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ORIGINAL ARTICLE

A Novel Mathematical Model Detecting
Early Individual Changes of Insulin Resistance

Claudia Eberle, MD,1 Wulf Palinski, MD,1 and Christoph Ament, PhD2

Abstract

Background: Insulin resistance (IR) and hyperinsulinemia as well as obesity play a key role in the metabolic syndrome
(MetS), type 2 diabetes (T2D), and associated cardiovascular disease. Unfortunately, IR and hyperinsulinemia are often
diagnosed late (i.e., when the MetS is already clinically evident). An earlier diagnosis of IR would be desirable to reduce its
clinical consequences, in particular in view of the increasing prevalence of obesity and diabetes conditions. For this purpose,
we developed a mathematical model capable of detecting early onset of IR through small variations of insulin sensitivity,
glucose effectiveness, and first- or second-phase responses.
Materials and Methods: Murine models provide controlled conditions to study various stages of IR. Various degrees of
hypercholesterolemia, obesity, IR, and atherosclerosis were induced in low-density lipoprotein receptor-deficient mice by
feeding them cholesterol- or sucrose-rich diets. IR was assessed by oral glucose tolerance tests. Controls included animals fed
exclusively, or switched back to, regular chow. A nonlinear mathematical model of the order of 5 was developed by refining
Bergman’s ‘‘Minimal Model’’ and then applied to experimental data.
Results: Different metabolic constellations consistently corresponded to specific and close-meshed changes in model pa-
rameters. Reduced second-phase glucose sensitivity characterized an early impaired glucose tolerance. Later stages showed
an increased first-phase glucose sensitivity compensating for decreased insulin sensitivity. Finally, T2D was associated with
both first- and second-phase sensitivities close to zero.
Conclusions: The new mathematical model detected various insulin-sensitive or -resistant metabolic stages of IR. It can
therefore be implemented for quantitative metabolic risk assessment and may be of therapeutic value by anticipating the start
of therapeutic interventions.

Introduction

Insulin resistance (IR), hyperinsulinemia, dyslipide-
mia, and obesity play key pathophysiological roles in the

metabolic syndrome (MetS) and type 2 diabetes (T2D), which
in turn are associated with a markedly increased risk of car-
diovascular diseases (CVD). Unfortunately, IR and hyper-
insulinemia are often diagnosed late (i.e., when the MetS is
already clinically advanced and accompanied by metabolic
co-morbidities and CVD). An earlier diagnosis of IR could
reduce clinical consequences by prompting earlier treatment
but would require a diagnostic method more sensitive to early
stages. For this purpose, we developed a mathematical model
capable of detecting early onset of IR through small varia-
tions of insulin sensitivity, glucose effectiveness, and first- or
second-phase responses.

Depending on ethnicity, genetic, and lifestyle risks, 30–40%
of the population of developed countries develops MetS.1

Although the importance of glucose intolerance, dyslipide-

mia, obesity, and hypertension is well recognized, various
definitions of the MetS exist.1–6 For example, the World
Health Organization and the European Group for the Study of
Insulin Resistance include IR among defining central criteria;
in contrast, the International Diabetes Foundation uses central
obesity as a diagnostic criterion.1–6

IR and hyperinsulinemia are strongly linked to an early
onset of T2D, obesity, dyslipidemia, and endothelial dys-
function, as well as CVD.3,7 Initially, an insufficient effect
of insulin, resulting from either insufficient insulin secre-
tion or insufficient insulin effect at the cellular level, is met
by a compensatory increase in insulin secretion, and
plasma glucose levels remain in the euglycemic range
(Figure 1a). Prolonged excessive demand for insulin, as-
sociated, for example, with obesity, often leads to de-
creasing function of pancreatic b-cells, increasing
hyperglycemia, and eventually manifest T2D. The diag-
nostic criteria for the final stages of IR and T2D in humans
are well established.5,6
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Dyslipidemic conditions, especially increased levels of free
fatty acids, also contribute to IR. Free fatty acids result mainly
from adipose tissues because of the lipolysis of triglyceride-en-
riched lipoproteins.1–4,7 Conversely, increasing IR generates more
free fatty acids, mainly by increasing lipolysis, and thus worsens
dyslipidemic conditions.1–4,7 Therefore, we used an in vivo
model susceptible to both diet-induced IR and dyslipidemia.

