJlodeJleLreLattribute
listoLdf_nodeJleLreLattributes ','
dfJiodeJlet_reLattribute

List of Data Flow Node Reference Attribute

listoLdf_node_net_reLattribute
SYMBOL ':' stringJiteral
TDF _NODE_REF ':'df_node_ref

List of Control Flow Node Connections

listoLcLconns cLconns_object
listoLcLconns ',' cLconns_object

Control Flow Connection Node

62

cLconns_o b j ect '(' cLconns_header cLconns_attributes ')'

A BDEF SYNTAX FOR THE ECDFG MODEL 63

Control Flow Connection Node Header

cLconns_header CF_CONNS '#' unsignedinteger

Control Flow Connection Node Attributes

cLconns_attributes cLconns_attribute ',' cLconns_attributes

Control Flow Connection Node Attribute

cLconns_attribute IO_CLASS ':' io_class_spec
PROCESSED ':' unsignedinteger ','
GUARD_ VAL ':' identifier ','
TIMING_START ':' '<' listoLtiminginfo..refs '>'
TIMING_FINISH ':' <' listoLtiminginfo..refs '>'
CF_CONNS_REF ':' cLconns..ref

List of Control Flow Node Conditions

listoLcLcond_i tern cLconditem
listoLcLconditem ',' cLconditem

Control Flow Node Condition

cLcond_item '(' CF_CONDJTEM_EXPR ':'identifier','
CF_CONDJTEM_VALUE ':' identifier']'

A BDEF SYNTAX FOR THE ECDFG MODEL

Data Flow Node Reference Object

dfJiode_net_ref '[' dfJiodeJieLreLheader
dfJiodeJieLreLattributes ']'

Data Flow Node Reference Header

dfJlode_net_reLheader /*empty*/

List of Data Flow Node Reference Attributes

listoLdfJiode_net_reLattributes
dfJiodeJiet_reLat tribute
listoLdfJiodeJiet_reLattributes ','
dfJiodeJieLreLattri bu te

List of Data Flow Node Reference Attribute

listoLdfJiode_net_reLattribute
SYMBOL ':' stringJiteral
TDF_NODE_REF ':'dfJiode_ref

List of Control Flow Node Connections

listoLcLconns cLconns_object
listoLcLconns ',' cLconns_object

Control Flow Connection Node

62

cLconns_o b j ect '(' cLconns_header cLconns_attributes ')'

A BDEF SYNTAX FOR THE ECDFG MODEL 63

Control Flow Connection Node Header

cLconns_header CF _CONNS '#' unsigned_integer

Control Flow Connection Node Attributes

cLconns_attributes cLconns_attribute ',' cLconns_attribu tes

Control Flow Connection Node Attribute

cLconns_attribute IO_CLASS ':' io_class_spec
PROCESSED ':' unsigned_integer ','
GUARD_VAL ':'identifier','
TIMING_START ':' '<' listoLtiming_info_refs '>'
TIMING_FINISH ':' <' listoLtiming_info_refs '>'
CF _CONNS__REF ':' cLconns_ref

List of Control Flow Node Conditions

listoLcLcond_item cLcond_item
listoLcLcond_item ',' cLcond_item

Control Flow Node Condition

cLcond_item '[' CF_CONDJTEM_EXPR ':'identifier','
CLCONDJTEM_VALUE ':' identifier ']'

A BDEF SYNTAX FOR THE ECDFG MODEL

Data Flow Node Reference Object

dLnode_neLref '[' dLnode_net_reLheader
df_node_net_reLattributes ']'

Data Flow Node Reference Header

df_node_net_reLheader /*empty*/

List of Data Flow Node Reference Attributes

listoLdf_node_net_reLat tributes
dLnode_net_reLattribute
listoLdf_node_net_reLattributes ','
df_node_net_reLattribute

List of Data Flow Node Reference Attribute

listoLdf_node_net_reLattribute
SYMBOL ':' stringJiteral
TDF _NODE_REF ':'df_node_ref

List of Control Flow Node Connections

listoLcLconns cLconns_object
listoLcLconns ',' cLconns_o b j ect

Control Flow Connection Node

62

cf_conns_o b j ect '(' cLconns_header cLconns_attributes ')'

A BDEF SYNTAX FOR THE ECDFG MODEL 63

Control Flow Connection Node Header

cLconnsJieader CF _CONNS '#' unsigned_integer

Control Flow Connection Node Attributes

cLconns_attributes cLconns_attribute ',' cLconns_attributes

Control Flow Connection Node Attribute

cLconns_attribute IQ_CLASS ':' io_class_spec
PROCESSED ':' unsigned_integer ','
GUARD_VAL ':' identifier','
TIMING_START ':' '<' listoLtiming_info..refs '>'
TIMING_FINISH ':' <' listoLtiming_info..refs '>'
CF _CONNS_REF ':' cLconns_ref

List of Control Flow Node Conditions

listoLcLcond_i tern cf_cond_item
listoLcLcond_item ',' cLcond_item

Control Flow Node Condition

cLcond_item '[' CF_CONDJTEM_EXPR ':' identifier ','
CF_CONDJTEM_VALUE ':' identifier']'

A BDEF SYNTAX FOR THE ECDFG MODEL

Data Flow Node Reference Object

dLnode_net_ref '[' dfJlodeJlet_reLheader
dfJlode_net_reLattributes ')'

Data Flow Node Reference Header

df_node_net..reLheader /*empty*/

List of Data Flow Node Reference Attributes

listoLdf_node_net..reLat tributes
dfJlodeJleLreLattribute
listoLdfJlodeJlet_reLattributes ','
dfJlo de_net_reLattri bu te

List of Data Flow Node Reference Attribute

listoLdf_node_net..reLattribute
SYMBOL ':' string_!iteral
TDF _NODE_REF ':'df_node_ref

List of Control Flow Node Connections

listoLcLconns cLconns_object
listoLcLconns ',' cLconns_o b j ect

Control Flow Connection Node

62

cLconns_object '(' cLconns_header cLconns_attributes ')'

A BDEF SYNTAX FOR THE ECDFG MODEL 63

Control Flow Connection Node Header

cLconns_header CF _CONNS '#' unsigned__integer

Control Flow Connection Node Attributes

cLco nns_a t tributes cLconns_attribute ',' cLconns_attributes

Control Flow Connection Node Attribute

cLconns_attribute IO_CLASS ':' io_class_spec
PROCESSED ':' unsigned__integer ','
GUARD_VAL ':'identifier','
TIMING_START ':' '<' listoLtimingjnfo_refs '>'
TIMING_FINISH ':' <' listoLtiming__info_refs '>'
CF _CONNS_REF ':' cLconns_ref

List of Control Flow Node Conditions

listoLcLcond__item cLcond__item
listoLcLcond__item ',' cLcondjtem

Control Flow Node Condition

cLcond__item '[' CF _COND__ITEM_EXPR ':' identifier ','
CLCOND__ITEM_VALUE ':' identifier ']'

A BDEF SYNTAX FOR THE ECDFG MODEL

Data Flow Node Reference Object

dLnode_neLref '[' dLnode_net_reLheader
df_node_net..reLattributes ')'

Data Flow Node Reference Header

dfJJode_net..reLheader /*empty*/

List of Data Flow Node Reference Attributes

listoLdf_node_net..reLattributes
df_node_net_reLattri bu te
listoLdf_nodeJJet_reLattributes ','
df_node_neLreLattribute

List of Data Flow Node Reference Attribute

listoLdf_node_net..reLattribute
SYMBOL ':' string_!iteral
TDF _NODE_REF ':'df_node..ref

List of Control Flow Node Connections

listoLcLconns cLconns_object
listoLcLconns ',' cf_conns_o b j ect

Control Flow Connection Node

62

cLconns_object '(' cLconns_header cf_conns_attribu tes ')'

A BDEF SYNTAX FOR THE ECDFG MODEL 63

Control Flow Connection Node Header

cLconnsJieader CF_CONNS '#' unsigned..integer

Control Flow Connection Node Attributes

cLco nns_a t tributes cLconns_attribute ',' cLconns_attributes

Control Flow Connection Node Attribute

cLconns_attribute IO_CLASS ':' io_class_spec
PROCESSED ':' unsigned..integer ','
GU ARD_ VAL ':' identifier ','
TIMING_START ':' '<' listoLtimingjnfo_refs '>'
TIMING_FINISH ':' <' listoLtimingjnfo_refs '>'
CF _CONNS..REF ':' cLconns_ref

List of Control Flow Node Conditions

listoLcLcondjtem cLcond..item
listoLcLcond..item ',' cLcond..item

Control Flow Node Condition

cLcond..item '[' CF_CONDJTEM_EXPR ':' identifier ','
CF_CONDJTEM_VALUE ':' identifier ']'

A BDEF SYNTAX FOR THE ECDFG MODEL

Data Flow Node Reference Object

dfJlode_net_ref '[' dfJlodeJleLreLheader
dfJlodeJleLreLattributes ']'

Data Flow Node Reference Header

dfJlode_net_reLheader /*empty*/

List of Data Flow Node Reference Attributes

listoLdfJlode_neLreLattributes
dfJlodeJlet_reLattribute
listoLdfJlodeJlet_reLattributes ','
dfJlodeJlet_reLattribute

List of Data Flow Node Reference Attribute

listoLdfJlode_net_reLattribute
SYMBOL ':' stringJiteral
TDF_NODE_REF ':'dfJlode_ref

List of Control Flow Node Connections

listoLcLconns cLconns_object
listoLcLconns ',' cLconns_o b j ect

Control Flow Connection Node

62

cLconns_object '(' cLconns_header cLconns_attributes ')'

A BDEF SYNTAX FOR THE ECDFG MODEL 63

Control Flow Connection Node Header

cLconns_header CF_CONNS '#' unsigned_integer

Control Flow Connection Node Attributes

cLconns_a t tributes cLconns_attribute ',' cLconns_attributes

Control Flow Connection Node Attribute

cLconns_attribute IO_CLASS ':' io_class_spec
PROCESSED ':' unsigned_integer ','
GUARD_VAL ':'identifier','
TIMING_START ':' '<' listoLtiming_info..refs '>'
TIMING_FINISH ':' <' listoLtiming_info..refs '>'
CF _CONNS_REF ':' cLconns_ref

List of Control Flow Node Conditions

listoLcLcond_i tern cLcond_item
listoLcLcond_item ',' cLcond_item

Control Flow Node Condition

cLcond_item '[' CF_COND__ITEM_EXPR ':'identifier','
CF_COND__ITE:NLVALUE ':' identifier ']'

