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Abstract. We prove an identity for Littlewood–Richardson coefficients conjectured by Pel-
letier and Ressayre. The proof relies on a novel birational involution defined over any semi-
field.
Keywords. Symmetric functions, Littlewood–Richardson coefficients, partitions, Schur
functions, Schur polynomials, birational combinatorics, detropicalization, partitions
Mathematics Subject Classifications. 05E05

One of the central concepts in the theory of symmetric functions are the Littlewood–Richard-
son coefficients cλµ,ν : the coefficients when a product sµsν of two Schur functions is expanded
back in the Schur basis (sλ)λ∈Par. Equivalently, these coefficients are tensor product multiplici-
ties of irreducible representations of GLn (noting that each partition λ having length 6 n has a
certain irreducible representation V (λ) of GLn corresponding to it, the so-called Weyl module
for shape λ). Various properties of these coefficients have been found, among them combinato-
rial interpretations, vanishing results, bounds and symmetries (i.e., equalities between cλµ,ν for
different λ, µ, ν). A recent overview of the latter can be found in [2].

In [18], Pelletier and Ressayre conjectured a further symmetry of Littlewood–Richardson
coefficients. Unless the classical ones, it is a partial symmetry (i.e., it does not cover every
Littlewood–Richardson coefficient); it is furthermore much less simple to state, to the extent
that Pelletier and Ressayre have conjectured its existence while leaving open the question which
exact coefficients it matches up. In this paper, we answer this question and prove the conjecture
thus concretized.

The conjecture, in its original form, can be stated as follows: Let n > 2, and consider
the set Par [n] of all partitions having length 6 n. Let a and b be two nonnegative integers, and
define the two partitions α = (a+ b, an−2) and β = (a+ b, bn−2) (where cn−2 means c, c, . . . , c︸ ︷︷ ︸

n−2 times

,

as usual in partition combinatorics). Fix another partition µ ∈ Par [n]. Then, the families

https://www.combinatorial-theory.org
mailto:darijgrinberg@gmail.com
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cωα,µ
)
ω∈Par[n]

and
(
cωβ,µ
)
ω∈Par[n]

of Littlewood–Richardson coefficients seem to be identical up to
permutation. We can restate this in terms of Schur polynomials in the n variables x1, x2, . . . , xn;
this then becomes the claim that the products sα (x1, x2, . . . , xn) · sµ (x1, x2, . . . , xn) and
sβ (x1, x2, . . . , xn) · sµ (x1, x2, . . . , xn), when expanded in the basis of Schur polynomials, have
the same multiset of coefficients. Equivalently, this can be restated in terms of representations
of GLn; then, it becomes the claim that the tensor products V (α) ⊗ V (µ) and V (β) ⊗ V (µ)
decompose into irreps (i.e., irreducible representations) with the samemultiplicities (in the sense
that there is a multiplicity-preserving bijection between the irreps in V (α)⊗V (µ) and the irreps
in V (β)⊗ V (µ)).1

Pelletier and Ressayre have proved this conjecture for n = 3 (see [18, Corollary 2]) and
in some further cases. We shall prove it in full generality, and construct what is essentially a
bijection ϕ : Par [n] → Par [n] that makes it explicit (i.e., that satisfies cωα,µ = c

ϕ(ω)
β,µ for each

ω ∈ Par [n]). To be fully precise, ϕ will not be a bijection Par [n] → Par [n], but rather a
bijection from Zn to Zn, and it will satisfy cωα,µ = c

ϕ(ω)
β,µ with the understanding that cωα,µ =

cωβ,µ = 0 when ω /∈ Par [n]. (Here, Par [n] is understood to be a subset of Zn by identifying each
partition λ ∈ Par [n] with the n-tuple (λ1, λ2, . . . , λn).)

We will define this bijection ϕ by explicit (if somewhat intricate) formulas that “mingle” the
entries of the partition it is being applied to with those of µ (as well as a and b) using the min and
+ operators. These formulas are best understood in the birational picture, in which these min
and + operators are generalized to the addition and the multiplication of an arbitrary semifield.
(Our proof does not require this generality, but the birational picture has the advantage of greater
familiarity and better notational support. It also reveals a connection with a known birational
map known as a “birational R-matrix” (see Subsection 5.2), which could throw some light on
the otherwise rather mysterious bijection.)

Another ingredient of our proof is an explicit formula for sα (x1, x2, . . . , xn) for the above-
mentioned partition α.

Remark on alternative versions

A number of proofs in this paper rely on long computations, inductions and laborious, if fairly
straightforward, combinatorial arguments. In the present version of this paper, we only outline

1We note that the partition β is the complement of α with respect to the rectangle of height n and width a+ b;
thus, the representation V (β) is isomorphic to the tensor product (V (α))

∗ ⊗ deta+b, where (V (α))
∗ denotes the

dual representation to V (α), and where det is the 1-dimensional determinant representation ofGLn. Consequently,
Pelletier’s and Ressayre’s conjecture can be reworded even further as saying that the tensor products V (α)⊗V (µ)
and (V (α))

∗ ⊗ V (µ) have the same multiplicities of irreducible representations. Slightly more generally, we can
replace α by an arbitrary almost-rectangular partition – that is, a partition (γ1, γ2, . . . , γn) ∈ Par [n] satisfying
γ2 = γ3 = · · · = γn−1; however, this generalization follows easily from the original version, since any such
partition satisfies

V ((γ1, γ2, . . . , γn)) ∼= V

(γ1 − γn, γ2 − γn, . . . , γn−1 − γn, 0)︸ ︷︷ ︸
=α for a=γ2−γn and b=γ1−γ2

⊗ detγn .

We cannot, however, replace α by an arbitrary partition in Par [n].
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these proofs. The reader can consult the arXiv version [9] for the details. The even longer
detailed version [8] also contains a few additional proofs that have been omitted even from [9],
such as the proofs of the propositions in Subsection 5.1. Both arXiv versions also contain a
“historical” subsection (§5.3) on the discovery of the maps ϕ and fu appearing in this work.

An older version of this paper (missing the connectionwith the birationalR-matrix) appeared
as Oberwolfach Preprint OWP-2020-18.

1. Notations

We will use the following notations (most of which are also used in [10, §2.1]):

• We let N = {0, 1, 2, . . . }.

• We fix a commutative ring k; we will use this k as the base ring in what follows.

• A partitionmeans an infinite sequence (α1, α2, α3, . . . ) ∈ N∞ such that α1 > α2 > α3 >
. . . and such that all but finitely many i ∈ {1, 2, 3, . . . } satisfy αi = 0.

• For any partition α and any positive integer i, we let αi denote the i-th entry of α (so that
α = (α1, α2, α3, . . . )). More generally, we use this notation whenever α is an infinite
sequence of any kind of objects.

• We let Par denote the set of all partitions.

• Wewill often omit trailing zeroes from partitions: i.e., a partition λ = (λ1, λ2, λ3, . . . )will
be identified with the k-tuple (λ1, λ2, . . . , λk) whenever k ∈ N satisfies λk+1 = λk+2 =
λk+3 = · · · = 0. For example, we have (3, 2, 1, 0, 0, 0, . . . ) = (3, 2, 1) = (3, 2, 1, 0).
As a consequence of this, an n-tuple (λ1, λ2, . . . , λn) ∈ Zn (for any given n ∈ N) is a
partition if and only if it satisfies λ1 > λ2 > . . . > λn > 0.

• The length of a partition λ means the smallest k ∈ N such that λk+1 = λk+2 = λk+3 =
· · · = 0. Equivalently, the length of a partition λ is the number of nonzero entries of λ
(counted with multiplicity). This length is denoted by ` (λ). For example, ` ((4, 2, 0, 0)) =
` ((4, 2)) = 2 and ` ((5, 1, 1)) = 3.

• We will use the notationmk for “m,m, . . . ,m︸ ︷︷ ︸
k times

” in partitions and tuples (wheneverm ∈ N

and k ∈ N). (For example, (2, 14) = (2, 1, 1, 1, 1).)

• We let Λ denote the ring of symmetric functions in infinitely many variables x1, x2, x3, . . .
over k. This is a subring of the ring k [[x1, x2, x3, . . . ]] of formal power series. To be
more specific, Λ consists of all power series in k [[x1, x2, x3, . . . ]] that are symmetric (i.e.,
invariant under permutations of the variables) and of bounded degree (see [10, §2.1] for
the precise meaning of this).

https://publications.mfo.de/handle/mfo/3773
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We shall use the symmetric functions hn and sλ in Λ as defined in [10, Sections 2.1 and 2.2].
Let us briefly recall how they are defined:

• For each n ∈ Z, we define the complete homogeneous symmetric function hn ∈ Λ by

hn =
∑

i16i26...6in

xi1xi2 . . . xin .

Thus, h0 = 1 and hn = 0 for all n < 0.

• For each partition λ, we define the Schur function sλ ∈ Λ by

sλ =
∑

xT ,

where the sum ranges over all semistandard tableaux T of shape λ, and where xT denotes
the monomial obtained by multiplying the xi for all entries i of T . We refer the reader to
[10, Definition 2.2.1] or to [21, §7.10] for the details of this definition and further descrip-
tions of the Schur functions.
The family (sλ)λ∈Par is a basis of the k-module Λ, and is known as the Schur basis. It is
easy to see that each n ∈ N satisfies s(n) = hn.

• We shall use the Littlewood–Richardson coefficients cλµ,ν (for λ, µ, ν ∈ Par), as defined
in [10, Definition 2.5.8], in [21, §7.15] or in [4, Chapter 10]. One of their defining prop-
erties is the following fact (see, e.g., [10, (2.5.6)] or [21, (7.64)] or [4, (10.1)]): Any two
partitions µ, ν ∈ Par satisfy

sµsν =
∑
λ∈Par

cλµ,νsλ. (1.1)

2. The theorem

Convention 2.1.

(a) For the rest of this paper, we fix a positive integer n.

(b) Let Par [n] be the set of all partitions having length 6 n. In other words,

Par [n] = {λ ∈ Par | λ = (λ1, λ2, . . . , λn)} = Par∩Nn

= {(λ1, λ2, . . . , λn) ∈ Zn | λ1 > λ2 > . . . > λn > 0}

(where we are using our convention that trailing zeroes can be omitted from partitions, so
that a partition of length 6 n can always be identified with an n-tuple).

(c) A family (ui)i∈Z of objects (e.g., of numbers) is said to be n-periodic if each j ∈ Z satisfies
uj = uj+n. Equivalently, a family (ui)i∈Z of objects is n-periodic if and only if it has the
property that

(uj = uj′ whenever j and j′ are two integers satisfying j ≡ j′modn) .
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Thus, an n-periodic family (ui)i∈Z is uniquely determined by the n consecutive entries
u1, u2, . . . , un (because for any integer j, we have uj = uj′ , where j′ is the unique element
of {1, 2, . . . , n} that is congruent to j modulo n).

Example 2.2. If n = 3, then both partitions (3, 2) and (3, 2, 2) belong to Par [n], while the
partition (3, 2, 2, 2) does not. The n-tuples (4, 2, 1) and (3, 3, 0) are partitions, while the n-
tuples (1, 0,−1) and (2, 0, 1) are not. If ζ is an n-th root of unity, then the family (ζ i)i∈Z of
complex numbers is n-periodic.

We can now state our main theorem, which is a concretization of [18, Conjecture 1]:

Theorem 2.3. Assume that n > 2. Let a, b ∈ N. Define the two partitions α = (a+ b, an−2)
and β = (a+ b, bn−2). Fix any partition µ ∈ Par [n]. Define a map ϕ : Zn → Zn as follows:
Let ω ∈ Zn. Define an n-tuple ν = (ν1, ν2, . . . , νn) ∈ Zn by

νi = ωi − a for each i ∈ {1, 2, . . . , n} ,

where ωi means the i-th entry of ω. For each i ∈ Z, we let i# denote the unique element of
{1, 2, . . . , n} congruent to i modulo n. For each j ∈ Z, set

τj = min
{(
ν(j+1)# + ν(j+2)# + · · ·+ ν(j+k)#

)
+
(
µ(j+k+1)# + µ(j+k+2)# + · · ·+ µ(j+n−1)#

)
| k ∈ {0, 1, . . . , n− 1}

}
.

Define an n-tuple η = (η1, η2, . . . , ηn) ∈ Zn by setting

ηi = µi# +
(
µ(i−1)# + τ(i−1)#

)
−
(
ν(i+1)# + τ(i+1)#

)
for each i ∈ {1, 2, . . . , n} .

Let ϕ (ω) be the n-tuple (η1 + b, η2 + b, . . . , ηn + b) ∈ Zn. Thus, we have defined a map ϕ :
Zn → Zn. Then:

(a) The map ϕ is a bijection.

(b) We have
cωα,µ = c

ϕ(ω)
β,µ for each ω ∈ Zn.

Here, we are using the convention that every n-tuple ω ∈ Zn that is not a partition satisfies
cωα,µ = 0 and cωβ,µ = 0.

This theorem will be proved at the end of this paper, after we have shown several (often
seemingly unrelated, yet eventually useful) results.

Example 2.4. Let n = 4 and a = 1 and b = 4. The partitions α and β defined in Theorem 2.3
then take the forms α = (1 + 4, 12) = (5, 1, 1) and β = (1 + 4, 42) = (5, 4, 4). Let µ ∈ Par [n]
be the partition (2, 1) = (2, 1, 0, 0). Let ω ∈ Par [n] be the partition (5, 3, 2) = (5, 3, 2, 0). We
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shall compute the n-tupleϕ (ω) defined in Theorem 2.3. Indeed, the n-tuple ν from Theorem 2.3
is

ν = (ω1 − a, ω2 − a, ω3 − a, ω4 − a)

= (5− 1, 3− 1, 2− 1, 0− 1) = (4, 2, 1,−1) .