Because IR is initially clinically silent, it may remain un-
detected while already exerting pathogenic effects relevant for
diabetes and CVD. The main difficulty in establishing a
mathematical model capable of detecting the onset of IR lies in
the lack of well-defined physiological correlates of early-stage
IR that might be used for a noninvasive diagnosis.

In both humans and mice, insulin glucose homeostasis is
usually first assessed by measurements of fasting or fed
plasma glucose and insulin respectively C-peptide. A widely

used diagnostic follow-up procedure is the oral glucose tol-
erance test (OGTT), which measures glucose and insulin re-
sponses to a defined glucose bolus administered orally.
Although OGTTs can detect reduced insulin secretion, con-
clusive evidence for IR (as opposed to pancreatic b-cell
damage) requires hyperinsulinemic euglycemic clamps.8,9

Other assays include insulin tolerance tests and insulin sup-
pression tests. Many of these are invasive. Mathematical
models permitting extraction of additional information on the
onset of IR from OGTTs would therefore be of value, in par-
ticular if they predict later T2D.

We here report the development of a novel mathematical
model of insulin glucose homeostasis based on Bergman’s
‘‘Minimal Model,’’ which provides measures of glucose ef-
fectiveness 1/TG and insulin sensitivity kX. To improve
modeling of the physiological first-phase insulin response, we

FIG. 1. Development of insulin resis-
tance, overview of murine studies, and
optimization of the mathematical model.
(a) Stages of insulin resistance and type 2
diabetes (adapted from Fonseca3). In-
creasing pancreatic insulin production
initially compensates for increasing insu-
lin resistance. Once the capacity for com-
pensation is exhausted or b-cell damage
decreases insulin secretion, glucose levels
gradually increase until manifest diabetes
is reached. (b) Experimental design of
murine studies. Groups of low-density
lipoprotein receptor - / - mice were sub-
jected to an oral glucose tolerance test
(OGTT) before (Group A), during (Group
B), and after (Group C) being fed an
obesogenic diet and compared with con-
trols (Groups D and E). (c) Optimization
of the mathematical model by parameter
identification based on in vivo data. The
deviation of the experimental Gexp and
Iexp and the model outputs G and I is as-
sessed by the objective function J. An op-
timization algorithm minimizes J with
respect to the parameter vector p of the
mathematical model. Color graphics avail-
able online at www.liebertonline.com/dia
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introduced the respective first- and second-phase parameters
kG1 and kG2 into the equation and carried out data analysis in
two sequential steps. The new model was first validated with
the help of a human reference dataset based on intravenous
glucose tolerance tests (IVGTTs).10 It was then applied to data
obtained by performing OGTTs on five groups of low-density
lipoprotein receptor (LDLR)-deficient (LDLR- / - ) mice, an es-
tablished model of hypercholesterolemia, insulin resistance,
diet-induced MetS, and atherosclerosis.11–20 In these murine
groups, various degrees of IR and stages of the MetS were
induced by feeding them either regular rodent chow or an
obesogenic high-fat, high-cholesterol diet for various periods.
We also switched one group back to regular chow, to mimic the
return to a healthy diet after onset of the MetS. We thus induced
various metabolic constellations resulting from the underlying
genetic defect of LDLR - / - mice or the various dietary regi-
mens. We then characterized these constellations by conven-
tional clinical parameters and by using our mathematical
model, in the hope that the latter would indicate early stages of
the MetS and thus permit early diagnosis of the pathogenic
process and earlier therapy. Preliminary data from this study
have been presented previously in abstract form.21

Materials and Methods

Murine model of the MetS

In order to mimic different stages of human IR, an estab-
lished murine model of atherosclerosis and T2D was used.11–20

Five groups of age-matched male LDLR - / - mice (n = 43) were
fed normal rodent chow for 74 days, at which time an OGTT
was performed on Group A. Group B was fed an established
obesogenic and atherogenic diet containing 1.25% cholesterol
and 21% fat (Teklad TD96121; Harlan, Indianapolis, IN) for
109 days, and an OGTT was performed after 78 days. Group C
followed the same regimen but was then switched back to
regular chow to detect the benefit of a low-risk diet after the
onset of IR. Groups D and E were controls fed regular chow. A
schematic overview of experimental groups is provided in
Figure 1b.