A BDEF SYNTAX FOR THE ECDFG MODEL

Enumerated Values for Control Flow Node Type

cfJJode_type_spec CF.START
CF_END
IF_TEST
IF JOIN
LOOP_TEST
STMT_BLK
CASE.SELECT
CASEJOIN
TEST
COND
ASYNC_EVENT
ASYNC_OP
BLK_START
BLK_END
PROC_START
PROC_END

Enumerated Values for Data Flow Style

dLstyle_spec SEQ

CONCUR

64

A BDEF SYNTAX FOR THE ECDFG MODEL 65

A.6 BDDB Data Flow Graph Information Syntax

Data Flow Node Object

df_node_object '(' dLnode_header dLnode_net_attributes df_nodejnfo ')'

Data Flow Net Object

df_net_object ' (' df_net_header dLnode_net_attribu tes dLneLinfo ')'

Data Flow Node Header

df_node_header DF _NODE '#' unsigned_integer

Data Flow Net Header

df_net_header DF_NET '#' unsigc"ed_integer

Data Flow Node Attributes

df_node_neLattributes df_node_neLattribute
df_node_neLattributes ',' df_node_net_attribute

A BDEF SYNTAX FOR THE ECDFG MODEL 66

Data Flow Node Attribute

dLnode_net_attribute NODE_CLASS ':' node_class_spec
G RAPH_TYPE ':' graph_type_spec
CF_NQDE_REF ':' cLnodeJef
NUMJNPUTS ':' unsignedjnteger
NUM_OUTPUTS ':' unsignedjnteger
G RAPHICS.JNFO ':' graphicsjnfo_spec
COMP .JNFO ':' '<' compjnfo_objects '>'
TOOL.JNFO ':' '[' tooljnfo_attributes ']'
INPUTl ':' '<' listoLdfjo_ports '>'
OUTPUTl ':' '<' listoLdfjo_ports '>'
TIMING_START ':' '<' listoLtimingjnfoJefs '>'
TIMING_FINISH ':' <' listoLtimingjnfoJefs '>'

List of References to Timing Constraints

listoLtimingjnfoJefs timingjnfoJef

listoLtimingjnfoJefs ',' timingjnfo_ref

Information specific to the Data Flow Node

dfJlode_info /*empty*/
',' DF_NODE.JNFO ':'
'[' dfJlodejnfo_spec ']'

Information specific to the Data Flow Net

dfJleLinfo /*empty*/
',' DF_NET.JNFO ':'
'[' dfJlet_info_spec ']'

A BDEF SYNTAX FOR THE ECDFG MODEL 69

List of Data Flow Connections

listof_dfjo_conns dLio_conn
listoLdfJo_conns ',' dfjo_conn

Data Flow Connection

dfjo_conn dLport_ref

List of Data Flow Guard Information

listoLguardJnfo guardjnfo

listof....guardJnfo ',' guardJnfo

Data Flow Guard Information

guardJnfo '<' listof...guard_val '>'

List of Data Flow Guard Values

listof....guard_ val guard_ val

listof....guard_val ',' guard_ val

Data Flow Guard Value

guard_ val identifier

A BDEF SYNTAX FOR THE ECDFG MODEL 70

Graphics Information Specification

graphicsjnfo....spec '[' graphicsjnfo_attribute ']'

Graphics Information Attribute

graphicsjnfo_attribute BID_NUMBER ':' unsignedjnteger

Tool Information Attributes

too]jnfo..attributes too]jnfo_attribute
too]jnfo_attributes ',' tooUnfo_attribute

Tool Information Attribute

too]jnfo_a ttri bu te VSS_TOOL-1NFO ':' vss_too]jnfo....spec

Tool Information State Number

vss_tooUnfo_spec unsignedjnteger

List of Component Allocation Information

corn pjnfo_ob j ects compjnfo_object

compjnfo_objects ',' cornpjnfo_object

A BDEF SYNTAX FOR THE ECDFG MODEL 71

Component Allocation Information

compjnfo_object '[' compjnfo_attributes ')'

Component Allocation Attributes

compjnfo..attributes compjnfo_attribute

compjnfo_attributes ',' comp__info_attribute

Component Allocation Attribute

compjnfo_attribute

List of Switchbox Bits

listoLswitchbox_bits

Switchbox Bits

switchbox_bits

NET_NUM ':' unsigned_integer

COMMUTE_INPS ':' unsigned_integer
INST _NAME ':' stringJiteral

switchbox_bits
listof..switchbox_bi ts ',' switch box_bits

'[' LEFT_BIT ':' unsigned_integer ','
RIGHT_BIT ':' unsigned_integer ']'

List of Data Flow Operation Information

listoLdLop__info dLop__info

listoLdLopjnfo ',' dLop__info

A BDEF SYNTAX FOR THE ECDFG MODEL 72

Data Flow Operation Information Object

df_opjnfo '[' dLopjnfoJieader df_opjnfo_attributes ' ']'

Data Flow Operation Information Attributes

dLopjnfo_attributes df_opjnfo_attribute

df_opjnfo..attributes ',' df_op_info_attribute

Data Flow Operation Information Attributes

dLopjnfo_attribute OP _CLASS ':' op_class_spec

OP_TYPE ':' op_type_spec
OP _NAME ':' stringJiteral
CONDJNFO ':' '<' listoLcond_valjnfo '>'

List of Data Flow Condition Value Information

listoLcon d_ vaUnfo cond_vaUnfo
listoLcond_ vaUnfo ',' cond_ vaUnfo

Data Flow Condition Value Information

cond_vaUnfo '<' listoLcond_vaLpair '>'

List of Data Flow Condition Value Pairs

listoLcond_ vaLpair cond_vaLpair

listoLcond_ vaLpair ',' cond_ vaLpair

A BDEF SYNTAX FOR THE ECDFG MODEL 73

Data Flow Condition Value Pair

cond_vaLpair '['CONDITION ':' identifier',' VALUE':' identifier']'

A BDEF SYNTAX FOR THE ECDFG MODEL 74

A. 7 BDDB Timing Constraint Graph Syntax

Timing Constraints for CFCs and DFGs

tirningjnfo_object '(' tirningjnfo_header timingjnfo_attributes ')'

Timing Information Object Header

timingjnfo_header TIMING.JNFO # unsignedjnteger

Timing Information Object Attributes

tirningjnfo_attribu tes tirningjnfo_attribute

tirningjnfo_attribu tes ',' tirningjnfo_attribu te

Timing Information Object Attribute

tirningjnfo_attribu te SOURCE_DF ':' dfJieLref

DEST_DF ':' dLnet_ref
SOURCE_CF ':' cLconns_ref
DEST_CF ':' cLconns_ref
MAX_DELAY ':' reaLnurnber
MIN_DELAY ':' realJmmber
NOM_DELAY ':' reaLnurnber
SOURCE_EVENT ':' timing_.event_spec
DEST_EVENT ':' timing_event_spec
TIMING_TYPE ':' tirning_type...spec
DF_PATHS ':' '<' listoLdLpathjnfo '>'
CF_PATHS ':' '<' listoLcLpathjnfo '>'

A BDEF SYNTAX FOR THE ECDFG MODEL 75

DFG Paths Expression for Timing

listoLdLpathjnfo df_pathjnfo

DFG Path Expression for Timing

dLpathjnfo '<' listoLdLpath_refs '>'

DFG References in a Path Expression For Timing

listoLdLpath_refs dLpath_ref

listoLdLpath_refs ',' dLpath_ref

DFG Reference in a Path Expression

dLpath_ref dLnode_ref

CFG Paths Expression for Timing

listoLcLpathjnfo cLpathjnfo

CFG Path Expression for Timing

cLpath_info '<' listoLcLpath_refs '>'

A BDEF SYNTAX FOR THE ECDFG MODEL 76

CFC References in a Path Expression For Timing

listoLcLpath_refs cLpath_ref

listoLcLpath_refs ',' cf_path_ref

CFC Reference in a Path Expression

cLpath_ref cLnode_ref

A BDEF SYNTAX FOR THE ECDFG MODEL

A.8 BDDB Data Type Enumeration Values

Enumerated Values for Node Class

node_class_spec · DF_OP

DF ..ARC

Enumerated Values for Graph Type

graph_type__spec ASYNC

SYNC

Enumerated Values for Signal Type

sig_type__spec SIMPLE

CONSTANT
SIGNAL
WIRE
REGISTER
BUS
PORT
WIRED_OR
VARIABLE
MEMORY

77

A BDEF SYNTAX FOR THE ECDFG MODEL

Enumerated Values for Node Type

node_type_spec DATA_ACCESS

SELECT
DELAY
OPERATION
MARKER
FUNC_CALL
MISC

Enumerated Values for Operation Class

op_class_spec RELATIONAL

ADDING
LOGICAL
MULTIPLYING
SHIFTING
MISC_OP

78

A BDEF SYNTAX FOR THE ECDFG MODEL 79

Enumerated Values for Operation Type

op_type_spec EQ

I NEQ

I LT

I LEQ

I TGT

I GEQ

I AND

I NAND

I NOR

I NOT

I OR

I XOR

I ADD

I SUB

I CON CAT

I INC

I DEC

I MULT

I DIV

I SHLO

I SHLl

I SHRO

I SHRl

I SHL

I SHR

I ABS

I MOD

I READ

I WRITE

I CH_ VALUE

I SWITCH_BOX

I DECODER

I DELTA

I TRLSTATE

I DF _BLK_START

I DF_BLK_END

I FUNC

I RISING

I FALLING

I TIMER

I TIMEOUT

I EVENT

I TRUTH_TABLE

A BDEF SYNTAX FOR THE ECDFG MODEL

Enumerated Values for Net Type

neLtype_spec DATA_NET

CLK_NET
SELNET
RESET_NET
CONTROLNET
DATA__DEP _NET

Enumerated Values for Sensitivity

sense_spec LEVEL

EDGE

Enumerated Values for Active Edge

acLedge_spec POSITIVE

NEGATIVE

Enumerated Values for Port Type

port_type_spec CLOCK_PORT

SELECT_PORT
DATAYORT
INDEX_PORT
RESET_PORT
SET_PORT
INC_PORT
DEC_PORT
DEP_PORT

80

A BDEF SYNTAX FOR THE ECDFG MODEL

Enumerated Values for Number Representation

num_repres_spec BINARY
FLOATING_FT
INTEGER

Enumerated Values for Numeric Format

num.format..spec ONES_COMP

TWOS_COMP
SIGN_MAG
MAG

Enumerated Values for Declaration Types

decLtypes..spec INT

BIT
BIT_VECTOR
BOOLEAN
CHARACTER
NATURAL
POS
REAL
STRING
TIME
VSS_CLOCK
SET
RESET
ATTRIBUTE
TYPE_DEF
MEM
OCTAL
HEX
LITERAL