The integers i# from Theorem 2.3 form an n-periodic family

(i#)i∈Z = (. . . , 0#, 1#, 2#, 3#, 4#, 5#, 6#, 7#, . . . )

= (. . . , 4, 1, 2, 3, 4, 1, 2, 3, . . . ) .

The integers τj (for j ∈ Z) from Theorem 2.3 are given by

τ1 = min
{(
ν2# + ν3# + · · ·+ ν(k+1)#

)
+
(
µ(k+2)# + µ(k+3)# + · · ·+ µ4#

)
| k ∈ {0, 1, 2, 3}}

= min {µ2# + µ3# + µ4#, ν2# + µ3# + µ4#,

ν2# + ν3# + µ4#, ν2# + ν3# + ν4#}
= min {µ2 + µ3 + µ4, ν2 + µ3 + µ4, ν2 + ν3 + µ4, ν2 + ν3 + ν4}
= min {1 + 0 + 0, 2 + 0 + 0, 2 + 1 + 0, 2 + 1 + (−1)}
= min {1, 2, 3, 2} = 1

and

τ2 = min
{(
ν3# + ν4# + · · ·+ ν(k+2)#

)
+
(
µ(k+3)# + µ(k+4)# + · · ·+ µ5#

)
| k ∈ {0, 1, 2, 3}}

= min {µ3# + µ4# + µ5#, ν3# + µ4# + µ5#,

ν3# + ν4# + µ5#, ν3# + ν4# + ν5#}
= min {µ3 + µ4 + µ1, ν3 + µ4 + µ1, ν3 + ν4 + µ1, ν3 + ν4 + ν1}
= min {0 + 0 + 2, 1 + 0 + 2, 1 + (−1) + 2, 1 + (−1) + 4}
= min {2, 3, 2, 4} = 2

and

τ3 = min
{(
ν4# + ν5# + · · ·+ ν(k+3)#

)
+
(
µ(k+4)# + µ(k+5)# + · · ·+ µ6#

)
| k ∈ {0, 1, 2, 3}}

= min {µ4# + µ5# + µ6#, ν4# + µ5# + µ6#,

ν4# + ν5# + µ6#, ν4# + ν5# + ν6#}
= min {µ4 + µ1 + µ2, ν4 + µ1 + µ2, ν4 + ν1 + µ2, ν4 + ν1 + ν2}
= min {0 + 2 + 1, (−1) + 2 + 1, (−1) + 4 + 1, (−1) + 4 + 2}
= min {3, 2, 4, 5} = 2
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and

τ4 = min
{(
ν5# + ν6# + · · ·+ ν(k+4)#

)
+
(
µ(k+5)# + µ(k+6)# + · · ·+ µ7#

)
| k ∈ {0, 1, 2, 3}}

= min {µ5# + µ6# + µ7#, ν5# + µ6# + µ7#,

ν5# + ν6# + µ7#, ν5# + ν6# + ν7#}
= min {µ1 + µ2 + µ3, ν1 + µ2 + µ3, ν1 + ν2 + µ3, ν1 + ν2 + ν3}
= min {2 + 1 + 0, 4 + 1 + 0, 4 + 2 + 0, 4 + 2 + 1}
= min {3, 5, 6, 7} = 3

and
τj = τj′ whenever j ≡ j′mod 4

(the latter equality follows from the n-periodicity of the family (i#)i∈Z). Thus, the n-tuple
η = (η1, η2, . . . , ηn) from Theorem 2.3 is given by

η1 = µ1#︸︷︷︸
=µ1=2

+

 µ0#︸︷︷︸
=µ4=0

+ τ0#︸︷︷︸
=τ4=3

−
 ν2#︸︷︷︸

=ν2=2

+ τ2#︸︷︷︸
=τ2=2

 = 1

and

η2 = µ2#︸︷︷︸
=µ2=1

+

 µ1#︸︷︷︸
=µ1=2

+ τ1#︸︷︷︸
=τ1=1

−
 ν3#︸︷︷︸

=ν3=1

+ τ3#︸︷︷︸
=τ3=2

 = 1

and

η3 = µ3#︸︷︷︸
=µ3=0

+

 µ2#︸︷︷︸
=µ2=1

+ τ2#︸︷︷︸
=τ2=2

−
 ν4#︸︷︷︸

=ν4=−1

+ τ4#︸︷︷︸
=τ4=3

 = 1

and

η4 = µ4#︸︷︷︸
=µ4=0

+

 µ3#︸︷︷︸
=µ3=0

+ τ3#︸︷︷︸
=τ3=2

−
 ν5#︸︷︷︸

=ν1=4

+ τ5#︸︷︷︸
=τ1=1

 = −3,

so η = (1, 1, 1,−3). Hence, ϕ (ω) = (1 + b, 1 + b, 1 + b,−3 + b) = (5, 5, 5, 1) (since b = 4).
This is a partition. Theorem 2.3 (b) now yields cωα,µ = c

ϕ(ω)
β,µ , that is, c(5,3,2)

(5,1,1),(2,1) = c
(5,5,5,1)
(5,4,4),(2,1).

And indeed, this equality holds (both of its sides being equal to 1).

Question 2.5. Can the bijection ϕ in Theorem 2.3 be defined in a more “intuitive” way, similar
to (e.g.) jeu-de-taquin or the RSK correspondence? (There is no tableau being transformed here,
just a partition.)
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3. A birational involution

The leading role in our proof of Theorem 2.3 will be played by a certain piecewise-linear invo-
lution (which is similar to the bijection ϕ in Theorem 2.3, but without the shifting by−a and b).
For the sake of convenience, we prefer to study this involution in a more general setting, in which
the operations min, + and − are replaced by the structure operations +, · and / of a semifield.
This kind of generalization is called detropicalization (or birational lifting, or tropicalization in
the older combinatorial literature); see, e.g., [12], [17], [5, Sections 5 and 9] or [19, §4.2] for
examples of this procedure (although our use of it will be conceptually simpler).

3.1. Semifields

We recall the definition of a semifield (more precisely, the one we will be using, as there are
many competing ones):2

Definition 3.1. A semifield means a set K endowed with

• two binary operations called “addition” and “multiplication”, and denoted by + and ·,
respectively, and both written infix (i.e., we write a + b and a · b instead of + (a, b) and
· (a, b)), and

• an element called “unity” and denoted by 1

such that (K,+) is an abelian semigroup and (K, ·, 1) is an abelian group, and such that the
distributivity laws

a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c)

hold for all a ∈ K, b ∈ K and c ∈ K.

Thus, a semifield is similar to a field, except that it has no additive inverses and no zero
element, but, on the other hand, has multiplicative inverses for all its elements (not just the
nonzero ones).

Example 3.2. Let Q+ be the set of all positive rational numbers. Then, Q+ (endowed with its
standard addition and multiplication and the number 1) is a semifield.

Example 3.3. Let (A, ∗, e) be any totally ordered abelian group (whose operation is ∗ and whose
neutral element is e). Then, A becomes a semifield if we endow it with the “addition” min (that
is, we set a+ b := min {a, b} for all a, b ∈ A), the “multiplication” ∗ (that is, we set a · b := a∗ b
for all a, b ∈ A), and the “unity” e. This semifield (A,min, ∗, e) is called the min tropical
semifield of (A, ∗, e).

Convention 3.4. All conventions that are typically used for fields will be used for semifields as
well, to the extent they apply. Specifically:

2We recall that semigroups are associative but not necessarily have a neutral element.
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• If K is a semifield, and if a, b ∈ K, then a · b shall be abbreviated by ab.

• We shall use the standard “PEMDAS” convention that multiplication-like operations have
higher precedence than addition-like operations; thus, e.g., the expression “ab+ ac” must
be understood as “(ab) + (ac)”.

• If K is a semifield, then the inverse of any element b ∈ K in the abelian group (K, ·, 1)
will be denoted by b−1. Note that this inverse is always defined (unlike whenK is a field).

• If K is a semifield, and if a, b ∈ K, then the product ab−1 will be denoted by a/b and by
a

b
. Note that this is always defined (unlike when K is a field).

• Finite products
∏
i∈I
ai of elements of a semifield are defined in the same way as in com-

mutative rings. The same applies to finite sums
∑
i∈I
ai as long as they are nonempty (i.e.,

as long as I 6= ∅). The empty sum is not defined in a semifield, since there is no zero
element.

3.2. The birational involution

For the rest of Section 3, we agree to the following two conventions:
Convention 3.5. We fix a positive integer n and a semifield K. We also fix an n-tuple u ∈ Kn.
Convention 3.6. If a ∈ Kn is an n-tuple, and if i ∈ Z, then ai shall denote the i#-th entry of
a, where i# is the unique element of {1, 2, . . . , n} satisfying i# ≡ imodn. Thus, each n-tuple
a ∈ Kn satisfies a = (a1, a2, . . . , an) and ai = ai+n for each i ∈ Z. Therefore, if a ∈ Kn is any
n-tuple, then the family (ai)i∈Z is n-periodic.

We shall soon use the letter x for an n-tuple inKn; thus, x1, x2, . . . , xn will be the entries of
this n-tuple. This has nothing to do with the indeterminates x1, x2, x3, . . . from Section 1 (that
unfortunately use the same letters); we actually forget all conventions from Section 1 (apart
from N = {0, 1, 2, . . . }) for the entire Section 3.

The following is obvious:
Lemma 3.7. If a ∈ Kn is any n-tuple, then ak+1ak+2 · · · ak+n = a1a2 · · · an for each k ∈ Z.
Definition 3.8. We define a map fu : Kn → Kn as follows: Let x ∈ Kn be an n-tuple. For each
j ∈ Z and r ∈ N, define an element tr,j ∈ K by

tr,j =
r∑

k=0

xj+1xj+2 · · ·xj+k︸ ︷︷ ︸
=

k∏
i=1

xj+i

·uj+k+1uj+k+2 · · ·uj+r︸ ︷︷ ︸
=

r∏
i=k+1

uj+i

.

Define y ∈ Kn by setting

yi = ui ·
ui−1tn−1,i−1

xi+1tn−1,i+1

for each i ∈ {1, 2, . . . , n} .

Set fu (x) = y.
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Example 3.9. Set n = 4 for this example. Let x ∈ Kn be an n-tuple; thus, x = (x1, x2, x3, x4).
Let us see what the definition of fu (x) in Definition 3.8 boils down to in this case. Let us first
compute the elements tn−1,j = t3,j from Definition 3.8. The definition of t3,0 yields

t3,0 =
3∑

k=0

x1x2 · · · xk · uk+1uk+2 · · ·u3

= u1u2u3 + x1u2u3 + x1x2u3 + x1x2x3.

Similarly,

t3,1 = u2u3u4 + x2u3u4 + x2x3u4 + x2x3x4;

t3,2 = u3u4u5 + x3u4u5 + x3x4u5 + x3x4x5

= u3u4u1 + x3u4u1 + x3x4u1 + x3x4x1

(since u5 = u1 and x5 = x1) ;

t3,3 = u4u5u6 + x4u5u6 + x4x5u6 + x4x5x6

= u4u1u2 + x4u1u2 + x4x1u2 + x4x1x2

(since u5 = u1 and x5 = x1 and u6 = u2 and x6 = x2) .

We don’t need to compute any further t3,j’s, since we can easily see that

t3,j = t3,j′ for any integers j and j′ satisfying j ≡ j′mod 4. (3.1)

Thus, in particular, t3,4 = t3,0 and t3,5 = t3,1. Now, let us compute the 4-tuple y ∈ Kn = K4

from Definition 3.8. By its definition, we have

y1 = u1 ·
u1−1t3,1−1

x1+1t3,1+1

= u1 ·
u0t3,0
x2t3,2

= u1 ·
u4t3,0
x2t3,2

(since u0 = u4)

= u1 ·
u4 (u1u2u3 + x1u2u3 + x1x2u3 + x1x2x3)

x2 (u3u4u1 + x3u4u1 + x3x4u1 + x3x4x1)

(by our formulas for t3,0 and t3,2). Similar computations lead to

y2 = u2 ·
u1 (u2u3u4 + x2u3u4 + x2x3u4 + x2x3x4)

x3 (u4u1u2 + x4u1u2 + x4x1u2 + x4x1x2)
;

y3 = u3 ·
u2 (u3u4u1 + x3u4u1 + x3x4u1 + x3x4x1)

x4 (u1u2u3 + x1u2u3 + x1x2u3 + x1x2x3)
;

y4 = u4 ·
u3 (u4u1u2 + x4u1u2 + x4x1u2 + x4x1x2)

x1 (u2u3u4 + x2u3u4 + x2x3u4 + x2x3x4)
.

Of course, knowing one of these four equalities is enough; the expression for yi+1 is obtained
from the expression for yi by shifting all indices (other than the “3”s that were originally “n−1”s)
forward by 1.
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Remark 3.10. Instead of assuming K to be a semifield, we could have assumed that K is an
infinite field. In that case, the fu in Definition 3.8 would be a birational map instead of a map
in the usual sense of this word, since the denominators xi+1tn−1,i+1 in the definition of y can be
zero. Everything we say below about fu would nevertheless still hold on the level of birational
maps.

The map fu we just defined has the following properties:

Theorem 3.11.

(a) The map fu is an involution (i.e., we have fu ◦ fu = id).

(b) Let x ∈ Kn and y ∈ Kn be such that y = fu (x). Then,

y1y2 · · · yn · x1x2 · · ·xn = (u1u2 · · ·un)2 .