OGTTs were performed after 16 h of fasting. Twenty-five
microliters of blood was collected from the retroorbital plexus
of isofluorane-anesthetized mice prior to as well as 15, 30, 60,
90, and 120 min after gavaging with a sterile 10% glucose
solution (1.5 mL/kg of body weight). Plasma glucose levels
were determined using glucose test strips (Devine Medical
Supplies, Santa Fe Springs, CA) and a glucometer (Medi-
Sense; Abbott, Chicago, IL) four times a day. Plasma insulin
level was determined by an ultrasensitive mouse enzyme-
linked immunosorbent assay (catalog number 10-1150-01;
Mercodia, Uppsala, Sweden).

To assess metabolic changes by the criteria used in humans,
the homeostasis assessment model of IR (HOMA-IR) index
was calculated from fasting insulin I0 and fasting glucose G0:

HOMA-IR¼ I0 � G0

405 lU
mL

mg
dL

Mathematical model of glucose–insulin homeostasis

Any mathematical model of the glucose–insulin homeo-
stasis must reflect the complex metabolic changes observed in
vivo. One of the first models of the glucose insulin homeo-

stasis was the ‘‘VT-model,’’22 also known as the ‘‘Minimal
Model.’’23 It provides established parameters with a physio-
logical meaning, such as glucose efficiency and insulin sen-
sitivity. We previously used the Minimal Model24–26 and now
expanded it as follows.

The Minimal Model considers three compartments: the
plasma glucose G(t), the plasma insulin I(t), and the interstitial
insulin X(t), which summarizes insulin in non-plasma tissues
and is also called the remote insulin compartment according
to Bergman et al.23 The change of plasma glucose G(t) is
driven by an internal effectiveness (with time constant TG)
and a nonlinear expression that is controlled by the current
interstitial insulin X(t):

dG(t)

dt
¼ � 1

TG
DG(t)� kXX(t)G(t),

DG(t)¼G(t)�Gbasal, G(0)¼G0

(1)

The reciprocal time constant 1/TG is often interpreted as
‘‘glucose effectiveness,’’ and the gain kX is known as ‘‘insulin
sensitivity’’ of the glucose system.27 To simulate the dynamic
situation of an OGTT, we started the simulation at t = 0, when
exogenously administered glucose reaches the plasma.
Hence, in our model an initial plasma glucose concentration
G0 is assumed that is already elevated compared with its basal
level: G0 > Gbasal. Note that this is not identical to the glucose
measurement at ‘‘T0’’ of an OGTT, which denotes the basal
equilibrium before glucose administration.

The change of plasma insulin I(t) is modeled in a similar
way. An internal clearance (with time constant TI) and an
external input v(t) are distinguished:

dI(t)

dt
¼ � 1

TI
DI(t)þ 1

TI
v(t), DI(t)¼ I(t)� Ibasal, I(0)¼ I0

(2)

Here, the basal insulin concentration is used as initial con-
dition I0 = Ibasal because no external insulin excitation is ap-
plied, and the insulin responses are presumed to lag behind
the initial glucose increase. The external input v(t) is con-
sidered to be linear. The input v(t) must be controlled by the
plasma glucose G(t). Bergman et al.22,23 suggested the time-
variant function v(t) = max[0, ct(G(t) - Gbasal)]. From our
point of view, this approach has two disadvantages: an early
plasma insulin peak (for small times t) cannot be modeled,
but it is observed in OGTT as a consequence of an increased
plasma glucose level. Bergman et al.22,23 solve this by as-
suming an initial insulin concentration I0 > Ibasal, but this
does not correspond to the test conditions because no initial
insulin is applied to the subject. Second, there is no physio-
logical motivation for an increasing insulin reaction just
because the time t increases.