81

A BDEF SYNTAX FOR THE ECDFG MODEL

Enumerated Values for IO Class

io_class_spec INPUT

OUTPUT

Enumerated Values for Timing Events

timing_events_spec TE_ UNDEFINED

TE_CHANGING
TE..RISING
TE_FALLING
TE_CONTROL_FLOW

Enumerated Values for Timing Types

timing_types_spec TT_UNDEFINED
TT_DF_TQ_DF
TT_DF_TQ_CF
TT_CF _TQ_DF
TT_CF_TQ_CF

82

A BDEF SYNTAX FOR THE ECDFG MODEL 83

A.9 Object References using Object Identity

Lex rule for state object reference

state_ref "#"STATE"#" digit+"#"

Lex rule for data flow port object reference

dLporLref "#" DF YORT"#"digit+"#"

Lex rule for control flow connection object reference

cLconns_ref "#"CF _CONNS"#" digit+"#"

Lex rule for data flow node object reference

dLnode_ref "#" DF _NODE"#" digit+"#"

Lex rule for data flow net object reference

dfJiet_ref "#" DF _NET"#" digit+"#"

Lex rule for control flow node object reference

cfJiode_ref "#"CF .J'WDE" #"digit+"#"

A BDEF SYNTAX FOR THE ECDFG MODEL 84

Lex rule for timing info ob1ect reference

timingjnfo_ref "#"TIMING J.NFO" #"digit+"#"

A BDEF SYNTAX FOR THE ECDFG MODEL 85

A.10 General Constructs

Lex rule for identifier

identifier [a-zA-Z](" -'' ?([a-zA-Z] I [0-9]))*

Lex rule for string literals

string.Ji teral (""([a-zA-Z]l[0-9]1('+')1('-')1'-'I" ")* "'')

Lex rule for unsigned integer

unsignedjnteger

Lex rule for real number

reaLnumber

([0-9])+

[+-]?([0-9])+ "." ([0-9])+ "E" [+-]?([0-9])+
[+-]?([0-9])+ "E" [+-]?([0-9])+
[+-]?([0-9])+ "." ([0-9])+

B OBJECT TYPE DEFINITIONS FOR THE ECDFG SCHEMA 86

B OBJECT TYPE DEFINITIONS FOR THE
ECDFG SCHEMA

This section describes the schema for the ECDFG model. Note that the term
"REFERENCE" means that the referenced object is defined independently, i.e.,
that there is an identifier for the referenced object type. If an object type name
is used directly to define the attribute of another object type then the definition
of the former object is directly nested within the definition of the later.

B.1 State Transition Graph

This section gives the schema for the State Transition Graph.

DEFINE TYPE StateGraph
DEFINED BY TUPLEDF (

Id: INTEGER,
Num_States: INTEGER,
Num_Cf_Nodes: INTEGER,
Graph_Type: GrType,
States: LISTOF (REFERENCE StateNode
Cf_Nodes: LISTOF (REFERENCE CfNode)

DEFINE TYPE StateNode
DEFINED BY TUPLEDF (

Id: INTEGER,
Graph_Ptr: REFERENCE StateGraph,
Graph_Type: GrType,
async_succ_state: INTEGER,
num_cf_nodes: INTEGER,
cf_node1: LISTOF (REFERENCE CfNode),
async_event_cf: REFERENCE CfNode,
async_op_cf: REFERENCE CfNode,

B OBJECT TYPE DEFINITIONS FOR THE ECDFG SCHEMA 87

B.2 Control Flow Graph

In this section, I describe the schema for the Control Flow object types.

DEFINE TYPE CfNode
SUPERTYPES: CfConstruct
DEFINED BY TUPLEOF (

Id: INTEGER,
State: REFERENCE StateNode,
type: Cf_Node_Type,
num_cf_cond_items: INTEGER,
cf_cond_item1: LISTOF (CfConditem),
num_inputs: INTEGER,
num_outputs: INTEGER,
input!: SETDF (REFERENCE CfConns) ,
output!: LISTOF (REFERENCE CfConns),
df_stmnt1: LISTOF (DfNodeList),
df_style: Df_Style,
trav_flag: INTEGER,
graph_info: Graphicsinfo,
tool: Toolinfo

DEFINE TYPE Cf Conns
DEFINED BY TUPLEOF

Id: INTEGER,
type: IOClass,
conn: REFERENCE CfConns,
guard_val: STRING,
cf_node: REFERENCE CfNode,
processed: INTEGER,
timing_start: LISTOF (
timing_finish: LISTOF (

REFERENCE Timinginfo),
REFERENCE Timinginf o)

DEFINE TYPE DfNodeList
DEFINED BY LISTOF (REFERENCE DfNode

DEFINE TYPE CfConditem
DEFINED BY TUPLEOF (

expr: CHAR,

B OBJECT TYPE DEFINITIONS FOR THE ECDFG SCHEMA 88

value: CHAR

B.3 Data Flow Graph

In this section, I describe the schema for the Data Flow object types.

DEFINE TYPE DataFlowGraph
DEFINED BY TUPLEOF (

Graph: SETOF (DFGroup),
First: DFConstruct,
Type: STRING

DEFINE TYPE DFGroup
DEFINED BY TUPLEOF (

Stateid: INTEGER,
Condition: Condition,
DFNodes: SETOF (REFERENCE DFConstruct

DEFINE TYPE DfConstruct
DEFINED BY TUPLEOF (

Id: INTEGER,
node_class: NodeClass,
graph_type: GrType,
trav_flag: INTEGER,
cf_node: REFERENCE CfNode,
num_inputs: INTEGER,
num_outputs: INTEGER,
input!: LISTOF (REFERENCE DfioPort),
output!: LISTOF (REFERENCE DfioPort),
comp_info: DfCompinfo;
graph_info: Graphicsinfo,
tool: Toolinfo,
StrucAlloc: LISTOF (StrucAllocationinfo),
ControlAlloc: LISTOF (ControlAllocationinfo

B OBJECT TYPE DEFINITIONS FOR THE ECDFG SCHEMA 89

DEFINE TYPE DfNode
SUPERTYPES: DFConstruct
DEFINED BY TUPLEOF (

node_info: DfNodeinfo,

DEFINE TYPE DfNet
SUPERTYPES: DFConstruct
DEFINED BY TUPLEOF (

net_info: DfNetinfo,
tirning_start: LISTOF
tirning_finish: LISTOF (

DEFINE TYPE DfNodeinf o
DEFINED BY TUPLEOF (

sig_narne: STRING,
sig_type: SigType,
decl_type: DeclTypes,
node_type: NodeType,
nurn_ops: INTEGER,

REFERENCE Tirninginfo),
REFERENCE Tirninginf o)

op1: LISTOF (DfOpinfo
truth_tbl: LISTOF (DfOpinfo
df_style: DfStyle,
need_control: INTEGER,
bit_field1: SwitchboxBits

DEFINE TYPE DfOpinf o
DEFINED BY TUPLEOF (

op_class: OpClass,
op_type: DpType,
op_name: STRING,
cond1: LISTOF (CondValinfo),
node_info: REFERENCE DfNodeinfo

DEFINE TYPE CondValinfo
DEFINED BY TUPLEOF (

cond_pair1: LISTOF (CondValPair),
op_info: REFERENCE DfOpinfo

B OBJECT TYPE DEFINITIONS FOR THE ECDFG SCHEMA 90

DEFINE TYPE CondValPair
DEFINED BY TUPLEOF (

condition: STRING,
value: STRING

DEFINE TYPE DfNetinfo
DEFINED BY TUPLEOF (

bit_width: INTEGER,
min_index: INTEGER,
max_index: INTEGER,
net_type: NetType,
representation: NumRepres,
format: NumFormat,
sensitivity: Sense,
active_edge: ActEdge,
branch_expr: STRING

DEFINE TYPE DfCompinf o
DEFINED BY TUPLEOF (

net_num: INTEGER,
inst_name: STRING,
commute_inps: INTEGER

DEFINE TYPE Graphicsinfo
DEFINED BY TUPLEOF (

bid_number: INTEGER

DEFINE TYPE Toolinfo
DEFINED BY TUPLEOF (

vss: INTEGER,
extend: INTEGER,
bif: INTEGER,
csa: INTEGER,
sehwa: INTEGER,
timing_tool: INTEGER,
transform: INTEGER

B OBJECT TYPE DEFINITIONS FOR THE ECDFG SCHEMA 91

DEFINE TYPE DfioPort
DEFINED BY TUPLEOF (

id: INTEGER,
port_name: STRING,
port_class: IOClass,
port_type: PortType,
bit_width: INTEGER,
num_conn: INTEGER,
guard_val1: LISTOF (Guardinfo),
alloc_done: INTEGER,
node_net: REFERENCE DfNodeNet,
connected: SETOF (REFERENCE DfioPort

DEFINE TYPE Guardinfo
DEFINED BY TUPLEOF (

guard_value: LISTOF (GuardVal)

DEFINE TYPE GuardVal
DEFINED BY TUPLEOF (

value: CHARACTER,

DEFINE TYPE StrucAllocationinfo
DEFINED BY TUPLEOF (

Strucid: STRING,
Operation: STRING,
Strucin: LISTOF (STRING

DEFINE TYPE ControlAllocationinfo
DEFINED BY TUPLEOF (

ControlLineid: STRING,
ControlValue: INTEGER

B.4 Timing Constraint Graph

The timing constraint graph represents timing constraints for both the control
and the data flow graph.

B OBJECT TYPE DEFINITIONS FOR THE ECDFG SCHEMA 92

DEFINE TYPE Tirninginfo
DEFINED BY TUPLEOF (

Id: INTEGER,
Type: TirningType,
Source_Df: REFERENCE DFNet,
Dest_Df: REFERENCE DFNet,
Source_Cf: REFERENCE CFConns,
Dest_Cf: REFERENCE CFConns,
Min_Delay: double,
Max_Delay: double,
Nom_Delay: double,
Source_Event: Timing_Event,
Dest_Event: Tirning_Event,
Path: LISTOF (Pathinfo)

DEFINE TYPE Pathinfo
DEFINED BY TUPLEOF (

Df_Path: LISTOF (DfNode),
Cf_Path: LISTOF (CfNode)

C AN EXTENDED BDEF EXAMPLE DESCRIPTION 93

C AN EXTENDED BDEF EXAMPLE DESCRIP­
TION

C.1 The VHDL Specification

A VHDL specification of the example design is given in below:

entity AM2910 is
port (

FULL__sig: out BIT

) ;
end AM2910;

architecture BEHAVIOR of AM2910 is
begin
process

variable SP : BIT_VECTOR(2 downto O);

begin
if (SP = B" 100") then

FULL__sig <= O;
else

FULL__sig <= l;
SP:= SP+ 1;

end if;
end process;
end BEHAVIOR;

A ECDFG representation of this VHDL specification generated by the VHDL
Graph Compiler is shown in Figure 27.