(c) Let x ∈ Kn and y ∈ Kn be such that y = fu (x). Then,

(ui + xi)

(
1

ui+1

+
1

xi+1

)
= (ui + yi)

(
1

ui+1

+
1

yi+1

)
for each i ∈ Z.

(d) Let x ∈ Kn and y ∈ Kn be such that y = fu (x). Then,
n∏
i=1

ui + xi
xi

=
n∏
i=1

ui + yi
ui

.

Theorem 3.11 will be crucial for us; but before we can prove it, we will need a few lemmas.

Lemma 3.12. Let x ∈ Kn be an n-tuple. Let tr,j and y be as in Definition 3.8. Then:

(a) We have tr,j = tr,j′ for any r ∈ N and any two integers j and j′ satisfying j ≡ j′modn.
In other words, for each r ∈ N, the family (tr,j)j∈Z is n-periodic.

(b) We have t0,j = 1 for each j ∈ Z.

(c) For each r ∈ N and j ∈ Z, we have

xjtr,j + ujuj+1 · · ·uj+r = tr+1,j−1.

(d) For each r ∈ N and j ∈ Z, we have

uj+r+1tr,j + xj+1xj+2 · · ·xj+r+1 = tr+1,j.

(e) For each a ∈ Z and b ∈ Z, we have

xatn−1,a + ub−1tn−1,b−1 = xbtn−1,b + ua−1tn−1,a−1.
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(f) For each i ∈ Z, we have

xi+1tn−1,i+1 + ui−1tn−1,i−1 = (xi + ui) tn−1,i.

(g) For each j ∈ Z and each positive integer q, we have

tn−1,j+q+1 · xj+2xj+3 · · ·xj+q+1 + ujtn−1,jtq−1,j+1 = tn−1,j+1tq,j.

(h) For each i ∈ Z, we have
yi = ui ·

ui−1tn−1,i−1

xi+1tn−1,i+1

.

Now, for each j ∈ Z and r ∈ N, let us define an element t′r,j ∈ K by

t′r,j =
r∑

k=0

yj+1yj+2 · · · yj+k︸ ︷︷ ︸
=

k∏
i=1

yj+i

·uj+k+1uj+k+2 · · ·uj+r︸ ︷︷ ︸
=

r∏
i=k+1

uj+i

.

(This is precisely how tr,j was defined, except that we are using y in place of x now.) Then:

(i) For each j ∈ Z and q ∈ N, we have
t′q,j

uj+1uj+2 · · ·uj+q
=

tn−1,j+1

tn−1,j+q+1

· tq,j
xj+2xj+3 · · ·xj+q+1

.

(j) For each j ∈ Z, we have
t′n−1,juj

u1u2 · · ·un
=
tn−1,j+1xj+1

x1x2 · · ·xn
.

(k) For each i ∈ Z, we have

xi = ui ·
ui−1t

′
n−1,i−1

yi+1t′n−1,i+1

.

Proof of Lemma 3.12. The proof of this lemma is long but unsophisticated: Each part follows
by rather straightforward computations (and, in the cases of parts (g) and (i), an induction on q)
from the previously proven parts.3 We therefore omit it.

Lemma 3.13. Let x ∈ Kn be an n-tuple. For each j ∈ Z, let

qj =
n−1∑
k=0

xj+1xj+2 · · ·xj+k · uj+k+1uj+k+2 · · ·uj+n−1.

Let z ∈ Kn be such that

zi = ui ·
ui−1qi−1

xi+1qi+1

for each i ∈ {1, 2, . . . , n} .

Then, fu (x) = z.
3Moreover, the hardest parts of the proof – namely, the proofs of parts (g), (i), (j) and (k) – can be sidestepped

entirely, as these parts will only be used in the proof of Theorem 3.11 (a), but we will give an alternative proof of
Theorem 3.11 (a) later on (in Remark 3.16), which avoids using them.
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Proof of Lemma 3.13. Let tr,j and y be as in Definition 3.8. Then, tn−1,j = qj for each j ∈ Z
(by comparing the definitions of tn−1,j and qj). Hence, zi = yi for each i ∈ {1, 2, . . . , n} (by
comparing the definitions of zi and yi). Hence, z = y = fu (x) (since fu (x) was defined to be
y).

For future convenience, let us restate Lemma 3.13 with different labels:

Lemma 3.14. Let y ∈ Kn be an n-tuple. For each j ∈ Z, let

rj =
n−1∑
k=0

yj+1yj+2 · · · yj+k · uj+k+1uj+k+2 · · ·uj+n−1.

Let x ∈ Kn be such that

xi = ui ·
ui−1ri−1

yi+1ri+1

for each i ∈ {1, 2, . . . , n} .

Then, fu (y) = x.

Proof of Lemma 3.14. Lemma 3.14 is just Lemma 3.13, with x, qj and z renamed as y, rj and
x.

We are now ready for the proof of Theorem 3.11:

Proof of Theorem 3.11. (a) Let x ∈ Kn. We shall prove that (fu ◦ fu) (x) = x.
Let tr,j and y be as in Definition 3.8. Then, fu (x) = y (by the definition of fu). Let t′r,j (for

each r ∈ N and j ∈ Z) be as in Lemma 3.12. The definition of t′n−1,j shows that

t′n−1,j =
n−1∑
k=0

yj+1yj+2 · · · yj+k · uj+k+1uj+k+2 · · ·uj+n−1

for each j ∈ Z. Lemma 3.12 (k) shows that

xi = ui ·
ui−1t

′
n−1,i−1

yi+1t′n−1,i+1

for each i ∈ {1, 2, . . . , n} .

Thus, Lemma 3.14 (applied to rj = t′n−1,j) yields that fu (y) = x. In view of fu (x) = y, this
rewrites as fu (fu (x)) = x. In other words, (fu ◦ fu) (x) = x.

We have proved this for each x ∈ Kn. In other words, fu ◦ fu = id. This proves Theo-
rem 3.11 (a).

(b) Let tr,j be as in Definition 3.8. Note that the y from Definition 3.8 is precisely the y in
Theorem 3.11 (b) (because both y’s satisfy fu (x) = y).
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The definition of y in Definition 3.8 shows that

y1y2 · · · yn =

(
u1 ·

u0tn−1,0

x2tn−1,2

)(
u2 ·

u1tn−1,1

x3tn−1,3

)
· · ·
(
un ·

un−1tn−1,n−1

xn+1tn−1,n+1

)
= (u1u2 · · ·un) · (u0u1 · · ·un−1)︸ ︷︷ ︸

=u1u2···un
(by Lemma 3.7)

· (tn−1,0tn−1,1 · · · tn−1,n−1)︸ ︷︷ ︸
=tn−1,1tn−1,2···tn−1,n

(by Lemma 3.12 (a))

/

(x2x3 · · ·xn+1)︸ ︷︷ ︸
=x1x2···xn

(by Lemma 3.7)

· (tn−1,2tn−1,3 · · · tn−1,n+1)︸ ︷︷ ︸
=tn−1,1tn−1,2···tn−1,n

(by Lemma 3.12 (a))


= (u1u2 · · ·un) · (u1u2 · · ·un) · (tn−1,1tn−1,2 · · · tn−1,n)

/ ((x1x2 · · ·xn) · (tn−1,1tn−1,2 · · · tn−1,n))

=
(u1u2 · · ·un)2

x1x2 · · ·xn
,

so that
y1y2 · · · yn · x1x2 · · ·xn = (u1u2 · · ·un)2 .

This proves Theorem 3.11 (b).
(c) Let tr,j be as in Definition 3.8. Note that the y from Definition 3.8 is precisely the y in

Theorem 3.11 (c) (because both y’s satisfy fu (x) = y).
Let i ∈ Z. Then, Lemma 3.12 (h) yields

ui + yi = ui + ui ·
ui−1tn−1,i−1

xi+1tn−1,i+1

= ui ·
xi+1tn−1,i+1 + ui−1tn−1,i−1

xi+1tn−1,i+1

= ui ·
(xi + ui) tn−1,i

xi+1tn−1,i+1

(3.2)

(by Lemma 3.12 (f)). Now,

1

ui
+

1

yi
= (ui + yi)︸ ︷︷ ︸

=ui·
(xi + ui) tn−1,i

xi+1tn−1,i+1
(by (3.2))

/ (ui · yi) =
(xi + ui) tn−1,i

xi+1tn−1,i+1

/ yi︸︷︷︸
=ui·

ui−1tn−1,i−1

xi+1tn−1,i+1
(by Lemma 3.12 (h))

=
(xi + ui) tn−1,i

uiui−1tn−1,i−1

.

The same argument (applied to i+ 1 instead of i) yields

1

ui+1

+
1

yi+1

=
(xi+1 + ui+1) tn−1,i+1

ui+1uitn−1,i

.
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Multiplying (3.2) with this equality, we obtain

(ui + yi)

(
1

ui+1

+
1

yi+1

)
= ui ·

(xi + ui) tn−1,i

xi+1tn−1,i+1

· (xi+1 + ui+1) tn−1,i+1

ui+1uitn−1,i

= (xi + ui)︸ ︷︷ ︸
=ui+xi

· xi+1 + ui+1

xi+1ui+1︸ ︷︷ ︸
=

1

ui+1

+
1

xi+1

= (ui + xi)

(
1

ui+1

+
1

xi+1

)
.

This proves Theorem 3.11 (c).
(d) Let tr,j be as in Definition 3.8. Every i ∈ Z satisfies (3.2) (as we have shown in the

proof of Theorem 3.11 (c) above). Hence, taking the product of the equalities (3.2) over all
i ∈ {1, 2, . . . , n}, we find

n∏
i=1

(ui + yi) =
n∏
i=1

(
ui ·

(xi + ui) tn−1,i

xi+1tn−1,i+1

)

=

(
n∏
i=1

ui

)
·

(
n∏
i=1

(xi + ui)

)(
n∏
i=1

tn−1,i

)
(

n∏
i=1

xi+1

)(
n∏
i=1

tn−1,i+1

)

=

(
n∏
i=1

ui

)
·

(
n∏
i=1

(xi + ui)

)(
n∏
i=1

tn−1,i

)
(

n∏
i=1

xi

)(
n∏
i=1

tn−1,i+1

)
(
since Lemma 3.7 yields

n∏
i=1

xi+1 =
n∏
i=1

xi

)

=

(
n∏
i=1

ui

)(
n∏
i=1

xi + ui
xi

)
n∏
i=1

tn−1,i

tn−1,i+1︸ ︷︷ ︸
=
tn−1,1

tn−1,n+1
(by the telescope principle)

=

(
n∏
i=1

ui

)(
n∏
i=1

xi + ui
xi

)
tn−1,1

tn−1,n+1︸ ︷︷ ︸
=1

(by Lemma 3.12 (a))

=

(
n∏
i=1

ui

)
n∏
i=1

xi + ui
xi

.

Dividing both sides of this by
n∏
i=1

ui, we obtain

n∏
i=1

ui + yi
ui

=
n∏
i=1

xi + ui
xi

=
n∏
i=1

ui + xi
xi

,
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which proves Theorem 3.11 (d).

Let us observe one more property of the involution fu (even though we will never use it):

Proposition 3.15. Let x ∈ Kn be such that x1x2 · · ·xn = u1u2 · · ·un. Then, fu (x) = x.

Proof of Proposition 3.15. The main step is to show that ui−1tn−1,i−1 = xitn−1,i for each i ∈ Z
(where tr,j are as in Definition 3.8).

Remark 3.16. There is an alternative proof of Theorem 3.11 (a) that avoids the use of the (rather
complicated) parts (g), (i), (j) and (k) of Lemma 3.12. Let us outline this proof: The claim
of Theorem 3.11 (a) can be restated as the equality fu (fu (x)) = x for each x ∈ Kn and each
u ∈ Kn (we are not regarding u as fixed here). This equality boils down to a set of identities
between rational functions in the variables u1, u2, . . . , un, x1, x2, . . . , xn (since each entry of
fu (x) is a rational function in these variables, and each entry of fu (fu (x)) is a rational function
in the former entries as well as u1, u2, . . . , un). These rational functions are subtraction-free
(i.e., no subtraction signs appear in them), and thus are defined over any semifield. But there
is a general principle saying that if we need to prove an identity between two subtraction-free
rational functions, it is sufficient to prove that it holds over the semifield Q+ from Example 3.2.
(Indeed, this principle follows from the fact that any subtraction-free rational function can be
rewritten as a ratio of two polynomials with nonnegative integer coefficients, and thus an identity
between two subtraction-free rational functions can be rewritten as an identity between two such
polynomials; but the latter kind of identity will necessarily be true if it has been checked on all
positive rational numbers.) As a consequence of this discussion, in order to prove Theorem 3.11
(a) in full generality, it suffices to prove Theorem 3.11 (a) in the case when K = Q+. So let us
restrict ourselves to this case. Let x ∈ Kn. We must show that fu (fu (x)) = x. Let y = fu (x),
and let z = fu (y). We will show that z = x. Assume the contrary. Thus, z 6= x. Hence, there
exists some i ∈ {1, 2, . . . , n} such that zi 6= xi. Consider this i. Hence, either zi > xi or zi < xi.
We WLOG assume that zi > xi (since the proof in the case of zi < xi is identical, except that
all inequality signs are reversed). But Theorem 3.11 (c) yields

(ui + xi)

(
1

ui+1

+
1

xi+1

)
= (ui + yi)

(
1

ui+1

+
1

yi+1

)
.

Likewise, Theorem 3.11 (c) (applied to y and z instead of x and y) yields

(ui + yi)

(
1

ui+1

+
1

yi+1

)
= (ui + zi)

(
1

ui+1

+
1

zi+1

)
(since z = fu (y)). Combining these two equalities, we find

(ui + xi)

(
1

ui+1

+
1

xi+1

)
=

ui + zi︸︷︷︸
>xi

( 1

ui+1

+
1

zi+1

)

> (ui + xi)

(
1

ui+1

+
1

zi+1

)
.
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Cancelling the positive number ui+xi from this inequality, we obtain
1

ui+1

+
1

xi+1

>
1

ui+1

+
1

zi+1

.