To make the model more consistent with actual physio-
logical events, we suggest differentiating between a first-
and second-phase insulin reaction. The first-phase reaction is
controlled by the time derivative d(DG(t))/dt of plasma
glucose in combination with a lag element (small time con-
stant T1). The second-phase reaction is controlled by DG(t)
itself again in combination with a lag element (larger time
constant T2 > T1). Both parts are weighed with gains kG1 and
kG2 and summed up in v(t). The frequency domain transfer
function is:
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V(s)¼ kG1S

1þT1s
þ kG2

1þT2s

� �
�

DG(s)¼ kG1

T1
� DG(s)�

kG1

T1

1þT1s
� DG(s)|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

V1(s)

þ kG2

1þT2s
� DG(s)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V2(s)

(3)

Hence, we introduce kG1 and kG2 as ‘‘first-phase’’ and ‘‘second-
phase glucose sensitivity’’ of the insulin system, respectively.
This simplifies the model approach of Grodsky,28 who dis-
tinguished a labile (fast) and a stable (slow) insulin com-
partment with a threshold for insulin release. It can also be

considered to be a model of the controller that regulates the
insulin secretion as a function of the current plasma glucose.
The use of a proportional (P) and a time derivative (D) part
find its equivalent in technical PD controllers.29

The second-order transfer function in Eq. 3 is transformed
into two first-order differential equations (Eqs. 4 and 5) in the
time domain. Among the infinite number of state–space rep-
resentations we obtain the Jordan Canonical Form by intro-
ducing the states v1(t) and v2(t) according to Eq. (3). The
output equation (Eq. 6) includes a feed-through term:

dv1(t)

dt
¼ � 1

T1
v1(t)� kG1

T2
1

DG(t), v1(0)¼ 0 (4)

dv2(t)

dt
¼ � 1

T2
v2(t)þ kG2

T2
DG(t), v2(0)¼ 0 (5)

v(t)¼ v1(t)þ v2(t)þ kG1

T1
DG(t) (6)

The third compartment for the interstitial insulin X(t) is
modeled in line with Bergman et al.22,23 As in Eq. 2, there is an
internal clearance (time constant TX) and a linear excitation
that is controlled by the insulin I(t):

dX(t)

dt
¼ � 1

TX
X(t)þ 1

TX
DI(t), DI(t)¼ I(t)� Ibasal, X(0)¼ 0

(7)

Because we assign the insulin sensitivity kX to Eq. 1, the state
X(t) has the dimension of an insulin concentration, which
seems to be more appropriate than the dimension of min - 1

used by Bergman et al.22,23

In order to obtain a state–space model29

dx(t)

dt
¼ f(x) (8)

Equation 6 is inserted into Eq. 2, and Eqs. 1, 2, 4, 5, and 7 are
summarized to a vector differential equation of the order n = 5
with the state vector x(t) = [G(t), I(t), v1 (t), v2 (t), X (t)]T.

Parameter identification

For parameter identification, the mathematical model is
typically evaluated over the time horizon of an OGTT,
which is usually 120 min. As the initial condition, a glucose
excitation G0 > Gbasal and a basal insulin concentration
I0 = Ibasal are assumed. As illustrated in Figure 1c, the model
outputs for plasma glucose level G(k) and plasma insulin
level I(k) are compared with the corresponding in vivo
measurements Gexp(k) and Iexp(k). The deviations are
weighed with wG and wI and assessed within an objective
function that sums up the square errors over the measure-
ments k¼ 1, . . . , N:

We try to reach a balanced weighting and a dimensionless
objective function J by choosing wG = (1 mg/dL) - 2 and wI =
(0.667 lU/mL) - 2. If no measurement is available, the corre-
sponding wG or wI is set to zero. In order to consider param-
eter constraints, J is set to infinity in case of forbidden
parameter combinations.

An optimization algorithm has to find an optimal set of
model parameters p that minimizes the objective function J(p)
(see Fig. 1c). For that purpose we apply the heuristic simplex
search algorithm from Nelder and Mead.30 The iterative algo-
rithm stops when the initial simplex volume could be reduced
by the factor 10- 6 or when the maximum number of 150 iter-
ation steps has been reached. Model and optimization algo-
rithm are implemented in MATLAB (MathWorks, Natick, MA).

Validation of the model with human data

As a first step to quantify the model, we followed the
program of Pacini and Bergman.10 Their values determined
from a frequently sampled IVGTT were converted to define
the time constants TG, TI, and TX and the gain kX. As basal
values for Gbasal and Ibasal, the last measurements were taken
(Table 1). In a second step, the respective time constants T1

and T2 for the first- and second-phase insulin response were
defined in line with the step response in Grodsky,28 and an
optimization was carried out in order to identify the corre-
sponding gains kG1 and kG2 (Table 1). In vivo measurements
and in silico results of the IVGTT are shown in Figure 2. The
evaluation of the objective function from Eq. 9 resulted in
J = 24.76, which corresponds to a maximum root mean
squared error of 24.76 mg/dL for plasma glucose G(t) or of
16.51 lU/mL for plasma insulin I(t). The model obtained
serves as a human reference model in the following analyses.