B OBJECT TYPE DEFINITIONS FOR THE ECDFG SCHEMA 92

DEFINE TYPE Tirninginfo
DEFINED BY TUPLEOF (

Id: INTEGER,
Type: TirningType,
Source_Df: REFERENCE DFNet,
Dest_Df: REFERENCE DFNet,
Source_Cf: REFERENCE CFConns,
Dest_Cf: REFERENCE CFConns,
Min_Delay: double,
Max_Delay: double,
Nom_Delay: double,
Source_Event: Tirning_Event,
Dest_Event: Timing_Event,
Path: LISTOF (Pathinfo)

DEFINE TYPE Pathinfo
DEFINED BY TUPLEOF (

Df_Path: LISTOF (DfNode),
Cf_Path: LISTOF (CfNode)

C AN EXTENDED BDEF EXAMPLE DESCRIPTION

C.2 The Data Flow View CONN1: < ##DF_PORT#63# >
)>,

NUM_OUTPUTS: 0,
There are three different data flow graphsnF NODE INFO: [

that can be extracted from the design SIG NAME: "DF _BLK_END",
entity. The first graph implements the SIG= TYPE: SIGNAL,
condition evaluation for the if-statement, DECL_TYPES: INT,

i.e., the expression "SP = B '100" · The NODE_ TYPE: MARKER,
second corresponds to the assignment NUM_OPS: o,
statement "FULL...sig <= 0" that is DF _OP _INFO: <
evaluated when the if-condition is true, [OP _CLASS: MISC_OP,
and the third graph corresponds to the OP_ TYPE: DF _BLK_END,

two assignment statements "FULL...sig OP _NAME: "DF _BLK_END"
<= 1; SP := SP + l;" that are evalu-] >
ated when the if-condition is false. Be-]

low, we show the BDEF description for
the second graph that has been gener-
ated by the BDEF Generator.

(
[

J

DD_DOMAIN_TYPE: BEHAVIOR,
DD_FLAVOR: BEHAVIOR_PURE,

DD_CHUNK_TYPE: DATA_FLOW

(DF _NODE#18

NODE_CLASS: DF_OP,

CF_NODE_REF: ##CF_NODE#8#,

NUM_INPUTS: 2,

INPUT1: <
(DF_PORT#56
IO_CLASS: INPUT,

PORT_TYPE: DEP_PORT,

BIT_WIDTH: 1,

NUM_CONN: 1,

CONN1: < ##DF_PORT#57# >
) .
(DF_PORT#62

IO_CLASS: INPUT,
PORT_TYPE: DEP_PORT,

BIT_WIDTH: 1,
NUM_CONN: 1,

(DF_NODE#17
NODE_CLASS: DF_OP,

CF_NODE_REF: ##CF_NODE#8#,
NUM_INPUTS: 1,

INPUT1: <
(DF_PORT#48

IO_CLASS: INPUT,

PORT_TYPE: DATA_PORT,

BIT_WIDTH: 3,
NUM_CONN: 1,

CONN1: < ##DF_PORT#49# >
)>,

NUM_OUTPUTS: 1,

OUTPUT1: <
(DF_PORT#60
IO_CLASS: OUTPUT,
PORT_TYPE: DEP_PORT,
BIT_WIDTH: 1,

NUM_CONN: 1,
CONN1: < ##DF_PORT#61# >
)>,

DF_NODE_INFO: [

SIG_NAME: "SP",

SIG_TYPE: VARIABLE,

DECL_TYPES: INT,
NODE_TYPE: DATA_ACCESS,

NUM_OPS: 0,

95

C AN EXTENDED BDEF EXAMPLE DESCRIPTION

DF_OP_INFO: <
[OP_CLASS: MISC_OP,
OP_TYPE: WRITE,
OP _NAME: "SP"
]>

J

(DF_NET#15
NODE_CLASS: DF_ARC,
NUM_INPUTS: 1,
INPUTi: <

(DF_PDRT#61
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT _WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#60# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#63
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT _WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#62# >
)>,

DF_NET_INFO: [
BIT_WIDTH: 1,

J
)

NET_TYPE: DATA_DEP_NET,
NUM_REPRES: BINARY,

(DF_NODE#16
NODE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NODE#8#,
NUM_INPUTS: 2,
INPUT1: <

(DF_PORT#42
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 3,

NUM_CONN: 1,
CONN1: < ##DF_PORT#43# >
) ,
(DF_PORT#44
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT _WIDTH: 1,
NUM_CONN: 1,
CONNi: < ##DF_PORT#45# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#46
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT _WIDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF_PORT#47# >
)>,

DF_NODE_INFO: [
SIG_NAME: "+",
SIG_TYPE: SIGNAL,
DECL_TYPES: INT,
NODE_TYPE: OPERATION,
NUM_OPS: 0,
DF_OP_INFO: <

J

[OP_CLASS: ADDING,
DP_TYPE: ADD,
OP _NAME: "+"
]>

(DF_NET#12
NODE_CLASS: DF_ARC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#47
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_loJIDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF PORT#46# >
)>,

96

C AN EXTENDED BDEF EXAMPLE DESCRIPTION

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#49
IO_CLASS: OUTPUT,
PDRT_TYPE: DATA_PORT,
BIT_WIDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF_PORT#48# >
)>,

DF_NET_INFO: [
BIT_IHDTH: 3,
NET_TYPE: DATA_NET,
NUM_REPRES: BINARY,

J
)

(DF_NODE#1S
NODE_CLASS: DF_OP,
CF_NDDE_REF: ##CF_NODE#8#,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#59
IO_CLASS: INPUT,
PDRT_TYPE: DEP_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CDNN1: < ##DF _PORT#S3# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#40
ID_CLASS: OUTPUT,
PDRT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#41# >
)>,

DF_NODE_INFO: [
SIG_NAME: "1",
SIG_TYPE: CONSTANT,
DECL_TYPES: INT,
NDDE_TYPE: DATA_ACCESS,
NUM_OPS: 0,
DF_OP_INFO: <

J

[OP_CLASS: MISC_OP,
OP_TYPE: READ,
DP _NAME: "1"
]>

(DF_NET#11
NODE_CLASS: DF_ARC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#41
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PDRT#40# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#45
IO_CLASS: OUTPUT,
PDRT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#44# >
)>,

DF_NET_INFO: [
BIT_WIDTH: 1,
NET_TYPE: DATA_NET,
NUM_REPRES: BINARY,

J
)

(DF_NODE#14
NODE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NODE#8#,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#S8
IO_CLASS: INPUT,
PORT_TYPE: DEP_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,

97

C AN EXTENDED BDEF EXAMPLE DESCRIPTION

CONN1: < ##DF_PORT#53# >
) >,

NUM_DUTPUTS: 1,
OUTPUT!: <

(DF_pORT#38
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 3,
NUM_CONN: 1,
CONNi: < ##DF PORT#39# >
) >,

DF_NODE_INFO: [
SIG_NAME: "SP",
SIG_TYPE: VARIABLE,
DECL_TYPES: INT,
NODE_TYPE: DATA_ACCESS,
NUM_OPS: 0,
DF OP INFO: <

J

[OP_CLASS: MISC_OP,
OP_TYPE: READ,
OP_NAME: "SP"
]>

(DF_NET#10
NODE_CLASS: DF_ARC,
GRAPH_TYPE: ASYNC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#39
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF_PORT#38# >
) >,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#43
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 3,
NUM_CONN: 1,

CONN1: < ##DF_PORT#42# >
)>,

DF _NET_INFO: [
BIT_WIDTH: 3,
NET_TYPE: DATA_NET,
NUM_REPRES: BINARY,

J
)

(DF_NODE#13
NDDE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NODE#8#,
GRAPH_TYPE: SYNC,
NUM_INPUTS: 1,
INPUT1: <

(DF _PORT#36
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#37# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_pORT#54
IO_CLASS: OUTPUT,
PORT_TYPE: DEP_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#55# >
)>,

DF_NODE_INFO: [
SIG_NAME: "FULL_SIG",
SIG_TYPE: PORT,
DECL_TYPES: INT,
NODE_TYPE: DATA_ACCESS,
NUM_DPS: 0,
DF_OP_INFO: <

J

[OP_CLASS: MISC_OP,
OP_TYPE: WRITE,
OP _NAME: "FULL_SIG"
]>

98

C AN EXTENDED BDEF EXAMPLE DESCRIPTION

(DF_NET#14
NODE_CLASS: DF_ARC,
GRAPH_TYPE: ASYNC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#65
IO_CLASS: INPUT:
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#54# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#67
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#56# >
)>,

DF_NET_INFO: [
BIT_WIDTH: 1,

]

)

NET_TYPE: DATA_DEP_NET,
NUM_REPRES: BINARY,

(DF_NODE#12
NODE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NODE#8#,
GRAPH_TYPE: SYNC,
NUM_INPUTS: 0,
NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#60
IO_CLASS: OUTPUT,
PORT_TYPE: DEP_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#51# >
)>,

DF_NODE_INFO: [

SIG_NAME: "DF_BLK_START",
SIG_TYPE: SIGNAL,
DECL_TYPES: INT,
NODE_TYPE: MARKER,
NUM_OPS: 0,
DF_OP_INFO: <

]

[OP_CLASS: MISC_OP,
OP_TYPE: DF_BLK_START,
OP_NAME: "DF_BLK_START"
]>

(DF_NET#13
NODE_CLASS: DF_ARC,
GRAPH_TYPE: ASYNC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#61
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#SO# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#53
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 3,
CONN1: < ##DF_PORT#52#,

##DF_PORT#58#,
##DF_PORT#59# >

)>,
DF_NET_INFO: [

BIT_lolIDTH: 1,

]

)

NET_TYPE: DATA_DEP_NET,
NUM_REPRES: BINARY,

(DF_NODE#11

99

C AN EXTENDED BDEF EXAMPLE DESCRIPTION

NODE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NODE#S#,
GRAPH_TYPE: SYNC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#52
IO_CLASS: INPUT,
PORT_TYPE: DEP_PORT,
BIT_IHDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF PORT#53# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#34
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF PORT#35# >
)>,

DF_NODE_INFO: [
SIG_NAME: "1",
SIG_TYPE: CONSTANT,
DECL_TYPES: INT,
NODE_TYPE: DATA_ACCESS,
NUM_OPS: 0,
DF OP INFO: <

J

[OP_CLASS: MISC_OP,
OP_TYPE: READ,
OP _NAME: "1"
]>

(DF_NET#9
NODE_CLASS: DF_ARC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#35
IO_CLASS: INPUT,
PORT~TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,