Hence,
1

xi+1

>
1

zi+1

, so that zi+1 > xi+1. Thus, from zi > xi, we have obtained zi+1 > xi+1.
The same reasoning (but applied to i + 1 instead of i) now yields zi+2 > xi+2 (since zi+1 >
xi+1). Proceeding in the same way, we successively obtain zi+3 > xi+3 and zi+4 > xi+4 and
zi+5 > xi+5 and so on. Hence,

zi︸︷︷︸
>xi

zi+1︸︷︷︸
>xi+1

· · · zi+n−1︸ ︷︷ ︸
>xi+n−1

> xixi+1 · · ·xi+n−1. (3.3)

But Theorem 3.11 (b) yields

y1y2 · · · yn · x1x2 · · ·xn = (u1u2 · · ·un)2 .

Also, Theorem 3.11 (b) (applied to y and z instead of x and y) yields

z1z2 · · · zn · y1y2 · · · yn = (u1u2 · · ·un)2

(since z = fu (y)). Comparing these two equalities, we find y1y2 · · · yn·x1x2 · · ·xn = z1z2 · · · zn·
y1y2 · · · yn, so that

x1x2 · · ·xn = z1z2 · · · zn. (3.4)

But Lemma 3.7 yields zizi+1 · · · zi+n−1 = z1z2 · · · zn and xixi+1 · · ·xi+n−1 = x1x2 · · ·xn. In
light of these two equalities, we can rewrite (3.3) as z1z2 · · · zn > x1x2 · · ·xn. This, however,
contradicts (3.4). This contradiction shows that our assumption was false, thus concluding our
proof of z = x. Now, recall that fu (x) = y. Hence, fu (fu (x)) = fu (y) = z = x, as we wanted
to prove. Hence, Theorem 3.11 (a) is proved again.

We shall return to the birational involution fu in Subsection 5.1, where we will pose several
questions about its meaning and uniqueness properties.

4. Proof of the main theorem

We shall now slowly approach the proof of Theorem 2.3 through a litany of auxiliary results.

4.1. From the life of snakes

Recall the conventions introduced in Section 1 and in Convention 2.1. Let us next introduce
some further notations.

Definition 4.1.

(a) Let L denote the ring k
[
x±1

1 , x±1
2 , . . . , x±1

n

]
of Laurent polynomials in the n indetermi-

nates x1, x2, . . . , xn over k. Clearly, the polynomial ring k [x1, x2, . . . , xn] is a subring of
L.

(b) We let xΠ denote the monomial x1x2 · · ·xn ∈ k [x1, x2, . . . , xn] ⊆ L.
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If f ∈ Λ is a symmetric function4, and if a1, a2, . . . , an are n elements of a commuta-
tive k-algebra A, then f (a1, a2, . . . , an, 0, 0, 0, . . . ) means the result of substituting the values
a1, a2, . . . , an, 0, 0, 0, . . . for x1, x2, . . . , xn, xn+1, xn+2, xn+3, . . . in f . This is a well-defined el-
ement ofA, and is denoted by f (a1, a2, . . . , an). It is called the evaluation of f at a1, a2, . . . , an.

For any symmetric function f ∈ Λ, the evaluation

f (x1, x2, . . . , xn) = f (x1, x2, . . . , xn, 0, 0, 0, . . . )

is a polynomial in k [x1, x2, . . . , xn] and thus a Laurent polynomial in L. Moreover, for any
symmetric function f ∈ Λ, the evaluation

f
(
x−1

1 , x−1
2 , . . . , x−1

n

)
= f

(
x−1

1 , x−1
2 , . . . , x−1

n , 0, 0, 0, . . .
)

is a Laurent polynomial in L as well.

Convention 4.2. For the rest of Section 4, let us agree to the following notation: If γ is an n-
tuple (of any objects), then we let γi denote the i-th entry of γ whenever i ∈ {1, 2, . . . , n}. Thus,
each n-tuple γ satisfies γ = (γ1, γ2, . . . , γn).

Definition 4.3.

(a) A snake means an n-tuple λ = (λ1, λ2, . . . , λn) of integers (not necessarily nonnegative)
such that λ1 > λ2 > . . . > λn.

(b) A snake λ is said to be nonnegative if it belongs to Nn (that is, if all its entries are nonneg-
ative). Thus, a nonnegative snake is the same as a partition having length 6 n. In other
words, a nonnegative snake is the same as a partition λ ∈ Par [n].

(c) If λ ∈ Zn is an n-tuple, and d is an integer, then λ+ d denotes the n-tuple
(λ1 + d, λ2 + d, . . . , λn + d) ∈ Zn (which is obtained from λ by adding d to each entry),
whereas λ− d denotes the n-tuple λ+ (−d) = (λ1 − d, λ2 − d, . . . , λn − d) ∈ Zn.

(d) If λ ∈ Zn, then λ∨ denotes the n-tuple (−λn,−λn−1, . . . ,−λ1) ∈ Zn.

(e) We regard Zn as a Z-module in the obvious way. Thus, if λ ∈ Zn and µ ∈ Zn are two
n-tuples of integers, then

λ+ µ = (λ1 + µ1, λ2 + µ2, . . . , λn + µn) ,

λ− µ = (λ1 − µ1, λ2 − µ2, . . . , λn − µn) .

(f) We let ρ denote the nonnegative snake (n− 1, n− 2, . . . , 2, 1, 0). Thus,

ρi = n− i for each i ∈ {1, 2, . . . , n} . (4.1)

Example 4.4. In this example, let n = 3.
4or, more generally, any formal power series in k [[x1, x2, x3, . . . ]] that is of bounded degree
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(a) The four 3-tuples (3, 1, 0), (2, 2, 1), (1, 0,−1) and (−1,−2,−5) are examples of snakes.

(b) The first two of these four snakes (but not the last two) are nonnegative.

(c) We have (5, 3, 1) + 3 = (8, 6, 4) and (5, 3, 1)− 3 = (2, 0,−2).

(d) We have (5, 2, 2)∨ = (−2,−2,−5).

(e) We have (2, 1, 2) + (3, 4, 5) = (5, 5, 7).

(f) We have ρ = (2, 1, 0).

Note that what we call a “snake” here is called a “staircase of height n” in Stembridge’s
work [22], where he uses these snakes to index finite-dimensional polynomial representations
of the group GLn (C). We avoid calling them “staircases”, as that word has since been used for
other things (in particular, ρ is often called “the n-staircase” in the jargon of combinatorialists).

The notations introduced in Definition 4.3 have the following properties:

Proposition 4.5.

(a) If λ is a snake, and d is an integer, then λ+ d and λ− d are snakes as well.

(b) If λ is a snake, then λ∨ is a snake as well.

(c) We have (λ+ µ) + d = (λ+ d) + µ for any λ ∈ Zn, µ ∈ Zn and d ∈ Z.

(d) We have λ+ (d+ e) = (λ+ d) + e for any λ ∈ Zn, d ∈ Z and e ∈ Z.

(e) We have (λ+ d)− d = (λ− d) + d = λ for any λ ∈ Zn and d ∈ Z.

Proof of Proposition 4.5. Completely straightforward.

Let us now assign a Laurent polynomial aλ to each λ ∈ Zn:

Definition 4.6. Let λ ∈ Zn be any n-tuple. Then, we define the Laurent polynomial

aλ :=
∑
w∈Sn

(signw)xλ1

w(1)x
λ2

w(2) · · ·x
λn
w(n) ∈ L,

where Sn is the symmetric group of the set {1, 2, . . . , n} (and where signw denotes the sign
of a permutation w). This Laurent polynomial aλ is called the alternant corresponding to the
n-tuple λ.

(The “a” in the notation “aλ” has nothing to do with the a in Theorem 2.3.)

Example 4.7. We have

a(5,3,2) =
∑
w∈S3

(signw)x5
w(1)x

3
w(2)x

2
w(3)

= x5
1x

3
2x

2
3 + x5

2x
3
3x

2
1 + x5

3x
3
1x

2
2 − x5

1x
3
3x

2
2 − x5

2x
3
1x

2
3 − x5

3x
3
2x

2
1.
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The sum in Definition 4.6 is the same kind of sum that appears in the definition of a deter-
minant. Therefore, we can rewrite the alternant as follows:

Proposition 4.8. Let λ ∈ Zn be an n-tuple. Then, the alternant aλ ∈ L satisfies

aλ = det
((
xλij
)

16i6n, 16j6n

)
= det

((
x
λj
i

)
16i6n, 16j6n

)
.

Thus, in particular, the alternant aρ corresponding to the snake

ρ = (n− 1, n− 2, . . . , 2, 1, 0) = (n− 1, n− 2, . . . , n− n)

satisfies
aρ = det

((
xn−ji

)
16i6n, 16j6n

)
=

∏
16i<j6n

(xi − xj)

(by the classical formula for the Vandermonde determinant).
We recall a standard concept from commutative algebra: An element a of a commutative

ringA is said to be regular if it has the property that every x ∈ A satisfying ax = 0 must satisfy
x = 0. (Thus, regular elements are the same as elements that are not zero-divisors, if one does
not require zero-divisors to be nonzero.)

Lemma 4.9. The alternant aρ is a regular element of L.

Proof of Lemma 4.9. It is easy to see that every regular element of the polynomial ring
k [x1, x2, . . . , xn] is also a regular element ofL. (Indeed, this is an easy consequence of the facts
that k [x1, x2, . . . , xn] is a subring of L and that every element of L has the form

c

xu1
1 x

u2
2 · · · xunn

for some u1, u2, . . . , un ∈ Z and some polynomial c ∈ k [x1, x2, . . . , xn].)
On the other hand, it is well-known (see, e.g., [7, Corollary 4.4]) that the polynomial∏

16i<j6n
(xi − xj) is a regular element of the polynomial ring k [x1, x2, . . . , xn]. In other words,

aρ is a regular element of k [x1, x2, . . . , xn] (since we have aρ =
∏

16i<j6n
(xi − xj)). Hence, aρ

is also a regular element of L (by the previous paragraph).

Lemma 4.9 shows that fractions of the form
u

aρ
(where u ∈ L) are well-defined if u is a

multiple of aρ. (That is, there is never more than one b ∈ L that satisfies aρb = u.)
We notice that the element xΠ = x1x2 · · ·xn of L is invertible.

Lemma 4.10. Let λ ∈ Zn be any n-tuple, and let d ∈ Z. Then, aλ+d = xdΠaλ.

Proof of Lemma 4.10. This follows easily from the definitions of aλ and aλ+d.

Lemma 4.11. Let λ be a snake. Then, aλ+ρ is a multiple of aρ in L.

Proof of Lemma 4.11. Our proof will consist of two steps:

Step 1: We will prove Lemma 4.11 in the particular case when λ is nonnegative.



combinatorial theory 1 (2021), #16 21

Step 2: We will use Lemma 4.10 to derive the general case of Lemma 4.11 from
this particular case.

We will use this strategy again further on; we shall refer to it as the right-shift strategy.
Here are the details of the two steps:
Step 1: Let us prove that Lemma 4.11 holds in the particular case when λ is nonnegative.
Indeed, let us assume that λ is nonnegative. We must show that aλ+ρ is a multiple of aρ in

L.
We know that λ is a nonnegative snake, thus a partition of length6 n. Hence, [10, Corollary

2.6.7] shows that sλ (x1, x2, . . . , xn) =
aλ+ρ

aρ
. Thus, aλ+ρ = aρ · sλ (x1, x2, . . . , xn). This shows

that aλ+ρ is a multiple of aρ in L (since we have sλ (x1, x2, . . . , xn) ∈ k [x1, x2, . . . , xn] ⊆ L).
Thus, Lemma 4.11 is proved under the assumption that λ is nonnegative. This completes Step
1.

Step 2: Let us now prove Lemma 4.11 in the general case.
The snake λ may or may not be nonnegative. However, there exists some integer d such that

the snake λ+ d is nonnegative (for example, we can take d = −λn). Consider this d.
The snake λ + d is nonnegative; thus, we can apply Lemma 4.11 to λ + d instead of λ

(because in Step 1, we have proved that Lemma 4.11 holds in the particular case when λ is
nonnegative). Thus we conclude that a(λ+d)+ρ is a multiple of aρ in L. In other words, there
exists some u ∈ L such that a(λ+d)+ρ = aρu. Consider this u. But Proposition 4.5 (c) yields
(λ+ ρ) + d = (λ+ d) + ρ, and thus a(λ+ρ)+d = a(λ+d)+ρ = aρu.

Lemma 4.10 (applied to λ + ρ instead of λ) yields a(λ+ρ)+d = xdΠaλ+ρ. Since the element
xΠ of L is invertible, we thus obtain

aλ+ρ =
(
xdΠ
)−1︸ ︷︷ ︸

=x−dΠ

a(λ+ρ)+d︸ ︷︷ ︸
=aρu

= x−dΠ aρu = aρ · x−dΠ u.

Hence, aλ+ρ is a multiple of aρ. This completes the proof of Lemma 4.11.

Definition 4.12. Let λ be a snake. We define an element sλ ∈ L by sλ =
aλ+ρ

aρ
. (This is well-

defined, because Lemma 4.11 shows that aλ+ρ is a multiple of aρ in L, and because Lemma 4.9
shows that the fraction

aλ+ρ

aρ
is uniquely defined.)