Results

Murine model

Body weights, plasma cholesterol, and plasma triglyceride
levels before, during, and after the obesogenic diet are sum-
marized in Figure 3a–c. As expected, endogenous and die-
tary risk factors could be linked to unbalanced metabolic
conditions, such as altered plasma cholesterol and triglyceride

J(p)¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N +

N

k¼ 1

[WG(G(k, p)�Gexp(k))2þwI(I(k, p)� Iexp(k))2]

s
if p is valid

1 if p is not valid

8><
>:

(9)
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levels (compare Group B vs. Groups A and D in Fig. 3b and c).
The change back to normal chow resulted in declining plasma
lipids in Groups C and E but no significant changes in body
weights (Fig. 3a–c).

Fasting measurements are displayed in Figure 3d and e.
OGTT measurements are shown in Figure 4. Several pheno-
types with different degrees of IR were evident. Compared
with Groups A and D, Group B showed significantly in-
creased fasting insulin levels but no increase in fasting glucose
levels. This indicates that insulin levels required to maintain

euglycemia were higher than those on regular chow and that
Group B had IR but did not suffer from a manifest diabetes.
With the return of insulin-resistant obese mice to regular chow
in Group C as well as an increasing age and persisting weight
gain, insulin levels were reduced significantly compared with
Group B, but glucose levels continued to increase. Thus, b-cell
damage progressed irreversibly over time, and a persistent
degree of IR and an onset of T2D characterize Group C.

Note, however, that data of the control groups (A, D, and E)
do not represent physiological levels in wild-type mice but

Table 1. Parameters of the Human Reference Model

Parameter From (reference) Value Units

TG 1/p1 = (Pacini and Bergman10) 32.45 min
Gbasal G(tfinal) = (Pacini and Bergman10) 90.0 mg/dL
kX p3/p2 = (Pacini and Bergman10) 507 · 10 - 6 ml/lU mg/dL/min
TI 1/n = (Pacini and Bergman10) 3.33 min
Ibasal I(tfinal) = (Pacini and Bergman10) 7.0 lU/mL
T1 Similar to Grodsky28 4.0 min
kG1 Optimization 3.601 lU/mL dL/mg min
T2 Similar to Grodsky28 12.0 min
kG2 Optimization 0.356 lU/mL dL/mg
TX 1/p2 = (Pacini and Bergman10) 47.78 min

FIG. 2. Comparison of in vivo measurements of a frequently sampled intravenous gluocse tolerance test from Pacini and
Bergman10 and its corresponding in silico simulation of our model. Color graphics available online at www.liebertonline.com/dia
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strongly reflect the underlying genetic defect resulting in
spontaneous hyperlipidemia. Furthermore, animal and hu-
man glucose responses cannot be compared directly. The
same is true for the threshold for manifest T2D. By human
standards specified in the guidelines of the World Health
Organization,6 Group C comes closest to the human threshold
for T2D. Increased HOMA-IR also indicated IR in Groups B
and C3 but could not distinguish the different underlying
mechanisms. For this purpose, dynamic reactions such as
those retrieved from an OGTT have to be considered, which
can be done by a dynamic model.

Application of the novel mathematical model
to the murine data

We then applied our mathematical model to see whether it
was sensitive to early stages of IR. From our point of view the

time constant TG of glucose effectiveness and the insulin
sensitivity kX, as well as the glucose sensitivities kG1 and kG2

are of particular diagnostic interest. Furthermore, the initial
plasma glucose level G0 is identified in order to allow the
model to adapt to the different form of initial glucose ad-
ministration of an OGTT.