CONN1: < ##DF_PORT#34# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#37
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#36# >
)>,

DF_NET_INFO: [
BIT_WIDTH: 1,
NET_TYPE: DATA_NET,
NUM_REPRES: BINARY,

J
)

(DF_NDDE#10
NODE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NODE#6#,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#32
IO_CLASS: INPUT,
PORT_TYPE: DEP_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#33# >
)>,

NUM_OUTPUTS: 0,
DF_NODE_INFO: [

SIG_NAME: "DF_BLK_END",
SIG_TYPE: SIGNAL,
DECL_TYPES: INT,
NODE_TYPE: MARKER,
NUM_OPS: 0,
DF DP INFO: <

J

[OP_CLASS: MISC_OP,
OP_TYPE: DF_BLK_END,
OP_NAME: "DF_BLK_END"
}>

100

C AN EXTENDED BDEF EXAMPLE DESCRIPTION

J
)

(DF_NODE#6
NODE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NODE#4#,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#20
IO_CLASS: INPUT,
PORT_TYPE: DEP_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#21# >
)>,

NUM_OUTPUTS: 0,
DF_NODE_INFO: [

SIG_NAME: "DF_BLK_END",
SIG_TYPE: SIGNAL,
DECL_TYPES: INT,
NODE_TYPE: MARKER,
NUM_OPS: O,
DF OP INFO: <

J

[OP_CLASS: MISC_OP,
OP_TYPE: DF_BLK_END,
OP _NAME: "DF _BLK_END"
]>

(DF_NODE#4
NODE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NODE#4#,
NUM_INPUTS: 1,
INPUT1: <

(DF _PORT#11
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#12# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#18
IO_CLASS: OUTPUT,
PORT_TYPE: DEP_PORT,
BIT_\HDTH: 1,
NUM_CONN: 1,
CONNi: < ##DF_PORT#i9# >
)>,

DF_NODE_INFO: [
SIG_NAME: "Ti",
SIG_TYPE: REGISTER,
DECL_TYPES: INT,
NODE_TYPE: DATA_ACCESS,
NUM_OPS: 0,
DF OP INFO: <

J

[OP_CLASS: MISC_OP,
OP_TYPE: WRITE,
OP_NAME: "T1"
]>

(DF_NET#5
NODE_CLASS: DF_ARC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#19
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#18# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#21
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF PORT#20# >
)>,

DF_NET_INFO: [
BIT_\HDTH: 1,
NET_TYPE: DATA_DEP_NET,

103

C AN EXTENDED BDEF EXAMPLE DESCRIPTION

J
)

NUM_REPRES: BINARY,

(DF _NODE#3
NODE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NODE#4#,
NUM_INPUTS: 2,
INPUT1: <

(DF_PORT#S
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF_PORT#6# >
) '
(DF_PORT#7
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT _ltJIDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF PORT#8# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#9
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT _loJIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#10# >
)>,

DF_NODE_INFO: [
SIG_NAME: "=",
SIG_TYPE: SIGNAL,
DECL_TYPES: INT,
NODE_TYPE: OPERATION,
NUM_OPS: 0,
DF_OP_INFO: <

J

[OP_CLASS: RELATIONAL,
OP_TYPE: EQ,
OP_NAME: "="
]>

(DF_NET#3
NODE_CLASS: DF_ARC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#10
IO_ CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_lrlIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF PORT#9# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#12
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#11# >
) >,

DF_NET_INFO: [
BIT_WIDTH: 1,
NET_TYPE: DATA_NET,
NUM_REPRES: BINARY,

J
)

(DF_NODE#2
NODE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NODE#4#,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#17
IO_CLASS: INPUT,
PORT_TYPE: DEP_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#16# >
) >,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#3

104

C AN EXTENDED BDEF EXAMPLE DESCRIPTION

IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_T#IDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF_PORT#4# >
)>,

DF_NODE_INFO: [
SIG_NAME: "100",
SIG_TYPE: CONSTANT,
DECL_TYPES: BIT_VECTOR,
NODE_TYPE: DATA_ACCESS,
NUM_OPS: 0,
DF_OP_INFO: <

]

[OP_CLASS: MISC_OP,
OP_TYPE: READ,
OP _NAME: "100"
]>

(DF_NET#2
NODE_CLASS: DF_ARC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#4
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_T#IDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF_PORT#3# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#8
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_T#IDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF_PORT#7# >
)>,

DF_NET_INFO: [
BIT_tHDTH: 3,
NET_TYPE: DATA_NET,
NUM_REPRES: BINARY,

J
)

(DF_NODE#1
NODE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NODE#4#,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#16
IO_CLASS: INPUT,
PORT_TYPE: DEP_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#16# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#1
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF_PORT#2# >
)>,

DF_NODE_INFO: [
SIG_NAME: "SP",
SIG_TYPE: VARIABLE,
DECL_TYPES: INT,
NODE_TYPE: DATA_ACCESS,
NUM_OPS: 0,
DF_DP_INFO: <

J

[OP_CLASS: MISC_OP,
OP_TYPE: READ,
DP_NAME: "SP"
]>

(DF_NET#1
NODE_CLASS: DF_ARC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#2
IO_CLASS: INPUT,

105

C AN EXTENDED BDEF EXAMPLE DESCRIPTION 106

PORT_TYPE: DATA_PORT,
BIT_WIDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF PORT#1# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#6
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 3,
NUM_CONN: 1,
CONN1: < ##DF PORT#S# >
)>,

DF_NET_INFD: [
BIT_WIDTH: 3,
NET_TYPE: DATA_NET,
NUM_REPRES: BINARY,

J
)

(DF_NDDE#5
NDDE_CLASS: DF_OP,
CF_NODE_REF: ##CF_NDDE#4#,
NUM_INPUTS: 0,
NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#13
ID_CLASS: OUTPUT,
PORT_TYPE: DEP_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF_PORT#14# >
)>,

DF_NODE_INFD: [
SIG_NAME: "DF _BLK_START",
SIG_TYPE: SIGNAL,
DECL_TYPES: INT,
NODE_TYPE: MARKER,
NUM_OPS: 0,
DF DP INFO: <

[OP_CLASS: MISC_OP,
OP_TYPE: DF_BLK_START,
OP_NAME: "DF_BLK_START"

]>

(DF_NET#4
NODE_CLASS: DF_ARC,
NUM_INPUTS: 1,
INPUT1: <

(DF_PORT#14
IO_CLASS: INPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 1,
CONN1: < ##DF PORT#13# >
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(DF_PORT#16
IO_CLASS: OUTPUT,
PORT_TYPE: DATA_PORT,
BIT_WIDTH: 1,
NUM_CONN: 2,
CONN1: < ##DF_PORT#15#, ##DF_PORT#17# >
)>,

DF_NET_INFD: [
BIT_WIDTH: 1,

J
)

)

NET_TYPE: DATA_DEP_NET,
NUM_REPRES: BINARY,

C.3 The Control Flow View

The control flow graph (without any
data flow nodes) is given below.

(

[

DD_DOMAIN TYPE: BEHAVIOR,

C AN EXTENDED BDEF EXAMPLE DESCRIPTION 107

J

DD_FLAVOR: BEHAVIOR_PURE,
DD_CHUNK_TYPE: CONTROL_FLOW

(CF_NODE#1
CF_NODE_TYPE: CF_START,
NUM_INPUTS: 0,
NUM_OUTPUTS: 1,
OUTPUT1: <

(CF_CONNS#1
IO_CLASS: OUTPUT,
PROCESSED: 0,
CF_CONNS_REF: ##CF_CONNS#2#
)>,

NUM_CF_COND_ITEMS: 0,
)

(CF_NODE#2
CF_NODE_TYPE: CF_END,
NUM_INPUTS: 1,
INPUT!: <

(CF_CONNS#17
IO_CLASS: INPUT,
PROCESSED: 0,
CF_CONNS_REF: ##CF CONNS#18#
)>,

NUM_OUTPUTS: 0,
NUM CF COND_ITEMS: 0,
)

(CF_NODE#3
CF_NODE_TYPE: PROC_START,
NUM_INPUTS: 1,
INPUT1: <

(CF_CONNS#2
IO_CLASS: INPUT,
PROCESSED: 0,
CF_CONNS_REF: ##CF CONNS#1#
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(CF_CONNS#3
IO_CLASS: OUTPUT,
PROCESSED: 0,

CF_CONNS_REF: ##CF_CONNS#4#
)>,

NUM_CF_COND_ITEMS: 0,
)

(CF_NODE#4
CF_NODE_TYPE: STMT_BLK,
NUM_INPUTS: 1 ,
L!lPUT1: <

(CF_CONNS#4
IO_CLASS: INPUT,
PROCESSED: 0,
CF_CONNS_REF: ##CF_CDNNS#3#
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(CF_CONNS#S
IO_CLASS: OUTPUT,
PROCESSED: 0,
CF_CONNS_REF: ##CF_CONNS#6#
)>,

NUM_CF_COND_ITEMS: 0,
DF_NODE_GROUP: <

[DF _STMNTS :

J'

<[SYMBOL: "DF_BLK_START",
DF_NODE_REF: ##DF_NODE#S#]

>

[DF _STMNTS :

J >,

<[SYMBOL: "SP",
DF_NODE_REF: ##DF_NODE#1#] ,

[SYMBOL: "100",
DF_NODE_REF: ##DF_NODE#2#] ,

[SYMBOL: "=",
DF_NODE_REF: ##DF_NODE#3#] ,

[SYMBOL: "Ti",
DF_NODE_REF: ##DF_NODE#4#] ,

[SYMBOL: "DF _BLK_END",
DF_NODE_REF: ##DF_NODE#6#]

>

(CF_NODE#S

C AN EXTENDED BDEF EXAMPLE DESCRIPTION 108

CF_NODE_TYPE: IF_TEST,
NUM_INPUTS: 1,
INPUT1: <

(CF_CONNS#6
IO_CLASS: INPUT,
PROCESSED: 0,
GUARD_VAL: "Ti",
CF_CONNS_REF: ##CF_CONNS#5#
)>,

NUM_OUTPUTS: 2,
OUTPUT!: <

(CF_CONNS#7
IO_CLASS: OUTPUT,
PROCESSED: 0,
GUARD_ VAL: "1",
CF_CONNS_REF: ##CF CONNS#8#

) '
(CF_CONNS#11
IO_CLASS: OUTPUT,
PROCESSED: 0,
GUARD_ VAL: "0",
CF_CONNS_REF: ##CF CONNS#12#
)>,

NUM CF COND_ITEMS: 0,
)