It makes sense to refer to the elements sλ just defined as “Schur Laurent polynomials”. In fact,
as the following lemma shows, they are identical with the Schur polynomials sλ (x1, x2, . . . , xn)
when the snake λ is nonnegative:

Lemma 4.13. Let λ ∈ Par [n]. Then,

sλ = sλ (x1, x2, . . . , xn) .

Proof of Lemma 4.13. We know that λ is a partition of length 6 n (since λ ∈ Par [n]). Hence,
λ is a nonnegative snake. Furthermore, since λ is a partition of length 6 n, we can apply [10,
Corollary 2.6.7] and obtain sλ (x1, x2, . . . , xn) =

aλ+ρ

aρ
= sλ (since sλ was defined to be

aλ+ρ

aρ
).

This proves Lemma 4.13.
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The Schur Laurent polynomials sλ appear in Stembridge’s [22], where they are named sλ.
(The equivalence of our definition with his follows from [22, Theorem 7.1].)

The following lemma is an analogue of Lemma 4.10 for Schur Laurent polynomials:

Lemma 4.14. Let λ ∈ Zn be any snake, and let d ∈ Z. Then, sλ+d = xdΠsλ.

Proof of Lemma 4.14. This follows easily by applying Lemma 4.10 to λ+ ρ instead of λ.

Lemma 4.15. Let µ, ν ∈ Par [n]. Then,

sµsν =
∑

λ∈Par[n]

cλµ,νsλ.

Proof of Lemma 4.15. It is well-known (see, e.g., [10, Exercise 2.3.8(b)]) that if λ is a partition
having length > n, then

sλ (x1, x2, . . . , xn) = 0. (4.2)

We have µ ∈ Par [n]. Hence, Lemma 4.13 (applied to λ = µ) yields the equality sµ =
sµ (x1, x2, . . . , xn). Likewise, sν = sν (x1, x2, . . . , xn). Multiplying these two equalities, we
obtain

sµsν = sµ (x1, x2, . . . , xn) · sν (x1, x2, . . . , xn)

=
∑
λ∈Par

cλµ,νsλ (x1, x2, . . . , xn) (4.3)

(where the last equality sign follows by substituting 0, 0, 0, . . . for xn+1, xn+2, xn+3, . . . in (1.1)).
But the sum on the right hand side of (4.3) can be split into two sums: one collecting all ad-
dends with λ ∈ Par [n], and one collecting all remaining addends. The second of these sums
is 0, because if λ ∈ Par satisfies λ /∈ Par [n], then λ has length > n and therefore satisfies
sλ (x1, x2, . . . , xn) = 0 (by (4.2)), so the corresponding addend vanishes. Thus, only the first
sum survives. Hence, (4.3) simplifies to

sµsν =
∑

λ∈Par[n]

cλµ,ν sλ (x1, x2, . . . , xn)︸ ︷︷ ︸
=sλ

(by Lemma 4.13)

=
∑

λ∈Par[n]

cλµ,νsλ.

Lemma 4.16. The family (sλ)λ∈{snakes} of elements of L is k-linearly independent.

Proof of Lemma 4.16. Let us define a strict snake to be an n-tuple α ∈ Zn of integers satisfying
α1 > α2 > · · · > αn. It is easy to see that the map

{snakes} → {strict snakes} ,
λ 7→ λ+ ρ (4.4)

is a bijection.
It is also easy to see that any two strict snakes α and β satisfy(

the coefficient of xβ1

1 x
β2

2 · · ·xβnn in aα
)

= δα,β, (4.5)
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where δα,β is the Kronecker delta of α and β (that is, the integer 1 if α = β, or the integer 0
otherwise). From this, it is easily seen that the family (aα)α∈{strict snakes} is k-linearly independent.
But this family (aα)α∈{strict snakes} is just a re-indexing of the family (aλ+ρ)λ∈{snakes} (since the map
(4.4) is a bijection). Hence, the latter family (aλ+ρ)λ∈{snakes} must be k-linearly independent,

too. Therefore, the family
(
aλ+ρ

aρ

)
λ∈{snakes}

is also k-linearly independent (since any k-linear

dependence relation between the
aλ+ρ

aρ
would yield a correspondingk-linear dependence relation

between the aλ+ρ). But this latter family is precisely the family (sλ)λ∈{snakes} (by the definition
of sλ). Hence, the family (sλ)λ∈{snakes} is k-linearly independent.

Lemma 4.16 is actually part of a stronger claim: The family (sλ)λ∈{snakes} is a basis of the k-
module of symmetric Laurent polynomials in x1, x2, . . . , xn. We shall not need this, however, so
we omit the proof (which follows easily fromLemma 4.14 and the analogous result for symmetric
polynomials, which is well-known).

Recall Definition 4.3 (d). Our next lemma connects the Laurent polynomials sλ and sλ∨ for
every snake λ; it is folklore (see [10, Exercise 2.9.15(d)] for an equivalent version), but we have
not seen it stated in this exact form in the literature.

Lemma 4.17. Let λ be a snake. Then,

sλ∨ = sλ
(
x−1

1 , x−1
2 , . . . , x−1

n

)
.

Here, of course, sλ
(
x−1

1 , x−1
2 , . . . , x−1

n

)
means the result of substituting the elements x−1

1 ,
x−1

2 , . . . , x−1
n for x1, x2, . . . , xn in the Laurent polynomial sλ ∈ L.

Proof of Lemma 4.17. This follows by fairly straightforward manipulation of determinants, us-
ing the definitions of sλ and sλ∨ . Again, we refer to [9] for the details.

4.2. h+
k , h

−
k and the Pieri rule

Definition 4.18. Let k ∈ Z. Then, we define two Laurent polynomials h+
k ∈ L and h−k ∈ L by

h+
k = hk (x1, x2, . . . , xn) and
h−k = hk

(
x−1

1 , x−1
2 , . . . , x−1

n

)
.

Note that if k ∈ Z is negative, then h+
k = 0 (since hk = 0) and h−k = 0 (similarly).

We begin by describing h+
k as a Schur Laurent polynomial:

Lemma 4.19. Let k ∈ N. Then, the partition (k) is a nonnegative snake (when regarded as the
n-tuple (k, 0, 0, . . . , 0)), and satisfies

s(k) = h+
k .

Proof of Lemma 4.19. It is well-known that s(k) = hk. Substituting 0, 0, 0, . . . for the variables
xn+1, xn+2, xn+3, . . . on both sides of this equality, we obtain s(k) = h+

k . This proves Lemma
4.19.
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Next, we need to know what happens when a Schur Laurent polynomial sλ is multiplied by
some h+

k . We will answer this question using the classical first Pieri rule. To state the answer,
we introduce some more notation:

Definition 4.20. Let λ ∈ Zn. Then, we define the size |λ| of λ to be the integer λ1+λ2+· · ·+λn.

Definition 4.21. Let λ, µ ∈ Zn. Then, we write that µ ⇀ λ if and only if we have

µ1 > λ1 > µ2 > λ2 > . . . > µn > λn. (4.6)

In other words, we write that µ ⇀ λ if and only if we have

(µi > λi for each i ∈ {1, 2, . . . , n}) and
(λi > µi+1 for each i ∈ {1, 2, . . . , n− 1}) .

The following two propositions are easily proved:

Proposition 4.22.

(a) If λ, µ ∈ Zn, then |λ+ µ| = |λ|+ |µ|.

(b) If λ ∈ Zn and d ∈ Z, then |λ+ d| = |λ|+ nd.

(c) If λ ∈ Zn, then |λ∨| = − |λ|.

Proposition 4.23. Let λ, µ ∈ Zn.

(a) If µ ⇀ λ, then both λ and µ are snakes.

(b) We have µ ⇀ λ if and only if λ∨ ⇀ µ∨.

(c) Let d ∈ Z. Then, we have µ ⇀ λ if and only if µ+ d ⇀ λ+ d.

We can now state the Pieri rule in the form we need:

Proposition 4.24. Let λ be a snake. Let k ∈ Z. Then,

h+
k · sλ =

∑
µ is a snake;

µ⇀λ; |µ|−|λ|=k

sµ. (4.7)

Proof of Proposition 4.24. We follow the same right-shift strategy as we did in our proof of
Lemma 4.11. Thus, our proof shall consist of two steps:

Step 1: Wewill prove Proposition 4.24 in the particular case when λ is nonnegative.

Step 2: Wewill use Lemma 4.14 to derive the general case of Proposition 4.24 from
this particular case.
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Here are some details on the two steps (again, more can be found in [9]):
Step 1: Let us prove that Proposition 4.24 holds in the particular case when λ is nonnegative.
Indeed, let us assume that λ is nonnegative. We must prove the equality (4.7).
If k < 0, then both sides of this equality are 0 (indeed, the sum on the right hand side is

empty, since µ ⇀ λ implies |µ| − |λ| > 0). Thus, the equality (4.7) holds if k < 0. Therefore,
for the rest of Step 1, we WLOG assume that k > 0.

Note that λ is a partition of length 6 n (since λ is a nonnegative snake). In other words,
λ ∈ Par [n].

We will use some standard notations concerning partitions. Specifically:

• The size |µ| of a partition µ = (µ1, µ2, µ3, . . . ) is defined to be µ1 + µ2 + µ3 + · · · ∈ N.

• If α = (α1, α2, α3, . . . ) and β = (β1, β2, β3, . . . ) are two partitions, then we will write
α ⊆ β if and only if each i ∈ {1, 2, 3, . . . } satisfies αi 6 βi.

• If α = (α1, α2, α3, . . . ) and β = (β1, β2, β3, . . . ) are two partitions, then we say that α/β
is a horizontal strip if they satisfy

β ⊆ α and βi > αi+1 for every i ∈ {1, 2, 3, . . . } .

(This is not the usual definition of a “horizontal strip”, but it is equivalent to that definition;
the equivalence follows from [10, Exercise 2.7.5(a)].)

• If α and β are two partitions, and if k ∈ N, then we say that α/β is a horizontal k-strip if
α/β is a horizontal strip satisfying |α| − |β| = k.

The following is easy to see:

Claim 1: We have

{partitions µ ∈ Par [n] such that µ/λ is a horizontal k-strip}
= {snakes µ such that µ ⇀ λ and |µ| − |λ| = k} .

[Proof of Claim 1: Unravel the definitions and recall that partitions in Par [n] are the same
as nonnegative snakes. We leave the details to the reader.]

From the first Pieri rule ([10, (2.7.1)]5, applied to k instead of n), we obtain

sλhk =
∑

λ+∈Par;
λ+/λ is a horizontal k-strip

sλ+ =
∑
µ∈Par;

µ/λ is a horizontal k-strip

sµ

(here, we have renamed the summation index λ+ as µ).
5This also appears in [16, Theorem 5.3], in [21, Theorem 7.15.7] and in [4, Theorem 9.3].
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Evaluating both sides of this equality at x1, x2, . . . , xn, we find

(sλhk) (x1, x2, . . . , xn) =
∑
µ∈Par;

µ/λ is a horizontal k-strip

sµ (x1, x2, . . . , xn)

=
∑

µ∈Par[n];
µ/λ is a horizontal k-strip

sµ (x1, x2, . . . , xn)

(where the last equality sign follows from (4.2) by a similar argument as in the proof of
Lemma 4.15 above). Comparing this with

(sλhk) (x1, x2, . . . , xn) = sλ (x1, x2, . . . , xn)︸ ︷︷ ︸
=sλ

(by Lemma 4.13)

·hk (x1, x2, . . . , xn)︸ ︷︷ ︸
=h+

k

= sλ · h+
k = h+

k · sλ,

we obtain

h+
k · sλ =

∑
µ∈Par[n];

µ/λ is a horizontal k-strip

sµ (x1, x2, . . . , xn)︸ ︷︷ ︸
=sµ

(by Lemma 4.13,
applied to µ instead of λ)

=
∑

µ∈Par[n];
µ/λ is a horizontal k-strip

sµ =
∑

µ is a snake;
µ⇀λ; |µ|−|λ|=k

sµ

(where we used Claim 1 to rewrite the summation sign). This proves (4.7). Thus, Proposi-
tion 4.24 is proved under the assumption that λ is nonnegative. This completes Step 1.

Step 2: We now need to prove Proposition 4.24 in the general case.
The idea is to find an integer d such that the snake λ + d is nonnegative (for example, d =

−λn), and apply Proposition 4.24 to λ+d instead of λ (which we can do, since Step 1 has already
covered this case). This yields

h+
k · sλ+d =

∑
µ is a snake;

µ⇀λ+d; |µ|−|λ+d|=k

sµ =
∑

µ+d is a snake;
µ+d⇀λ+d; |µ+d|−|λ+d|=k

sµ+d

(here, we substituted µ + d for µ in the sum). The conditions under the summation sign on the
right hand side can be simplified using Proposition 4.22 (b) and Proposition 4.23 (c), and the
addends sµ+d can be rewritten as xdΠsµ using Lemma 4.14. Thus, the equality simplifies to

h+
k · sλ+d =

∑
µ is a snake;

µ⇀λ; |µ|−|λ|=k

xdΠsµ = xdΠ
∑

µ is a snake;
µ⇀λ; |µ|−|λ|=k

sµ.

Since Lemma 4.14 yields sλ+d = xdΠsλ, we can rewrite this as

h+
k · x

d
Πsλ = xdΠ

∑
µ is a snake;

µ⇀λ; |µ|−|λ|=k

sµ.
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We can cancel xdΠ from this equality (since xΠ ∈ L is invertible), and thus obtain

h+
k · sλ =

∑
µ is a snake;

µ⇀λ; |µ|−|λ|=k

sµ.

This proves Proposition 4.24.