In the in silico simulations based on the murine data we
observed that TG and kX were closely associated. Identifica-
tion of both constants in one model may therefore lead to
inconsistent results. For this reason, we first determined the
parameter set {TG,kG1,kG2,G0} in an initial analysis. As Table 2
shows, TG is growing to large values for all control groups (A,
D, and E) that are only limited by the maximum number of
iterations of the optimization algorithm. Therefore, TG can be
assigned to an arbitrary large value. We chose TG = 1,000 min
for simplicity and optimized {kX,kG1,kG2,G0} in the main
analysis. Table 3 indicates the objective functions obtained for

FIG. 3. (a–f) Metabolic characterization of the murine model and (g–i) results of the in silico experiments. Significances
were determined by two-sided t test for unpaired groups. Groups of low-density lipoprotein receptor - / - mice were subjected
to an oral glucose tolerance test (OGTT) before (Group A), during (Group B), and after (Group C) being fed an obesogenic diet
and compared with controls (Groups D and E). HOMA-IR, homeostasis assessment model of insulin resistance. Color graphics
available online at www.liebertonline.com/dia
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FIG. 4. Comparison between the actual oral glucose tolerance test data of murine Groups A–E and the predictions by the
mathematical model. Plasma glucose G(t) and insulin I(t) were measured before glucose administration and 15, 30, 60, 90, and
120 min thereafter. Data of individual subjects are shown in gray, and group means with SD error bars in black. Additionally,
the corresponding in silico predictions are plotted. The solid line denotes the group mean; dashed lines denote the corre-
sponding SD. Color graphics available online at www.liebertonline.com/dia
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all groups in the initial and the main analysis. As expected, the
objective function J performed better in the main analysis (i.e.,
yielded smaller values than in the initial analysis for all
groups). It is interesting that the in silico experiments
achieved smaller values of J for the groups not subjected to the
extreme high-fat diet (A, D, and E), which means that the
model characterization is better in these cases.

In order to assess the mathematical model, its in silico
predictions of the murine OGTTs were compared with the
actual in vivo measurements (Fig. 4). A good agreement was
seen for Groups A, D, and E. The markedly impaired glucose
tolerance (IGT) of Groups B and C resulted in high insulin
levels for t < 20 min and larger SDs.

Model-based differentiation among different
stages of the MetS

IGT associated with LDLR deficiency. We then deter-
mined whether metabolic changes meeting the criteria for IGT
can be detected in the experimental groups not exposed to the
high-fat diet (i.e., Groups A, D, and E). The HOMA-IR index
was greater than 5 in Group A, which suggests IR, but well
below 5 in Group D. The mathematical model provided more
consistent information. Table 2 indicates the parameters
identified in mice and compares them with those of the hu-
man reference model. Within the obvious limitations of such a
comparison, the following conclusions are supported:

� The first-phase glucose sensitivity kG1 is in the same
order as in the human reference model. Hence, the first-
phase insulin response seems to be similar.

� In contrast, the second-phase glucose sensitivity kG2 is
reduced by a factor of 3–8. This may indicate increased
glucose resistance in the second phase.

� During parameter identification the estimate of TG is
growing continuously to very large values until the iter-
ation is aborted. If TG is striving to infinity, the glucose
efficiency 1/TG is going to zero. It seems to be a common

characteristic of the LDLR - / - mice that their ability to
clear glucose (without insulin stimulation) is disrupted.

Together, initial analysis of data with the novel model in-
dicates an early diabetes phenotype charactecterized by a
reduced second-phase insulin response and a marginal self-
contained glucose clearance in LDLR - / - mice.

Combined effect of LDLR deficiency and obesogenic high-
cholesterol high-fat diet. In Group B, fasting glucose levels
were normal, but fasting insulin levels were markedly in-
creased, most likely in order to compensate for the rapid onset
of IR.

Again, the mathematical model may provide an explana-
tion. Figure 3g–i shows the parameters identified by the main
analysis of all five groups. Compared with the previously
discussed Groups A, D, and E, the insulin sensitivity kX is de-
creased in Group B. At the same time the glucose sensitivities
kG1 and kG2 are increased, most likely in order to compensate
for the loss of insulin sensitivity. For example, in relation to

Group A the gain ratios are k(B)
X =k(A)

X ¼ 0:237 on the one hand

and k(B)
G1=k(A)

G1 ¼ 4:859 and k(B)
G2=k(A)

G2 ¼ 6:602 on the other hand.