(CF_NODE#6
CF_NODE_TYPE: STMT_BLK,
NUM_INPUTS: 1,
INPUT!: <

(CF_CONNS#S
IO_CLASS: INPUT,
PROCESSED: 0,
CF_CONNS_REF: ##CF CONNS#7#
)>,

NUM_OUTPUTS: 1,
OUTPUT!: <

(CF_CONNS#9
IO_CLASS: OUTPUT,
PROCESSED: 0,
CF_CONNS_REF: ##CF_CONNS#10#
) >,

NUM CF COND_ITEMS: 0,
DF_NODE_GROUP: <

[DF_STMNTS:

],

< [SYMBOL: "DF _BLK_START",
DF_NODE_REF: ##DF_NODE#8#]

>

[DF _STMNTS:

J '

<[SYMBOL: "0",
DF _NODE_REF: ##DF _NODE#7#] ,

[SYMBOL: "FULL_SIG",
DF_NODE_REF: ##DF_NODE#9#]

>

[DF _STMNTS :

J >,

< [SYMBOL: "DF _BLK_END II'
DF_NODE REF: ##DF_NODE#10#]

>

(CF_NODE#7
CF_NODE_TYPE: IF_JOIN,
NUM_INPUTS: 2,
INPUT!: <

(CF_CONNS#10
IO_CLASS: INPUT,
PROCESSED: 0,
CF_CONNS_REF: ##CF CONNS#9#

) '
(CF_CONNS#13
IO_CLASS: INPUT,
PROCESSED: 0,
CF_CONNS_REF: ##CF CONNS#14#
)>,

NUM_OUTPUTS: 1,
OUTPUT!: <

(CF_CONNS#15
IO_CLASS: OUTPUT,
PROCESSED: 0,
CF_CONNS_REF: ##CF CONNS#16#

)>'
NUM CF COND_ITEMS: 0,
)

(CF_NODE#8

C AN EXTENDED BDEF EXAMPLE DESCRIPTION

CF_NODE_TYPE: STMT_BLK,
NUM_INPUTS: 1,
INPUT1: <

(CF_CONNS#12
IO_CLASS: INPUT,
PROCESSED: 0,
CF_CONNS_REF: ##CF CONNS#11#
)>,

J >,

(CF_NODE#9
CF_NODE_TYPE: PROC_END,
NUM_INPUTS: 1,
INPUT1: <

(CF_CONNS#16
IO_CLASS: INPUT,
PROCESSED: 0,

109

NUM_OUTPUTS: 1,
OUTPUT1: <

(CF_CONNS#14
IO_CLASS: OUTPUT,
PROCESSED: 0,

CF_CONNS_REF: ##CF CONNS#15#
)>,

CF_CONNS_REF: ##CF CONNS#13#
)>,

NUM_OUTPUTS: 1,
OUTPUT1: <

(CF_CONNS#18
IO_CLASS: OUTPUT,
PROCESSED: 0,

NUM CF COND_ITEMS: 0,

DF_NODE_GROUP: <
[DF_STMNTS: CF_CONNS_REF: ##CF_CONNS#17#

<[SYMBOL: "DF_BLK_START",)>,
DF_NODE_REF: ##DF_NODE#121iWUM_CF_COND_ITEMS: 0,

>)

J ')

[DF STMNTS:

J '

<[SYMBOL: "1",
DF_NODE REF: ##DF_NODE#11#~.~

[SYMBOL: "FULL_SIG",
DF_NODE_REF: ##DF_NODE#13#]

>

The Complete Control/Data
Flow View

[DF STMNTS:
Finally, the control/ data fl.ow graph would
be constructed by combining the con­

"SP"

J '

<[SYMBOL: ' trol fl.ow graph presented in the pre-
DF _NODE_REF: ##DF _NODE#i4#vibus section with the design objects

[SYMBOL: "1" • of the three data fl.ow graphs (one of
DF _NODE_REF: ##DF _NODE#iS# J,hich has been shown in an earlier sec­

[SYMBOL: "+", tion). Therefore, we do not repeat this
DF _NODE_REF: ##DF _NODE#16# Jiformation here.

[SYMBOL: "SP",
DF_NODE_REF: ##DF_NODE#17#]

>

[DF STMNTS:
< [SYMBOL: "DF _BLK_END",

DF_NODE REF: ##DF_NODE#18#]
>

D USER'S MANUAL FOR BDEF PARSER/GENERATOR TOOLS 110

D USER'S MANUAL
FOR BDEF PARSER/GENERATOR
TOOLS

USER'S MANUAL
PARSER/GENERATOR TOOLS FOR THE BEHAVIORAL DESIGN

DATA EXCHANGE FORMAT (BDEF)

Elke A. Rundensteiner

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

email: mndenstics.uci.edu
telephone: (714) 856-4101

March, 1991

ABSTRACT

The Behavioral Design Data Exchange Format (BDE"F) is a textual format for the design repre­
sentation of the Extended Control/Data Flow Graph (ECDFG) Model. BDEF has been developed
to serve as exchange format ofdesign data. between the Behavioral Design Data Base (BDDB) and
the design tools in the behavioral synthesis environment at the University of California, Irvine. This
user's manual describes how to use the Behavioral Design Data Exchange Format (BDEF) parser
and generator tools. The BDEF parser compiles a BDEF description of a design into its corre­
sponding ECDFG data structures. The BDEF translator on the other hand maps the ECDFG data
structures of a design into its corresponding BDEF description.

1 Introduction

This user's manual describes the software support tools that have been developed at the University
of California, Irvine for handling the Behavioral Design Data Exchange Format (BDEF). BDEF is a
textual format for the design representation of the Extended Control/Data Flow Graph (ECDFG)
Model (1]. BDEF is used as design data exchange format [2] in the behavioral synthesis environment
at the University of California, Irvine. In particular, BDEF serves as exchange format of design
data between the Behavioral Design Data Base (BDDB) and the design tools. This user's manual
describes how to use the Behavioral Design Data Exchange Format (BDEF) parser and generator
tools. The BDEF Parser compiles a BDEF description of a design into the ECDFG data structures.
The BDEF Translator maps the ECDFG data structures of a design into its corresponding BDEF
description. The BDEF Parser/Translator pair is implemented in the C programming language. It
is currently running on SUN 3/Sun 4 workstations under the UNIX operation system.

2 PBC: The Parser from BDEF to ECDFG Data Structures

PBC is a parser/compiler that parses a BDEF design description (2] and generates in-memory data
structures for the design using the Extended Control/Data Flow Graph data structures (1). This
tool is provided by the Behavioral Design Data Base (BDDB). to the design tools so that they can
move a ECDFG from a textual format to in-memory data structures.

2.1 Where is What?

The source code for the BDEF Parser (PBC) can be found in:

/ cz/ua/elke/BDEF /dbcode/parser

The source code for utility functions and variable and type definitions used by both PBC and
TBC is in:

/cz/ua/elke/BDEF /dbcode/utils

The public PBC object code that has to be linked with your program in order to run the parser
IS:

/cz/ua/elke/BDEF /pub_objs/sun3/pbc.sun3.o

/ cz/ua/ elke/BD EF /pub_objs/sun3 /utils..module_sun3 .o

The matching sun4 executables are:

/ cz/ua/ elke/BDEF /pub_objs/sun4/pbcsun4.o

/cz/ua/elke/BDEF /pub_objs/sun4/utils...module_sun4.o

An example Makefile and an example program that invokes the parser can be found in:

/cz/ua/elke/BDEF /vss_test

2.2 Input/Output Data

PBC has one input parameter, namely, a file that contains a textual BDEF design description. For
a discussion of the BDEF format see [2). BDEF input files have the following naming convention:

< design-name >.bdef

The PBC parser returns in-memory data structures using the Extended Control/Data Flow
Graph Model [1). This is done via initializing global variables defined in the "utils" directory.
The definition of these global variables that will hold the resulting data structures is in the file
/cz/ua/elke/BDEF /dbcode/utils/UTILS_BDDB_variables.h. It is listed next.

/**/
/* Global variables to hold the ECDFG when created by PBC */
/**/

I* state graph */

struct graph * BDDB_state_graph;

/* data flow */

struct df _node_net_list * BDDB_df_nodes;

/* control flow */

struct cf _node_list * BDDB_cf_nodes;

I* list of timing constraints */

struct timing_spec * BDDB_timing;

When PBC creates a state graph, then the variable BDDR.state_graph will point to the resulting
data structures. When PBC creates a control flow graph, then the variable BDDB_cLnodes will point
to the generated control flow data structures. When PBC creates only a data flow graph, then the

variable BDDB_dLnodes will point to the generated data flow data structures. If there is timing
constraint information that is generated by PBC, then the global variable BDDB_timing will point
to a list of all timing specification structures.

2.3 How to Execute PBC

To execute PBC as a stand-alone system, enter the following command:

% pbc...sun3 < design-name >

or

% pbc...sun4 < design-name >

You can also include PBC in form of a function call into your favorite synthesis system. PBC
then will generated an internal data flow graph representation from a given BDEF description that
can be directly used by your program. In this case, the executable file "pbc.o" and "utils_ffiod~le.o.,r ·
have to be loaded with your C code. The file "pbc.h" contains the function definition "pbc()" and
therefore must be included into the file in which you want to call PBC.

The function pbc() has the following declaration:

void pbc(pbc_file,num_argc)
char *pbc_file;
int num_argc;
{

}

The first argument of pbc() corresponds to the name of the design file that is being parsed. The
second argument is set to 1 when the parser reads from standard input (stdin) and to 2 when the
parser reads its input from a text file.

Execute PBC with the following function call:

pbc(design_file_name,2);

PBC uses global variables to determine the desired design view of the design data. I provide for
a function that allows the user to set the design data characteristics that he/she is interested in, that
is, that are to be extracted from the BDEF description. If the requested design data is available
in the design file then the information is extracted and put into data structures. If the requested
design information is available in the BDEF description then the user is notified. The design data
characteristics defined in the "utils" model are given in a later section.

2.4 An Example PBC Execution

BDEF Support Tools (BDDB)
March 1991 Prototype

Select between tools:
0 = Quit
1 = Graph Compiler
2 = TCB
3 = PBC
4 = Print in-memory ECDFG data structures
5 = Print values of DD characteristics

=>3

Invoke PBC (y/n)? y

Specify input file name for design data to be parsed': simple_cfg

Using <simple_cfg> as input_file.

==
(PBC) Parser from BDEF to ECDFG running
==

Parsing of file <simple_cfg.bdef> ...

Should all Design Data in the design entity be compiled (y/n)? y

Symbol table 5: No timing constraints specified!