Using Lemma 4.17, we can “turn Proposition 4.24 upside down”, obtaining the following
analogous result for h−k instead of h+

k :

Proposition 4.25. Let λ be a snake. Let k ∈ Z. Then,

h−k · sλ =
∑

µ is a snake;
λ⇀µ; |λ|−|µ|=k

sµ. (4.8)

Proof of Proposition 4.25. It is easy to see that (λ∨)∨ = λ. Likewise, (µ∨)∨ = µ for any snake
µ. Hence, the map {snakes} → {snakes} , µ 7→ µ∨ is inverse to itself, and thus is a bijection.
It is also easy to see (using Proposition 4.22 (c)) that every snake µ satisfies

|λ∨| − |µ∨| = |µ| − |λ| . (4.9)

Comparing the definitions of h−k and h+
k easily yields

h−k = h+
k

(
x−1

1 , x−1
2 , . . . , x−1

n

)
.

Also, Lemma 4.17 yields sλ∨ = sλ
(
x−1

1 , x−1
2 , . . . , x−1

n

)
. Multiplying these two equalities, we

obtain

h−k · sλ∨ = h+
k

(
x−1

1 , x−1
2 , . . . , x−1

n

)
· sλ
(
x−1

1 , x−1
2 , . . . , x−1

n

)
=
(
h+
k · sλ

) (
x−1

1 , x−1
2 , . . . , x−1

n

)
=

∑
µ is a snake;

µ⇀λ; |µ|−|λ|=k

sµ
(
x−1

1 , x−1
2 , . . . , x−1

n

)
(by Proposition 4.24)

=
∑

µ is a snake;
λ∨⇀µ∨; |λ∨|−|µ∨|=k

sµ
(
x−1

1 , x−1
2 , . . . , x−1

n

)

(here, we used Proposition 4.23 (b) to replace the “µ ⇀ λ” under the summation sign by “λ∨ ⇀
µ∨”, and we used (4.9) to replace the “|µ| − |λ|” under the summation sign by “|λ∨| − |µ∨|”).
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Comparing this with∑
µ is a snake;

λ∨⇀µ; |λ∨|−|µ|=k

sµ =
∑

µ is a snake;
λ∨⇀µ∨; |λ∨|−|µ∨|=k

sµ∨︸︷︷︸
=sµ(x−1

1 ,x−1
2 ,...,x−1

n )
(by Lemma 4.17,

applied to µ instead of λ) here, we have substituted µ∨ for µ in the sum,
since the map {snakes} → {snakes} , µ 7→ µ∨

is a bijection


=

∑
µ is a snake;

λ∨⇀µ∨; |λ∨|−|µ∨|=k

sµ
(
x−1

1 , x−1
2 , . . . , x−1

n

)
,

we obtain
h−k · sλ∨ =

∑
µ is a snake;

λ∨⇀µ; |λ∨|−|µ|=k

sµ.

We have proved this equality for any snake λ. Thus, we can apply it to λ∨ instead of λ. We
obtain

h−k · s(λ∨)∨ =
∑

µ is a snake;
(λ∨)∨⇀µ; |(λ∨)∨|−|µ|=k

sµ.

But because of (λ∨)∨ = λ, this equality is precisely (4.8). Thus, Proposition 4.25 is proved.

4.3. Computing sα

Convention 4.26. From now on, for the rest of Section 4, we assume that n > 2.

Our next goal is to obtain a simple formula for the Schur polynomial sα, where α is as in
Theorem 2.3. The first step is the following definition:

Definition 4.27. Let a, b ∈ N. Then, b	 a will denote the snake (b, 0n−2,−a). (This is indeed
a well-defined snake, since n > 2 and since b > 0 > −a.)

Proposition 4.28. Let a, b ∈ Z. Then,

h−a h
+
b =

min{a,b}∑
k=0

s(b−k)	(a−k). (4.10)

Proof of Proposition 4.28. This is trivial when min {a, b} < 0, and otherwise follows easily
from Proposition 4.25 (applied to λ = (b) and k = a). Details can be found in [9].

Proposition 4.29. Let a, b ∈ N. Then,

sb	a = h−a h
+
b − h

−
a−1h

+
b−1.
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(Recall that every negative integer k satisfies h−k = 0 and h+
k = 0.)

Proof of Proposition 4.29. Apply Proposition 4.28 twice (once to a and b, and once to a−1 and
b− 1), and subtract. See [9] for the details.

Remark 4.30. The right hand side in Proposition 4.28 looks suspiciously like a determinant. This
is no coincidence, and Proposition 4.28 can in fact be generalized to a determinantal formula
for sλ where λ is any snake of the form (b1, b2, . . . , bq, 0

n−p−q,−ap,−ap−1, . . . ,−a1). The latter
formula can be obtained from an identity of Koike [13, Proposition 2.8] (see also [11, (6) and
(10)]). See [9, §5.1] for some more details.

Corollary 4.31. Let a, b ∈ N. Define the partition α = (a+ b, an−2). Then, α is a nonnegative
snake and satisfies

sα = xaΠ ·
(
h−a h

+
b − h

−
a−1h

+
b−1

)
. (4.11)

Proof of Corollary 4.31. It is easy to see that α = (b	 a) + a (regarded as snakes). Hence,
Lemma 4.14 (applied to λ = b	 a and d = a) yields

sα = xaΠsb	a = xaΠ ·
(
h−a h

+
b − h

−
a−1h

+
b−1

)
(by Proposition 4.29) .

This proves Corollary 4.31.

4.4. The setsRµ,a,b (γ) and a formula for h−
a h

+
b sµ

We shall next aim for a formula for h−a h+
b sµ (for a snake µ and integers a, b ∈ Z), which will

be obtained in a straightforward way by applying Propositions 4.24 and 4.25. We will need the
following definition:

Definition 4.32. Let µ, γ ∈ Zn and a, b ∈ Z. Then, Rµ,a,b (γ) shall denote the set of all snakes
ν satisfying the four conditions

µ ⇀ ν and |µ| − |ν| = a and γ ⇀ ν and |γ| − |ν| = b.

Lemma 4.33. Let µ, γ ∈ Zn and a, b ∈ Z. Assume that γ is not a snake. Then, |Rµ,a,b (γ)| = 0.

Proof of Lemma 4.33. Let ν ∈ Rµ,a,b (γ). We shall obtain a contradiction.
Indeed, ν ∈ Rµ,a,b (γ) means that ν is a snake satisfying the four conditions

µ ⇀ ν and |µ| − |ν| = a and γ ⇀ ν and |γ| − |ν| = b

(by the definition of Rµ,a,b (γ)). Thus, in particular, we have γ ⇀ ν. Hence, Proposition 4.23
(a) (applied to γ and ν instead of µ and λ) yields that both ν and γ are snakes. Hence, γ is a
snake. This contradicts the fact that γ is not a snake.

We thus have obtained a contradiction for each ν ∈ Rµ,a,b (γ). Hence, there exists no ν ∈
Rµ,a,b (γ). In other words, |Rµ,a,b (γ)| = 0.
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Lemma 4.34. Let µ be a snake. Let a, b ∈ Z. Then,

h−a h
+
b sµ =

∑
γ is a snake

|Rµ,a,b (γ)| sγ.

Proof of Lemma 4.34. Proposition 4.25 (with the letters λ, k and µ renamed as µ, a and ν) says
that

h−a · sµ =
∑

ν is a snake;
µ⇀ν; |µ|−|ν|=a

sν . (4.12)

Proposition 4.24 (with the letters λ, k and µ renamed as ν, b and γ) says that

h+
b · sν =

∑
γ is a snake;

γ⇀ν; |γ|−|ν|=b

sγ (4.13)

for each snake ν.
Now,

h−a h
+
b sµ = h+

b · h−a · sµ︸ ︷︷ ︸
=

∑
ν is a snake;

µ⇀ν; |µ|−|ν|=a

sν

(by (4.12))

=
∑

ν is a snake;
µ⇀ν; |µ|−|ν|=a

h+
b · sν︸ ︷︷ ︸

=
∑

γ is a snake;
γ⇀ν; |γ|−|ν|=b

sγ

(by (4.13))

=
∑

ν is a snake;
µ⇀ν; |µ|−|ν|=a

∑
γ is a snake;

γ⇀ν; |γ|−|ν|=b︸ ︷︷ ︸
=

∑
γ is a snake

∑
ν is a snake;

µ⇀ν; |µ|−|ν|=a;
γ⇀ν; |γ|−|ν|=b

sγ =
∑

γ is a snake

∑
ν is a snake;

µ⇀ν; |µ|−|ν|=a;
γ⇀ν; |γ|−|ν|=b︸ ︷︷ ︸

=
∑

ν∈Rµ,a,b(γ)

(by the definition
of Rµ,a,b(γ))

sγ

=
∑

γ is a snake

∑
ν∈Rµ,a,b(γ)

sγ︸ ︷︷ ︸
=|Rµ,a,b(γ)|sγ

=
∑

γ is a snake

|Rµ,a,b (γ)| sγ.

This proves Lemma 4.34.

Corollary 4.35. Let µ ∈ Par [n]. Let a, b ∈ N. Define the partition α = (a+ b, an−2). Then,
every λ ∈ Zn satisfies

cλα,µ = |Rµ,a,b (λ− a)| − |Rµ,a−1,b−1 (λ− a)| . (4.14)

Here, we understand cλα,µ to mean 0 if λ is not a partition (i.e., if λ is not a nonnegative snake).

Proof of Corollary 4.35. Every snake γ satisfies

sγ+a = xaΠsγ (4.15)
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(by Lemma 4.14, applied to γ and a instead of λ and d).
But α is a nonnegative snake; thus, α ∈ Par [n]. Hence, Lemma 4.15 (applied to α and µ

instead of µ and ν) yields

sαsµ =
∑

λ∈Par[n]

cλα,µsλ =
∑

λ is a snake;
λ is nonnegative

cλα,µsλ

(since the partitions λ ∈ Par [n] are precisely the nonnegative snakes)

=
∑

λ is a snake

cλα,µsλ

(where the last equality sign is owed to the fact that we understand cλα,µ to mean 0 if λ is not a
nonnegative snake). Hence,∑

λ is a snake

cλα,µsλ = sαsµ = xaΠ ·
(
h−a h

+
b − h

−
a−1h

+
b−1

)
sµ (by (4.11))

= xaΠ · h−a h
+
b sµ︸ ︷︷ ︸

=
∑

γ is a snake
|Rµ,a,b(γ)|sγ

(by Lemma 4.34)

−xaΠ · h−a−1h
+
b−1sµ︸ ︷︷ ︸

=
∑

γ is a snake
|Rµ,a−1,b−1(γ)|sγ

(by Lemma 4.34,
applied to a−1 and b−1

instead of a and b)

= xaΠ ·
∑

γ is a snake

|Rµ,a,b (γ)| sγ − xaΠ ·
∑

γ is a snake

|Rµ,a−1,b−1 (γ)| sγ

=
∑

γ is a snake

(|Rµ,a,b (γ)| − |Rµ,a−1,b−1 (γ)|) xaΠsγ︸︷︷︸
=sγ+a

(by (4.15))

=
∑

γ is a snake

(|Rµ,a,b (γ)| − |Rµ,a−1,b−1 (γ)|) sγ+a.

We can compare coefficients on both sides of this equality (since Lemma 4.16 shows that the
family (sλ)λ∈{snakes} of elements of L is k-linearly independent), and thus conclude that

cλα,µ = |Rµ,a,b (λ− a)| − |Rµ,a−1,b−1 (λ− a)| for every snake λ.

This proves (4.14) in the case when λ is a snake.
However, it is easy to see that (4.14) also holds in the casewhenλ is not a snake6. Thus, (4.14)

always holds. This proves Corollary 4.35.

4.5. The map fµ

Convention 4.36. For the whole Subsection 4.5, we shall use Convention 3.6 (not only for n-
tuples a ∈ Kn, but for any n-tuples a). This convention does not conflict with Convention 4.2,
because both conventions define γi in the same way when γ is an n-tuple and i ∈ {1, 2, . . . , n}.

6Indeed, if λ ∈ Zn is not a snake, then λ − a is not a snake either, and thus the equality (4.14) boils down to
cλα,µ = 0− 0 (by Lemma 4.33); but this is true, since we have defined cλα,µ to be 0 if λ is not a nonnegative snake.
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Convention 3.6 does conflict with our old convention (from Section 1) to identify partitions
with finite tuples: Indeed, if we let γ be the n-tuple (1, 1, . . . , 1), then Convention 3.6 yields
γn+1 = γ1 = 1 when we regard γ as an n-tuple, but we get γn+1 = 0 if we regard γ as a partition.
We shall resolve this conflict by agreeing not to identify partitions with finite tuples in Sub-
section 4.5. (Thus, in particular, we will not identify a nonnegative snake (µ1, µ2, . . . , µn) ∈ Zn
with its corresponding partition (µ1, µ2, . . . , µn, 0, 0, 0, . . . ) ∈ Par [n].)

Let us now apply the results of Section 3. The abelian group (Z,+, 0) of integers is totally
ordered (in the usual way). Thus, Example 3.3 (applied to (A, ∗, e) = (Z,+, 0)) shows that there
is a semifield (Z,min,+, 0) (that is, a semifield with ground set Z, addition min, multiplication
+ and unity 0), called the min tropical semifield of (Z,+, 0). We have the following little dic-
tionary between various operations on this semifield (Z,min,+, 0) and familiar operations on
integers:

• For any a, b ∈ Z, the sum a+ b understood with respect to the semifield (Z,min,+, 0) is
the integer min {a, b}.

• If r ∈ N, and if a0, a1, . . . , ar ∈ Z, then the sum
r∑

k=0

ak understood with respect to the

semifield (Z,min,+, 0) is min {a0, a1, . . . , ar} = min {ak | k ∈ {0, 1, . . . , r}}.