However, the total loop gain only slightly differs by
0.237 · 4.859 = 1.152 for the first-phase response and 0.237 ·
6.602 = 1.565 for the second-phase response. The model clearly
differentiates between the metabolic conditions induced by the
genetic defect only and or in combination with diet.

T2D. The mean fasting glucose level of Group C in Figure
3d was 143.0 mg/dL. Thus, by human standards, these ani-
mals had a manifest T2D. The in silico model yields exactly the
same diagnosis: the glucose sensitivities kG1 and kG2 are sig-
nificantly lower than those of Group B, whereas the insulin
sensitivity is not able to compensate this.

Compared with the IGT group (Group A), it is

k(C)
X =k(A)

X ¼ 0:381 and k(C)
G1=k(A)

G1 ¼ 0:421, such that the total loop

gain is 0.381 · 0.421 = 0.160. For parameter kG2 it is
0.381 · 1.041 = 0.397, respectively. The total loop gain has
dropped significantly in both cases below 1.0, which can be
explained by b-cell dysfunction.

In summary, the new mathematical model allows detec-
tions of different stages of IR and is sensitive to its early
progression.

Discussion

Insights from the mathematical model

We here introduce a novel model designed to be sensitive
to early patterns of the MetS and thus to facilitate early

Table 2. Results of the Initial Analysis

Group Parameter TG (in min) Parameter kG1 (in lU/mL dL/mg min) Parameter kG2 (in lU/mL dL/mg)

As in Table 1 32.4 3.563 0.348
A 7,298.2 – 11,274.3a 2.807 – 1.953 0.045 – 0.060
D 8,908.1 – 16,915.8a 2.874 – 1.920 0.052 – 0.043
E 9,972.3 – 10,879.0a 4.594 – 1.131 0.103 – 0.089

Data are mean – SD values for model parameters TG, kG1, and kG2 for Groups A, D, and E. Differences from the human reference model are
observed for TG and kG2, whereas kG1 tends to be in the same order.

aSimplex optimization does not converge and is stopped after reaching the maximum of 150 iteration steps.

Table 3. Resulting Objective Function J

of the Initial and Main Analyses

Group Initial analysis Main analysis

A 30.80 – 18.72 17.92 – 11.44
B 85.64 – 35.66 46.12 – 20.41
C 56.54 – 29.72 38.49 – 18.45
D 25.64 – 14.09 14.21 – 6.66
E 24.74 – 11.73 14.80 – 6.96

Data are mean – SD values. A small value J represents a good
model representation (see Eq. 9 in Materials and Methods).
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diagnosis of IR. Compared with previous methods, reviewed
for example by Matsuda,31 our model not only provides a
measure of insulin sensitivity,32 but also determines addi-
tional parameters, which allow us to distinguish between
different close-meshed patterns of IR.

The key requirement of our mathematical model was to
accurately reproduce the glucose–insulin homeostasis ob-
served in vivo. It was derived from the ordinary differential
equation type VT (or Minimal) Model22,23 by adding two
compartments. Such additions have been successfully per-
formed in order to consider external influences (e.g., diets33),
to reflect more complex mechanisms,34 or to distinguish dif-
ferent organs,35 but they usually come at the price of requiring
additional measurements. Our model has the advantage of
being time-invariant and of differentiating between first- and
second-phase insulin responses. For a broad review of model-
based methods in the field of diabetes see the review of Co-
belli et al.27; different modeling approaches are compared by
Makroglou et al.36 and Mari.37

After successful validation of the model with IVGTT data
from a human reference population, we applied the novel
model to different age- and genetically matched groups of
LDLR - / - mice, which were fed either with standard chow for
various time periods (dyslipidemia reflecting only the genetic
defect) or with a standardized high-fat/high-cholesterol diet
(combined effect of genetic defect and high-risk lifestyle). As
shown in Table 4, four different stages of IR could be distin-
guished with the help of the mathematical model. These are in
line with the prevailing hypothesis of a gradual process be-
ginning with IGT and ending in severe T2D. The model al-
lowed us to separate early stages of IR characterized by
increasing insulin production from later stages showing de-
creased insulin levels and rising glucose levels and from T2D.
It therefore appears that the model parameters {TG, kX, kG1,
kG2} provide the means for an early diagnosis of IR in con-
junction with a simple OGTT.