Symbol List 1
cf_conns: 3
cf_conns: 2
cf_conns: 4
cf_conns: 1
Symbol table 1
Cf_conns_source: 3,cf_node: 3,cf_conns_dest: 4
Cf_conns_source: 1,cf_node: 1,cf_conns_dest: 2

Successful Parsing of file <simple_cfg_2,bdef>.

==
PBC Parser Execution completed.
==

Select between tools:
0 = Quit
1 = Graph Compiler

=>O

2 = TCB
3 = PBC
4 = Print in-memory ECDFG data structures
5 = Print values ot DD characteristics

Quitting!
<sun>

3 TCB: The Translator from the ECDFG Data Structures
to BDEF

TCB is a BDEF Generator that translates a ECDFG design representation into its corresponding
BDEF format. This BDEF generator is a valuable tool for design data exchange since it allows
the Behavioral Design Data Base to capture design data used by different design tools in a unified
format.

3.1 Where is What?

The source code for the BDEF Generator (TCB) can be found in:

/ cz/ua/elke/BDEF / dbcode/translator

The source code for utility functions and global definitions used by both TCB and PBC is in:

/cz/ua/elke/BDEF /dbcode/utils

The public TCB object code that has to be linked with your program in order to run the generator
is:

/ cz/ua/ elke/BDEF /pub_objs/ sun3/tcb..sun3.o

/ cz/ua/ elke/BDEF /pub_objs/ sun3/utils_module..sun3.o

The matching sun4 executables are:

/ cz/ua/ elke/BD EF /pub_objs/ sun4/tcb..sun4.o

/ cz /ua/ elke/BDEF /pub_objs/ sun4/ utils_module..sun 4.o

An example Makefile and an example program that invokes the generator can be found in:

/cz/ua/elke/BDEF /vs8-test

3.2 Input/Output Data

TCB has several input parameters:

void tcb (designfile,state_graph,cfg,dfg)
FILE * designfile;
struct graph * state_graph;
struct cf_node_list * cfg;
struct df_node_net_list * dfg;
{

}

The first argument corresponds to the name of the design file that will hold the generated BDEF
design description. The other three parameters correspond to pointers to the in-memory data
structures that are to be translated to BDEF. The second parameter state_graph holds a pointer to
the state graph, the third parameter cfg holds a pointer to the control flow graph, and the fourth
parameter dfg holds a pointer to the data flow graph to be printed out. Only one of these three
parameters is not equal NULL at a given time. When the internal data structure is a state graph,
then the second parameter will point to this graph while the other parameters will be NULL. If the
user is interested in only generating the BDEF description of a control flow graph or of a data flow
graph, then s/he nees to enter a pointer to the respective graph as parameter to the tcb function.

The TCB generator returns a BDEF description of the design represented by the given in-memory
data structures. Due to the following naming convention for BDEF files, TCB will append a ".bdef"
to the first parameter, the input file name. The generated BDEF design description will then be
stored in this file.

3.3 How to Execute TCB

To execute TCB as a stand-alone system, enter the following command:

% tcb...sun3 < design-name >

or

% tcb...sun4 < design-name >

You can also include TCB in form of a function call into your synthesis system. TCB then will
generated a BDEF description that captures the internal data flow graph representation produced
by your program. This allows for the sharing of the design data with other design tools. In this
case, the executable file "tcb.o" and "utils...module.o" have to be loaded with your C code. The file
"tcb.h" contains the function definition "tcb()" and therefore must be included into the file in which
you want to call TCB.

Execute TCB with the following function call:

tcb(design.Jile..name,stg,cfg,dfg);

with either stg, cfg or dfg a pointer to the current ECDFG data structures.

The BDEF Generator has the three parameters, design entity domain type, design entity flavor,
and design entity chunk type. They determine the type of design data that is to be captured in the
BDEF description. If the requested information is not available in the design representation, then
the user of this BDEF Generator will be notified. The design data characteristics defined in the
"utils'' model are given in a later section.

3.4 An Example TCB Execution

BDEF Support Tools (BDDB)
March 1991 Prototype

Select between tools:
0 Quit
1 = Graph Compiler
2 = TCB
3 = PBC
4 = Print in-memory ECDFG data structures
5 = Print values of DD characteristics

=>2

Invoke TCB (y/n)? y

Set the characteristics to be dealt with.

The current BDDB Design Data Characteristics are:
==

Design Data Domain Type = BEHAVIOR
Design Data Behavioral Flavor = BEHAVIOR_PURE
Design Data Chunk Type = CONTROL_DATA_FLOW

Use the current values (y/n)?n

Setting of BDDB Design Data Characteristics ...
==

Use default parameters (y/n)? n

Set the Design Data Domain Type:
0 = BEHAVIOR (default)
1 = STRUCTURE

=>O

Design Data Domain Type = BEHAVIOR

Set the Design Data Behavioral Flavor:
0 = BEHAVIOR_PURE (default)
1 = BEHAVIOR_IHTH~STATES
2 BEHAVIOR_WITH_ALLOCATIOI
3 = BEHAVIOR_WITH_BINDIIG
4 BEHAVIOR_WITH_CONTROL

=>O

Design Data Behavioral Flavor = BEHAVIOR_PURE

Set the Design Data Chunk Type:
0 = DATA FLOW
1 :: CONTROL_FLOW
2 :: CONTROL_DATA_FLOW (default)
3 :: STATE_ GRAPH
4 :: STATE_CONTROL_FLOW
5 :: STATE_CONTROL_DATA_FLOW

=>1

Design Data Chunk Type = CONTROL_FLOW

Specify file name for design data to be stored in: simple_cfg

==
(TCB) Translator from ECDFG to BDDB running
==

BDDB Design Description Result stored in the file simple_cfg.bdef

==

TCB Translator Execution completed.
==
Select betveen tools:

=>

O = Quit
1 = Graph Compiler
2 = TCB
3 = PBC
4 = Print in-memory ECDFG data structures
S = Print values of DD characteristics

4 Putting it all together

An example of how PBC and TCB can be used together to read data from file into main memory
and to put the data back onto the file has been put together. This example uses VSS (version 4),
i.e., PBC and TCB are used in between the. design . tool invoca.tions to keep . track of the design
as it evolves. The design tools used in this example are the VHDL graph compiler, the allocator,
scheduler, and resource binder. The source code and Makefile for this example application can be
found in: · ·

/cz/ua/elke/BDEF /vss_test

The resulting executables that can be used for testing purposes are:

/ cz/ua/elke/BDEF /vss_test/bdeLsun3

/ cz/ua/elke/BDEF /vss_test/bdeLsun4

For this example, I have developed the function invoke_tools() which provides a menu for choosing
the invocation of the following tools: VHDL graph compiler, pbc, tcb, and debug print routines.
Include this function invoke_tools() into your main file in places where you would want to save the
current in-memory data structures onto files as well as in places where you would like to bring data
from a BDEF file into in-memory data structures.

5 BDEF Global Type Definitions/Variables

The BDEF tools use the following global type definitions and variables defined in the files UTILS_BDDB_variables.
and UTILS.J3DDB_typedefs.h.

#define _UTILS_BDDB_typedefs

/**/

References

[1] Rundensteiner, E. A., & Gajski, D. D., "A Design Representation for High-Level Synthesis",
Info. & Computer Science Dept., UCI, Tech. Rep. 90-27, Sep. 1990.

[2] Rundensteiner, E. A., & Gajski, D. D., "BDEF: The Behavioral Design Data Exchange Format",
Info. & Computer Science Dept., UCI, Tech. Rep. 90-34, 1991.

USER'S MANUAL
PARSER/GENERATOR TOOLS FOR THE BEHAVIORAL DESIGN

DATA EXCHANGE FORMAT (BDEF)

Elke A. Rundensteiner

Department of Information and Computer Science
l'niversity of California, Irvine

Irvine, CA 92717

email: rundenstics. uci.edu
telephone: (714) 856-4101

'.\larch, 1991

ABSTRACT

The Behavioral Design Data Exchange Format (BDEF) is a textual format for the design repre­
sentation of the Extended Control/Data Flow Graph (ECDFG) Model. BDEF has been developed
to serve as exchange format of design data between the Behavioral Design Data Base (BDDB) and
the design tools in the behavioral synthesis environment at the University of California, Irvine. This
user's manual describes how to use the Behavioral Design Data Exchange Format (BDEF) parser
and generator tools. The BDEF parser compiles a BDEF description of a design into 'its corre­
sponding ECDFG data structures. The BDEF translator on the other hand maps the ECDFG data
structures of a design into its corresponding BDEF description.

variable BD D B_dLnodes will point to the generated data flow data structures. If there is timing
constraint information that is generated by PBC. then the global variable BDDB_timing will point
to a list of all timing specification structures.

2.3 How to Execute PBC

To execute PBC as a stand-alone :iystPm. enter the following command:

% pbc_sun:3 < design-name >

or

% pbc_sun4 < design-name>

You can also include PBC: in form of a function call into your favorite synthesis system. P BC
then will generated an internal data flow graph representation from a given BDEF description that
can be directly used by your program. In this case. the executable file "pbc.o'' and "utils_module.o"
have to be loaded with your C code. The file .. pbc .h'' contains the function definition ·'pbc()" and
therefore must be included into the file in which you want to call PBC.

The function pbc() has the following declaration:

void pbc(pbc_file,num_argc)
char *pbc_file;
int num_argc;
{

}

The first argument of pbc() corresponds to the name of the design file that is being parsed. The
second argument is set to 1 when the parser reads from standard input (stdin) and to 2 when the
parser reads its input from a text file.

Execute PBC with the following function call:

p be(clesign_fi]e _name.2):

PBC uses global rnriahles to detnmirw tl11 .\r-·sirwl design view of the design data. I provide for
a function that allows the usPr to SPt tlw de.si~11 1hrc1 characteristics that he/she is interested in. t lF1t
is. that are to he extracted from the BDEF .J, onipt ic111. If the requested design data is available
in the de~ign file then the information is ,•xt1·111 . .\ 111d put into data structures. If the requestPd
design information is available in thP BDEF .[," 111.r 1· ·11 1 hen the user is notified. The design rl;it;i

chararteristic~ dPfinecl in the .. util<' model M~ ".II· 11 11, ·1 i:rtt'r section.

2.4 An Example PBC Execution

BDEF Support Tools (BDDB)
March 1991 Prototype

Select between tools:
0 = Quit

=>3

1 Graph Compiler
2 TCB
3 = PBC
4 = Print in-memory ECDFG data structures
5 Print values of DD characteristics

Invoke PBC (y/n)? y

Specify input file name for design data to be parsed:simple_cfg

Using <simple_cfg> as input_file.