• For any a, b ∈ Z, the product ab understood with respect to the semifield (Z,min,+, 0) is
the integer a+ b.

• The unity of the semifield (Z,min,+, 0) is the integer 0.

• For any a, b ∈ Z, the quotient
a

b
understood with respect to the semifield (Z,min,+, 0) is

precisely the difference a− b understood with respect to the integer ring Z.

• For any a ∈ Z, the square a2 understood with respect to the semifield (Z,min,+, 0) is the
product 2a understood with respect to the integer ring Z.

• For any a ∈ Z, the reciprocal
1

a
understood with respect to the semifield (Z,min,+, 0) is

the integer −a understood with respect to the integer ring Z.

• If r ∈ N, and if a1, a2, . . . , ar are any r integers, then the product
r∏

k=1

ak understood with

respect to the semifield (Z,min,+, 0) is the sum
r∑

k=1

ak understood with respect to the

integer ring Z.

Thus, applying Definition 3.8 to K = (Z,min,+, 0) (and renaming u, x, tr,j and y as µ, γ,
τr,j and η), we obtain the following:
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Definition 4.37. Fix any n-tuple µ ∈ Zn. We define a map fµ : Zn → Zn as follows: Let γ ∈ Zn
be an n-tuple. For each j ∈ Z and r ∈ N, define an element τr,j ∈ Z by

τr,j = min {(γj+1 + γj+2 + · · ·+ γj+k) + (µj+k+1 + µj+k+2 + · · ·+ µj+r)

| k ∈ {0, 1, . . . , r}} .

Define η ∈ Zn by setting

ηi = µi + (µi−1 + τn−1,i−1)− (γi+1 + τn−1,i+1) for each i ∈ {1, 2, . . . , n} .

Set fµ (γ) = η.

Applying Theorem 3.11 to K = (Z,min,+, 0) (and renaming u, x and y as µ, γ and η), we
thus obtain the following (using our above dictionary):

Theorem 4.38. Fix any n-tuple µ ∈ Zn.

(a) The map fµ is an involution (i.e., we have fµ ◦ fµ = id).

(b) Let γ ∈ Zn and η ∈ Zn be such that η = fµ (γ). Then,

(η1 + η2 + · · ·+ ηn) + (γ1 + γ2 + · · ·+ γn) = 2 (µ1 + µ2 + · · ·+ µn) .

(c) Let γ ∈ Zn and η ∈ Zn be such that η = fµ (γ). Then,

min {µi, γi}+ min {−µi+1,−γi+1} = min {µi, ηi}+ min {−µi+1,−ηi+1}

for each i ∈ Z.

(d) Let γ ∈ Zn and η ∈ Zn be such that η = fµ (γ). Then,
n∑
i=1

(min {µi, γi} − γi) =
n∑
i=1

(min {µi, ηi} − µi) .

We obtain the following corollaries from Theorem 4.38:

Corollary 4.39. Fix any n-tuple µ ∈ Zn. Let γ ∈ Zn and η ∈ Zn be such that η = fµ (γ). Then:

(a) We have |η| − |µ| = |µ| − |γ|.

(b) We have

min {µi, ηi} −min {µi, γi} = max {µi+1, ηi+1} −max {µi+1, γi+1}

for each i ∈ {1, 2, . . . , n− 1}.

(c) We have
n∑
i=1

(µi −min {µi, ηi}+ min {µi, γi}) =
n∑
i=1

γi.
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(d) We have γ = fµ (η).

Proof of Corollary 4.39. (a) Theorem 4.38 (b) yields

(η1 + η2 + · · ·+ ηn) + (γ1 + γ2 + · · ·+ γn) = 2 (µ1 + µ2 + · · ·+ µn) .

In view of the equalities |η| = η1 + η2 + · · · + ηn and |γ| = γ1 + γ2 + · · · + γn and |µ| =
µ1 + µ2 + · · ·+ µn, we can rewrite this as |η|+ |γ| = 2 |µ|. Equivalently, |η| − |µ| = |µ| − |γ|.
This proves Corollary 4.39 (a).

(b) Let i ∈ {1, 2, . . . , n− 1}. Then, Theorem 4.38 (c) yields

min {µi, γi}+ min {−µi+1,−γi+1} = min {µi, ηi}+ min {−µi+1,−ηi+1} .

In view of the equalitiesmin {−µi+1,−γi+1} = −max {µi+1, γi+1} andmin {−µi+1,−ηi+1} =
−max {µi+1, ηi+1}, we can rewrite this as

min {µi, γi} −max {µi+1, γi+1} = min {µi, ηi} −max {µi+1, ηi+1} .

Equivalently,

min {µi, ηi} −min {µi, γi} = max {µi+1, ηi+1} −max {µi+1, γi+1} .

This proves Corollary 4.39 (b).
(c)We have

n∑
i=1

(µi −min {µi, ηi}+ min {µi, γi})︸ ︷︷ ︸
=min{µi,γi}−(min{µi,ηi}−µi)

=
n∑
i=1

(min {µi, γi} − (min {µi, ηi} − µi))

=
n∑
i=1

min {µi, γi} −
n∑
i=1

(min {µi, ηi} − µi)︸ ︷︷ ︸
=

n∑
i=1

(min{µi,γi}−γi)

(by Theorem 4.38 (d))

=
n∑
i=1

min {µi, γi} −
n∑
i=1

(min {µi, γi} − γi) =
n∑
i=1

γi.

This proves Corollary 4.39 (c).
(d) Theorem 4.38 (a) shows that fµ ◦ fµ = id. But recall that η = fµ (γ). Applying the map

fµ to both sides of this equality, we obtain

fµ (η) = fµ (fµ (γ)) = (fµ ◦ fµ) (γ) = γ

(since fµ ◦ fµ = id). This proves Corollary 4.39 (d).
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We are now ready to prove the key lemma:

Lemma 4.40. Fix any n-tuple µ ∈ Zn. Let γ ∈ Zn. Let a, b ∈ Z. Then,

|Rµ,b,a (fµ (γ))| = |Rµ,a,b (γ)| .

Proof of Lemma 4.40. Define η ∈ Zn by η = fµ (γ). We must therefore prove that |Rµ,b,a (η)| =
|Rµ,a,b (γ)|.

We know that Rµ,a,b (γ) is the set of all snakes ν satisfying the four conditions

µ ⇀ ν and |µ| − |ν| = a and γ ⇀ ν and |γ| − |ν| = b.

Likewise, Rµ,b,a (η) is the set of all snakes ν satisfying the four conditions

µ ⇀ ν and |µ| − |ν| = b and η ⇀ ν and |η| − |ν| = a.

Now, fix ν ∈ Rµ,a,b (γ). Thus, ν is a snake satisfying the four conditions

µ ⇀ ν and |µ| − |ν| = a and γ ⇀ ν and |γ| − |ν| = b

(by the definition of Rµ,a,b (γ)).
We define an n-tuple ζ ∈ Zn by setting

ζi = min {µi, ηi} −min {µi, γi}+ νi for each i ∈ {1, 2, . . . , n} .

We shall prove that ζ ∈ Rµ,b,a (η). First, we will show some auxiliary claims7:

Claim 1: We have min {µi, ηi} > ζi for each i ∈ {1, 2, . . . , n}.

[Proof of Claim 1: Let i ∈ {1, 2, . . . , n}. Then, µ ⇀ ν yields µi > νi, while γ ⇀ ν
yields γi > νi. Combining these two inequalities, we obtain min {µi, γi} > νi, so that νi −
min {µi, γi} 6 0. But the definition of ζi yields ζi −min {µi, ηi} = νi −min {µi, γi} 6 0, so
that min {µi, ηi} > ζi. This proves Claim 1.]

Claim 2: We have ζi > max {µi+1, ηi+1} for each i ∈ {1, 2, . . . , n− 1}.

[Proof of Claim 2: Similar to Claim 1.]

Claim 3: The n-tuple ζ is a snake and satisfies µ ⇀ ζ and η ⇀ ζ .

[Proof of Claim 3: Both statements µ ⇀ ζ and η ⇀ ζ follow easily from Claim 1 and
Claim 2. Hence, Proposition 4.23 (a) shows that ζ is a snake.]

Claim 4: We have |µ| − |ζ| = b and |η| − |ζ| = a.
7Again, see [9] for details.
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[Proof of Claim 4: We have |µ| =
n∑
i=1

µi and |ζ| =
n∑
i=1

ζi (by the definition of ζ). Subtracting

these two equalities from one another, we find

|µ| − |ζ| =
n∑
i=1

µi −
n∑
i=1

ζi =
n∑
i=1

µi − ζi︸︷︷︸
=min{µi,ηi}−min{µi,γi}+νi

(by the definition of ζ)


=

n∑
i=1

(µi − (min {µi, ηi} −min {µi, γi}+ νi))︸ ︷︷ ︸
=(µi−min{µi,ηi}+min{µi,γi})−νi

=
n∑
i=1

(µi −min {µi, ηi}+ min {µi, γi})︸ ︷︷ ︸
=

n∑
i=1

γi

(by Corollary 4.39 (c))

−
n∑
i=1

νi =
n∑
i=1

γi︸ ︷︷ ︸
=|γ|

−
n∑
i=1

νi︸ ︷︷ ︸
=|ν|

= |γ| − |ν| = b.

Furthermore,
|µ| − |γ| = (|µ| − |ν|)︸ ︷︷ ︸

=a

− (|γ| − |ν|)︸ ︷︷ ︸
=b

= a− b

and
|η| − |ζ| = (|η| − |µ|)︸ ︷︷ ︸

=|µ|−|γ|
(by Corollary 4.39 (a))

+ (|µ| − |ζ|)︸ ︷︷ ︸
=b

= |µ| − |γ|︸ ︷︷ ︸
=a−b

+b = a.

Thus, Claim 4 is proven.]
Claim 3 and Claim 4 show that ζ is a snake satisfying the four conditions

µ ⇀ ζ and |µ| − |ζ| = b and η ⇀ ζ and |η| − |ζ| = a.

In other words, ζ ∈ Rµ,b,a (η) (by the definition of Rµ,b,a (η)).
Forget that we fixed ν. Thus, for each ν ∈ Rµ,a,b (γ), we have constructed a ζ ∈ Rµ,b,a (η).

Let us denote this ζ by ν̃. We thus have defined a map

Rµ,a,b (γ)→ Rµ,b,a (η) ,

ν 7→ ν̃.

Let us denote this map by gγ,a,b. Its definition shows that

(gγ,a,b (ν))i = ν̃i = min {µi, ηi} −min {µi, γi}+ νi (4.16)

for each ν ∈ Rµ,a,b (γ) and each i ∈ {1, 2, . . . , n}.
However, from η = fµ (γ), we obtain γ = fµ (η) (by Corollary 4.39 (d)). The relation

between γ and η is thus symmetric. Hence, in the same way as we defined a map gγ,a,b :
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Rµ,a,b (γ) → Rµ,b,a (η), we can define a map gη,b,a : Rµ,b,a (η) → Rµ,a,b (γ) (by repeating
the above construction of gγ,a,b with b, a, η and γ taking the roles of a, b, γ and η, respectively).
The resulting map gη,b,a satisfies

(gη,b,a (ν))i = min {µi, γi} −min {µi, ηi}+ νi (4.17)

for each ν ∈ Rµ,b,a (η) and each i ∈ {1, 2, . . . , n}.
Now it is easy to see (using (4.16) and (4.17)) that the two maps gγ,a,b and gη,b,a are mu-

tually inverse. Hence, these two maps are bijections. Therefore, |Rµ,a,b (γ)| = |Rµ,b,a (η)| =
|Rµ,b,a (fµ (γ))| (since η = fµ (γ)). This proves Lemma 4.40.

Having learned a lot about the map fµ, let us now connect it to the map ϕ defined in Theo-
rem 2.3. For this, we shall use the following lemma:

Lemma 4.41. Fix any n-tuple µ ∈ Zn. Let ν ∈ Zn be an n-tuple. For each j ∈ Z, let

τj = min {(νj+1 + νj+2 + · · ·+ νj+k) + (µj+k+1 + µj+k+2 + · · ·+ µj+n−1)

| k ∈ {0, 1, . . . , n− 1}} .

Let η ∈ Zn be such that

ηi = µi + (µi−1 + τi−1)− (νi+1 + τi+1) for each i ∈ {1, 2, . . . , n} .

Then, fµ (ν) = η.

Proof of Lemma 4.41. Lemma 4.41 is obtained (using our above dictionary) when we apply
Lemma 3.13 to K = (Z,min,+, 0) (and rename u, x, qj and z as µ, ν, τj and η).

We can now connect the map fµ with the map ϕ from Theorem 2.3:

Lemma 4.42. Let a, b ∈ N. Fix any n-tuple µ ∈ Zn. Define a map ϕ : Zn → Zn as in
Theorem 2.3. Then,

ϕ (ω) = fµ (ω − a) + b for each ω ∈ Zn.

Proof of Lemma 4.42. Let ω ∈ Zn.
Define an n-tuple ν = (ν1, ν2, . . . , νn) ∈ Zn by

νi = ωi − a for each i ∈ {1, 2, . . . , n} .

Thus, ν = ω − a.
For each i ∈ Z, we let i# denote the unique element of {1, 2, . . . , n} congruent to imodulon.

(This is the same notation that was used in Convention 3.6.)
For each j ∈ Z, set

τj = min
{(
ν(j+1)# + ν(j+2)# + · · ·+ ν(j+k)#

)
+
(
µ(j+k+1)# + µ(j+k+2)# + · · ·+ µ(j+n−1)#

)
| k ∈ {0, 1, . . . , n− 1}

}
. (4.18)
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Define an n-tuple η = (η1, η2, . . . , ηn) ∈ Zn by setting

ηi = µi# +
(
µ(i−1)# + τ(i−1)#

)
−
(
ν(i+1)# + τ(i+1)#

)
for each i ∈ {1, 2, . . . , n} .