Provided that further validation in human subjects sup-
ports these findings, the method may offer practical and cost
advantages. More important is that the method may provide
an additional level of certainty in diagnosing early stages of IR

and thus be of value for the prevention of the clinical conse-
quences of T2D, mainly CVD.

With regard to basic science applications in mice, the em-
phasis clearly lies on early detection. Currently, there is no
clear consensus about what constitutes borderline hyper-
insulinemia and hyperglycemia in the many genetically
modified mouse models available. Nor is there an agreement
on basic aspects of euglycemic clamps, such as the duration of
fasting, the use of an initial insulin bolus, or the subsequent
constant insulin infusion rate.8 Technical aspects further
complicate the comparison of data obtained by various
groups. For example, no uniformly recognized standards
exist for the time interval between catheter implantation, an-
esthetic agents, and the blood sampling technique from arte-
rial catheters or peripheral sites. Glucose clamp studies in
mice therefore often represent far more stressful conditions
than those encountered in humans. In contrast, OGTTs are
carried out under fairly standardized conditions even in mice,
except for the duration of fasting. Our model, being sensitive
to early changes of IR, should therefore be of great value.
However, the very absence of uniform criteria for IR in mice,
as well as the absence of histologic or other verifiable changes
associated with the onset of IR, makes it difficult to establish
the physiological significance—and relevance—of the new
parameters introduced by our model.

Novel diagnostic indices

The HOMA-IR index is widely used for human screening
purposes but was not able to differentiate stages of murine IR,
probably because it is based on fasting measurements. Indices
based on responses triggered, for example, by oral glucose,
like in the OGTT provide more information. Stumvoll et al.38

investigated several indices for IR, termed MCR, ISI, 1st PH,
and 2nd PH, that are calculated as linear combinations of the
(nonfasting) measurements of an OGTT. All of these indices
showed good agreement with clamp measurements. They are,
however, not obtained from a dynamic model (defined by
differential equations), and their model coefficients could not
be interpreted in the scope of a physiological model.

Table 4. Stages of Murine Insulin Resistance Detected In Vivo and by In Silico Simulation

Pattern Mechanisms In vivo In silico

Normal (comparable
to the human reference
group)

Physiological response
to glucose challenge

Physiological plasma
glucose and insulin
levels

Parameters {TG, kX, kG1, kG2}
as shown in Table 1

IGT: genetic dyslipidemia,
increasing age (Group A)

Increasing IR (decreasing
glucose effectiveness);
some compensatory
insulin increase

Raised HOMA-IR index,
delayed insulin response

Reduced glucose effectiveness
1/TG, reduced second-phase
glucose sensitivity kG2

IGT plus high-risk lifestyle:
high-fat diet (Group B)

Compensatory insulin
increase; beginning
insulin deficiency

Increased fasting plasma
insulin or increased 2-h
plasma glucose

Reduced insulin sensitivity kX,
increased glucose sensitivity
kG1, but normal or slightly
increased loop gain (kX · kG1)

T2D (Group C) Insulin production
insufficient to maintain
euglycemia (IR and b-cell
damage)

Increased fasting glucose Glucose sensitivity kG1 collapses,
reduced loop gain (kX · kG1)

HOMA-IR, homeostasis assessment model of insulin resistance; IGT, impaired glucose tolerance; IR, insulin resistance; T2D, type 2
diabetes.
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Furthermore, these indices also utilize the body mass index,
which hinders comparison with animal models. In contrast,
Pillonetto et al.39 provided an analytical solution for a truly
dynamic index of insulin sensitivity, based on Bergman’s
model. Compared with this, our approach requires an opti-
mization procedure to obtain the solution but determines a set
of parameters. For the classification of different patterns of IR
proposed in Table 4, a mere scalar index will be insufficient.
For this purpose, a multidimensional set of parameters has to
be provided, based on a model such as the one presented here
or that proposed by Stumvoll et al.38 The combination of in
vivo data and mathematical procedures offers far more de-
tailed pathophysiological insights into the glucose–insulin
homeostasis and therefore permits an early diagnosis and
greater therapeutic options.

Today, the computational resources needed for model
evaluation and optimization no longer impede its widespread
application.24,25 Altogether, our model offers a novel per-
spective to diagnose and target IGT and early evolution of IR.
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