==
(PBC) Parser from BDEF to ECDFG running
==

Parsing of file <simple_cfg.bdef> ...

Should all Design Data in the design entity be compiled (y/n)? y

Symbol table 5: No timing constraints specified!

Symbol List 1
cf_conns: 3
cf_conns: 2
cf_conns: 4
cf_conns: 1
Symbol table 1
Cf_conns_source: 3,cf_node: 3,cf_conns_dest: 4
Cf_conns_source: 1,cf_node: 1,cf_conns_dest: 2

Successful Parsing of file <simple_cfg_2.bdef>.

==
PBC Parser Execution completed.
==

Select between tools:
0 Quit
1 = Graph Compiler

=>0

2 = TCB

3 = PBC

4 = Print in-memory ECDFG data structures
5 = Print values of DD characteristics

Quitting!
<sun>

3 TCB: The Translator from the ECDFG Data Structures
to BDEF

TCB is a BDEF Generator that translates a ECDFG design representation into its corresponding
BDEF format. This BDEF generator is a valuable tool for design data exchange since it allows
the Behavioral Design Data Base to capturP dPsign data used by different design tools in a unified
format.

3.1 Where is What?

The source code for the BDEF Generator (TCB) can be found in:

/ cz/ ua/ elke/BDEF / dbcode/translator

The source code for utility functions and global definitions used by both TCB and PBC is in:

/ cz/ua/ elke/BD EF / dbcode/utils

The public TCB object code that has to be linked with your program in order to run the generator
IS:

/ cz/ua/ elke/BDEF / pub_objs/sun3/tc luun:3 .o

/ cz/ ua/ elke/BD EF /pub_objs/ sun3/utils_1noclule ~5utd.o

The matching sun4 executables are:

/cz/ua/elke/BDEF/pub_objs/sun4/tcb_s1111 l 1>

/ cz/ua/ elke/BD EF /pub_objs/sun4/ utils_111u1I11 le·~' 1111 l .o

An example Makefile and an example program that invokes the generator can be found in:

/cz/ua/elke/BDEF /vss_test

3.2 Input/Output Data

TCB has several input parameters:

void tcb (designfile,state_graph,cfg,dfg)
FILE * designfile;
struct graph * state_graph;
struct cf_node_list * cfg;
struct df_node_net_list * dfg;
{

}

The first argument corresponds to the name of the design file that will hold the generated BDEF
design description. The other three parameters correspond to pointers to the in-memory data
structures that are to be translated to BDEF. The second parameter state_graph holds a pointer to
the state graph, the third parameter cfg holds a pointer to the control flow graph, and the fourth
parameter dfg holds a pointer to the data flow graph to be printed out. Only one of these three
parameters is not equal NULL at a given time. When the internal data structure is a state graph.
then the second parameter will point to this graph while the other parameters will be NULL. If the
user is interested in only generating the BDEF description of a control flow graph or of a data flow
graph, then s/he nees to enter a pointer to the respective graph as parameter to the tcb function.

The TCB generator returns a BDEF description of the design represented by the given in-memory
data structures. Due to the following naming convention for BDEF files, TCB will append a ·'.bdef'
to the first parameter, the input file name. The generated BDEF design description will then be
stored in this file.

3.3 How to Execute TCB

To execute TCB as a stand-alone system, enter the following command:

3 tcb_sun:3 < design-name >

or

% tch~sun4 < design-name >

You can also include TCB in form of a function call into your synthesis system. TCB then will
generated a BDEF description that captures the internal data flow graph representation produced
by your program. This allows for the sharing of the design data with other design tools. In this
case, the executable file ·'tcb.o" and ·'uti!s.Jllodule.o" have to be loaded with your C code. The file
''tcb.h" contains the function definition "tcb()" and therefore must be included into the file in which
you want to call TCB.

Execute TCB with the following function call:

tcb(design_file_name,stg,cfg,dfg);

with either stg, cfg or dfg a pointer to the current ECDFG data structures.

The BDEF Generator has the three parameters, design entity domain type, design entity flavor,
and design entity chunk type. They determine the type of design data that is to be captured in the
BDEF description. If the requested information is not available in the design representation. then
the user of this BDEF Generator will be notified. The design data characteristics defined in the
"utils" model are given in a later section.

3.4 An Example TCB Execution

Select
0 =

1
2

3 =

4
5 =

=>2

BDEF Support Tools (BDDB)
March 1991 Prototype

between tools:
Quit
Graph Compiler
TCB
PBC
Print in-memory ECDFG data structures
Print values of DD characteristics

Invoke TCB (y/n)7 y

Set the characteristics to be dealt with.

The current BDDB Design Data Characteristics are:
==

Design Data Domain Type = BEHAVIOR
Design Data Behavioral Flavor = BEHAVIOR_PURE
Design Data Chunk Type = CONTROL_DATA_FLO~

Use the current values (y/n)?n

Setting of BDDB Design Data Characteristics ...
==

Use default parameters (y/n)? n

Set the Design Data Domain Type:
0 BEHAVIOR (default)
1 = STRUCTURE

=>O

Design Data Domain Type = BEHAVIOR

Set the Design Data Behavioral Flavor:
0 = BEHAVIOR_PURE (default)
1 BEHAVIOR_WITH_STATES
2 BEHAVIOR_WITH ALLOCATION
3 BEHAVIOR WITH BINDING
4 BEHAVIOR WITH CONTROL

=>O

Design Data Behavioral Flavor = BEHAVIOR_PURE

Set the Design Data Chunk Type:
0 DATA FLOW
1 CONTROL FLOW
2 CONTROL_DATA_FLOW (default)
3 = STATE GRAPH
4 STATE CONTROL_FLOW
5 = STATE_CONTROL_DATA_FLOW

=>1

Design Data Chunk Type = CONTROL_FLOW

Specify file name for design data to be stored in: simple_cfg

==
(TCB) Translator from ECDFG to BDDB running
==

BDDB Design Description Result stored in the file simple_cfg.bdef

==

TCB Translator Execution completed.
==

Select
0 =
1 =
2 =
3 =
4 =
5 =

=>

between tools:
Quit
Graph Compiler
TCB
PBC
Print in-memory ECDFG data structures
Print values of DD characteristics

4 Putting it all together

An example of how PBC and TCB can be used together to read data from file into main memory
and to put the data back onto the file has been put together. This example uses VSS (version 4).
i.e., PBC and TCB are used in between the design tool invocations to keep track of the design
as it evolves. The design tools used in this example are the VHDL graph compiler, the allocator.
scheduler, and resource binder. The source code and :\Iakefile for this example application can be
found in:

/cz/ua/elke/BDEF /vss_test

The resulting executables that can be used for testing purposes are:

/cz/ua/elke/BDEF /vss_test/bdeLsun:3

/cz/ua/elke/BDEF /vss_test/bdeLsun-1

For this example, I have developed the function invoke_tools() which provides a menu for choosing
the invocation of the following tools: VHDL graph compiler, pbc, tcb, and debug print routines.
Include this function invoke_tools() into your main file in places where you would want to save the
current in-memory data structures onto files as wPll as in places where you would like to bring data
from a BDEF file into in-memory data structures.

5 BDEF Global Type Definitions/Variables

The BD EF tools use the following global typ<-' · i· ·Ii 11 it i·rn;o; :11Hl variables defined in the files l'TILS_B D DB_vri ri.1 I· I·
and llTILS_BDDB_typedefs.h.

#define _UTILS_BDDB_typedefs

/**''•''*****************/

/* UTILS_BDDB_typedefs.h
I* TYPE DEFINITIONS FOR THE
/*
/*

TEXTUAL ECDFG FILEFORMAT PARSER MODULE
Symbol Table data structures

/* *I
/* Behavioral Design Data Base (BDDB) */
/* Copyright (c) 1990 by Elke A. Rundensteiner */
I* Last updated: Jan/91 */
/**/

/**/
/* design data domain type' *I
/**/

typedef enum { BEHAVIOR, STRUCTURE } BDDB_DD_Domain_Type;

/**/
I* design data behavioral flavor if design data type is BEHAVIOR*/
/**/

typedef enum
{BEHAVIOR_PURE,

BEHAVIOR_WITH_STATES,
BEHAVIOR_WITH_ALLOCATION,
BEHAVIOR_WITH_BINDING,
BEHAVIOR_ WITH_ CONTROL

}
BDDB_DD_Behavioral_Flavor;

/**/
/* design data behavioral chunk type */
/**/

typedef enum
{ DATA_FLOW,

CONTROL_FLOW,
CONTROL_DATA_FLOW,
STATE_ GRAPH,
STATE_CONTROL_FLOW,
STATE_CONTROL_DATA_FLOW

}
BDDB_DD_Chunk_Type;

/**/
/* design data behavioral flavor if design data type is BEHAVIOR*/
/**/

typedef enum
{ STRUCTURE_PURE,

STRUCTURE_WITH_ESTIMATES,
STRUCTURE_ WITH_ GEOMETRY

}

BDDB_DD_Structural_Flavor;

#endif

#ifndef _UTILS_BDDB_variables
#define _UTILS_BDDB_variables

/**/
I* UTILS_BDDB_variables.h */

I*

GLOBAL VARIABLES FOR THE
TEXTUAL ECDFG FILEFORMAT PARSER MODULE

Symbol Table data structures

/* Behavioral Design Data Base (BDDB)
I* Copyright (c) 1990 by Elke A. Rundensteiner
I* Last updated: Jan/91
/**/

/**/
I* Variables describing the design data characteristics */
/**/

I* design data domain type

BDDB_DD_Domain_Type DD_Domain_Type;

I* design data behavioral flavor if design data type is BEHAVIOR */

BDDB_DD_Behavioral_Flavor DD_Behavioral_Flavor;

I* design data behavioral chunk type */

BDDB_DD_Chunk_Type DD_Chunk_Type;

I* design data behavioral flavor if design data type is BEHAVIOR */

BDDB_DD_Structural_Flavor DD_Structural_Flavor;

I* determine whether timing constraints are used */
/* if design data type is BEHAVIOR *I

bool DD_Timing;

/* design entity name */

char * DE_Name;

/* design entity version number */

int DE_Version_Num;

References

[l] Rundensteiner, E. A., & Gajski. D. D .. '·A Design Representation for High-Level Synthesis".
Info. & Computer Science Dept .. lTI. Tech. Rep. 90-27. Sep. 1990.

[2] Rundensteiner, E. A., & Gajski. D. D., "BDEF: The Behavioral Design Data Exchange Format".
Info. & Computer Science Dept., CCI. Tech. Rep. 90-34, 1991.

ll
3 1970 00882 5322