The definition of ϕ then yields

ϕ (ω) = (η1 + b, η2 + b, . . . , ηn + b) = η + b. (4.19)

Our plan is now to show that fµ (ν) = η by applying Lemma 4.41; but in order to do so, we
need to show that the assumptions of Lemma 4.41 are satisfied.

We shall do this piece by piece. First, we make the following two claims, which both follow
from Convention 3.6:

Claim 1: We have νp# = νp for each p ∈ Z.

Claim 2: We have µp# = µp for each p ∈ Z.

The next claim is an easy consequence of Claims 1 and 2:

Claim 3: For each j ∈ Z, we have

τj = min {(νj+1 + νj+2 + · · ·+ νj+k) + (µj+k+1 + µj+k+2 + · · ·+ µj+n−1)

| k ∈ {0, 1, . . . , n− 1}} .

The next claim is an easy fact from elementary number theory:

Claim 4: We have (p# + q) # = (p+ q) # for any p ∈ Z and q ∈ Z.

Using Claim 4, we easily obtain the following:

Claim 5: We have τp# = τp for each p ∈ Z.

Now, let i ∈ {1, 2, . . . , n}. Then, the definition of η yields

ηi = µi#︸︷︷︸
=µi

(by Claim 2)

+

 µ(i−1)#︸ ︷︷ ︸
=µi−1

(by Claim 2)

+ τ(i−1)#︸ ︷︷ ︸
=τi−1

(by Claim 5)

−
 ν(i+1)#︸ ︷︷ ︸

=νi+1
(by Claim 1)

+ τ(i+1)#︸ ︷︷ ︸
=τi+1

(by Claim 5)


= µi + (µi−1 + τi−1)− (νi+1 + τi+1) .

Now, forget that we fixed i. We thus have proved that

ηi = µi + (µi−1 + τi−1)− (νi+1 + τi+1) for each i ∈ {1, 2, . . . , n} .

Combining this with Claim 3, we conclude that the assumptions of Lemma 4.41 are satisfied.
Hence, Lemma 4.41 yields fµ (ν) = η. In view of ν = ω − a, this rewrites as fµ (ω − a) = η.
Hence, (4.19) rewrites as

ϕ (ω) = fµ (ω − a) + b.

This proves Lemma 4.42.
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4.6. The finale

Now, let us again use the convention (from Section 1) by which we identify partitions with finite
tuples (and therefore identify partitions in Par [n] with nonnegative snakes). This is no longer
problematic, since we are not using Convention 3.6 any more.

Lemma 4.43. Let a, b ∈ N. Define the two partitions α = (a+ b, an−2) and β = (a+ b, bn−2).
Fix any partition µ ∈ Par [n]. Consider the map fµ : Zn → Zn defined in Definition 4.37. Then,
for any λ ∈ Zn, we have

cλ+a
α,µ = c

fµ(λ)+b
β,µ .

Here, we understand cλ+a
α,µ to mean 0 if λ + a is not a partition, and likewise we understand

c
fµ(λ)+b
β,µ to mean 0 if fµ (λ) + b is not a partition.

Proof of Lemma 4.43. Let λ ∈ Zn. Corollary 4.35 (applied to λ+ a instead of λ) yields

cλ+a
α,µ = |Rµ,a,b (λ)| − |Rµ,a−1,b−1 (λ)| . (4.20)

On the other hand, β = (b+ a, bn−2). Hence, Corollary 4.35 (applied to b, a, β and fµ (λ) + b
instead of a, b, α and λ) yields

c
fµ(λ)+b
β,µ = |Rµ,b,a (fµ (λ))|︸ ︷︷ ︸

=|Rµ,a,b(λ)|
(by Lemma 4.40,
applied to γ=λ)

− |Rµ,b−1,a−1 (fµ (λ))|︸ ︷︷ ︸
=|Rµ,a−1,b−1(λ)|
(by Lemma 4.40,

applied to λ, a−1 and b−1
instead of γ, a and b)

= |Rµ,a,b (λ)| − |Rµ,a−1,b−1 (λ)| .

Comparing this with (4.20), we find cλ+a
α,µ = c

fµ(λ)+b
β,µ . This proves Lemma 4.43.

We are now ready to prove Theorem 2.3:

Proof of Theorem 2.3. The map fµ is an involution (by Theorem 4.38 (a)), thus a bijection.
Let a− : Zn → Zn be the bijection that sends each ω ∈ Zn to ω − a.
Let b+ : Zn → Zn be the bijection that sends each ω ∈ Zn to ω + b.
Now, Lemma 4.42 can be restated as follows:

ϕ = b+ ◦ fµ ◦ a−.

Hence, ϕ is a bijection (since b+, fµ and a− are bijections). This proves Theorem 2.3 (a).
(b) Let ω ∈ Zn. Then, Lemma 4.42 yields ϕ (ω) = fµ (ω − a)+b. But Lemma 4.43 (applied

to λ = ω − a) yields

cωα,µ = c
fµ(ω−a)+b
β,µ = c

ϕ(ω)
β,µ (since fµ (ω − a) + b = ϕ (ω)) .

This proves Theorem 2.3 (b).
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5. Final remarks

5.1. Questions on fu

We shall now pose several questions about the birational involution fu studied in Section 3.
Convention 3.4, Convention 3.5 and Convention 3.6 will be used throughout Subsection 5.1.

Most of our questions are attempts at seeing the involution fu from different directions. The
first one is inspired by what is now known as the “toggle approach” to dynamical combinatorics
(see, e.g., [19]), but is really an application of the age-old “divide and conquer” paradigm to
complicated maps:

Question 5.1. Is there an equivalent definition of fu as a composition of toggles? (A toggle here
means a birational map Kn → Kn that changes only one entry of the n-tuple. An example for
a birational map that can be defined as a composition of toggles is birational rowmotion – see,
e.g., [5]. Cluster mutations, as in the theory of cluster algebras, are another example of toggles.)

Another set of questions concern the uniqueness of fu. While we defined the map fu explic-
itly, all we have then used are the properties listed in Theorem 3.11. Thus, it is a natural question
to ask whether these properties characterize fu uniquely. A pointwise version of this question
can be asked as well: Given x ∈ Kn and y ∈ Kn satisfying some of the equalities in parts (b),
(c) and (d) of Theorem 3.11, does it follow that y = fu (x) ? (Keep in mind that u is fixed.)

Of course, the answers depend on which equalities we require. Let us first ask what happens
if we require the equalities from Theorem 3.11 (c) only:

Question 5.2. Given x, y ∈ Kn satisfying

(ui + xi)

(
1

ui+1

+
1

xi+1

)
= (ui + yi)

(
1

ui+1

+
1

yi+1

)
(5.1)

for all i ∈ Z. Does it follow that y = fu (x) or y = x ?

Note that the “or y = x” part is needed here, since y = x is obviously a solution to the
equations (5.1).

The following example shows that the answer to Question 5.2 is “no” ifK is the min tropical
semifield (Z,min,+, 0) of the totally ordered abelian group Z.

Example 5.3. Let k, g ∈ N with g > k. Let K = (Z,min,+, 0) and n = 3 and u = (0, 0, g)
and x = (1, 2, 0). Set y = (k + 1, 2, k) (where the “+” sign in “k + 1” stands for addition of
integers, not addition inK). Then, the equations (5.1) hold inK for all i ∈ Z. (Restated in terms
of standard operations on integers, this is saying that

min {ui, xi}+ min {−ui+1,−xi+1} = min {ui, yi}+ min {−ui+1,−yi+1}

for all i ∈ Z.) This is straightforward to verify, and shows that for a given x there can be an
arbitrarily high (finite) number of y ∈ Kn satisfying the equations (5.1) for all i ∈ Z. (Inciden-
tally, this number is always finite whenK = (Z,min,+, 0); however, this does not generalize to
arbitrary K.)
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However, the answer to Question 5.2 is “yes” ifK = Q+ and, more generally, if the semifield
K embeds into an integral domain:

Proposition 5.4. Assume that there is an integral domain L such that the semifield K is a sub-
semifield of L (in the sense that K ⊆ L and that the operations + and · of K are restrictions
of those of L, whereas the unity of K is the unity of L). Let x ∈ Kn. Then, the only n-tuples
y ∈ Kn satisfying the equations (5.1) for all i ∈ Z are y = fu (x) and y = x.

Another avatar of the uniqueness question is the following:

Question 5.5. Given x, y ∈ Kn satisfying both (5.1) for all i ∈ Z and

y1y2 · · · yn · x1x2 · · ·xn = (u1u2 · · ·un)2 . (5.2)

Does it follow that y = fu (x) ?

The answer to this question is definitely “yes” when K = Q+, by essentially the same argu-
ment that we used in Remark 3.16. Again, however, the answer is “no” whenK = (Z,min,+, 0).
For example, if K = (Z,min,+, 0) and n = 4 and u = (2, 1, 1, 0) and x = (1, 1, 1, 1), then the
two n-tuples (1, 1, 1, 1) and (2, 2, 0, 0) both can be taken as y in Question 5.5, but clearly cannot
both equal fu (x). (On the other hand, ifK = (Z,min,+, 0) and n = 3, then the answer is “yes”
again; this can be shown by an unenlightening yet not particularly arduous case analysis.)

An even stronger version of Question 5.5 holds when K = Q+:

Proposition 5.6. Assume that K = Q+. Let x, y ∈ Kn. Assume that (5.1) holds for all i ∈
{1, 2, . . . , n− 1}, and assume that (5.2) holds. Then, y = fu (x).

Another question concerns Lemma 3.12:

Question 5.7. What is the “real meaning” of some of the more complicated parts of
Lemma 3.12? In particular, Lemma 3.12 (g) reminds of the Plücker relation for minors of a
2×m-matrix; can it be viewed that way (at least when K is a subsemifield of a field)?

5.2. The birationalR-matrix connection

In this section, we shall connect the map fu from our Definition 3.8 with the birational R-matrix
η defined in [14, §6] and studied further (e.g.) in [3].

We fix a positive integer n and a semifield K. We shall use Convention 3.4 and Conven-
tion 3.6. Let us recall the definition of the birational R-matrix η (no relation to the η in Theo-
rem 2.3):

Definition 5.8. We define a map η : Kn ×Kn → Kn ×Kn as follows: Let a ∈ Kn and b ∈ Kn

be two n-tuples. For any i ∈ Z, define an element κi (a, b) ∈ K by

κi (a, b) =
i+n−1∑
j=i

bi+1bi+2 · · · bj︸ ︷︷ ︸
=

j∏
p=i+1

bp

· aj+1aj+2 · · · ai+n−1︸ ︷︷ ︸
=
i+n−1∏
p=j+1

ap

.
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Define a′ ∈ Kn and b′ ∈ Kn by setting

a′i =
ai−1κi−1 (a, b)

κi (a, b)
and b′i =

bi+1κi+1 (a, b)

κi (a, b)
for each i ∈ {1, 2, . . . , n}.

Set η (a, b) = (a′, b′).

The map η we just defined is known as a birational R-matrix; related maps have previously
appeared in the literature ([1, Lemma 8.6], [23, Definition 2.1], [6, Proposition 3.1]). In par-
ticular, the map R from [6, Proposition 3.1] is equivalent to η (at least up to technical issues of
where it is defined8). Indeed, it is not hard to see that the map η from Definition 5.8 becomes
the map R from [6, Proposition 3.1] if we set xi = bi+1 and yi = ai and x′i = b′i and y′i = a′i+1

(that is, if we define xi, yi, x′i, y′i this way, then the equalities [6, (8), (9) and (10)] are satisfied,
so that we have R (x, y) = (x′, y′) whereR is as defined in [6, Proposition 3.1]). This birational
R-matrix R has its origins in the theory of geometric crystals and total positivity. A related map
is the transformation (x, a) 7→ (y, b) in [17, §2.2] (see also [24]).

Now, we shall see that themap η is intimately related to ourmap fu (even though fu transforms
a single n-tuple x into a single n-tuple y using the fixed n-tuple u, while η takes a pair of two
n-tuples to another such pair). In order to state this relation, we define some more notation:

Definition 5.9. If a ∈ Kn and b ∈ Kn are two n-tuples, then we define two new n-tuples ab ∈ Kn

and
a

b
∈ Kn by setting

(ab)i = aibi and
(a
b

)
i

=
ai
bi

for each i ∈ {1, 2, . . . , n} .

We can now express the map fu from Definition 3.8 through the map η from Definition 5.8
as follows:

Theorem 5.10. Let u ∈ Kn and x ∈ Kn be two n-tuples. Let (a′, b′) = η (u, x). Then,

fu (x) = u
a′

b′
.

Proof. Straightforward comparison of definitions.

We finish by stating two (easily verified) “gauge-invariances” properties of fu and η:

Proposition 5.11. Let g, u, x ∈ Kn. Then, fgu (gx) = gfu (x).

Proposition 5.12. Let g, a, b ∈ Kn. Let (a′, b′) = η (a, b). Then, (ga′, gb′) = η (ga, gb).
8Namely: We have defined our map η as a literal map Kn × Kn → Kn × Kn for any semifield K, whereas

[6, Proposition 3.1] defines R as a birational map (C×)
n × (C×)

n 99K (C×)
n × (C×)

n. Neither of these two
settings generalizes the other, but it is not hard to transfer identities from one to the other (as long as they are
subtraction-free, i.e., no minus signs appear in them).
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